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Abstract  

Impaired corticomotor function is reported in patients with lateral epicondylalgia, but the causal 

link to pain or musculotendinous overloading is unclear. In this study, sensorimotor cortical 

changes were investigated using a model of persistent pain combined with an overloading 

condition. In 24 healthy subjects, the effect of nerve growth factor (NGF) induced pain, combined 

with delayed onset muscle soreness (DOMS), was examined on pain perception, pressure pain 

sensitivity, maximal force, and sensorimotor cortical excitability. Two groups (NGF alone, 

NGF+DOMS) received injections of NGF into the extensor carpi radialis brevis (ECRB) muscle at 

Day-0, Day-2, and Day-4. At Day-4, the NGF+DOMS group undertook wrist eccentric exercise to 

induce DOMS in the ECRB muscle. Muscle soreness scores, pressure pain thresholds (PPT) over the 

ECRB muscle, maximal grip force, transcranial magnetic stimulation (TMS) mapping of the cortical 

ECRB muscle representation and somatosensory evoked potentials (SEPs) from radial nerve 

stimulation were recorded at Day-0, Day-4 and Day-6. Compared with Day-0, Day-4 showed in 

both groups: 1) Increased muscle soreness (P<0.01); 2) Reduced PPTs (P<0.01); 3) Increased motor 

map volume (P<0.01); 4) Decreased frontal N30 SEP. At Day-6, compared with Day-4, only the 

DOMS+NGF group showed: 1) Increased muscle soreness score (P<0.01); 2) Decreased grip force 

(P<0.01); 3) Decreased motor map volume (P<0.05). The NGF group did not show any difference 

on the remaining outcomes from Day-4 to Day-6. These data suggest that sustained muscle pain 

modulates sensorimotor cortical excitability and that exercise-induced DOMS alters pain-related 

corticomotor adaptation.   

 

Key words: Persistent muscle hyperalgesia, exercise-induced pain, neuroplasticity, cortical 

somatosensory excitability  
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INTRODUCTION  

Chronic musculoskeletal pain is a common condition causing disability [62]. One example of 

chronic musculoskeletal pain is lateral epicondylalgia (LE), an overloading condition affecting the 

musculotendinous structures at the lateral epicondyle with high rates of persistent and recurrent 

pain [50]. Clinically, sensorimotor dysfunction is commonly reported in LE, manifesting as 

hyperalgesia around the lateral elbow, decreased grip force, and pain-related to wrist movement 

[6,8,14,21]. Recent studies have demonstrated increased overall excitability of motor cortex, 

reduced number of cortical peaks, and less intra-cortical inhibition and facilitation in LE compared 

with healthy subjects [8,48]. These data suggest cortical disinhibition and a shift towards greater 

cortical excitability in LE [8] but if these changes are causally linked to pain or to musculotendinous 

overloading is unclear [5,8]. Using experimental models of sustained pain may help to clarify the 

causal drive underpinning cortical excitability changes in LE. 

Somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) have been 

used to assess the neuroplastic consequences of pain since they are generated in diffuse areas of 

the sensorimotor cortex [4,15,18,44]. SEPs recorded over the centro-parietal and frontal cortices 

20-60 ms after upper limb electrical stimulation are representative of the earliest relay and 

processing of afferent inputs in the primary sensory (S1) and premotor cortex (PMC), respectively 

[4,10,18,32]. Using transcranial magnetic stimulation (TMS), motor maps volume reflecting the 

overall excitability of the cortical representation of a muscle can be generated [64]. Combining 

these techniques allows investigation of several aspects of sensorimotor cortex functionality in 

response to pain [2,39].  
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Experimental pain models have been used to investigate mechanisms underlying 

sensorimotor excitability during muscle pain. Recently, models of sustained pain that mimic typical 

behaviour of musculoskeletal pain conditions have been developed to study the involvement of 

nociceptive stimulation in the transition to sustained pain [25,55]. An experimental pain model 

based on injection of nerve growth factor (NGF) has been used to induce several days of muscle 

hyperalgesia around the lateral epicondyle of the elbow [5]. Applying the NGF pain model, an 

increase in motor map volume was found [47], suggesting neuroplastic consequences in the motor 

cortex related to the hyperalgesic condition. Unaccustomed eccentric exercise-inducing delayed 

onset muscle soreness (DOMS) in the wrist extensor muscle is another pain model that reduced 

range of movement and muscle power in the affected muscle group [29,53], similar to what is 

observed in patients with lateral epicondylalgia [6,21,54]. Interestingly, the DOMS model is 

accompanied by increased somatosensory cortex excitability and reduced corticomotor excitability 

of the affected muscle [31].  

The first aim of the present study was to investigate whether combined injection of NGF and 

DOMS provokes greater muscle soreness and disability, increased hyperalgesia, and reduction of 

maximal grip force compared with intramuscular injections of NGF alone. The second aim was to 

investigate the sensorimotor cortical neuroplastic consequences of muscle soreness induced by 

DOMS in a muscle pre-sensitized by intramuscular injection of NGF.  

 

METHODS 

Subjects 

Twenty-four healthy right-handed subjects (14 females) participated in the study, recruited 

through online advertising and flyers posted at Aalborg University. The subjects were randomly 
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divided into two groups: NGF group (7 females) and NGF+DOMS group (7 females). The age, 

height, and weight (mean ± SD) for the NGF and NGF+DOMS groups were, respectively: 25.1 ± 1.6 

years and 26.7 ± 1.2 years; 172.3 ± 2.4 cm and 170.1 ± 3.3 cm; and 73.3 ± 4.3 kg and 68.6 ± 4.8 kg. 

All subjects had no prolonged conditions of upper and lower limb pain, spine pain, neurological or 

other major medical disorder. The average duration of high/moderate physical activity per weeks 

(mean ± standard deviation) for NGF+DOMS and NGF group were 2.5 ± 1.6 h and 2.3 ± 1.7 h, 

respectively. A transcranial magnetic stimulation (TMS) safety screen was completed before 

starting experimental procedures [41]. The study was performed according with the Helsinki 

declaration, approved by the local Ethics Committee (N-20160022), and was registered at 

ClinicalTrials.gov (NCT03354624). Written informed consent was obtained prior to study 

commencement. 

 

Study protocol 

The study comprised 4 sessions over 6 days. On Day-0, Day-4 and Day-6, data were collected in the 

following sequence: 1) Pain related questionnaires (muscle soreness, pain body chart, patient-

rated tennis elbow evaluation), 2) neurophysiological testing (motor evoked potentials and 

somatosensory evoked potentials); 3) quantitative sensory and motor assessment (grip force, 

wrist extensor force, and pressure pain thresholds). On Day-2, the same assessments were 

performed except for neurophysiological testing since no corticomotor excitability changes were 

found affected in a previous study [47]. At the end of each session on Day-0, Day-2 and Day-4, 

both groups received an injection of NGF into the right extensor carpi radialis brevis (ECRB) muscle 

to induce muscle soreness. In addition, on Day-4, the NGF+DOMS group performed high intensity 

eccentric exercise of the right wrist extensor muscles before receiving the NGF injection. 
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NGF-induced muscle soreness  

Injections of NGF into the ECRB muscle were applied to induce muscle soreness along the radial 

side of the right forearm [5,47]. This experimental pain model has been previously developed to 

mimic features of lateral epicondylalgia [5]. Sterile solutions of recombinant human Beta-NGF 

were prepared by the pharmacy (Skanderborg Apotek, Denmark). After cleaning the skin with 

alcohol, NGF (5µg/0.5 mL) was injected into the muscle belly of ECRB under real-time ultrasound 

guidance (SonoSite M-Turbo, FUJIFILM SonoSite, USA) using a 1-mL syringe with a disposable 

needle (27G).  

 

Eccentric exercise-induced delayed onset muscle soreness (DOMS) 

High intensity eccentric-exercise of the wrist extensor muscles was applied to induce delayed 

onset muscle soreness [29,52] on Day-4 only in the NGF+DOMS group. Participants were seated, 

holding a weight in the right hand (max 25 kg), with the forearm pronated and positioned on an 

armrest. Eccentric contractions of the right hand were performed from a maximally extended 

wrist position to a maximally flexed wrist position with a duration of at least 4 s. Sets of five 

repetitions were separated by approximately 1-min rest period. The first set started with a weight 

corresponding to 90% of the maximal voluntary contraction (MVC) and was repeated until the 

participant was not able to control the eccentric contraction over 4 s. When reaching this point of 

failure, the load was progressively reduced in steps of 10% MVC ending at a load of 50% MVC in 

the final set. The experimenter gave verbal encouragement and lifted the weight following the 

eccentric exercise to prevent the participant from performing concentric actions when moving 

from the flexed to the extended wrist position. 
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Pain rating questionnaires and diary 

The participants were requested to rate the intensity of muscle soreness at the beginning of each 

experimental session on a 7-point Likert scale where 0 represented a complete absence of 

pain/soreness; 1: a light pain/soreness in the muscle felt only when touched/a vague ache; 2: a 

moderate pain/soreness felt only when touched/a slight persistent ache; 3: a light muscle 

pain/soreness when lifting objects or carrying objects; 4: a light muscle pain/soreness, stiffness or 

weakness when moving the wrist or elbow without gripping an object; 5: a moderate muscle 

pain/soreness, stiffness or weakness when moving the wrist or elbow; and 6: a severe muscle 

pain/soreness, stiffness or weakness that limits my ability to move [5,52].  

Participants were asked to draw the area of muscle soreness on a body chart. The areas of 

the body chart drawings were calculated in arbitrary units (a.u.) using a scanning program (ImageJ 

v 2.0.0-rc-55 , NIH, Bethesda, USA) [46]. 

The patient rated tennis elbow evaluation (PRTEE) questionnaire was used to assess average 

pain and disability of the right arm at the start of each session referring to the 24-hour period prior 

data collection. Scores for pain (sum of 5 items with maximum total score of 50) and disability 

(sum of 10 items, divided by 2, with a maximum score of 50) were combined to give a total score 

ranging from 0 (no pain and no functional impairment) to 100 (worst pain imaginable with 

significant functional impairment) [30] 

 

Motor evoked potentials and cortical motor maps 

The motor evoked potentials (MEPs) elicited in the ECRB muscle were recorded with surface 

disposable silver/silver chloride adhesive electrodes (Ambu Neuroline 720) placed parallel with the 
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muscle fibres. A reference electrode was mounted on the right olecranon. The electromyographic 

signals were band-pass filtered at 5 Hz-1 kHz, sampled at 2 kHz, and digitized by a 16-bit data-

acquisition card (National Instruments, NI6122). With a swimming cap marked with a 1 × 1 cm 

stimulation grid and orientated to the vertex of the head, the MEP was evoked using a transcranial 

magnetic stimulator (Magstim 200
2
, Magstim Co. Ltd, Dyfed, UK) with a focal figure-of-eight coil 

(D70
2
 Coil, Magstim Co. Ltd, Dyfed, UK), while the muscle was at rest. The resting motor threshold 

(rMT) was defined at the point on the scalp at which the highest amplitude MEPs were evoked in 

the ECRB muscle (hotspot), and was defined as the intensity at which 5 out of 10 successive stimuli 

evoked a MEP with amplitude of at least 50 μV. The stimulus intensity was then set at 120% rMT. 

The motor cortical map representing the ECRB activation was recorded based on MEPs evoked 

every 6 s with a total of 5 stimuli at each site on the stimulation grid [47]. All grid sites were 

pseudo randomly stimulated from the hotspot until no MEP was recorded (defined as <50 µV 

peak-to-peak amplitude) in all five stimuli at all border sites [47]. If the average peak-to-peak 

amplitude of the 5 MEPs evoked at that site was greater than 50 μV, the site was considered 

‘active’ [47]. The number of active map sites and map volume (sum of MEPs from active sites) 

were calculated offline. The centre of gravity (CoG) was defined as the amplitude-weighted centre 

of the map [64] and was calculated by 
∑����	∙��

∑����
; 	
∑����	∙
�

∑����
; where MEPi represents mean MEP 

amplitude at each site with the coordinates Xi, Yi [59]. All transcranial magnetic stimulation (TMS) 

procedures applied in this study adhered to the TMS checklist for methodological quality [13]. For 

each session the average peak-to-peak MEP amplitude at individual sites across subjects were 

linearly interpolated to generate the MEP maps used for illustration of group effects. 
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Somatosensory evoked potentials 

Subjects sat in an armchair in a quiet, semi-darkened room. The SEPs were obtained by non-

painful electrical stimulation of the right radial nerve at the wrist (square wave pulses, stimulus 

intensity three times the perceptual threshold, with a frequency of 2 Hz, duration 1 ms). To 

specifically evaluate the frontal and centro-parietal near-field potentials, somatosensory evoked 

potentials (SEPs) were recorded on the contralateral hemisphere [45]. An electrode cap including 

64 electrodes was used (g.GAMMA cap2, Schiedlberg, Austria) where the F3, F1, Fc3, Fc1, C3, C1, 

Cp3, Cp1, P3 and P1 scalp sites were used and referred to the contralateral earlobe [36]. An 

additional electro-oculogram electrode (Fp1) was recorded superior to the left eye to monitor eye-

related movements. The ground electrode in the cap was placed half way between the eyebrows. 

Electrode impedances were kept below 5 kΩ. Electroencephalographic signals were amplified 

(50000x) and sampled at 2400 Hz (g.HIamp biosignal amplifier; g.tec-medical engineering GmbH, 

Schiedlberg, Austria). Two blocks of 500 stimuli were collected for all trials, filtered offline at 5-500 

Hz and all traces were visually inspected for artefacts (blinks, eye movements, or contraction of 

scalp musculature) and any contaminated epochs were rejected before averaging. On average, 

about 20% of the trials in each session were rejected due to the presence of artefacts, which is 

acceptable according to previous studies [32,42]. The artefact-free waveforms were averaged and 

the peaks P14, N18, P22, N30, P45 and N60 in the frontal leads (F3, F1, Fc3, Fc1,) and P14, N20, 

P25, N33, P45 and N60 in the centro-parietal traces (C3, C1, Cp3, Cp1, P3, P1) were identified 

(Figure 1) [18,32,45], normalised to the pre-stimulation interval (subtracting the mean amplitude 

in the interval from -100 ms to -20 ms before the electrical stimulation) and the amplitudes and 

latencies were extracted.  
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Assessment of contraction force 

Participants were positioned with their right and left forearms in a neutral position and 45 degrees 

elbow flexion. Three MVC of right and left hands with strong verbal encouragement were 

recorded with a custom-made grip dynamometer, consisting of a strain gauge (CCT Transducers, 

Turin, Italy) interposed between two padded bars [5,47]. The force signal was sampled at 500 Hz 

and the maximal grip force among the three trials was extracted for analysis.  

For the wrist extension force, participants were seated with their right forearm positioned in 

pronation and the hand formed a fist. The distal portion of the hand was in contact with a force 

transducer that recorded the force output during wrist extension, and the right elbow in contact 

with the table to avoid any trunk and shoulder compensations during the contraction. Isometric 

wrist extension force was recorded via a force sensor (MC3A 250, AMTI, Watertown, MA 02472-

4800, USA) mounted above the hand. Three MVC were performed to record the force exerted 

during the wrist extension contractions [5,52]. The force signal was sampled at 500 Hz and the 

maximal wrist extension force among the three trials was used for analysis.  

 

Pressure pain sensitivity 

In accord with previous procedures [5,47], pressure pain thresholds (PPTs) were recorded using a 

handheld pressure algometer (1-cm
2
 probe, Algometer type II, SOMEDIC Electronics, Solna, 

Sweden). PPTs were calculated as the mean of three trials where the pressure was increased at a 

rate of 30 kPa/s until the subject detected the PPT and pressed a button. The average PPT of the 3 

measures at each site was used for analysis. PPTs were recorded bilaterally at the extensor carpi 

radialis (ECR) muscle and tibialis anterior (TA) muscle.  
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Statistics  

All data are presented as mean and standard error of the mean (SEM). Statistical analysis was 

performed using SPSS Version 24 for Windows (Chicago, IL, USA). All data from all assessments 

were normality tested using visual inspection and the Shapiro-Wilk’s test. Accordingly, Likert 

scores, PRTEE and Body chart data were analysed by a mixed model analysis of variance (ANOVA) 

with Group (NGF and NGF+DOMS) as the between group factor and Days (Day-2, Day-4 and Day-6) 

as the within subject factor. The PPTs and maximal force levels were analysed by a mixed model 

ANOVA with Group as the between group factor and Days (Day-0, Day-2, Day-4 and Day-6) as the 

within subject factor. For the neurophysiological data, a mixed-model ANOVA with Group as the 

between group factor and Days (Day-0, Day-4 and Day-6) as the within subject factor were 

performed on rMT, MEPs at the hot spot, number of Active Sites, MEP map volume, latitude CoG, 

longitude CoG, and amplitude and latency of SEPs. Where appropriate, post-hoc analyses were 

performed using Bonferroni multiple comparison tests. Statistical significance was set at P < 0.05, 

however to compensate for the use of multiple ANOVAs in the analysis of EEG data (10 recording 

sites) the P-value from the ANOVAs was Bonferroni corrected to P < 0.005 (i.e. 0.05/10) for 

accepting significance.  

 

RESULTS 

NGF induced muscle soreness was worsened by the addition of DOMS 

A Day*Group interaction was found for Likert scores of muscle soreness (ANOVA: F2,44 = 4.43; P = 

0.02). Post-hoc tests showed an increase in Likert scores from Day-2 to Day-4 in both groups and 

from Day-4 to Day-6 in the NGF+DOMS group (P < 0.02). Post-hoc tests revealed higher Likert 

scores (indicating greater muscle soreness) in the NGF+DOMS group compared with the NGF 
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group at Day 6 (P = 0.01; Table 1). A Day*Group interaction was also found for the PRTEE (ANOVA: 

F1.5,33.6 = 4.84; P = 0.02). Post-hoc tests showed an increase in the PRTEE score from Day-2 to Day-4 

in both groups and from Day-4 to Day-6 in the NGF+DOMS group (P < 0.01; Table 1). Post-hoc tests 

between groups were not significant at Day-6 (P = 0.12). Muscle soreness was perceived mainly 

along the radial side of the forearm in both groups (Figure 2). The ANOVA revealed a Day*Group 

interaction in the body chart size (F2,44 = 3.55; p = 0.04). Post-hoc tests showed an increase in the 

body chart area from Day-2 to Day-4 in the both groups and from Day-4 to Day-6 in the 

NGF+DOMS group (P < 0.03). Post-hoc tests between groups revealed a tendency for larger areas 

in the NGF+DOMS group compared with the NGF group at Day-6 (P = 0.055; Table 1).  

 

NGF increased pressure pain sensitivity, but this did not worsen with the addition of DOMS  

The ANOVA of PPTs measured over the right ECRB muscle revealed a main effect of Day (F3,66 = 

47.48; P < 0.01; Table 1). Compared with Day-0, the PPT over the right ECRB muscle was reduced 

at Day-2, Day-4, and Day-6 (P < 0.01). No difference in the PPT was found over the left ECR muscle 

(ANOVA interaction: F3,66 = 0.69; P = 0.56), right TA muscle (ANOVA interaction: F3,66 = 0.24; P = 

0.82) or left TA muscle (ANOVA interaction: F3,66 = 0.61; P = 0.66; Table 1) in response to 

NGF+DOMS or NGF alone. 

 

NGF injection increased corticomotor excitability which was subsequently decreased by the 

addition of DOMS 

A Day*Group interaction was found for map volume (ANOVA: F2,44 = 4.82; P = 0.01; Figure 3; Table 

2). Post-hoc tests showed a progressive increase in map volume from Day-0 to Day-4 in both 

groups (P < 0.01). At Day-6, only the NGF+DOMS group demonstrated a reduction in map volume 
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compared with Day-4 (P = 0.01). Compared with Day-0, only the NGF group showed an increase in 

map volume at Day-6 (P < 0.01). Post-hoc test between groups revealed a tendency for larger MEP 

volume in the NGF group at Day-6 compared with the NGF+DOMS group (P=0.07).  

Main effect of Days was found in the number of Active Sites (ANOVA: F2,44 = 20.3; P < 0.01) 

and MEP amplitudes at the hot spot (ANOVA: F2,44 = 6.69; P < 0.01). Compared with Day-0, the 

number of Active Sites and MEP amplitudes on the hot spot were increased at Day-4 (P < 0.01) and 

at Day-6 (P < 0.02).  

No difference was found in rMT (ANOVA interaction: F2,44 = 0.70; P = 0.50), Longitude CoG 

(ANOVA interaction: F2,44 = 0.84; P = 0.44) or Latitude CoG (ANOVA interaction F2,44 = 2.89; P = 

0.07) between Groups and Days. 

 

NGF-injections provoked reduced frontal N30 amplitude and increased centro-parietal N33-P45 

amplitude 

Figure 4 shows the 10 recording electrodes located in the contralateral hemisphere to the right 

radial nerve stimulation. First, a widely distributed positive far-field P14 potential was detected in 

all recording electrodes [18,32] (Figure 4, F1 and P1), followed by the frontal far-field N18 

potential (Figure 4, Fc1). The near-field N20 potential (Figure 4, P1), representing the earliest 

cortical response, was identified in the centro-parietal region, followed by the P25 positivity and 

N33 negativity [4,18] (Allison et al., 1989; Fuji et al., 1994) (Figure 4, Cp1 and C1). In contrast to 

the centro-parietal region, the frontal near-field P22 positivity was followed by a large frontal N30 

negativity [10,18] (Figure 4, Fc1 and F1). Finally, a widely distributed P45 potential could be 

recognized in all recording sites, followed by a diffuse N60 potential [18] (Figure 4, C1).  
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Significant effects of Day were found for the frontal N30-peak amplitude in F3, F1, Fc3 and 

Fc1 (Table 3; ANOVA: F2,44 > 8.58; P < 0.002). The frontal N30-peak amplitude decreased at Day-4 

and this reduction persisted at Day-6 compared with Day-0 in both groups (P < 0.01). See Table, 

Supplemental Digital Content 1 illustrating the N30-peak amplitude of all frontal recording sites 

(available at http://links.lww.com/PAIN/A635).  

Significant effects of Day were found for the centro-parietal N33-peak amplitude in C3, C1, 

Cp3, Cp1, P3 and P1 (Table 3; ANOVA: F2,44 > 6.16; P < 0.004). The centro-parietal N33-peak 

amplitude decreased at Day-4 and this reduction persisted at Day-6 compared with Day-0 in both 

groups (P < 0.01). See Table, Supplemental Digital Content 2, illustrating the N33-peak amplitude 

of all centro-parietal recording sites (available at http://links.lww.com/PAIN/A635).  

Finally, significant effects of Day were also found for the P45-peak amplitude in frontal and 

centro-parietal recording sites (Table 3; ANOVA F2,44 > 10.84; P < 0.001). The peak amplitude of 

P45 increased at Day-4 and this increase persisted at Day-6 compared with Day-0 in both groups (P 

< 0.01). See Table, Supplemental Digital Content 3 (available at http://links.lww.com/PAIN/A635), 

illustrating the P45-peak amplitude of all recording sites. For all recording sites, the peak 

amplitude of P14 (ANOVA interaction: F2,44 < 2.50, P > 0.09), N18/N20 (ANOVA interaction: F2,44 < 

1.85, P > 0.16), P22/P25 (ANOVA interaction: F2,44 < 3.65, P > 0.03) and N60 (ANOVA interaction: 

F2,44 < 3.72, P > 0.03) were not altered between Groups and Days (Table 3). There were no latency 

changes for any of the peaks under investigation (data not presented).  

 

DOMS provoked a decrease in maximal contraction force 

The ANOVA of the right grip force revealed a Day*Group interaction (F2.2,48.4 = 5.87; P < 0.01; Table 

1). Post-hoc tests revealed that maximal right grip force was decreased at Day-6 compared with 
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Day-0, Day-2, and Day-4 (P<0.01), but only in the NGF+DOMS group. No difference in grip force 

was found for the left hand (ANOVA interaction: F3,66 =0.45; p=0.71). 

The ANOVA of the wrist extension force revealed a Day*Group interaction (F3,66 = 18.03; P < 

0.01; Table 1). Post-hoc tests showed that only the NGF+DOMS group decreased in the maximal 

right wrist extension force at Day-6 compared with Day-0, Day-2, and Day-4 (P<0.01). Post-hoc test 

between group revealed lower force in the NGF+DOMS group compared with the NGF group at 

Day-6 (P = 0.02).  

 

DISCUSSION 

The present findings provide important insight into the nature of sensorimotor adaptation during 

sustained muscle soreness. In fact, DOMS in a system already sensitized by NGF provides a unique 

opportunity to evaluate the sensorimotor adaptations in response to a clinically relevant, acute 

exacerbation of muscle pain. The combined experimental models of injection of NGF and DOMS 

evoked greater muscle soreness, functional disability, areas of pain, and less maximal force 

compared with intramuscular injection of NGF alone. In addition, the study investigated the 

neuroplastic sensory-motor consequences of muscle soreness induced by DOMS in a pre-

sensitized muscle injected by NGF. These data demonstrate that the corticomotor depressive 

effect of DOMS obstructed the increased motor map volume induced by NGF, suggesting that the 

acute exacerbation of muscle pain may have different consequences for corticomotor function. 

Finally, these data showed reduction of the frontal N30 amplitude and an increase in the centro-

parietal N33-P45 amplitude in response to intramuscular injection of NGF into the ECRB muscle, 

but in contrast to motor map excitability, no somatosensory changes were found between groups.   
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DOMS increased the muscle soreness and disability induced by NGF and reduced maximal force  

Chronic LE is a disabling pain condition, common in people who perform manual tasks with 

repeated, rapid movements of the wrist and forearm [16], that involves sensorimotor changes, 

including muscle hyperalgesia and a reduction in maximal grip force [6,14]. Whether these 

sensorimotor impairments are the cause or effect of sustained pain remains unclear, and 

intramuscular injections of NGF [5,33,47] and DOMS [20,51,52] have been used to help to clarify 

the causal drive for sensorimotor changes. Consistent with previous studies [5,47], two 

intramuscular injections of NGF into the ECRB muscle evoked muscle soreness along the radial side 

of the forearm, induced moderate muscle soreness (Likert scale: ~4, [47]) and disability in hand 

function (PRTEE: ~25, [47]), and an increase in sensitivity to mechanical pressure (PPT: ~100kPa, 

[47]). However, the decrease in maximal wrist extension and grip force was only substantial when 

eccentric exercise was applied to the tissues at Day-6 in the NGF+DOMS group. This is consistent 

with previous findings using DOMS as a means of generating muscle damage (20% reduction of 

max wrist extension force [29,52]). In fact, eccentric exercise involving the repetitive lengthening 

of muscle is known to cause damage to the ultrastructural components of muscle fibres [3]. 

Furthermore, muscle soreness induced by eccentric exercise develops 1 or 2 days after exercise, 

due to release of algesic substances from the damaged muscle, such as NGF, bradykinin and glial 

cell line-derived neurotrophic factor (GDNF) [34,35]. Therefore, a possible explanation for the 

increase in muscle soreness, hand function disability and areas of pain seen in the NGF+DOMS 

group may be the release of additional algesic substances from the damaged muscle. In contrast, 

the third injection of 5 µg of NGF into the muscle did not induce additional increase in muscle 

soreness probably caused by saturation of NGF-receptor in the area of the injections. These 

findings are in line with a previous report applying 3 injections of NGF in TA muscle where there 
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was no progressive increase of muscle soreness and decrease in the PPT 24 h after the second and 

three injections [25]. Collectively, the combined NGF and DOMS pain model used in the present 

study could be a suitable model of sustained lateral elbow pain similar to the key sensorimotor 

features of LE. Importantly, such experimental model of sustained pain cannot replicate important 

features of chronic LE such as long-term pain and functional limitation (>6 weeks), anxiety, fear of 

movement and fear of re-injury. 

  

NGF induced soreness extended the ECRB motor map which subsequently was depressed by DOMS 

Corticomotor excitability in patients affected by persistent musculoskeletal pain has been widely 

investigated [54,57,58] and interpreted as a sign of maladaptive neuroplasticity. When prolonged 

muscle soreness is induced by injection of NGF, increased map volume of the affected muscle has 

been described [47] consistent with the present findings on Day-4 and Day-6 in the NGF group. 

Based on a motor learning effect [37], the increase in motor map volume has been interpreted as 

an adaptive neuroplastic effect underpinning the search for a new strategy of movement [47]. This 

hypothesis is supported by previous studies showing expansion of motor map volume during the 

acquisition of new motor skills [38]. In contrast, when prolonged muscle soreness is induced by 

DOMS, reduction of motor map volume and reduction in maximal force have been described [31], 

probably caused by a neural protective mechanism to limit those movements involving damaged 

muscles [61] or an impairment in the peripheral excitation-contraction coupling process [63]. 

Similarly, the current study showed a reduction of the motor map volume when DOMS was 

applied in a pre-sensitized muscle, suggesting that the depressive corticomotor effects of muscle 

damage may interfere with the search for new strategy of movement. Interestingly, the induction 

of acute short-lasting muscle pain in a system already sensitized by NGF produced opposite effects 
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on corticomotor excitability [47] to those described when acute short-lasting muscle pain is 

induced in healthy individuals [40,56], probably by an increase in spinal excitability [47]. In 

contrast, H-reflexes after eccentric exercise were decreased immediately and 24 h after exercise, 

potentially explained by increased presynaptic inhibition of Ia afferents [61]. Therefore, these 

peripheral or spinal inhibitory effects provoked by muscle damage may explain attenuated 

corticomotor excitability found in the present study.    

 

SEP adaptation after days of NGF-induced muscle soreness 

Structural and functional reorganization of somatosensory cortical areas have been described in 

chronic musculoskeletal pain patients [19,22,49], suggesting that chronic pain is accompanied by 

cortical sensory reorganization. In addition, neuroplastic changes in the somatosensory cortex 

have been demonstrated in human pain models applying short-lasting acute pain [9]. However this 

is the first study to investigate the effect of prolonged muscle soreness induced by injection of 

NGF into a muscle. The main SEP components affected in the present study were frontal N30 and 

parietal N33-P45, suggesting that both frontal and parietal cortices were affected by muscle 

soreness. In addition, DOMS failed to show any statistical difference in the SEPs compared with 

the only injections of NGF.   

Although the nature of frontal and parietal SEPs is unclear [4,60], cortical-surface recordings 

and transcortical recordings suggest that these potentials reflect different frontal and parietal 

cortical generators. Evidence from several studies show that sensory inputs reach pre-motor areas 

(premotor cortex (PMC) and supplementary motor area (SMA)) either after synapsing in S1 [26] or 

via parallel direct pathways from thalamic relays [32,45]. In particular, the frontal N30 component 

of somatosensory evoked potentials has been recognized to reflect some aspects of the sensory 
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information in motor planning and motor execution in PMC and SMA [10,11]. Although still 

debated, reduction of frontal N30 component has been described in several extrapyramidal 

syndromes, such Parkinson disease [43], Huntington's disease [1] or lesion of the prefrontal motor 

areas [24,32]. In addition this frontal component has also been associated with dopamine function 

since single doses of L-Dopa in Parkinson’s patients increased the frontal N30 amplitude [12,27]. 

Therefore the N30 component has been related to the functionality of a complex 

cortico/subcortical loop linking ganglia, thalamus, supplementary and pre-motor areas [7]. The 

results of the current study showed for the first time that muscle soreness induced by NGF is able 

to decrease frontal cortical evoked potentials, suggesting that muscle soreness may interfere with 

some aspects of motor planning or motor execution.  

The centro-parietal N33-P45 components of somatosensory evoked potentials were also 

affected in this study. Whereas centro-parietal SEP components elicited after to 60 ms originate in 

higher order somatosensory cortices, early SEPs components originate in the primary sensory 

cortex [4]. Studies in animal and human subjects converge to suggest a prominent role of this area 

in sensory discriminative aspects of both pain and touch perception [42, 28]. In addition, 

neuroimaging and neurophysiological studies indicate that the primary sensory cortex is involved 

in several chronic musculoskeletal pain [22,49] and experimental acute pain [42,53], suggesting 

that also muscle soreness induced by NGF may alter the somatosensory cortical excitability. 

However, changes of early SEPs, in particular P45 amplitude, can be also explained by changes in 

selective spatial attention [17,23]. Based on these previous studies, it is also possible that muscle 

soreness on the right forearm may provoke attention changes towards the stimulated territory. 

However, muscle soreness induced by DOMS and NGF is both conditions generally characterized 

by absence of muscle pain at rest. In addition, during the assessment of SEPs none of our 
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participants reported on-going muscle soreness, suggesting that spatial attention is unlikely the 

explanation of the changes in somatosensory cortex excitability.   

 

Conclusion 

This study shows for the first time that muscle soreness over several days induced by NGF was 

associated with neuroplastic adaptations of somatosensory evoked potentials generated by 

frontal and centro-parietal cortices, suggesting that muscle soreness may interfere in the 

sensorimotor integration and sensory discrimination of sensory inputs. In addition, inhibitory 

corticomotor effect of exercise-induced muscle soreness obstructed the increased motor map 

volume induced by NGF, suggesting that muscle damage may interfere with the search of new 

strategy of movement relevant for the pure soreness.  
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FIGURE LEGENDS 

Figure 1: Right radial nerve SEPs recorded by frontal electrodes (F3, F1, Fc3, Fc1) and centro-

parietal electrodes (C3, C1, Cp3, Cp1, P3 and P1) scalp sites placed according to the 10-20 system. 

The N20 response is shown at the Cp1 site. P22 and P25 are indicated at the F1 and Cp1 sites and 

N30 and N33 are labelled at the F1 and P1 sites. P45 and N60 are indicated in the C1.   

 

Figure 2: Superimposed body chart pain drawings (palmar and dorsal view of the right arm) 

showing distribution of muscle soreness at Day-2, Day-4, and Day-6 in NGF+DOMS (N = 12) and 

NGF (N = 12) group. Darker grey colours indicate a higher frequency of subjects reporting pain in 

that region.  
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Figure 3: Averaged (N = 24) peak-to-peak MEP amplitudes of the right ECR muscle interpolated 

across stimulation sites at Day-0 (before NGF) and Day-4 (after NGF injections). Averaged peak-to-

peak MEP amplitudes of the right ECR muscle interpolated across stimulation sites at Day-6 in 

NGF+DOMS (N = 12) and NGF (N = 12) groups. The colour scale represents amplitude (from 0 to 

800 µV).  

 

Figure 4: Grand average of SEPs from right radial nerve stimulation recorded by frontal electrodes 

(F3, F1, Fc3, Fc1) and centro-parietal electrodes (C3, C1, Cp3, Cp1, P3 and P1) scalp sites placed 

according to the 10-20 system. Averaged SEPs across both groups at Day-0 (blue line, N = 24) and 

Day-4 (red line, N = 24) and at Day-6 in the NGF group (black line, N = 12) and NGF+DOMS group 

(black dash line, N = 12). P14, presented over all the traces, is indicated in the F1 and P1 traces. 

The N18 and N20 responses are shown at the Fc1 and P1 traces, respectively. P22 and P25 are 

indicated at the Fc1 and Cp1 sites and N30 and N33 are labelled at the F1 and C1 sites. P45 and 

N60, presented over all the traces, are indicated in the C1.   
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 Group Day-0 Day-2 Day-4 Day-6 

Likert scores (0-6) NGF - 3.7 ± 0.3 4.2 ± 0.3
b 

4.3 ± 0.2
b,* 

NGF+DOMS - 3.5 ± 0.2 4.3 ± 0.3
b
 4.9 ± 0.2

b,c,* 

PRTEE (0-100) NGF - 17.0 ± 2.3 25.0 ± 3.6
b
 24.3 ± 3.8

b
 

NGF+DOMS - 16.0 ± 1.9 24.4 ± 3.3
b
 34.5 ± 5.1

b,c
 

Area of soreness 

(a.u.) 

NGF - 308.7 ± 44.6 392.5 ± 46.3
b
 395.7 ± 29.1

b
 

NGF+DOMS - 290.1 ± 53.6 395.0 ± 52.9
b
 555.7 ± 73.4

b,c
 

PPT left ECRB 

muscle (kPa) 

NGF 191.3 ± 22.1 190.4 ± 23.7 179.6 ± 15.8 192.6 ± 17.6 

NGF+DOMS 212.3 ± 17.9 216.1 ± 23 213.2 ± 20.9 202.4 ± 18.7 

PPT right ECRB 

muscle (kPa) 

NGF 209.5 ± 24.6 103.2 ± 11.5
a 

93.4 ± 8.9
 a

 92.3 ± 12.6
a,b

 

NGF+DOMS 217.1 ± 20.3 129.7 ± 16.9
a
 108.7 ± 12.2

a
 100.2 13.7

a,b
 

PPT left TA 

muscle(kPa) 

NGF 450.4 ± 60.7 446.0 ± 62.8 427.7 ± 52.4 475.7 ± 60.1 

NGF+DOMS 470.2 ± 42.9 461.1 ± 40.6 473.2 ± 47.9 487.5 ± 47.0 

PPT right TA 

muscle (kPa) 

NGF 483.7 ± 65.4 478.9 ± 56.2 443.8 ± 47.2 484.2 ± 53 

NGF+DOMS 481.6 ± 38.0 479.6 ± 34.3 471.8 ± 43.5 491.4 ± 49.3 

Right wrist Force 

(N) 

NGF 152.0 ± 8.1 149.1 ± 8.4 150.1 ± 8.7 150.2 ± 7.8
*
 

NGF+DOMS 147.1 ± 9.3
d 

142.9 ± 9.0
d
 141.9 ± 10.1

d
 121.5 ± 9.0

*
 

Left grip force  (kg) NGF 30.4 ± 2.4 31.1 ± 2.4 29.4 ± 8.3 30.1 ± 2.6 

NGF+DOMS 29.5 ± 1.8 29.6 ± 1.9 28.7 ± 1.8 29.0 ± 1.9 

Right grip force 

(kg) 

NGF 33.5 ± 2.3 32.8 ± 2.4 31.6 ± 2.3 32.9 ± 2.4 

NGF+DOMS 32.7 ± 2.3
d
 32.4 ± 2.0

d
 30.7 ± 2.0

d
 28.7 ± 2.0 

 

 

Table 1: Mean (± SEM, N = 12) Likert scale, PRTEE, Area of soreness, pressure pain thresholds 

(PPTs) on extensor carpi radialis brevis (ECRB) and tibialis anterior (TA) muscles, maximal wrist 

extension force, and maximal grip force. Significantly different from Day-0 within the group (
a
, 

P<0.05), from Day-2 within the group (
b
, P<0.05), from Day-4 within the group (

c
, P<0.05), from 

Day-6 within the group (
d
, P<0.05) and between groups within the day (

*
, P<0.05). 
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 Group Day-0 Day-4 Day-6 

rMT (%) NGF 39.7 ± 2.0 39.4 ± 2.1 38.8 ± 1.8 

 NGF+DOMS 37.1 ± 2.7 37.5 ± 2.5 37.3 ± 2.3 

MEP amplitude (µV) NGF 595.9 ± 123.8 795.7 ± 192.8
 a

 913.7 ± 166.2
 a

 

 NGF+DOMS 561.9 ± 102.3 716.8 ± 107.3
 a

 616.4 ± 106.7
 a

 

Map volume (µV) NGF 3684.6 ± 432.0 5515.4 ± 733.0
 a

 5866.0 ± 748.9
 a

 

 NGF+DOMS 3673.2 ± 461.7 5801.3 ± 659.6
 a

 4247.7 ± 458.9
 b

 

Number of Active Sites NGF 14.3 ± 0.8 18.6 ± 1.3
 a

 18.0 ± 1.1
 a

 

 NGF+DOMS 13.8 ± 0.8 17.8 ± 0.9
 a

 16.3 ± 1.4
 a

 

CoG latitude (cm) NGF 5.9 ± 0.2 5.9 ± 0.1 5.7 ± 0.1 

 NGF+DOMS 5.7 ± 0.2 5.7 ± 0.1 5.7 ± 0.2 

CoG longitude (cm) NGF 1.7 ± 0.1 1.8 ± 0.2 1.9 ± 0.1 

 NGF+DOMS 1.7 ± 0.2 1.7 ± 0.1 1.8 ± 0.1 

 

 

Table 2: Mean (± SEM, N = 12) parameters related with motor-evoked potentials. rMT: resting 

motor threshold. Significantly different from Day-0 within the group (
a
, P<0.05) and from Day-4 

within the group (
b
, P<0.05). 
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SEP 

Component 

Peak 

electrode 

Group Day-0 Day-4 Day-6 

P14 F1 NGF 0.59 ± 0.09 0.55 ± 0.11 0.57 ± 0.13 

  NGF+DOMS 0.66 ± 0.09 0.65 ± 0.10 0.48 ± 0.11 

N18  Fc3 NGF -0.19 ± 0.10 -0.17 ± 0.11 -0.05 ± 0.13 

  NGF+DOMS -0.26 ± 0.09 -0.33 ± 0.11 -0.12 ± 0.11 

N20 Cp3 NGF -0.89 ± 0.09 -1.06 ± 0.14 -0.96 ± 0.15 

  NGF+DOMS -0.83 ± 0.13 -0.98 ± 0.14 -0.91 ± 0.14 

P22 Fc3 NGF 0.38 ± 0.12 0.36 ± 0.14 0.69 ± 0.14 

  NGF+DOMS 0.49 ± 0.12 0.71 ± 0.12 0.79 ± 0.13 

P25 Cp3 NGF 1.20 ± 0.27 1.24 ± 0.23 1.51 ± 0.30 

  NGF+DOMS 1.51 ± 0.25 1.86 ± 0.31 1.77 ± 0.28 

N30 F1 NGF -1.78 ± 0.20  -1.16 ± 0.18
 a
 -1.16 ± 0.20

 a
 

  NGF+DOMS -2.05 ± 0.17 -1.49 ± 0.18
 a
 -1.62 ± 0.15

 a
 

N33 Cp1 NGF -0.62 ± 0.17 -0.18 ± 0.19
a
 -0.07 ± 0.22

a
 

  NGF+DOMS -0.42 ± 0.18 -0.05 ± 0.22
a
 -0.01 ± 0.24

a
 

P45 Cp3 NGF 1.52 ± 0.26  2.10 ± 0.27
a
 2.31 ± 0.33

a
 

  NGF+DOMS 1.70 ± 0.24 2.33 ± 0.29
a
 2.24 ± 0.22

a
 

N60 Fc1 NGF -1.24 ± 0.24 -1.18 ± 0.28 -1.02 ± 0.29 

  NGF+DOMS -1.63 ± 0.23  -1.37 ± 0.18 -1.60 ± 0.22 

 

Table 3: Mean (± SEM, N = 12) for each component peak electrode. Significantly different from 

Day-0 within the group (
a
, P<0.05). 
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