On the adiabatic behaviour of a bound state when diving into the continuous spectrum
joint work with H. D. Cornean, A. Jensen, and Gh. Nenciu

YRS 2018, Montreal
20–21 July 2018

Hans Konrad Knörr

Institut for Matematiske Fag
Aalborg Universitet
The problem

An external potential is tuned adiabatically in time such that the system has some isolated bound state for some time. Then the following question arises:
What is the survival probability of the bound state when the corresponding eigenvalue dives into the continuous spectrum for a while during the adiabatic tuning of the external potential?

We answer this question for a rather simple model, however we are confident that the methods applied in the proof can be generalised to more realistic setting.
The problem

An external potential is tuned adiabatically in time such that the system has some isolated bound state for some time. Then the following question arises: What is the survival probability of the bound state when the corresponding eigenvalue dives into the continuous spectrum for a while during the adiabatic tuning of the external potential?

We answer this question for a rather simple model, however we are confident that the methods applied in the proof can be generalised to more realistic setting.

This question is closely related to ‘adiabatic pair creation’ [Nenciu 1987; Pickl, Dürr 2008] and ‘memory effects in mesoscopic transport’ [Cornean, Jensen, Nenciu 2014].
The model

We consider a two-channel model of an atom given by a quantum dot coupled to an open scattering channel. On the Hilbert space $\mathcal{H} = L^2(\mathbb{R}^3) \oplus \mathbb{C}$ we define the Hamiltonian

$$H_\tau(E) := \begin{pmatrix} -\Delta & 0 \\ 0 & E \end{pmatrix} + \tau \begin{pmatrix} 0 & \langle \varphi \rangle \\ \langle \varphi | & 0 \end{pmatrix}$$

where

- $E \in \mathbb{R}$ is the dot energy,
- $\tau \in \mathbb{R}$ is the coupling constant and
- the normalised coupling function $\varphi \in L^2(\mathbb{R}^3)$ has to fulfill that $\int_{\mathbb{R}^3} (1 + x^2)^w |\varphi(x)|^2 d^3x < \infty$ for all $w > 0$ and $|k|^{-\nu} \hat{\varphi}$ is continuous at $k = 0$ for some $\nu \geq 1$.
The model

We consider a two-channel model of an atom given by a quantum dot coupled to an open scattering channel. On the Hilbert space $\mathcal{H} = L^2(\mathbb{R}^3) \oplus \mathbb{C}$ we define the Hamiltonian

$$H_\tau(E) := \begin{pmatrix} -\Delta & 0 \\ 0 & E \end{pmatrix} + \tau \begin{pmatrix} 0 & |\varphi\rangle \\ \langle \varphi | & 0 \end{pmatrix}$$

where

- $E \in \mathbb{R}$ is the dot energy,
- $\tau \in \mathbb{R}$ is the coupling constant and
- the normalised coupling function $\varphi \in L^2(\mathbb{R}^3)$ has to fulfill that $\int_{\mathbb{R}^3} (1 + x^2)^w |\varphi(x)|^2 d^3x < \infty$ for all $w > 0$ and $|k|^{-\nu} \hat{\varphi}$ is continuous at $k = 0$ for some $\nu \geq 1$

Observe that $\sigma_{ac}(H_\tau(E)) = [0, \infty]$ and $H_\tau(E)$ has at most one eigenvalue $\lambda(E)$.
Tuning of the dot energy

In order to model an adiabatic tuning process the dot energy is varied:
We assume $E(\cdot) \in C^2([-1, 0])$ with $E(-1) = E(0) < 0$ and that there is $s_m \in]-1, 0[$ such that $E(s_m) > 0$, $E(\cdot)$ is strictly increasing for $s < s_m$ and strictly decreasing for $s > s_m$.

![Graph showing the behavior of E(\cdot) with a maximum at s_m]
Time evolution and adiabatic limit

The microscopic time is \(t := s / \eta \) with \(\eta > 0 \) and we set \(H(t) := H_\tau(E(\eta t)) \). Then \(\eta \downarrow 0 \) is called adiabatic limit.

The corresponding Heisenberg evolution \(U(t, t_0) \) is the solution of the Schrödinger equation

\[
i \frac{\partial}{\partial t} U(t, t_0) = H(t)U(t, t_0) , \quad U(t_0, t_0) = 1.
\]
Theorem

For any τ small enough the following holds:

(I) There is $0 < E_c < E(s_m)$ such that $\lambda(E_c) = 0$ is an embedded simple eigenvalue with eigenfunction $\Psi_c \in \mathcal{H}$ and projection P_c. Moreover, $\lambda(E) < 0$ is a simple discrete eigenvalue for $E < E_c$ with smooth eigenprojection $P(E)$ and eigenfunction $\Psi(E)$.
Criticality and different regimes of the dot energy

Note that there are macroscopic times $-1 < s_c < s_m < s'_c < 0$ with $E(s_c) = E(s'_c) = E_c$. So $E(\cdot)$ may look as follows:
Theorem

For any τ small enough the following holds:

(I) There is $0 < E_c < E(s_m)$ such that $\lambda(E_c) = 0$ is an embedded simple eigenvalue with eigenfunction $\Psi_c \in \mathcal{H}$ and projection P_c. Moreover, $\lambda(E) < 0$ is a simple discrete eigenvalue for $E < E_c$ with smooth eigenprojection $P(E)$ and eigenfunction $\Psi(E)$.

(II) There is a class of coupling functions φ for which $H_\tau(E)$ has purely a.c. spectrum for $E_c < E \leq E(s_m)$ and

$$\lim_{\eta \to 0} |\langle \Psi(E(0)), U(0, -1/\eta) \Psi(E(-1)) \rangle|^2 = 0.$$
Summary

- Main ingredients in the proof:
 - Feshbach formula
 - Asymptotic expansions of the resolvent of the Laplacian:
 \[
 r_0(-\kappa^2) = \sum_{j=0}^{n} \kappa^j G_j + O(\kappa^{n+1}) \quad \text{as } \kappa \to 0 \text{ with } \Re \kappa \geq 0
 \]
 [Jensen, Kato 1979]
 - An improved propagation estimate:
 \[
 |\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix} | e^{-itH_a} | \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle| \leq C (1 + |t|)^{-5/2} \text{ for some } H_a = H_{\tau}(E_a),
 \]
 \[
 E_a \in]E_c, E(s_m)\]

Knörr — On the adiabatic behaviour of a bound state when diving into the continuous spectrum
Summary

- Main ingredients in the proof:
 - Feshbach formula
 - Asymptotic expansions of the resolvent of the Laplacian:
 \[r_0(-\kappa^2) = \sum_{j=0}^{n} \kappa^j G_j + O(\kappa^{n+1}) \text{ as } \kappa \to 0 \text{ with } \Re \kappa \geq 0 \]
 [Jensen, Kato 1979]
 - An improved propagation estimate:
 \[|\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix} | e^{-itH_a} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle| \leq C (1 + |t|)^{-5/2} \text{ for some } H_a = H_\tau(E_a), E_a \in]E_c, E(s_m)\]
 - Crucial: Existence of an embedded eigenvalue at the threshold
Outlook

- What about more realistic Dirac and Schrödinger operators?

- What about the case when there is no eigenvalue at the threshold (but a resonance)?
What about more realistic Dirac and Schrödinger operators?
→ There are some more or less rigorous results, generalisation of our method is work in progress

What about the case when there is no eigenvalue at the threshold (but a resonance)?
Outlook

- What about more realistic Dirac and Schrödinger operators?
 → There are some more or less rigorous results, generalisation of our method is work in progress
- What about the case when there is no eigenvalue at the threshold (but a resonance)?
 → Open!

Thank you for your attention!
Let $z \in \mathbb{C}$ with $\text{Im } z \neq 0$. The full resolvent is $R(z) = (H_\tau(E) - z)^{-1}$. With

$$F(z, E) = E - z - \tau^2 \langle \varphi | r_0(z) \varphi \rangle$$

and $r_0(z) = (-\Delta - z)^{-1}$ we can rewrite the resolvent as

$$R(z) = \begin{pmatrix} r_0(z) & 0 \\ 0 & 0 \end{pmatrix} + \frac{1}{F(z, E)} \begin{pmatrix} \tau^2 r_0(z) | \varphi \rangle \langle \varphi | r_0(z) & -\tau r_0(z) | \varphi \rangle \\ -\tau \langle \varphi | r_0(z) & 1 \end{pmatrix}.$$

In particular, $\langle \zeta | R(z) \zeta \rangle = 1/F(z, E)$ with $\zeta = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Then $\lambda = \lambda(E) \in \mathbb{R}$ is the only eigenvalue of $H_\tau(E)$ iff $F(\lambda, E) = 0$.

The Feshbach formula
An asymptotic expansion of the free resolvent

Denote $z = -\kappa^2$ with $\text{Im} \ z \geq 0$.

Lemma (Asymptotic expansion [Jensen, Kato 1979])

As $\kappa \to 0$ with $\text{Re} \ \kappa \geq 0$,

$$r_0(-\kappa^2) = \sum_{j=0}^{n} \kappa^j G_j + \mathcal{O}(\kappa^{n+1})$$

where G_j are bounded operators (in an appropriate topology) with integral kernel $G_j(x, y) = \frac{(-1)^j}{4\pi j!} |x-y|^{j-1}$.

We have:

$|k|^{-\nu} \hat{\varphi}$ continuous at $k = 0 \Rightarrow \hat{\varphi}(0) = 0 \Rightarrow G_1 \varphi = 0$,

$G_0 \varphi \in L^2$ and $\langle \varphi | G_2 \varphi \rangle_w = -\langle G_0 \varphi | G_0 \varphi \rangle \leq 0$
Eigenvalue and projection

- For $E < E_c = \tau^2 \langle \varphi | G_0 \varphi \rangle_w$, $\lambda(E) < 0$ and the corresponding orthogonal projection onto the eigenspace is obtained from the Feshbach formula for the resolvent by Cauchy’s residue theorem. An eigenvector is

$$
\Psi(E) = \frac{1}{\sqrt{1 + \tau^2 \langle \varphi | r_0^2(\lambda(E)) \varphi \rangle}} \begin{pmatrix}
-\tau r_0(\lambda(E)) | \varphi \rangle \\
1
\end{pmatrix}.
$$

- For $E = E_c > 0$ we have $\lambda(E_c) = 0$ and

$$
\Psi_c = \frac{1}{\sqrt{1 - \tau^2 \langle \varphi | G_2 \varphi \rangle}} \begin{pmatrix}
-\tau G_0 | \varphi \rangle \\
1
\end{pmatrix}.
$$

- For $E > E_c$ there is no eigenvalue for (II) and one eigenvalue embedded in the continuous spectrum for (III).
A fundamental identity

We want to study the overlap $|\langle \Psi_c | U(t'_c, t_c) \Psi_c \rangle|$ for $\eta \downarrow 0$.

Assume that there is $E_a \in (E_c, E_m]$ such that $\inf_{r \in \mathbb{R}} |F(r^2 + i0_+, E_a)| \geq c > 0$. Then there is $t_a \in (t_c, t'_c)$ with $E(\eta t_a) = E_a$. We set $H_a = H_\tau(E_a)$ and $\varepsilon(t) = E_a - E(-\eta t)$. With Dyson’s equation we obtain for the Heisenberg evolution:

$$U(t'_c, t_c) = U(t'_c, t_a) U(t_a, t_c)$$

$$= e^{-i(t'_c - t_c)H_a} + i \int_{t_c}^{t_a} \varepsilon(u)e^{-i(t'_c - u)H_a} |\zeta\rangle \langle \zeta| U(u, t_c) \, du$$

$$+ i \int_{t_a}^{t'_c} \varepsilon(v) U(t'_c, v) |\zeta\rangle \langle \zeta| e^{-i(v - t_c)H_a} \, dv$$

$$- \int_{t_a}^{t'_c} \int_{t_c}^{t_a} \varepsilon(u) \varepsilon(v) U(t'_c, v) |\zeta\rangle \langle \zeta| e^{-i(v - u)H_a} \zeta \rangle \langle \zeta| U(u, t_c) \, dudv$$
A propagation estimate

We find that all terms, but the last one vanish with η by standard arguments. For the last term, we need an estimate for $|\langle \zeta | e^{-i(v-u)H_a} \zeta \rangle|$ which is provided by the following

Proposition (Propagation estimate)

Assume $w > 9/2$. There is a constant $C > 0$ such that for all $t \in \mathbb{R}$,

$$|\langle \zeta | e^{-itH_a} \zeta \rangle| \leq C (1 + |t|)^{-5/2}.$$

Therefore $\lim_{\eta \downarrow 0} |\langle \Psi_c | U(t'_c, t_c) \Psi_c \rangle| = 0$ and the survival probability is zero.