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Highlights

• Propose a simple but e ective method for pose varying face
recognition.

• The method has no need for pose information.

• Pose related part in a local feature is removed by a linear
transformation.

• The linear transformation is learned through a closed-form
solution.
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A Spatial Self-Similarity Based Feature Learning Method for Face Recognition under
Varying Poses

Xiaodong Duan∗∗, Zheng-Hua Tan

Department of Electronic Systems, Aalborg University, Fredrik Bajers Vej 7B, Aalborg, DK-9220

ABSTRACT

In this paper, we propose a low-complexity method to learn pose-invariant features for face recognition
with no need for pose information. In contrast to the commonly used approaches of recovering frontal
face images from profile views, the proposed method extracts the subject related part from a local
feature by removing its pose related part. First, the method generates a self-similarity feature by
computing the distances between local feature descriptors of different non-overlapping blocks in a face
image. Secondly, it subtracts from the local feature a linear transformation of the self-similarity feature
and the transformation matrix is learned through minimizing the feature distance between face images
from the same person but under different poses while retaining the discriminative information across
different persons. In order to evaluate our method, extensive experiments on face recognition across
poses are conducted using FERET and Multi-PIE, in addition, experiments on face recognition under
unconstrained situations are conducted using LFW-a. Results on these three public databases show
that the proposed method is able to significantly improve the recognition performance as compared
with using the original local features and outperforms or is comparable to related, state-of-the-art
pose-invariant face recognition approaches.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Face recognition has a broad range of applications such as
biometric authentication, surveillance and human robot inter-
action, to name a few. As a non-intrusive authentication tech-
nique, face recognition is commonly deployed for security es-
pecially in situations where people do not cooperate. By rec-
ognizing the face of a person, a robot can provide personal-
ized interactions and services. Therefore, face recognition has
attracted significant attention in computer vision and machine
learning communities during past few decades. However, rec-
ognizing faces under varying poses remains a challenging task
[1, 2, 3, 4].

In this paper, we focus on improving the robustness of face
recognition against pose variations. A great number of face
recognition methods have been proposed to tackle the problem
caused by pose variations. These methods can be categorized
into three groups: pose-invariant 2D and 3D methods [5] and
deep learning based methods [1].

??This work is supported by the Danish Council for Independent Research
| Technology and Production Sciences under grant number: 1335-00162 (iSo-
cioBot).
∗∗Corresponding author: Tel.: +4599403847; fax: +4598151583;

e-mail: xd@es.aau.dk (Xiaodong Duan)

In order to achieve good performance, pose-invariant 2D ap-
proaches often require pose information, which is obtained ei-
ther manually or by a pose estimation method. Chai et al. pro-
pose a method in which a virtual frontal view is generated from
a nonfrontal view through locally linear regression [6]. Simi-
larly, markov random fields are used to generate virtual frontal
face images in [7]. Sharma et al. use partial least squares to
map 2D images under various poses to a linear subspace for
face recognition with different poses [8, 9]. In [10], a face im-
age is represented by a linear combination of training images
under the same pose, and then the obtained coefficients are used
for face recognition.

3D approaches are applied on face recognition to avoid infor-
mation loss [11] when converting a 3D world to a 2D image. In
[12], pose variations are handled by face symmetry with high
quality 3D data captured by a 3D scanner. Although these 3D
methods are able to obtain favorable performance, their com-
putational complexity is usually high, e.g., the average speed
for processing a face scan is approximately 18 seconds in [12].
Further, it is infeasible to obtain 3D data in some application
scenarios.

Due to the impressive performance of deep learning [13] in
various applications, a number of deep learning based meth-
ods are proposed for pose-invariant face recognition. The deep



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2

learning structure in [14] consists of two modules, one to learn a
Face Identity-Preserving (FIP) feature while the other to recon-
struct the frontal face image from FIP. It takes profile images
as input and frontal images as output. In [15], stacked progres-
sive autoencoders are used to learn a pose-robust feature. Pro-
gressively, each autoencoder layer tries to construct face images
with a smaller pose angle than the previous layer with frontal
face images in the output layer. The last hidden layer is used
as the face recognition feature. Convolutional Neural Networks
(CNNs) are applied for face recognition in [16] and [17] using
2.6 millions and 0.7 million training images, respectively. In
general, deep learning based methods have a large number of
parameters to learn, indicating the need for a large amount of
training data and a high computation cost.

In this paper, a low-complexity feature learning method is
proposed for pose-invariant face recognition with no need for
any prior knowledge about pose angles, which is an extension
of [18]. This is motivated by the following observation. In
most cases, humans can easily recognize a person through a
face image of the person under different poses or even from a
sketch of her/his face. Therefore, one can assume that there
is certain subject-related information in a face image invariant
to pose variations and being enough for face recognition. We
can further assume that subject-related information is mostly
encoded in features for face recognition. Quite likely, unfor-
tunately, these features simultaneously capture pose variations
of face images, which can make the distance between features
from two different persons but with the same pose smaller than
the distance between features from the same person but with
different poses, leading to a misclassification. In order to over-
come this problem, we propose a method aiming at removing
the pose related part from a feature while retaining the subject
related part. Since the subject related part is obtained by sub-
tracting the pose related part from a feature, we refer the new
feature as a subtracted feature.

In our method, a local feature is first extracted from a face im-
age and then a spatial self-similarity feature is computed from
the local feature, which is different from [18]. This makes it
more robust to noises in a face image as compared with the
similarity feature [18] generated from the gray image directly.
The purpose of computing the self-similarity feature is to cap-
ture the spatial symmetrical information of a face image so as
to embed pose variations in it. The self-similarity feature is
further transformed to be a pose related part of the local fea-
ture through a linear transformation. This linear transformation
is learned through minimizing the distance between the sub-
tracted features of the same person with different poses while
moving the mean subtracted feature of each person apart from
each other, not through making the subtracted features closer to
the mean feature vector of face images of each person under dif-
ferent poses as done in [18]. In the end, a subtracted feature is
obtained by subtracting the linearly transformed self-similarity
feature from the local feature. Extensive experiments on three
publicly available databases are conducted and results show the
promising performance of the proposed method. Since only a
linear transformation needs to be learned during training and
applied during evaluation, the method is computationally effi-

cient, as opposed to existing methods of converting profile face
images to frontal ones.

2. Proposed method

Local features are widely used for face recognition. To ex-
tract a local feature a face image is usually first segmented into
K non-overlapping blocks. Then, on each block, a feature de-
scriptor vector li, i = 1, · · · ,K, e.g., local phase quantization
(LPQ) and scale-invariant feature transform (SIFT), is com-
puted. These descriptors lis are concatenated to form a feature
l of the face image. However, a feature l naturally encodes not
only useful subject related information but also unwanted pose
variations. In other words, a feature consists of two parts, a sub-
ject related part and a pose related part. For face recognition, it
is desirable to remove the pose related part while retaining the
subject related part. In order to derive a low-complexity and ef-
fective solution and motivated by the success of metric learning
methods, we assume that a local feature is a linear combina-
tion of the subject related part s and the pose related part p as
follows:

l = s + p. (1)

If we know p, s is then obtained by simply subtracting p from
l.

Pose variations can greatly change the symmetrical informa-
tion of a face image while a frontal face image is generally spa-
tially symmetrical. Therefore, a feature representing the sym-
metrical information could be used to represent the pose related
information. In other words, it is possible to extract the pose re-
lated information from a symmetry feature. In our method, this
symmetric information is captured by the spatial self-similarity
feature v. The feature v is generated from l, which is described
in Section 2.1.

In recent years, metric learning methods [19, 20] have at-
tracted much attention and have shown encouraging perfor-
mance on a variety of applications. These methods are mostly
a linear transformation of feature vectors. In deriving the pose
related part, we use the similar concept and thus assume that
the pose related part can be obtained by linearly transforming v
as follows:

p = Av, (2)

where only the transformation matrix A needs to be learned
from training data, leading to a low-complexity solution. The
learning method is presented in Section 2.2.

2.1. Spatial self-similarity feature

Since a local feature l is concatenated by the feature descrip-
tor vectors lis , which are extracted on non-overlapping blocks,
we compute spatial self-similarity feature from the local fea-
ture. An element v j of a self-similarity feature vector v is com-
puted as

v j = − f (li, lk), i = 1, · · · ,K − 1, k = i + 1, · · · ,K, (3)

where j is used to index the scalar element of v, K is the number
of the non-overlapping blocks and j = (i − 1)K + (k − i). f is
a function to compute the distance between two vectors, e.g.,
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1-norm or 2-norm distance. v j is a scalar and the dimension of
v is calculated as below:

|v| = K × (K − 1)/2. (4)

This self-similarity vector is capable of capturing the spatial
similarities between different blocks, which makes it as a proper
representation of the spatial symmetrical information of a face
image. Furthermore, since this vector is generated from a fea-
ture rather than from raw image pixel intensity as done in [18],
it is more robust to noises in face images.

2.2. Learning algorithm

Substitute equation 2 into equation 1, the subject related part
vector can be obtained as following:

s = l − Av, (5)

where only the transformation matrix A needs to be learned
from training data. Since s is obtained by a subtraction oper-
ation, we refer it as a subtracted feature vector. The learning
goals of this linear transformation are 1) to remove the pose
related part in a local feature vector l and 2) to maintain the
discriminative capability of a subtracted feature vector for face
recognition.

For the training data, let us denote M the number of different
persons and N the number of different poses for each person,
which gives M×N training images in total. An image is denoted
by x.

To meet the first goal, a training pair dataset is constructed as

S =
{
(xi, j, xi,k)

}
, (6)

where i = 1, · · · ,M, j = 1, · · · ,N−1 and k = j+1, · · · ,N. This
means that S consists of image pairs, each of which is a pair of
images from the same person under two different poses. The
distance between two subtracted feature vectors, si, j of xi, j and
si,k of xi,k, should be as small as possible since (xi, j, xi,k) ∈ S and
there is no pose related part in the subtracted vectors. There-
fore, we define the cost function to be minimized as follows:

J1 =
∑

(xi, j,xi,k)∈S

∥∥∥si, j − si,k

∥∥∥2

2
. (7)

In order to meet the second goal, we construct another train-
ing pair dataset consisting of pairs of image from two different
persons with all poses as follows:

D = {( xm,:, xn,:)}, (8)

where m = 1, · · · ,M − 1 and n = m + 1, · · · ,M. The mean of
subtracted feature vector ŝ for a person m is then computed as

ŝm =

∑N
k=1 (sm,k)

N
. (9)

Similarly, the mean feature vector l̂m and mean self-similarity
vector v̂m for person m are

l̂m =

∑N
k=1 (lm,k)

N
, (10)

and

v̂m =

∑N
k=1 (vm,k)

N
. (11)

Using training pair dataset D, we define a second cost func-
tion as

J2 =
∑

(xm,:,xn,:)∈D

‖ŝm − ŝn‖22 . (12)

Since the distance between the subtracted feature vectors of dif-
ferent persons should be as large as possible in order to main-
tain its discriminative capability, equation 12 should be max-
imized. This cost function is the summation of the mean of
subtracted feature vectors of each person rather the than sub-
tracted feature vector of each different pose for three reasons.
First, this avoids the need for pose information when construct-
ing D, which makes our method pose-free. Secondly, averaging
data across poses is also regarded as noise reduction processing.
Thirdly, it reduces the number of pairs in D.

In the end, the cost function used to estimate the transfor-
mation matrix A is formulated through combining J1 and J2 as
follows:

J = J1 − α × J2

=
∑

(xi, j,xi,k)∈S

∥∥∥si, j − si,k

∥∥∥2

2
− α ×

∑

(xm,:,xn,:)∈D

‖ŝm − ŝn‖22

=
∑

(xi, j,xi,k)∈S

∥∥∥(li, j − li,k) − A(vi, j − vi,k)
∥∥∥2

2

− α ×
∑

(xm,:,xn,:)∈D

∥∥∥( l̂m − l̂n) − A(v̂m − v̂n)
∥∥∥2

2
,

(13)

where α is a scalar weighting factor. The purpose of J2 in the
equation 13 is to prevent the potential over-fitting problem of
J1 and maintain the discriminative capability of the subtracted
feature. Some subject related information could be removed if
over-fitting happened in J1, which could decrease the perfor-
mance. However, if too much weight is put on J2, it is possible
to move the subtracted feature vector to an arbitrary place in
the feature space, which could be far away from the original
feature and thus decrease the performance instead of improving
it. Therefore, α only takes a small positive value.

The transformation matrix A can be estimated through min-
imizing equation 13. In order to do this, four matrices are
formed as following:

L:,o = li, j − li,k | (xi, j, xi,k) ∈ S

V:,o = vi, j − vi,k | (xi, j, xi,k) ∈ S

L̂:,o = l̂m − l̂n | (xm,:, xn,:) ∈ D

V̂:,o = v̂m − v̂n | (xm,:, xn,:) ∈ D,

(14)

based on which, equation 13 can be rewritten as

J = Tr
(
(L − AV)T (L − AV)

)

− α × Tr
(
(L̂ − AV̂)T (L̂ − AV̂)

)
.

(15)

Taking the derivative of equation 15 with regard to A, we can
obtain ∇AJ as

∇AJ = −(L − AV)VT + α × (L̂ − AV̂)V̂
T
. (16)
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For a large amount of training data, to avoid high-complexity
computations a gradient descent method could be applied to
estimate A using equation 16. For a moderate size of training
dataset, e.g., those used in this paper, we can set equation 16 be
equal to zero, and then a closed-form solution is obtained for A
as follows:

A =

(
VVT − α × V̂V̂

T
)−1 (

LVT − α × L̂V̂
T
)
, (17)

which is used for the experiments in Section 3.

2.3. Face recognition

For face recognition, a simple K-Nearest Neighbor (K-NN)
method is applied. The Euclidean distance between the normal-
ized subtracted vectors,

dmn =

∥∥∥∥∥
sm

‖sm‖2
− sn

‖sn‖2

∥∥∥∥∥
2

2
, (18)

is used as the distance metric of K-NN, where sm is the sub-
tracted vector of face image m in the gallery set and sn is the
subtracted vector of face image n in the probe set. K near-
est neighbors are specified based on the distance calculated by
equation 18 for each probe face image. The probe image takes
the label that has the majority in these K neighbor gallery im-
ages.

3. Experiments

We evaluate our method on three publicly available datasets:
FERET [21, 22], Multi-PIE [23, 24] and LFW-a [25, 26, 27,
28].

Face recognition across poses is conducted on FERET and
Multi-PIE. During face recognition, each person has only one
image with one specific pose angle as gallery while the remain-
ing images of other poses form the probe set. Under this set-
ting, we can calculate the accuracy for one specific pose angle
in the probe set and also the average accuracy for all images
in the probe set. In reporting experimental results, the average
accuracy is denoted by Mean while the accuracy of one specific
pose in the probe is referred as gallery-probe pair accuracy. It is
worth to note that there is no overlapping person between fea-
ture learning and face recognition for the experiments on these
two databases.

In addition, face recognition under unconstrained conditions
is conducted on a subset of LFW-a, following the protocol from
[29] and [30] strictly. Due to the limited person number and
difficulties of unconstrained face recognition, the persons are
used both for feature learning and face recognition as done in
[29] and [30] on this dataset.

3.1. Databases

FERET: The pose variant b subset of FERET is used in our
experiments. There are 1800 images from 200 persons in this
pose variant subset. As shown in Fig. 1, each person has 9
images, each of which is captured under one of the nine pose
angles: ba (0◦), bb (+60◦), bc (+40◦), bd (+25◦), be (+15◦),

bi bh bg b f ba be bd bc bb
Fig. 1. FERET: examples of face images from one person.

080 130 140 051 050 041 190
Fig. 2. Multi-PIE: examples of face images from one person.

b f (−15◦), bg (−25◦), bh (−40◦) and bi (−60◦). All the im-
ages are cropped according to the public annotations and using
the code from the authors of [8], and then they are resized to
100 × 100 without any further preprocessing. We follow the
evaluation protocol in [8], under which images of the first 100
persons are used for feature learning, and images of the remain-
ing 100 subjects are regarded as the face recognition testing set.
Therefore, there are 900 images for training and 900 images for
testing. Based on the training images, 3600 pairs in S and 4950
pairs in D are constructed for feature learning.

Multi-PIE: Following the protocol in [14, 7, 31, 15], images
under seven different poses are used in our experiments, which
are 080(−45◦), 130(−30◦), 140(−15◦), 051(0◦), 050(+15◦),
041(+30◦) and 190(+45◦) as shown in Fig. 2. There are 337
persons in Multi-PIE, and images of the first 200 subjects are
employed for feature learning while images of the remaining
137 persons for face recognition testing, resulting in 1400 train-
ing and 959 testing images. All the images are cropped ac-
cording to the public annotations and using the code from the
authors of [8]. The cropped images are resized to 100× 100 di-
mensions without any further preprocessing. For feature learn-
ing, S consists of 4200 image pairs while D is composed of
19900 pairs.

LFW-a: This database is widely used for face verification.
To conduct face recognition experiments on it, we follow the
protocol from [29] and [30], in which 86 people with 11 to 20
images are used. In total, there are 1251 images, among which
15 images of one person are shown as examples in Fig. 3. All
the images are cropped from the center of the image and then
resized to 32 × 32 dimensions for feature extraction. To re-
port the result, 10-round face recognition experiments are con-
ducted. At each round, 8 images from each person are randomly
selected for training while the remaining ones are used for face
recognition testing, i.e., 688 and 563 images in total for training
and testing, respectively, at each round.

3.2. Features

Experiments are conducted based on two popular local fea-
tures: SIFT [32] and LPQ [33], which have shown promising
performance for face recognition in general [34, 35].

We apply Principal Component Analysis (PCA) to reduce the
dimension of SIFT, LPQ and the self-similarity feature to the

Fig. 3. LFW-a: examples of face images from one person.
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same number before feature learning. The PCA is trained using
the same training data for feature learning. In the following
experiments, different feature dimensions are tested. In addition
to the subtracted feature, the original PCA processed SIFT and
LPQ features are also used for experiments as baselines.

3.2.1. Feautures on FERET and Multi-PIE
SIFT: An image is segmented into 400 non-overlapping

blocks, each of which has 5 × 5 pixels. In each block, a 128-
dimension SIFT descriptor is extracted. After concatenating
400 SIFT descriptors, a 51200-dimension SIFT feature vector
is generated. Since there are 400 blocks, a 79800-dimension
self-similarity vector are obtained from a SIFT feature vector
through equations 3 and 4.

LPQ: An image is divided into 100 non-overlapping blocks
with the size of 10 × 10 pixels. A 256-dimension LPQ descrip-
tor is extracted from each block. After concatenating them,
a 25600-dimension LPQ feature is obtained. Through equa-
tions 3 and 4, a 4950-dimension self-similarity vector is gener-
ated based on the LPQ descriptors from 100 blocks.

3.2.2. Features on LFW-a
SIFT: An image is zero-padded to 35 × 35 dimensions and

then segmented into 49 non-overlapping blocks, each of which
consists of 5 × 5 pixels. In each block, a 128-dimension SIFT
descriptor is extracted. After concatenating 49 SIFT descrip-
tors, a 6272-dimension SIFT feature vector is generated. Based
on the SIFT descriptors from 49 blocks, a 1176-dimension self-
similarity vector are obtained through equations 3 and 4.

LPQ: An image is divided into 64 non-overlapping blocks
with the size of 4 × 4 pixels. And then, a 256-dimension LPQ
descriptor is extracted from each block. After concatenating
them, a 16384-dimension LPQ feature is obtained. A 2016-
dimension self-similarity vector is generated based on the LPQ
descriptors from the 64 blocks through equations 3 and 4.

3.3. Results on FERET

To conduct the experiments on FERET, α is set to 10−4.
Apart from this, different feature types, feature dimensions and
distance measures for self-similarity vectors are employed to
evaluate the proposed method. Since there is only one image in
the gallery for each peron under face recognition across poses,
1-NN method is used for the experiments on this database.

We first report the results using two different features (LPQ
and SIFT) with 500-dimension and 2-norm distance based self-
similarity vector. The mean accuracy results using different
poses as gallery are listed in Table 1. Detailed gallery-probe
pair results of SIFT feature can be found in Fig. 4. For both
types of feature, as can be found in Table 1, our method is
able to significantly improve the recognition performance over
the original PCA processed feature, especially for the profile
galleries, e.g., the mean accuracy of bi gallery is increased
by 48.1% for the SIFT feature. As displayed in Fig. 4, our
method successfully boosts the performance for every gallery-
probe pair over the original PCA processed SIFT. Overall, the
SIFT feature achieves better results than LPQ. One thing worth
to mention is that the best result, 94.6%, is obtained using be

Table 1. Mean accuracies in percentage on FERET for different pose gal-
leries using different features with 500 feature dimension and 2-norm dis-
tance based spatial self-similarity feature.

Gallery
LPQ SIFT

PCA Proposed PCA Proposed

bi 16.8 49.8 28.5 76.6
bh 31.0 70.5 45.6 87.1
bg 45.5 74.5 49.9 89.9
b f 46.3 78.9 52.6 93.4
ba 42.3 78.3 49.0 91.8
be 38.9 82.3 48.3 94.6
bd 33.5 77.5 39.1 91.4
bc 24.6 69.4 35.5 84.9
bb 19.0 47.8 26.5 70.9

Table 2. Mean accuracies in percentage of different pose galleries on
FERET using different distance methods, 1-norm(l1), square of 1-norm(l21),
2-norm(l2) and square of 2-norm(l22) distance, for self-similarity feature.
500-dimension SIFT feature are used here.

Gallery PCA l1 l21 l2 l22
bi 28.5 76.6 73.3 76.6 74.9
bh 45.6 85.8 84.3 87.1 86.8
bg 49.9 89.5 87.5 89.9 89.6
b f 52.6 92.3 91.8 93.4 92.5
ba 49.0 90.5 89.5 91.8 90.9
be 48.3 92.9 92.3 94.6 93.8
bd 39.1 91.3 91.1 91.4 91.4
bc 35.5 86.6 85.9 84.9 86.1
bb 26.5 69.3 69.1 70.9 73.3

as gallery instead of the frontal image ba, of which the mean
accuracy is 91.8%. One possible reason for this is that the pose
angle of be is +15◦, which is not large, and in this case, our
method is able to maintain similar results for bi and bh while
obtaining better results for bc and bb compared to using ba as
gallery. This is also the case for the result of using b f (−15◦) as
gallery, of which the mean accuracy is 93.4%.

Furthermore, different PCA feature dimensions with 2-norm
distance based self-similarity vector are tested using SIFT, of
which results are displayed in Fig. 5. Our method is able to im-
prove the performance under all feature dimensions from 100
to 500 compared to the PCA processed SIFT feature. Features
with larger dimensions are able to preserve more face informa-
tion, therefore, better results are obtained using larger feature
dimensions as shown in Fig. 5.

In addition, we also test different distance measures for
computing the spatial self-similarity feature using the 500-
dimension SIFT feature. Specifically, 1-norm(l1), square of
1-norm(l21), 2-norm(l2) and square of 2-norm(l22) distance mea-
sures are used for this experiment. As can be seen in Table 2,
our method works well using different distance measures. Al-
though the results of different distances vary a bit for different
pose galleries, the learned features all outperform the PCA pro-
cessed SIFT with a large margin.

In the end, our method is compared with two similar state-
of-the-art methods, DAE[36] and SPAE[15]. The results of the
referenced methods are taken from [15], which also follow the
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Fig. 4. Gallery-probe pair accuracies in percentage of PCA processed SIFT
and the proposed method (SIFT) on FERET. The pose name on top of the
figure is the pose used as gallery. 500-dimension SIFT feature and 2-norm
based self-similarity feature are used.
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Fig. 5. Mean accuracies in percentage of different pose galleries on FERET
using SIFT feature with different dimensions. A 2-norm distance based
self-similarity feature is used.

Table 3. Comparison of accuracies in percentage with other state-of-the-
art pose-free methods on FERET dataset using ba as gallery. The results
of other methods are taken from [15].

Probe
DAE[36] SPAE[15] Proposed (SIFT)

ba be

bi 61 77 83 81
bh 83 95 94 93
bg 94 99 98 99
b f 96 99 99 100
ba – – – 98
be 96 99 98 –
bd 93 98 97 100
bc 91 96 92 100
bb 62 77 73 86

Mean 84.5 92.5 91.8 94.7

Table 4. Mean accuracies in percentage on Multi-PIE using different pose
images as gallery with different feature type and dimensions and values of
α.

Gallery
LPQ SIFT

PCA Proposed PCA Proposed

500, α = 10−4

080 18.6 62.4 26.8 78.0
130 28.1 72.3 36.7 87.0
140 27.5 77.9 35.5 92.0
051 22.5 81.0 32.1 95.1
050 31.1 79.9 42.1 91.1
041 29.1 73.1 34.9 86.0
190 26.9 66.2 35.9 83.5

1000, α = 10−5

080 19.3 63.3 27.5 78.3
130 30.0 73.1 37.1 87.0
140 28.7 82.0 36.4 95.3
051 24.1 86.1 33.3 97.2
050 34.2 82.4 42.9 94.0
041 30.2 74.5 35.4 89.7
190 27.9 66.4 36.7 84.1

same protocol as we do, but only the results using ba as gallery
are provided. Both compared methods are based on deep learn-
ing. As listed in Table 3, our method achieves the second best
mean accuracy which is close to the best one using ba as gallery.
It is worth to note that our method obtains better result using be
as gallery as compared with using ba as gallery. Moreover, the
method in [15] requires labelled frontal face images to train its
model while our method does not.

3.4. Results on Multi-PIE

For all the experiments on Multi-PIE, 1-NN method is used
for face recognition across poses since there is only one im-
age for each person in the gallery. Beside this, 2-norm distance
based self-similarity feature is used. Since there are more train-
ing data in Multi-PIE, 1000-dimension features are tested in
addition to the 500-dimension features. Furthermore, we set
α = 10−5 for 1000 dimension feature for that much more train-
ing pairs exist in D. The mean accuracies of different pose gal-
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Fig. 6. Gallery-probe pair accuracy results in percentage of PCA processed
SIFT and the proposed method (SIFT) on Multi-PIE. The pose name on
top of each figure is the pose used as gallery. 1000-dimension, 2-norm dis-
tance based self-similarity feature and α = 10−5 are used.

leries can be found in Table 4. Detailed gallery-probe accu-
racy results using the SIFT feature with 1000 dimensions and
α = 10−5 are illustrated in Fig. 6. Overall, the SIFT feature
achieves better results than LPQ, and features with larger di-
mensions obtain better results as well. Compared to the PCA
processed feature, our method successfully improves the per-
formance with a large margin for the mean accuracies as shown
in Table 4. The accuracy of every gallery-probe pair is also
successfully increased as displayed in Fig. 6. The best mean
accuracy, 97.2%, is achieved by using frontal image as gallery
and the 1000-dimension SIFT feature with a 63.8% increase
over the PCA processed feature.

We also compare our method with other state-of-the-art pose-
free methods. The frontal image (051) is used as gallery. The
same testing protocol in [8] is followed to make comparison. As
shown in Table 5, our method achieves the second best mean
accuracy. In [14], the FIP method uses one middle layer as
feature and RL treats the reconstructed frontal image as feature.
The mean accuracy of our method is close to that of RL, and
better than that of FIP. In addition, the method in [14] requires
labelled frontal face images to train its model while our method
does not. Besides theses, RL [14], FIP [14] and SPAE [15]
are all based on deep learning, which usually require a larger
number of multi-pose training images [1].

3.5. Results on LFW-a

Since our method does not need any labelled pose for face
images which is opposite to the methods in [14, 15] where la-
belled frontal face images are needed, it is possible to conduct
face recognition under unconstrained conditions on LFW-a us-
ing our method. As there are eight images in the gallery for each
person, 8-NN based face recognition are conducted on LFW-a.
The feature dimension is reduced to 100 for that there are less

Table 5. Comparison with other state-of-the-art pose-free methods on
Multi-PIE. The results of the other methods are taken from [1] or the orig-
inal papers. Accuracies are in percentage. Frontal images (051) are used
as gallery.

Probe
RL FIP MRFs RFG SPAE Proposed
[14] [14] [7] [31] [15] SIFT

080 95.6 93.4 86.3 82.9 84.9 91.2
130 98.5 95.6 89.7 88.3 92.6 97.8
140 100.0 100.0 91.7 93.2 96.3 99.3
050 99.3 98.5 91.0 93.4 95.7 98.5
041 98.5 96.4 89.0 91.6 94.3 99.3
190 97.8 89.8 85.7 85.5 84.4 97.1

Mean 98.3 95.6 88.9 89.2 91.4 97.2

Table 6. Mean accuracie in percentage with stadard deviation of 10-
random rounds of experiments on LFW-a.

α = 10−1 α = 10−2 α = 10−4

LPQ
PCA 38.2 ± 1.9

Proposed 49.2 ± 1.2 44.9 ± 1.4 44.2 ± 1.5

SIFT
PCA 23.7 ± 0.9

Proposed 36.1 ± 2.2 31.6 ± 1.9 31.1 ± 1.8
SRC[30] 38.1 ± 0.011

LCLE-DL[30] 38.8 ± 0.009

training images in this dataset. We follow the testing protocol
in [30] to report our results. As shown in Table 6, we vary
α among 10−1, 10−2 and 10−4, under all of which our method
successfully improved the performance compared to the orig-
inal PCA processed feature. Using LPQ feature, our method
achieves better result than the other state-of-the-art methods
under all different values of α, which shows that our method
is able to work under unconstrained situations as well. As can
be found in Table 6, the best result is 49.2% achieved by the
proposed method using LPQ with 10−1.

3.6. Complexity Analysis

During training procedure, as can be found in equation 17,
the complexity of our method is dependent on the number of
training samples and feature dimension besides the feature ex-
traction and PCA training procedure. For face recognition,
there exist two extra operations than using the PCA processed
local feature directly, self-similarity feature extraction and lin-
ear transformation using equation 5.

The running time of the proposed method and original PCA
processed feature on LFW-a can be found in Table 7. All the ex-
periments are conducted on a desktop computer with i7-6700K
(4.0GHz) CPU and 64GB memory. The code 1 is implemented
using Python without any optimization especially for the self-
similarity feature extraction. As shown in Table 7, the training
of our method is quite fast, which makes our method applica-
ble to online applications, and the recognition of our method is
fast enough for real-time application. Moreover, since feature
extraction occupies a large proportion of the processing time,
it is possible to further accelerate our method using optimized
algorithms of feature extraction [37].

1http://kom.aau.dk/~zt/online/FeatureLearning_FaceRec_

PRL.zip
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Table 7. Runing time in seconds on LFW-a. The training time includes fea-
ture extraction, PCA training and transformation, and feature learning, of
which time is listed in the parentheses, respectively. The testing time is for
one image including feature extraction, PCA transformation and subtrac-
tion, while the time in the parentheses is for the original PCA processed
feature.

LPQ SIFT

Training 11.60 (9.41, 2.17, 0.02) 4.08 (3.27, 0.79, 0.02)
Testing 0.02197 (0.01471) 0.01414 (0.00863)

4. Conclusion

In this paper, we proposed a feature learning method based
on the spatial self-similarity vector for varying-pose face recog-
nition without the need of prior pose knowledge. The prob-
lem caused by pose variation is handled by subtracting the pose
related part from a local feature instead of converting a pro-
file view to a frontal face. This is done by learning a linear
transformation of the self-similarity feature through minimiz-
ing the distance between subtracted feature vectors from the
same person under different poses and retaining the discrimina-
tive capability of the subtracted feature at the same time. Using
the proposed feature learning method, the performance of face
recognition across poses and even under unconstrained condi-
tions is improved significantly over the original feature. Com-
pared to existing state-of-the-art methods, our method obtains
better or comparable results while at the same time, having a
low-complexity.
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