Parametric Multi-Channel Separation and Re-Panning of Harmonics Sources
Hansen, Martin Weiss; Hjerrild, Jacob Møller; Christensen, Mads Græsbøll; Kjeldskov, Jesper

Published in:
International Conference on Digital Audio Effects (DAFx-18)

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
PARAMETRIC MULTI-CHANNEL SEPARATION AND RE-PANNING OF HARMONIC SOURCES

M. W. Hansen†, J. M. Hjerrild†, M. G. Christensen†
†Audio Analysis Lab, CREATE
Aalborg University
Aalborg, Denmark
{mwh,jmhh,mgc}@create.aau.dk

J. Kjeldskov*
*Department of Computer Science
Aalborg University
Aalborg, Denmark
jesper@cs.aau.dk

ABSTRACT

In this paper, a method for separating stereophonic mixtures into their harmonic constituents is proposed. The method is based on a harmonic signal model. An observed mixture is decomposed by first estimating the panning parameters of the sources, and then estimating the fundamental frequencies and the amplitudes of the harmonic components. The number of sources and their panning parameters are estimated using an approach based on clustering of narrowband interaural level and time differences. The panning parameter distribution is modelled as a Gaussian mixture and the generalized variance is used for selecting the number of sources. The fundamental frequencies of the sources are estimated using an iterative approach. To enforce spectral smoothness when estimating the fundamental frequencies, a codebook of magnitude amplitudes is used to limit the amount of energy assigned to each harmonic. The source models are used to form Wiener filters which are used to reconstruct the sources. The proposed method can be used for source re-panning (demonstration given), remixing, and multi-channel upmixing, e.g., for hi-fi systems with multiple loudspeakers.

1. INTRODUCTION

Music signals often contain a mixture of multiple instrument recordings. To process such a mixture, e.g., with the goal of modifying the sources independently, it may be beneficial to extract the individual sources in the mixture. This task is known as source separation, and it has applications in areas such as music information retrieval [1], sound scene modification [2], and enhancement [3].

The problem of separating sources in a music mixture is in general very difficult, because of the presence of overlap in both time and frequency. In such cases, the source separation problem is in many cases ill-posed, and the single-channel source separation problem is very difficult to solve, and would rely heavily on prior information about the sources. When multiple channels of data are available, it is possible to exploit information about the mixing process. A method for separating two sources from a single-channel mixture was proposed in [4], based on a sparse non-negative decomposition algorithm, whereas in [5] a method based on single-channel non-negative matrix factorization (NMF) was proposed for polyphony music transcription. In [6], a method based on non-negative matrix factorization (NMF) for stereophonic source separation is presented, while in [7] a framework for incorporating prior knowledge in source separation is presented. Separation of moving sources is considered in [8] using a method based on multi-channel NMF. Time-variation is allowed through the use of spatial covariance matrices (SCMs) which are generated based on estimated directions of arrival (DOAs). Separation of sources from multi-channel reverberant mixtures, although in a semi-blind fashion, with known mixing filters, was considered in [9]. Repanning of stereophonic sources was proposed in [10] for a known number of sources without delay panning.

Parametric signal models, where the sinusoidal components of a signal are modelled as a sum of sinusoids, can also be used for source separation. A method for source separation and auditory scene analysis based on a multi-pitch and periodicity analysis method is presented in [11], while sinusoidal modelling was used for separating harmonic sources using a classification method to group extracted sinusoids in [12]. Spectral overlap often occur in music signals, and this should be taken into account when estimating the parameters of the sources. A source separation method based on pitch, amplitude modulation and spatial cues for separation of harmonic instruments from stereo music recordings is proposed in [13]. In [14], a method for reconstruction of completely overlapped notes is presented, where the spectral envelope of each source is learnt in segments without overlap, and then used to extract the sources. A separation approach based on optimal filtering is presented in [15], where a linearly constrained minimum variance (LCMV) filter is constructed based on a priori knowledge in the form of score information. Furthermore, the balance between overlapping harmonics is adjusted using a priori knowledge about the magnitude of each harmonic.

In this paper, we present a method for extracting harmonic sources from stereophonic mixtures of music recordings, such as those made artificially in a studio. First, the panning parameters and activations of the sources are estimated using a method based on clustering of narrowband interaural level and time differences (ILDs and ITDs) (see [16] for further details). Usually, in source separation algorithms, the number of sources is assumed known a priori (see, e.g., [6]), however, here the number of sources does not need to be known. Equipped with the estimated panning parameters, the fundamental frequencies of the harmonic sources are estimated, along with the number of harmonics, and the harmonic amplitudes, using an iterative approach. To enforce spectral smoothness, a codebook of magnitude amplitudes trained on recordings of harmonic sources is used (see [17] for further details). The source models are used to form a Wiener filter for extraction of each source from the mixture. It should be noted that the proposed method is also capable of separating sources from monophonic, i.e., single-channel mixtures. After the sources have been extracted, they are combined with new panning parameters, and the residual, i.e., the parts of the mixture not captured by the harmonic model of the sources.
2. SIGNAL MODEL

An observed multichannel mixture is modelled as a sum of M harmonic sources s_m, $m = 1, \ldots, M$, plus a noise term e. The signal in the kth channel at time n is

$$x_k(n) = \sum_{m=1}^{M} g_{k,m} s_m(n - \tau_{k,m}) + e_k(n),$$

(1)

where $g_{k,m}$ and $\tau_{k,m}$ are the amplitude and delay panning parameters, respectively. An example of an amplitude panning law, which could be used to calculate the gains applied to each channel of a stereophonic mixture is [18]

$$g_{k,m} = \begin{cases} \cos \phi_m, & \text{for } k = 1 \\ \sin \phi_m, & \text{for } k = 2 \end{cases},$$

(2)

where $\phi_m \in [0, \pi/2]$. The mth source s_m is modelled as a sum of L_m harmonic components, i.e.,

$$s_m(n) = \sum_{l=1}^{L_m} \alpha_{m,l} e^{j\omega_0_{m,l} n},$$

(3)

where $\omega_0_{m,l}$ is the fundamental frequency of the lth source, L_m is the model order, and $\alpha_{m,l} = A_{m,l} e^{j\phi_{m,l}}$ is the complex amplitude of the lth harmonic, where $A_{m,l}$ is the real amplitude and $\phi_{m,l}$ its phase. A complex signal model is used because it may result in simplified expressions, and a lower computational complexity. The signal model may be used with real signals by applying the Hilbert transform. It should be noted that although we focus on the stereophonic case ($k = 2$), we here present a general multi-channel signal model, which can be used in scenarios where $k > 2$ using a different panning law. Furthermore, according to the source model (3), an instrument recording may contain multiple sources, e.g., when a chord is played on a guitar, where the signal generated by each string is considered to be a source. Furthermore, we define a submixture as a sum of sources that share panning parameters.

As shown in Figure 1, the panning parameters of the sources in the mixture are estimated, i.e., its fundamental frequency $\omega_0_{m,l}$, the number of harmonics L_m, and the amplitude vector α_m. The harmonic models of the sources are used to form Wiener filters, which are used to extract the sources from the mixture. The resulting frames are combined using overlap-add, and a graphical user interface (GUI) is used to re-pan the sources.

3. PROPOSED METHOD

The proposed method consists of several sub-systems, as shown in Figure 1. In the initial step of the proposed method, the panning parameters of the sources in the mixture are estimated, along with an active source indication (ASI) of when the corresponding sources are active. This knowledge is exploited in the harmonic source analysis sub-system, which is used to extract the sources from the mixture. The resulting frames are combined using overlap-add, and a graphical user interface (GUI) is used to re-pan the sources.

3.1. Panning Parameter Estimation and Activity Detection

As shown in Figure 1, the panning parameters of the sources in the observed multi-channel mixture are required as input for the proposed harmonic signal analysis sub-system. The source panning parameters are estimated along with the number of unique panning parameters using the method presented in [16]. The method is a blind source panning estimation algorithm based on clustering of narrowband interaural level and time differences (ILDs, ITDs). For an unknown number of sources, the parameter distribution...
across all segments of the mixture is modelled as a Gaussian mixture. The generalized variance and degree of membership of the Gaussian components across segments are used as a basis for the selection of clusters amongst candidates. In the time-frequency domain we define a vector y for each frame containing the relative amplitude panning parameters and relative channel delays, i.e.,

$$y = [g(\omega), \hat{\tau}(\omega)]^T = \left[\arctan \left(\frac{X_1(\omega)}{X_2(\omega)} \right), \frac{1}{\omega} \frac{X_2(\omega)}{X_1(\omega)} \right]^T,$$

(8)

where $\hat{\tau}(\omega) = \hat{\tau}_1(\omega) - \hat{\tau}_2(\omega)$, $X_1(\omega)$ is the discrete Fourier transform of the kth channel of a segment of the mixture, and \angle denotes phase. Eq. (8) is constrained on the assumption of W-disjoint orthogonality and on the so-called narrowband assumption that requires the maximum frequency ω_{\max} and maximum delay τ_{\max} to be strictly within the range $\omega_{\max} \tau_{\max} < \pi$. From Eq. (8) we collect P observations $Y = \{y^{(1)}, \ldots, y^{(P)}\}$ with identical probability distributions, each mutually independent. The log-likelihood function of the P observations is

$$\ln p(Y|\theta) = \sum_{p=1}^P \ln \sum_{m=1}^M \gamma_m p(y^{(p)}|\theta_m),$$

(9)

for a value of M such that the GMM is overfitted, see [16]. The ML GMM parameter estimates θ_{ML} are obtained using an EM-algorithm. Several GMM EM-methods have been proposed for estimating the number of sources, using a penalty term such as the Bayesian information criterion (BIC) or the maximum description length (MDL) [20]. However, the problem is complicated for audio recordings for two reasons: no unique definition of a "true cluster" necessarily exists, and the assumption of normality does not exactly hold, see, e.g., [21]. Therefore, each of the underlying GMM components does not necessarily correspond to a source cluster.

In the present method clusters are selected among Gaussian component candidates by fitting a GMM to the observed data with a large number of components. From the overfitted GMM clusters are defined as having lowest generalized variance δ and as being well separated from other candidates as described in the following. The cluster indices are columns of $\zeta_{\omega s}$ which have low generalized variance δ, and are well separated from all GMM components, and $\hat{\theta}_s$ is arranged such that $\delta_1 < \delta_2 < \cdots < \delta_S$, where $\delta = \det (\hat{C})$ and $s = \{1, 2, \ldots, S\}$. The posteriori probability $\zeta_{\omega s}$ that y_ω belongs to mixture component s is

$$\zeta_{\omega s} = \frac{\gamma_s N(y_\omega | \hat{\mu}_s, \hat{C}_s)}{\sum_{j=1}^S \gamma_s N(y_\omega | \hat{\mu}_s, \hat{C}_s)}.$$

(12)

The sth column does not represent a cluster if $0 < \zeta_{\omega s} < 1 \land 0 < \zeta_{\omega s} < 1$, where $\epsilon = \{1, 2, \cdots, s-1\} \forall \omega$. After ranking, the M clusters are in the first columns of $\zeta_{\omega s}$, as observed in [16]. This leads to an estimate of the M unique panning parameters and the statistics θ_M from which the vector $\hat{\mu}_s$ is the panning parameters of the mth source, across all segments.

We compute an active source indication (ASI) for each frame of the observed mixture. Specifically, the input signal is processed in frames of length 60 ms, with a hop size of 15 ms. In each frame all possible combinations of the obtained $\hat{\theta}_s$ statistics are fitted to the observed data y resulting in a new GMM likelihood. The maximum likelihood combination is chosen for each frame. The obtained ASI is a binary indication of activity of each panning parameter in each frame of the mixture, and is used as input to the harmonic analysis sub system.

3.2. Harmonic Signal Analysis

In this section the method used to analyse the harmonic sources in a stereophonic mixture is presented. The goal is to estimate the fundamental frequencies of the harmonic components in the mixture, along with the number of harmonics for each source, and the complex amplitudes, provided with information about the source panning parameters, and source activity indication, as described in the previous section. The proposed method is based on the maximum likelihood principle, and the log-likelihood of the kth channel of an observed signal is parametrized by $\psi_{k} = \{\psi_{k,1}, \ldots, \psi_{k,M}\}$, where $\psi_{k,m} = [\omega_{\min} \omega_{\max}, n_{k,m}, \tau_{k,m}, \alpha_{m}]$, for $m = 1, \ldots, M$. We assume that the deterministic part of the signal is stationary, and that the noise is independent and identically distributed over n and k. Furthermore, we assume that the noise is white Gaussian with different variance in each channel, σ^2_k. Defining the error as $e_k = x_k - \sum_{m=1}^M Z_{km} G_{km}\alpha_m$, the likelihood of the kth channel of the observed signal is defined as

$$p(x_k; \psi_k) = \frac{1}{(\pi \sigma^2_k)^N} e^{-\frac{1}{2}\|e_k\|^2},$$

(13)

which across channels becomes

$$p(\{x_k\}; \psi_k) = \prod_{k=1}^K \frac{1}{(\pi \sigma^2_k)^N} e^{-\frac{1}{2}\|e_k\|^2}.$$

(14)

The log-likelihood of a single channel of the observed signal is

$$\ln p(x_k; \psi_k) = -N \ln \pi - N \ln \sigma^2_k - \frac{\|e_k\|^2}{\sigma^2_k},$$

(15)

while the log-likelihood for all channels of the observed signal is

$$\ln p(\{x_k\}; \psi_k) = -K N \ln \pi - N \sum_{k=1}^K \ln \sigma^2_k - \sum_{k=1}^K \frac{\|e_k\|^2}{\sigma^2_k},$$

(16)

The fundamental frequencies, complex amplitudes, and noise variance for each channel are estimated by maximizing [16]. Since the problem of estimating the parameters of all the sources at once is impractical in terms of computational complexity, the parameters are estimated iteratively using an EM algorithm. For each iteration of the method, the log-likelihood of the observed segment of the mixture is increased. The observed signal is modelled as a sum of M sources, where the kth channel of source m is modelled as

$$x_{k,m} = Z_{km} G_{km}\alpha_m + e_{k,m},$$

(17)
where \(\mathbf{G}_{k,m} \) is now formed using the estimates \(\{ \hat{g}_{k,m}, \hat{r}_{k,m} \} \) for each source, and where the noise term \(\mathbf{e}_k \) is decomposed into \(M \) sources, i.e.,

\[
\mathbf{e}_k = \mathbf{e}_k^{\beta} \mathbf{e}_k,
\]

where \(\beta_m \geq 0 \) is chosen such that \(\sum_{m=1}^{M} \beta_m = 1 \). Here, \(\beta_m \) is chosen such that the entire error term is assigned to a single component in each iteration, i.e., \(\beta_{\text{total}} = 1 \), and \(\beta_{\text{other}} = 0 \), and \(p = \text{mod} (i - 1, M) + 1 \), with \(i \) being the EM iteration index \([22, 23]\). Assuming white Gaussian noise (see \([24, 25]\)), in the E-step, the \(m \)th source in iteration \(i \) is modelled according to \([17]\) based on parameters estimated in the previous iteration, i.e.,

\[
\hat{x}_{k,m}^{(i)} = \mathbf{Z}_{k,m} \mathbf{G}_{k,m} \hat{\alpha}_m^{(i)} + \beta_m \left(\mathbf{x}_k - \sum_{m=1}^{M} \mathbf{Z}_{m}^{(i)} \mathbf{G}_{k,m} \hat{\alpha}_m^{(i)} \right),
\]

where \(\hat{\alpha}_m = [\hat{A}_{1,m} e^{j\hat{\omega}_{1,m}}, \ldots, \hat{A}_{L,m} e^{j\hat{\omega}_{L,m}}]^T \) is formed using a scaled codebook entry \(\hat{A}_{k,m} \) from a codebook \(C \) of magnitude amplitude vectors trained on individual notes played on a variety of instruments, and combined with the phases resulting from the least squares estimate of the complex amplitude vector, given \(\hat{\omega}_m^{(i)} \) as \([26]\) (see \([17]\) for more information)

\[
\hat{\alpha}_m^{(i+1)} = \arg \min_{\alpha_m} \frac{1}{2} \sum_{k=1}^{K} \left(\frac{\mathbf{x}_{k,m}^{H} \mathbf{G}_{k,m}^H \mathbf{G}_{k,m} \mathbf{x}_{k,m}^{(i)} - \mathbf{G}_{k,m}^H \mathbf{Z}_{k,m} \hat{\alpha}_m^{(i+1)}}{\sigma_k^{2(i+1)}} \right)^2.
\]

In the M-step, the fundamental frequency of the \(m \)th source is estimated using the NLS method, based on the estimate of each source from the previous iteration, i.e.,

\[
\hat{\omega}_m^{(i+1)} = \arg \min_{\omega_m} \sum_{k=1}^{K} \frac{1}{2} \left\| \mathbf{x}_{k,m}^{(i)} - \mathbf{Z}_{m} \mathbf{G}_{k,m} \hat{\alpha}_m^{(i+1)} \right\|^2_2.
\]

The estimate of the variance \(\sigma_k^2 \) in iteration \(i + 1 \) is

\[
\sigma_k^{2(i+1)} = \frac{1}{N} \left\| \mathbf{x}_{k,m}^{(i)} - \mathbf{Z}_{m} \mathbf{G}_{k,m} \hat{\alpha}_m^{(i+1)} \right\|^2_2.
\]

The complex amplitude vector and the noise variance are estimated in an iterative fashion, because they depend on each other. It is not necessary to iterate between \([20]\) and \([22]\) if the noise variance for both channels are equal. The E- and M-steps are repeated until a convergence criterion is met. The method is guaranteed to converge to a local minimum in each step, and increases the likelihood of the observed data at each step. Initialization of the EM algorithm is not simple, and can result in poor performance, if it is not done carefully. We here use the harmonic matching pursuit (HMP) \([27, 23]\), which is based on a residual for channel \(k \) in iteration \(m \) at time \(n \), defined as

\[
r_k^{(m)}(n) = r_k^{(m-1)}(n) - \sum_{l=1}^{L} g_{k,m} a_{l,m} e^{j\omega_{l,m}(n-\tau_{k,m})}.
\]

The model parameters are estimated iteratively for each modelled harmonic source \(m \). The method is initialized using the observed signal, i.e., \(r_k^{(0)}(n) = x_k(n) \). As previously mentioned, the fundamental frequencies of the \(M \) sources are estimated jointly with the model. The maximum a posteriori (MAP) model selection criterion \([19, 24]\) is used as a model selection rule, i.e.,

\[
\hat{M}_m = \arg \min_{\hat{M}_m} - \ln p \left(\mathbf{x}_k; \hat{\psi}_m, \hat{M}_m \right) + \frac{1}{2} \ln |\hat{\mathbf{H}}_m|,
\]

where \(\hat{M}_m \) is the model of the \(m \)th source, and \(\cdot \) denotes the determinant of a matrix. The determinant of the Hessian, \(\hat{\mathbf{H}}_m \), can be approximated using the Fisher information matrix, and a normalization matrix is introduced (see \([23]\)) such that

\[
\ln |\hat{\mathbf{H}}_m| = \ln |\mathbf{K}^{-2}| + \ln |\mathbf{K} \hat{\mathbf{H}}_m |,
\]

where the last term, which is of order \(O(1) \), is ignored, and the first term is used as a penalty term (see \([17]\) for more details). We can now state the joint pitch and model order estimator used to compute initial estimates for sources \(m = 1, \ldots, M \), i.e.,

\[
\{ \hat{\omega}_{m}, \hat{L}_m \} = \arg \min_{\hat{\alpha}_m, \{ \omega_m, L_m \}} \ln \left| \frac{\mathbf{K}^{-2}}{2} + \sum_{k=1}^{K} \frac{1}{2} \| \mathbf{\beta}_k - \mathbf{\hat{G}}_k \|_2^2 \right|,
\]

where \(\mathbf{\beta}_k = r_k^{(m-1)} - \mathbf{Z}_m \mathbf{G}_{k,m} \hat{\alpha}_m \), and \(r_k^{(m)} = [r_k^{(m)}(0) r_k^{(m)}(1) \cdots r_k^{(m)}(N-1)]^T \). Since the cost function is multi-modal, it is minimized with respect to \(\hat{\omega}_m \) using a grid search (grid size selection is discussed in \([29]\)). The fundamental frequencies and amplitudes of the \(M \) sources are obtained by iterating between the expectation and maximization steps, i.e., \([19]\), and \([20, 22]\), respectively, until convergence.

3.3. Source Reconstruction and Re-Panning

The harmonic sources in an observed stereophonic mixture are implicitly modelled in the iterative parameter estimation process, i.e., the estimate of the \(m \)th source is

\[
\hat{s}_m(n) = \mathbf{Z}_m(n) \hat{\mathbf{a}}_m(n),
\]

for \(n = 1, \ldots, N \). Since the number of entries in the amplitude codebook \(C \) is relatively small, the signals \(\hat{s}_m \), for \(m = 1, \ldots, M \), may sound a bit rough when listened to directly. Instead, we propose to use the estimated parameters to form a frequency-domain Wiener filter to extract each source from a segment of the observed mixture, i.e.,

\[
\hat{S}_m(\omega) = \frac{\| \hat{S}_m(\omega) \|^2}{\| \hat{S}_m(\omega) \|^2 + \| V(\omega) \|} X(\omega),
\]

where \(\hat{S}_m(\omega) \) is the frequency-domain filter output at a certain frequency bin corresponding to \(\omega \). \(\hat{S}_m(\omega) \) is the DFT of the source estimate \(\hat{s}_m \). \(V(\omega) \) is the DFT of the estimates of the interfering sources and the noise, i.e., \(V = X - \hat{S}_m \). \(X(\omega) \) is the DFT of a single-channel version of the mixture. Each time-domain segment of each of the \(M \) sources is generated as the inverse DFT of the filtered output above. The segments are combined using overlap-add.

4. EXPERIMENTS

The experimental evaluation of the proposed method for panning parameter estimation, source separation and re-panning consists of multiple experiments. To evaluate the performance of the proposed method for source separation, a multitrack recording from the MedleyDB database of music recordings \([30]\) is used, i.e., Aimee Norwich - Flying. A segment containing 24 seconds (start: 105.5 s, end: 129.5 s) of audio from three instrument recordings
Table 1: Description of the data used in the experiments.

<table>
<thead>
<tr>
<th>File name (.wav)</th>
<th>Instrument</th>
<th>ϕ (degrees)</th>
<th>τ (samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flying_RAW_14_01</td>
<td>Trombone</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Flying_RAW_03_02</td>
<td>Bass</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Flying_RAW_15_02</td>
<td>Clarinet</td>
<td>-30</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2: Pannning parameter estimates.

<table>
<thead>
<tr>
<th>Track</th>
<th>$\hat{\phi}$ (degrees)</th>
<th>$\hat{\tau}$ (samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trombone</td>
<td>29.99</td>
<td>0.00</td>
</tr>
<tr>
<td>Bass</td>
<td>4.99</td>
<td>0.01</td>
</tr>
<tr>
<td>Clarinet</td>
<td>-29.97</td>
<td>0.00</td>
</tr>
</tbody>
</table>

are amplitude panned to synthetically generate a stereophonic mixture. Descriptions of the tracks used in the mixture and their panning parameters are presented in Table 1.

The estimation of the number submixtures and their panning parameters are evaluated on the observed stereo mixture with $f_s = 44.1$ kHz. The input signal is processed in samples of length $N = 2640$ samples (60 ms), with a hop size of $H = 662$ samples (15 ms). The GMM is overfitted with $M = 10$ and from the overfitted GMM components, an estimate of the source clusters are obtained. To lower the computational complexity and remove part of the noise floor from the spectrum, we select the frequency bins in the measurement vector \mathbf{X} according to an indicator function $b(\omega)$ defined for all ω, i.e.,

$$ b(\omega) = \begin{cases} 1, & |X_1(\omega)||X_2(\omega)| > |X_1|\mathbf{X}_2|/N \\ 0, & \text{otherwise} \end{cases} \quad (29) $$

The estimated source clusters are shown in Figure 3. The source panning clusters are visualized, as overlayed on the data and y, and the contours of the initial overfitted GMM components. Both amplitude panning angle and delay were estimated correctly and the results are shown in Table 2. We observe that the panning parameters are almost equal to the true parameters. The number of sources has been estimated to the true value of $M = 3$. Next, we can evaluate the ASI estimation shown in Figure 2. The Figure shows the ASI overlayed on the unmixed sources. A black vertical line indicates activity in the given frame at the estimated panning angle, while no line means no activity. We observe that the overall trend is that the binary ASI resembles the activity of the sources, both in silent periods and when the sources contain significant energy.

The fundamental frequency estimates of the harmonic sources are obtained using the estimated panning parameters and the ASI. The mixture is downsampled to $f_s = 8$ kHz, and processed in samples of length $N = 480$ samples (60 ms), with a hop size of $H = 120$ samples (15 ms). The fundamental frequencies are estimated using a grid with 1 Hz spacing, from $f_{0,\min} = 50$ Hz to $f_{0,\max} = 1000$ Hz. As explained in Section 3.4, a codebook of magnitude amplitudes is used when estimating the complex amplitudes of the sources. The codebook is trained using anechoic instrument recordings from the IOWA database, and the signals used for training are listed in Table 2. See [17] for further details. The fundamental frequency estimates of the sources are shown in Figure 4 along with the ground truth which was obtained using the joint_anls() function from the Multi-Pitch Estimation Toolbox [24] on the individual instrument recordings from the dataset resulting in single-pitch estimates. No smoothing has been applied to the parameter estimates. The separation of the sources from the mixture is done using Wiener filtering, as described in Section 3.3. A spectrogram of a monophonic version of the observed mixture, obtained as an average of the stereo channels, is shown in Figure 6 along with the residual, which is obtained by subtracting the estimated sources from the mixture. We observe that most of the harmonic components in the mixture have been removed. The spectrograms of the unmixed and reconstructed bass tracks are shown in Figure 7. The reconstructed bass track contains most of the harmonic content in the unmixed source, however, some of the higher harmonics are missing. In Figure 8, the spectrograms of the

1Available at http://theremin.music.uiowa.edu
Table 3: Data used for generating the amplitude codebook (v: played with vibrato).

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Instr. type</th>
<th>Note ranges</th>
<th>Duration (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto flute</td>
<td>Woodwind</td>
<td>G3-B3, C4-B4</td>
<td>68.3</td>
</tr>
<tr>
<td>Alto sax</td>
<td>Woodwind</td>
<td>Gb3-B3, C4-B4</td>
<td>118.9</td>
</tr>
<tr>
<td>Alto sax (v)</td>
<td>Woodwind</td>
<td>Gb3-B3, C4-B4</td>
<td>129.2</td>
</tr>
<tr>
<td>Bass flute</td>
<td>Woodwind</td>
<td>C3-B3, C4-B4</td>
<td>113.3</td>
</tr>
<tr>
<td>Bassoon</td>
<td>Woodwind</td>
<td>C3-B3, C4-B4</td>
<td>55.7</td>
</tr>
<tr>
<td>Bb clarinet</td>
<td>Woodwind</td>
<td>D3-B3, C4-B4</td>
<td>111.4</td>
</tr>
<tr>
<td>Eb clarinet</td>
<td>Woodwind</td>
<td>G3-B3,C4-B4</td>
<td>47.5</td>
</tr>
<tr>
<td>French horn</td>
<td>Brass</td>
<td>C2-B2, C4-B4</td>
<td>68.0</td>
</tr>
<tr>
<td>Oboe</td>
<td>Woodwind</td>
<td>Bb3-B3, C4-B4</td>
<td>46.6</td>
</tr>
<tr>
<td>Soprano sax</td>
<td>Woodwind</td>
<td>Ab3-B3, C4-B4</td>
<td>64.3</td>
</tr>
<tr>
<td>Soprano sax (v)</td>
<td>Woodwind</td>
<td>Ab3-B3, C4-B4</td>
<td>69.2</td>
</tr>
<tr>
<td>Tenor trombone</td>
<td>Brass</td>
<td>C3-B3, C4-B4</td>
<td>106.2</td>
</tr>
<tr>
<td>Trumpet</td>
<td>Brass</td>
<td>E3-B3, C4-B4</td>
<td>170.3</td>
</tr>
<tr>
<td>Trumpet (v)</td>
<td>Brass</td>
<td>E3-B3, C4-B4</td>
<td>182.9</td>
</tr>
</tbody>
</table>

unmixed and reconstructed trombone tracks are presented. The reconstructed trombone signal again contains most of the harmonic content, however, some segments in the beginning of the signal contain energy which was not present in the unmixed source; this is due to errors in the ASI. The spectrograms of the unmixed and reconstructed clarinet tracks are shown in Figure 9. Comparing the spectrograms of the unmixed and reconstructed tracks, it can be seen that the main harmonic components of the source have been captured in the reconstruction. A graphical user interface (GUI) is written in MATLAB in which the sources can be re-panned, using either the original panning parameters, or using new parameters. Figure 5 shows a screenshot of the mixing GUI. An informal listening test suggests that including the residual ensures that information not captured by the harmonic model, such as breathing noises and other non-stationarities greatly improves the perceived quality of the reconstructed mixture.

5. DISCUSSION

In this paper, a method for separating an observed stereophonic mixture into its harmonic components, is presented. The method does not require knowledge of the number of sources in the mixture. The sources are extracted using a multi-channel harmonic signal model, where the panning parameters and the number of active sources in each frame of the mixture are estimated in an initial step. The fundamental frequencies, amplitudes and number of harmonics are estimated using an iterative approach. To enforce spectral smoothness, the magnitude amplitudes of the harmonics are mapped to entries in a codebook, which has been trained on individual notes played on a variation of instruments. The harmonic components are extracted by modelling the sources using the harmonic model and the estimated parameters. When the harmonic sources have been extracted, they are processed individually, i.e., the panning parameters of the sources are altered. The reconstruction of the mixture includes the residual, which contains the parts of the signal that are not captured by the harmonic signal model. When the residual is added to the mixture of extracted harmonic components, the resulting mixture is more pleasing to listen to. Extensions to this work could be the inclusion of inharmonicity in the signal model, to allow more precise modelling of string instrument signals, such as guitar, bass and piano recordings. Temporal smoothness could also be imposed in the parameter estimation steps. Furthermore, the signal model presented here is anechoic, i.e., the performance of the proposed method will degrade in the presence of reverberation effects. One option is to use a method for dereverberation, such as one of the methods presented in [31].

An audiovisual demonstration of the re-panning is available at https://youtu.be/0HHoMVyOGeU
Figure 6: Spectrogram of the observed mixture (top) and the residual after subtraction of the harmonic sources (bottom).

Figure 7: Spectrogram of the unmixed bass track (top) and the reconstructed bass track (bottom).

Figure 8: Spectrogram of the unmixed trombone track (top) and the reconstructed trombone track (bottom).

Figure 9: Spectrogram of the unmixed clarinet track (top) and the reconstructed clarinet track (bottom).
6. REFERENCES

