Duality-Free Decomposition Based Data-Driven Stochastic Security-Constrained Unit Commitment

Tao Ding, Member, IEEE, Qingrun Yang, Student Member, IEEE, Xiyuan Liu, Student Member, IEEE, Can Huang, Member, IEEE, Yongheng Yang, Senior Member, IEEE, Min Wang, Frede Blaabjerg, Fellow, IEEE

Abstract— To incorporate the superiority of both stochastic and robust approaches, a data-driven stochastic optimization is employed to solve the security-constrained unit commitment model. This approach makes the most use of the historical data to generate a set of possible probability distributions for wind power outputs and then it optimizes the unit commitment under the worst-case probability distribution. However, this model suffers from huge computational burden, as a large number of scenarios are considered. To tackle this issue, a duality-free decomposition method is proposed in this paper. This approach does not require doing duality, which can save a large set of dual variables and constraints, and therefore reduces the computational burden. In addition, the inner max-min problem has a special mathematical structure, where the scenarios have the similar constraint. Thus, the max-min problem can be decomposed into independent sub-problems to be solved in parallel, which further improves the computational efficiency. A numerical study on an IEEE 118-bus system with practical data of a wind power system has demonstrated the effectiveness of the proposal.

Index Terms—Data-driven stochastic optimization; duality-free decomposition; security-constrained unit commitment; distributionally robust optimization

NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{T}</td>
<td>Hourly periods, running from 1 to T.</td>
</tr>
<tr>
<td>\mathcal{L}</td>
<td>Transmission lines, running from 1 to L.</td>
</tr>
<tr>
<td>\mathcal{B}</td>
<td>Buses, running from 1 to B.</td>
</tr>
<tr>
<td>\mathcal{Q}</td>
<td>Wind units, running from 1 to Q.</td>
</tr>
<tr>
<td>\mathcal{G}</td>
<td>Thermal units, running from 1 to G.</td>
</tr>
<tr>
<td>$\mathcal{\Omega}$</td>
<td>Wind power scenarios, running from 1 to Ω.</td>
</tr>
<tr>
<td>\mathcal{S}_g</td>
<td>Startup segments, running from 1 (hottest) to S_g (coldest).</td>
</tr>
</tbody>
</table>

This work was supported in part by National Key Research and Development Program of China (2016YFB0901900), in part by National Natural Science Foundation of China (Grant 51607137), in part by China Postdoctoral Science Foundation (2017T100748), in part by the project of State Key Laboratory of Electrical Insulation and in part by Power Equipment in Xi’an Jiaotong University (EIPE16301). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 with Release Number LLNL-JRNL-TBD. T. Ding, Q. Yang and X. Liu are with the State Key Laboratory of Electrical Insulation and Power Equipment, Department of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China; C. Huang is with the Lawrence Livermore National Laboratory, Livermore, CA, USA. Y. Yang and F. Blaabjerg are with the Department of Energy Technology, Aalborg University, Aalborg DK-9220, Denmark. M. Wang is with the Shaanxi Electric Power Corporation Economic Research Institute, Xi’an, Shaanxi, 710075, China.

Ψ | Confidence set for uncertain probability distribution of wind power. |
$f(b), t(b)$	Transmission lines subset starting from bus b or ending at bus b.
$G(b), W(b)$	Thermal or wind units subset located at bus b.
$P_{g\omega}$	Power output of thermal unit g at period t under scenario ω [MW].
$W_{q\omega}$	Forecasted power output of wind unit q at period t under scenario ω [MW].
$I_{\text{shed}}^{b\omega}$	Load shedding imposed on bus b at period t under scenario ω [MW].
$P_{\text{f}l\omega}$	Power flow on transmission line l at period t under scenario ω [MW].
$\theta_{a\omega}, \theta_{bt\omega}$	Phase angle of bus a and bus b at period t under scenario ω [rad].
$r_{g\omega}$	Spinning reserve provided by thermal unit g at period t under scenario ω [MW].
$u_{g\omega}$	Commitment status that is equal to 1 if thermal unit g is online at period t.
$v_{g\omega}$	Startup status that is equal to 1 if thermal unit g starts up at period t.
$z_{g\omega}$	Shutdown status that is equal to 1 if thermal unit g shuts down at period t.
$\delta_{g\omega}$	Start up and capture time of thermal unit g, which is equal to 1 at the period where the unit starts up and has been offline within $[t_{g\omega}^{SU}, t_{g\omega}^{SU}+1]$ hours.
π_ω	Probability of wind power scenario ω.
π^0_ω	Probability of wind power scenario ω from data.
$C_{\text{NL}}^\text{SU}, C_{\text{SD}}^\text{SU}$	No-load cost and shutdown cost of thermal unit g [$\$/MWh].
C_{LOL}	Load shedding cost [$\$/MWh].
$C_{\text{SU}}^{\text{SU}}$	Startup cost of thermal unit g when the unit starts up and has been offline within $[t_{g\omega}^{SU}, t_{g\omega}^{SU}+1]$ hours [$\$/MWh].
$L_{\text{d}b}$	Load demand located at bus b at period t [MW].
P_{lim}	Capacity of transmission line l [MW].
x_{ab}	Reactance of transmission line from bus a to bus b [per unit].
R_{t}	Spinning reserve requirement at period t [MW].
$TU_{g\omega}, TD_{g\omega}$	Minimum uptime and minimum downtime of thermal unit g [h].
$p_{g}^{\text{max}}, p_{g}^{\text{min}}$	Maximum and minimum power output of thermal unit g [MW].
$SU_{g\omega}, SD_{g\omega}$	Startup capability and shutdown capability of thermal unit g [MW].
$RU_{g\omega}, RD_{g\omega}$	Ramp-up rate and ramp-down rate of thermal wind power [MW].
unit g [MW/h].

α Pre-designed confidence level.

β Controllable parameter for confidence set.

N_s The Number of scenarios.

K The Number of historical data.

I. INTRODUCTION

Security constrained unit commitment (SCUC) is one of the important functions for scheduling generators in day-ahead power system operation [1]-[3]. It determines the on/off status of all dispatchable units over a given number of horizons while satisfying all the physical constraints of generators and the power network. However, with a high penetration of wind power into the power grid, many challenging issues arise [4]. The wind power output is highly stochastic and volatile, which hinders their efficient and secure large-scale deployment and challenges the SCUC of power systems. Thus, the uncertainty of the wind power output should be considered in the SCUC scheduling problem. With this, many studies have been done in the literature [5-21]. They can be categorized into three groups: 1) interval constrained unit commitment (ISCUC) [5-6], 2) stochastic security-constrained unit commitment (SSCUC) [7-14], and 3) robust security-constrained unit commitment (RSCUC) [15-21].

SSCUC models generate several wind power scenarios associated with various probabilities to describe uncertainties. These models minimize the expected total cost while satisfying all operational constraints under all the scenarios [7]. In contrast, the RSCUC models are immune against the wind power uncertainties within a predefined uncertainty set [15]. These models essentially minimize the total cost under the worst-case scenario. The computational burden of the RSCUC models mainly depends on the definition of their uncertainty sets [20]. It should be noted that both the SSCUC and RSCUC models can be cast as a two-stage optimization problem. The first-stage decisions find the optimal unit commitment that cannot be changed once they are optimized before the true wind power realization; the second-stage decisions are adjusted to the realization of the wind power generation, which provides the recourse for the system. The difference of the two models is that the RSCUC expects to find the solution that can fully guarantee the feasibility for any possible realization within the uncertainty set, while the SSCUC only protects the system under the selected scenarios.

Nevertheless, compared with the SSCUC models, the RSCUC models may give relatively conservative solutions. Recently, the concept of uncertainty budget has been proposed to reduce over-conservative decisions. Several methods to construct the proper uncertainty sets based on historical data were introduced in [22] to reduce the conservativeness while maintaining the robustness of the solutions. In addition, [23] introduced a risk-constrained robust unit commitment model, where the uncertainty set was divided into several probability-blocks with respect to the data sets. A multistage adaptive robust unit commitment model was set up in [24], where dynamic uncertainty sets were utilized to capture the temporal and spatial correlations of renewable energy as well as the sequential nature of the dispatch process. Furthermore, a two-stage min-max regret robust unit commitment was established in [25] to reduce the conservativeness, where the maximum regret in the robust optimization framework was considered. Moreover, adjustable uncertainty sets according to different system-risk levels were adopted to achieve the operational flexibility for day-head unit commitment [26]. Then, a novel unified stochastic and robust unit commitment model was proposed in [27] to reduce the expected cost by adjusting the weights in the objective function.

Compared with the RSCUC models, although the SSCUC models can avoid the conservative total cost, the system security cannot be sufficiently guaranteed. Therefore, many efforts were devoted into the chance-constrained security-constrained unit commitment (CSCUC) [28-30]. The CSCUC model ensures the feasibility for the constraints with stochastic variables in a certain probability. Since the chance constraints generally lead to the non-convexity, the CSCUC problem is usually solved by means of a sample-average approximation approach [28]. Only certain CSCUC models can be equivalently transformed into deterministic SCUC models [29], which leads to the notion of risk-averse SCUC models that include the operational risk. In general, the risk exposure of the power system is considered in the objective function or in the constraints of the SCUC model. Typically, the considered risk includes the loss-of-load and the wind curtailment [30]. The risk-averse SCUC model allows a tradeoff between the expected dispatch costs and the operational risks caused by uncertainties [31]. Recently, several risk measures have been applied to SCUC models, such as the mean-variance [32], shortfall probability [33], and conditional value-at-risk (CVaR) [31, 34].

Generally, stochastic programming methods cannot cover all possible realizations of uncertainties. A particular probability distribution of random parameters is usually assumed, which may be biased in practice. Although the robust optimization can take all realizations into consideration and protect the system against a pre-defined uncertainty set, it gives a more conservative solution than the stochastic approach. The chance-constrained formulation is usually reformulated as a large-scale mixed integer programming model, depending on the number of scenarios considered in the model, which increases the computational burden. Also, as one of the stochastic approaches, it shares the same disadvantages with the SUC—it is not possible to enumerate all the scenarios and the solution depends on the assumed distribution in the model.

To achieve a more reasonable unit commitment with the superiority of stochastic and robust optimization models, the data-driven framework can be adopted to find a more suitable solution. It should be robust but less conservative. Based on the historical data, a series of possible probability distribution of wind power can be constructed. This model takes advantage of data information and considers the worst-case distribution of the uncertainties. When comparing with the case considering the worst-case scenario in the robust optimization approach, the...
data-driven model yields less conservativeness. It aims to find an optimal solution under the worst probability distribution, known as “distributionally robust optimization” or “data-driven optimization” [35]-[38]. Recently, this approach is also used to solve the UC problem [39], [40]. More importantly, it does not require probabilistic distribution assumption. Instead, it allows an ambiguous distribution within the confidence set. This leads to a more robust solution compared with the stochastic optimization.

However, the model in [39] has difficulties in solving large-scale problems. More specifically, due to the “max-min” duality, it is difficult to find the worst-case scenario. Clearly, a larger number of scenarios will lead to a more precise optimal solution, while increasing the complexity and computational burden. In that case, the problem becomes intractable or even unsolvable. In the prior-art work, the decomposition method has been proposed to tackle this issue [41], [42]. For instance, in [41], the augmented Lagrangian relaxation method was employed to decompose the large-scale problem into several small sub-problems (one for each scenario). However, this is only applicable to single-level stochastic programming models. In this paper, the proposed data-driven distributionally robust optimization is essentially a “min-max-min” tri-level model to efficiently solve the above issues. To our best knowledge, how to decompose the tri-level optimization model has not been addressed yet in the literature.

The main contributions of this paper are summarized as:
(i) A data-driven stochastic SCUC model is set up using the practical data that incorporates the superiority of stochastic and robust optimization models. Meanwhile, the practical wind speed is analyzed under four seasons during one year, which facilitates the stochastic SCUC model.
(ii) A novel decomposition approach is proposed to solve the tri-level data-driven stochastic unit commitment model. This approach does not require dualization, which can save a large set of dual variables and constraints and thus reduce the computational burden. Additionally, due to its special structure, the inner max-min problem can be decomposed into independent sub-problems and then solved in parallel, which further improves the computational efficiency.

The rest of the paper is organized as follows: Section II investigates the modeling of wind power generation scenarios. In Section III, a data-driven stochastic security-constrained unit commitment (SCUCU) model is set up considering the uncertain probability distribution of wind power. A duality-free based Bender’s decomposition algorithm is then proposed to solve the data-driven stochastic SCUC model in Section IV. In Section V, numerical results and comparisons on a standard IEEE 118-bus system demonstrate the effectiveness of the proposed model and method. Finally, conclusions are drawn in Section VI.

II. WIND POWER SCENARIO GENERATION

Wind power generation scenarios are usually generated with Monte Carlo simulations using a predefined wind power distribution. However, in order to describe a precise wind power distribution, wind speed characteristics should be analyzed according to the wind farm historical data. In this paper, the wind speed is characterized by four seasons in a year. Taking one real-field wind farm in China as an example, where the wind speed data in the past 10 years is utilized:

Fig. 1 depicts the wind speed in one day (24 hours) and one month (720 hours). It can be observed that the wind speed is stochastic and volatile. However, the wind speed is relatively periodic and the daily wind speed distribution over a long period is similar.

For one day, Fig. 2 shows the wind speed distribution at 00:00 AM and 12:00 PM. It can be observed that the wind speed distribution has a “double-peak” nature, where the peak values are near 0 m/s and 5 m/s, respectively. The number of scenarios becomes smaller with the increase in wind speed. Meanwhile, a comparison of Fig. 2(a) and (b) implies that the average wind speed at 12:00 PM is higher than that at 00:00 AM. Moreover, the number of scenarios with high wind speeds (more than 18 m/s) is larger at 12:00 PM than that at 00:00 AM. As a result, the wind speed modeling should consider the daily time-series characteristics.

However, for one year, Fig. 3 depicts the distribution of wind speeds, which shows that the high wind speed condition is more frequent in spring and winter than that in summer and autumn. In spring, the peak wind speed is around 7.5 m/s and there are several scenarios with the wind speed higher than 12.5 m/s; in summer, the peak is around 5 m/s and the number of scenarios with the wind speed higher than 10 m/s is small. The statistics from historical data suggest that four seasons have different wind speed characteristics. As a consequence, daily time-series characteristics should be modeled separately.

Based on the historical data, the daily wind power density can be estimated through various prior-art probabilistic forecast approaches. Meanwhile, in [43], a method that can generate
statistical scenarios of the wind power generation considering spatial-temporal interdependence was introduced, and it is also used in this paper. Then, 1000 wind power scenarios are set up at the beginning according to the estimated probability density function describing the uncertainty in forecasts. Furthermore, the scenario generation technique is based on building joint predictive densities from the marginal ones. The interdependent structure of wind power generation through time and space is modeled by the covariance matrix of the multivariate Gaussian distribution. Finally, it is known that a large number of scenarios are required to fully characterize the wind power uncertainty. However, increasing the number of scenarios makes the stochastic SCUC modelling become computationally intractable. To retain the tractability and maintain the statistical information, the probability distance-based scenario-reduction technique [44] is employed in this paper.

\[
\sum_{\omega \in \Omega} \sum_{T_{g,s}, T_{t}} \pi_\omega \left(\sum_{g \in G} F_g(P_{gt,\omega}) + \sum_{s \in S_g} C_{gs}^{SU} \delta_{gs,t} + C_{gs}^{SD} z_{gt} \right)
\]

s.t. \[\delta_{gst} \leq \sum_{t=1}^{T_{g,s}, T_{t}} z_{gt-1} \quad \forall g, t \in [T_{g,s}, T_{t}], s \in [1, S_g] \]

\[\sum_{t} \delta_{gst} = v_{gt} \quad \forall g, t \]

\[\sum_{t} v_{gt} \leq u_{gt} \quad \forall g, t \in [T_{g,s}, T_{t}] \]

\[\sum_{t=1}^{T_{g,s}, T_{t}} z_{gt} \leq 1 - u_{gt} \quad \forall g, t \in [T_{g,s}, T_{t}] \]

\[u_{gt} - u_{gt-1} = v_{gt} - z_{gt} \quad \forall g, t \]

\[\sum_{g \in G(b)} P_{gt,\omega} + \sum_{g \in W(b)} W_{gt,\omega} = (L_{bt} - L_{bt,\omega}) \]

Fig. 3. Wind speed distribution of the wind farm in a year.

III. DATA-DRIVEN STOCHASTIC SCUC MODEL

A. General Stochastic SCUC Model

In this section, the general stochastic SCUC model is set up in a tight and compact MILP formulation [39]. It was discussed in [39] that the tight and compact formulation could improve the computational efficiency of stochastic UC models, since a smaller searching space and a faster searching process for the branch-and-cut algorithm are enabled.

The stochastic SCUC optimization problem aims to minimize the expected operational cost over a given number of time horizons while satisfying various physical constraints. Specifically, the objective function should include: (i) the fixed production cost; (ii) startup cost; (iii) production cost; and (v) loss-of-load cost, such that

\[
\min \sum_{t \in T} \sum_{g \in G} \left(C_{gs}^{SU} u_{gt} + \sum_{s \in S_g} C_{gs}^{SU} \delta_{gs,t} + C_{gs}^{SD} z_{gt} \right)
\]

In the above formulation, constraints (2) and (3) are startup cost constraints. They choose the suitable startup-type variable \(\delta_{gst}\) that activates the corresponding startup cost \(C_{gs}^{SU}\) in the objective function of (1). Constraints (4) and (5) are the minimum uptime and downtime constraints. Constraint (6) is a logical constraint guaranteeing that \(P_{gt,\omega}\) and \(z_{gt}\) have proper values at the startup and shutdown time. Constraints (7), (8) and (9) are to meet the power balance and network transmission security requirements. Constraint (10) describes the load shedding. Constraints (11), (12) and (13) refer to the ramping limitation and spinning reserve requirement. Constraints (14), (15) and (16) denote the minimum and maximum generation limitations.

B. Proposed Data-driven Stochastic SCUC Model

It should be noted that the probability distribution of wind power is important to generate scenarios. However, the uncertainties should be considered in the system modeling. In this way, the unknown probability distribution of wind power follows any possible probability distribution within a pre-defined confidence set built up upon the historical data.
the two confidence sets can be expressed as

\[\Psi_1 = \{ \pi_\omega \mid \| \pi_\omega - \pi_0 \|_1 \leq \beta \} \]

\[\Psi_\infty = \{ \pi_\omega \mid \| \pi_\omega - \pi_0 \|_\infty \leq \beta \} \] (17a)

It has been studied in [39] that the estimated probability distribution will approach the true probability distribution if more historical data can be obtained. For a pre-designed confidence level \(\alpha \) and the controllable parameter for the confidence set \(\beta \) can be calculated as

\[\beta_1 = \frac{N_s}{2K} \ln \frac{2N_s}{1 - \alpha}, \quad \beta_\infty = \frac{1}{2K} \ln \frac{2N_s}{1 - \alpha} \] (18)

As shown in Fig. 4, the possible probability distributions are fully covered by the confidence set. Here, we consider that the pre-defined confidence set \(\Psi \) is convex, which can facilitate the computation. In the prior-art research, two methods were reported to construct the confidence set. One is based on the first- and second-order moments (e.g., mean and variance). The other is to utilize the density information (e.g., norm-1 and norm-\(\infty \)) to construct the confidence set. In the prior-art research, two methods were proposed to determine the confidence set. One is based on the definition of the confidence level and the other is to utilize the density information (e.g., norm-1 and norm-\(\infty \)) to construct the confidence set. In this paper, the latter is adopted for illustration and the two confidence sets can be expressed as

\[\psi_1 = \{ \pi_\omega \mid \| \pi_\omega - \pi_0 \|_1 \leq \beta \} \]

\[\psi_\infty = \{ \pi_\omega \mid \| \pi_\omega - \pi_0 \|_\infty \leq \beta \} \] (17b)

For each given probability distribution, the stochastic SCUC model can be solved by (1)-(16). The confidence set actually can be calculated as

\[\beta_1 = \frac{N_s}{2K} \ln \frac{2N_s}{1 - \alpha}, \quad \beta_\infty = \frac{1}{2K} \ln \frac{2N_s}{1 - \alpha} \] (18)

As shown in Fig. 4, the possible probability distributions are fully covered by the confidence set. Here, we consider that the pre-defined confidence set \(\Psi \) is convex, which can facilitate the computation. In the prior-art research, two methods were reported to construct the confidence set. One is based on the first- and second-order moments (e.g., mean and variance). The other is to utilize the density information (e.g., norm-1 and norm-\(\infty \)) to construct the confidence set. In this paper, the latter is adopted for illustration and the two confidence sets can be expressed as

\[\psi_1 = \{ \pi_\omega \mid \| \pi_\omega - \pi_0 \|_1 \leq \beta \} \]

\[\psi_\infty = \{ \pi_\omega \mid \| \pi_\omega - \pi_0 \|_\infty \leq \beta \} \] (17b)

It has been studied in [39] that the estimated probability distribution will approach the true probability distribution if more historical data can be obtained. For a pre-designed confidence level \(\alpha \) and the controllable parameter for the confidence set \(\beta \) can be calculated as

\[\beta_1 = \frac{N_s}{2K} \ln \frac{2N_s}{1 - \alpha}, \quad \beta_\infty = \frac{1}{2K} \ln \frac{2N_s}{1 - \alpha} \] (18)

As shown in Fig. 4, the possible probability distributions are fully covered by the confidence set. Here, we consider that the pre-defined confidence set \(\Psi \) is convex, which can facilitate the computation. In the prior-art research, two methods were reported to construct the confidence set. One is based on the first- and second-order moments (e.g., mean and variance). The other is to utilize the density information (e.g., norm-1 and norm-\(\infty \)) to construct the confidence set. In this paper, the latter is adopted for illustration and the two confidence sets can be expressed as

\[\psi_1 = \{ \pi_\omega \mid \| \pi_\omega - \pi_0 \|_1 \leq \beta \} \]

\[\psi_\infty = \{ \pi_\omega \mid \| \pi_\omega - \pi_0 \|_\infty \leq \beta \} \] (17b)

It has been studied in [39] that the estimated probability distribution will approach the true probability distribution if more historical data can be obtained. For a pre-designed confidence level \(\alpha \) and the controllable parameter for the confidence set \(\beta \) can be calculated as

\[\beta_1 = \frac{N_s}{2K} \ln \frac{2N_s}{1 - \alpha}, \quad \beta_\infty = \frac{1}{2K} \ln \frac{2N_s}{1 - \alpha} \] (18)

As shown in Fig. 4, the possible probability distributions are fully covered by the confidence set. Here, we consider that the pre-defined confidence set \(\Psi \) is convex, which can facilitate the computation. In the prior-art research, two methods were reported to construct the confidence set. One is based on the first- and second-order moments (e.g., mean and variance). The other is to utilize the density information (e.g., norm-1 and norm-\(\infty \)) to construct the confidence set. In this paper, the latter is adopted for illustration and the two confidence sets can be expressed as

\[\psi_1 = \{ \pi_\omega \mid \| \pi_\omega - \pi_0 \|_1 \leq \beta \} \]

\[\psi_\infty = \{ \pi_\omega \mid \| \pi_\omega - \pi_0 \|_\infty \leq \beta \} \] (17b)

It has been studied in [39] that the estimated probability distribution will approach the true probability distribution if more historical data can be obtained. For a pre-designed confidence level \(\alpha \) and the controllable parameter for the confidence set \(\beta \) can be calculated as

\[\beta_1 = \frac{N_s}{2K} \ln \frac{2N_s}{1 - \alpha}, \quad \beta_\infty = \frac{1}{2K} \ln \frac{2N_s}{1 - \alpha} \] (18)

As shown in Fig. 4, the possible probability distributions are fully covered by the confidence set. Here, we consider that the pre-defined confidence set \(\Psi \) is convex, which can facilitate the computation. In the prior-art research, two methods were reported to construct the confidence set. One is based on the first- and second-order moments (e.g., mean and variance). The other is to utilize the density information (e.g., norm-1 and norm-\(\infty \)) to construct the confidence set. In this paper, the latter is adopted for illustration and the two confidence sets can be expressed as

\[\psi_1 = \{ \pi_\omega \mid \| \pi_\omega - \pi_0 \|_1 \leq \beta \} \]

\[\psi_\infty = \{ \pi_\omega \mid \| \pi_\omega - \pi_0 \|_\infty \leq \beta \} \] (17b)

It has been studied in [39] that the estimated probability distribution will approach the true probability distribution if more historical data can be obtained. For a pre-designed confidence level \(\alpha \) and the controllable parameter for the confidence set \(\beta \) can be calculated as

\[\beta_1 = \frac{N_s}{2K} \ln \frac{2N_s}{1 - \alpha}, \quad \beta_\infty = \frac{1}{2K} \ln \frac{2N_s}{1 - \alpha} \] (18)

As shown in Fig. 4, the possible probability distributions are fully covered by the confidence set. Here, we consider that the pre-defined confidence set \(\Psi \) is convex, which can facilitate the computation. In the prior-art research, two methods were reported to construct the confidence set. One is based on the first- and second-order moments (e.g., mean and variance). The other is to utilize the density information (e.g., norm-1 and norm-\(\infty \)) to construct the confidence set. In this paper, the latter is adopted for illustration and the two confidence sets can be expressed as

\[\psi_1 = \{ \pi_\omega \mid \| \pi_\omega - \pi_0 \|_1 \leq \beta \} \]

\[\psi_\infty = \{ \pi_\omega \mid \| \pi_\omega - \pi_0 \|_\infty \leq \beta \} \] (17b)
called constraints to the master problem with the fixed optimal models. Especially, the feasible region problem can be decomposed into small linear programming models, where it gives an upper bound for the original model. Then, a set of extra constraints are generated and added into the master problem by fixing the optimal probability \(\pi_{k} \) at the \(k \)-th iteration (\(\pi_{1}^{*}, ..., \pi_{N_{x}}^{*}, \pi_{N_{x}}^{k} \)).

When the optimal solution \((h_{1}^{k}, ..., h_{N_{x}}^{k}, ..., h_{N_{x}}^{K}) \) is obtained, it gives

\[
\max_{\pi_{k} \in \mathcal{D}} \sum_{\omega \in \mathcal{D}} \pi_{k_{\omega}} h_{k_{\omega}}^{k} \tag{39}
\]

Thus, the original bi-level model can be solved by \(N_{x}+1 \) small linear programming models, where \(N_{x} \) models described in (4) can be handled in parallel. The proposed method does not need to dualize the inner model when solving the bi-level sub-problem, and thus it is referred to as a duality-free decomposition method. A simple example for the “max-min” sub-problem is shown in Appendix to verify the proposed duality-free decomposition method.

B. Master Problem

When the sub-problem is solved, an optimal variable \(g(P_{k}^{*}, l_{k}^{hed,k}, p_{k}^{k}, \theta_{k}^{k}, r_{k}) \) and the worst-case probability \((\pi_{1}^{*}, ..., \pi_{N_{x}}^{*}, \pi_{N_{x}}^{k}) \) are obtained. In fact, this gives an upper bound for the original model. Then, a set of extra variables \((P_{k}^{*}, l_{k}^{hed,k}, p_{k}^{k}, \theta_{k}^{k}, r_{k}) \) and associated constraints are generated and added into the master problem by fixing the optimal probability \((\pi_{1}^{k}, ..., \pi_{N_{x}}^{k}, \pi_{N_{x}}^{k}) \) from the above model in (32)-(33).

If the sub-problem is feasible, we can create variables \((P_{k}^{*}, l_{k}^{hed,k}, p_{k}^{k}, \theta_{k}^{k}, r_{k}) \) and assign the following constraints to the master problem with the fixed optimal probability at the \(k \)-th iteration \((\pi_{1}^{k}, ..., \pi_{N_{x}}^{k}, \pi_{N_{x}}^{k}) \), which are called “optimality cuts”.

\[
\begin{align*}
\eta \geq & \sum_{\omega \in \mathcal{D}} \pi_{k_{\omega}} \sum_{\omega \in \mathcal{D}} \left(\sum_{g \in \mathcal{D}} f_{g}(P_{k}^{*}) + \sum_{b \in B} c^{L_{k}^{hed,k}}_{L_{k}^{hed,k}} \right) \tag{40} \\
\sum_{g \in G(b)} p_{k_{\omega}}^{k_{\omega}} + \sum_{q \in E(W(b))} w_{q_{\omega}} - (L_{-} - l_{k_{\omega}}) & = \sum_{l \in L(b)} P_{k_{\omega}}^{L_{k_{\omega}}} - \sum_{l \in L(b)} P_{k_{\omega}}^{L_{k_{\omega}}} \forall b, t, \omega \tag{41} \\
p_{k_{\omega}}^{k_{\omega}} & = \frac{(\theta_{k_{\omega}} - g_{k_{\omega}})}{x_{ab}} \forall l, t, \omega \tag{42} \\
p_{k_{\omega}}^{k_{\omega}} + r_{k_{\omega}} - L_{\text{lt}} & \leq 0 \forall b, t, \omega \tag{43} \\
0 & \leq l_{k_{\omega}} \forall b, t, \omega \tag{44} \\
(P_{k_{\omega}}^{*} + r_{k_{\omega}}) & - P_{k_{\omega}}^{k_{\omega}} - R_{U_{g}} \forall g, t, \omega \tag{45} \\
-P_{k_{\omega}}^{k_{\omega}} + P_{k_{\omega}}^{*} & \leq R_{D_{g}} \forall g, t, \omega \tag{46} \\
\sum_{g \in \mathcal{D}} g_{k_{\omega}} & \geq R_{t} \forall \omega, t \tag{47}
\end{align*}
\]

The master problem aims to relax the original optimization model and provide a lower bound. Mathematically, it is a standard mixed integer linear program (MILP) model that can be easily dealt with by the standard commercial solvers.

Step 1: Let \(LB = -\infty, UB = +\infty, K = 0; \)

Step 2: Solve the master problem model:

\[
\begin{align*}
\min & \sum_{g \in \mathcal{D}} \left(C_{g}^{N_{u}} u_{g} + \sum_{s \in S_{g}} c^{S_{g}} z_{g} + C_{g}^{D} z_{g} \right) + \eta \tag{53} \\
\text{s.t.} & \ (3)-7) \ (40)-(50) \ k=1,...,K \tag{54}
\end{align*}
\]

Solve the above model and derive the optimal solution \((u_{g}^{*}, v_{g}^{*}, s_{g}^{*}, \gamma_{g}^{*}) \) and solve the sub-problem model in parallel by (37)-(39), respectively. If the sub-problem is feasible, let the optimal objective value be \(\theta^{*} \); otherwise set \(\theta^{*} = +\infty \). Furthermore, update the upper bound as \(UB = \min(UB, \sum_{g} (C_{g}^{N_{u}} u_{g} + \sum_{s \in S_{g}} c^{S_{g}} s_{g}^{*} + C_{g}^{D} z_{g}^{*}) + \theta^{*}) \).

Step 3: Fix \((u_{g}^{*}, v_{g}^{*}, s_{g}^{*}, \gamma_{g}^{*}) \) and solve the sub-problem model in parallel by (37)-(39) and stop. Otherwise, add the cuts as:

(a) If the sub-problem in Step 3 is feasible, obtain the optimal probability \((\pi_{1}^{*}, ..., \pi_{N_{x}}^{*}, \pi_{N_{x}}^{k}) \). Create variables \((P_{k}^{*}, l_{k}^{hed,k}, p_{k}^{k}, \theta_{k}^{k}, r_{k}) \) and assign the constraints (40)-(50) to the master problem;

(b) If the sub-problem in Step 3 is infeasible, create variables \((P_{k}^{*}, l_{k}^{hed,k}, p_{k}^{k}, \theta_{k}^{k}, r_{k}) \) and add the constraints (51)-(52) to the master problem;

Step 5: Update \(K=K+1 \) and go back to Step 2.

\[1949-3029 \text{ (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.} \]
V. NUMERICAL ANALYSIS

In this section, three unit commitment models with wind power generation uncertainties are designed and compared with the proposed data-driven stochastic SCUC model (DSSCUC):

- **WSSCUC**: It is a worst-case stochastic SCUC model. Solve the general stochastic SCUC model (1)-(16) and fix the first-stage decision variables. Then, we randomly generate 1000 different probabilities from the confidence set and solve the second-stage problem for each given probability. Then, choose the solution with the maximum objective value is served as the worst-case scenario for the stochastic approaches.

- **RSCUC**: It is a two-stage robust SCUC model. Using the historical data, we can give the uncertainty set of robust optimization with respect to central limit theorem.

- **SSCUC**: It is a two-stage stochastic SCUC model.

The computation is carried on a computer with an Intel® Core™ i7 Duo Processor (2.4 GHz) and 4-GB RAM in MATLAB by the CPLEX 12.6 commercial solver. It should be noted that the series of sub-problems in the proposed method have independent mathematical structures, enabling the parallel computation. Due to the lack of hard-ware platform of high-performance computing, we use the “for” loop to simulate the parallel computation and take the worst computing time of the sub-problems as the parallel computational time.

A. Test on the IEEE 118-bus System

At first, the proposed duality-free decomposition based DSSCUC is studied on the IEEE 118-bus test system including 54 generators and 186 transmission lines [47]. The spinning reserve requirement is equal to 5% of the load demand. The cost of load shedding is $3500/MWh. Five 300 MW wind farms are located at bus #10, #25, #26, #37, and #38. Here, the historical wind data from the real-life wind farms in Northwestern China is used, as shown in Figs. 1-3.

The comparison of the three methods is presented in Table I with \(N_s = 5 \). It is obvious that the RSCUC model optimizes the solution that is immune against all the possible realizations, which leads to the highest optimal total cost. The SSCUC method considers the probability of scenarios, which therefore yields the lowest optimal total cost. In contrast, the proposed DSSCUC model using either \(\beta_{\psi_1} \) or \(\beta_{\psi_{\alpha}} \) is greater than the SSCUC, while smaller than the WSSCUC approach. When \(\beta \) is large enough, the solution will tend to that of the RSUCU model. On the contrary, when \(\beta \) is small, the solution will approach that of the SSCUC model. The DSSCUC model is between RSCUC and SSCUC. As a result, \(\beta \) can be considered as a budget parameter that can control the size of uncertainty sets and further a trade-off between the robust and stochastic optimization can be made. With the increase of \(\beta \), the uncertainty set becomes larger and the optimal solution is more conservative.

Moreover, the worst-case total cost from the stochastic approach is computed by the WSSCUC model considering uncertain probability distribution of about 9.5%–17.2% larger than the traditional two-stage SCUC model. It is obvious that a larger confidence level \(\alpha \) will enlarge the confidence set (i.e., \(\beta \) becomes large), and the worst-case solution will thus become larger. The results suggest that the traditional SSCUC model suffers from the uncertain probability distribution of wind power. However, the proposed DSSCUC model takes into account the uncertainty from the statistics, so the solution will be benefited.

Finally, the stochastic SCUC models including the SSCUC, WSSCUC and DSSCUC models are always better than the robust SCUC model. This is because the robust optimization neglects the probability of scenarios and the probability of the worst-case scenario may be very small in practice. Thus, the extreme worst case will sacrifice much cost (about 24%) to protect the system from the worst case with small probabilities.

In the framework of the two-stage stochastic optimization, the expected total cost is optimized which gives the optimal solution under the given probability distribution.

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\psi_1)</th>
<th>(\psi_{\alpha})</th>
<th>RSCUC</th>
<th>SSCUC</th>
<th>WSSCUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.5167</td>
<td>1.5035</td>
<td>1.6288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>1.5331</td>
<td>1.5201</td>
<td>1.6391</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>1.5502</td>
<td>1.5496</td>
<td>1.6536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1.5795</td>
<td>1.5732</td>
<td>1.6712</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>1.6111</td>
<td>1.5943</td>
<td>1.6934</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.95</td>
<td>1.6348</td>
<td>1.6132</td>
<td>1.7158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.99</td>
<td>1.6584</td>
<td>1.6380</td>
<td>1.7433</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In order to investigate the influence of the load demand and wind power output on the solution decision, we consider four seasons to study where a typical day is selected in each season. In spring, the wind power is high and the load demand is low. In summer, the wind power is low and the load demand is high. In autumn, both the wind power and load demand are low. In winter, both the wind power and load demand are high. The solutions are presented in Table II. Observations show that the total cost in spring is the lowest and the solution in summer is the highest. More importantly, the gap between DSSCUC and other methods is small when the wind power output is low, whereas it is large in the case of a high penetration of wind power.

Furthermore, the proposed duality-free decomposition method (PM) and the traditional Benders decomposition method (TM) in [39] were explicitly compared considering scenarios and the results can be found in Table III. It can be observed that for the same \(N_s \), the PM and TM generate the same objective value (obj.). In contrast, the PM preforms an order of magnitude faster than the TM. This is because the PM needs 2-4 iterations for convergence, whereas the TM needs 9-15 iterations. Moreover, the PM yields a decomposition structure for the second-stage problem that can be handled in parallel, which can significantly reduce the computational time, especially for the problem with a large number of scenarios.
Moreover, the comparison of computational performance among the three approaches is shown in Table IV. The SSCUC is a standard MILP that can be directly handled by CPLEX. However, the computational time increases significantly with a large number of scenarios. This is because the SSCUC model contains \(N_s \) sets of decision variables and constraints. The RSUCC approach needs 7 iterations while the challenge is in the inner bi-level “max-min” problem, where a large-scale MILP is performed by the use of duality. In addition, the computational time of the SSUCU will increase significantly when the number of scenarios is increased. Among the three methods, the proposed DSSCUC model consumes the least computational time due to the duality-free decomposition method, where the second-stage “max-min” problem is decomposed into several small-scale linear programs that are handled in parallel. It should be noted that the increase of \(N_s \) will increase its computational time. The reason is that the master problem will become larger with a large number of scenarios.

The per unit values of the forecasted load demand and wind power generation over 24 hours are shown in Fig. 6, which are defined by \(P/P^0 \). Here, \(P^0 \) is the value at the time period \(t \) and \(P^0 \) is the value at 1:00 AM. We consider the true wind power follows a multivariate normal distribution with the variance equivalent to 1/3 of the forecasted value. Furthermore, 1000 samples are generated as the set of the historical data. The sensitivity analysis of parameters on the four models is presented in Table V. For each group, we consider four points for comparison. The results reveal that with the increase of the number of scenarios \(N_s \) and confidence level \(\alpha \) and with the decrease of the number of historical data \(K \), the total cost will become larger since the uncertainty set becomes larger. Thus, it is suggested that for a given confidence level and the number of scenarios, more historical data can narrow the region of the uncertainty set and reduce the conservativeness. Similarly, for a given number of scenarios and historical data, improving the confidence level indicates that the system requires higher estimation precision for the possible probability distributions. In that case, the confidence set and the uncertainty set become larger. Moreover, it can be observed in Fig. 7 that the gap between WSSCUC and DSSCUC will become smaller if \(\alpha \) and \(K \) are increased while decreasing \(N_s \).

Table III. Comparison of the traditional and proposed methods.

<table>
<thead>
<tr>
<th>(N_s)</th>
<th>Obj. ((10^3))</th>
<th>Time (min)</th>
<th>Obj. ((10^3))</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TM</td>
<td>PM</td>
<td>TM</td>
<td>PM</td>
</tr>
<tr>
<td>5</td>
<td>1.63</td>
<td>1.63</td>
<td>36</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1.58</td>
<td>1.58</td>
<td>44</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>1.56</td>
<td>1.56</td>
<td>53</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>1.55</td>
<td>1.55</td>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>1.54</td>
<td>1.54</td>
<td>90</td>
<td>6</td>
</tr>
</tbody>
</table>

Table IV. Comparison of computational efficiency by three methods on 118-bus test system (min).

<table>
<thead>
<tr>
<th>(N_s)</th>
<th>DSSCUC</th>
<th>RSCUC</th>
<th>SSCUC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(D_{-\infty})</td>
<td>(D_1)</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

B. Test on the Practical Hainan Power Grid in China

To verify the proposed method on a large-scale test system, the Hainan power grid in China is used, which is depicted in Fig. 5. This power grid contains 82 generators with the total capacity being 5300 MW, 7 wind farms with the total capacity being 800 MW, and the load demand is 4200 MW. The transmission network is operated on two voltage levels, i.e., 220 kV and 500 kV, where there are 34 high-voltage substations and 404 transmission corridors.

The per unit values of the forecasted load demand and wind power generation over 24 hours are shown in Fig. 6, which are defined by \(P/P^0 \). Here, \(P^0 \) is the value at the time period \(t \) and \(P^0 \) is the value at 1:00 AM. We consider the true wind power follows a multivariate normal distribution with the variance equivalent to 1/3 of the forecasted value. Furthermore, 1000 samples are generated as the set of the historical data. The sensitivity analysis of parameters on the four models is presented in Table V. For each group, we consider four points for comparison. The results reveal that with the increase of the number of scenarios \(N_s \) and confidence level \(\alpha \) and with the decrease of the number of historical data \(K \), the total cost will become larger since the uncertainty set becomes larger. Thus, it is suggested that for a given confidence level and the number of scenarios, more historical data can narrow the region of the uncertainty set and reduce the conservativeness. Similarly, for a given number of scenarios and historical data, improving the confidence level indicates that the system requires higher estimation precision for the possible probability distributions. In that case, the confidence set and the uncertainty set become larger. Moreover, it can be observed in Fig. 7 that the gap between WSSCUC and DSSCUC will become smaller if \(\alpha \) and \(K \) are increased while decreasing \(N_s \).
the number of variables and constraints. If \(N_i = 25 \), the traditional method cannot find the optimal solution within 1000 minutes. If \(N_i = 50 \), the number of variables is more than one million and the number of constraints are more than five millions. Hence, the traditional method for the DSSCUC cannot be solved due to the limited memory space. In contrast, the proposed duality-free decomposition based method can still handle the DSSCUC and the computational speed is improved up to two orders of magnitudes, since the large-scale problem is decomposed into several small-scale sub-problems.

![Graph showing the gap between WSSCUC and DSSCUC](image)

Fig. 7. Gap between WSSCUC and DSSCUC.

Table V. Sensitivity analysis of parameters

<table>
<thead>
<tr>
<th>(\alpha) ((K=1000), (N_i=10))</th>
<th>DSSCUC</th>
<th>RSCUC</th>
<th>SSCUC</th>
<th>WSSCUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\psi_1)</td>
<td>3.5629</td>
<td>3.5432</td>
<td>4.5158</td>
<td>3.2494</td>
</tr>
<tr>
<td>(\psi_{\text{def}})</td>
<td>3.6783</td>
<td>3.7130</td>
<td>3.7271</td>
<td>3.7932</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(K) ((\alpha=0.95), (N_i=10))</th>
<th>DSSCUC</th>
<th>RSCUC</th>
<th>SSCUC</th>
<th>WSSCUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\psi_1)</td>
<td>3.7031</td>
<td>3.6943</td>
<td>3.6783</td>
<td>3.7271</td>
</tr>
<tr>
<td>(\psi_{\text{def}})</td>
<td>3.7932</td>
<td>3.7932</td>
<td>3.7932</td>
<td>3.7932</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(N_i) ((\alpha=0.95), (K=1000))</th>
<th>DSSCUC</th>
<th>RSCUC</th>
<th>SSCUC</th>
<th>WSSCUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\psi_1)</td>
<td>3.4854</td>
<td>3.341</td>
<td>3.4933</td>
<td>3.4933</td>
</tr>
<tr>
<td>(\psi_{\text{def}})</td>
<td>3.7603</td>
<td>3.7603</td>
<td>3.7603</td>
<td>3.7603</td>
</tr>
</tbody>
</table>

APPENDIX

A Simple Example for the Sub-problem

In order to verify the proposed duality-free decomposition method, we set up a simple example with two variables \((x_1, x_2)\) under three scenarios to show the detail numerical results. The bi-level sub-problem is formulated as

\[
\begin{align*}
\text{max} & \quad p_1(x_1) + (1 - p_1(x_1))p_2(x_2) + (1 - p_1(x_1))(1 - p_2(x_2))p_3(x_3) \\
\text{s.t.} & \quad x_1 + x_2 = 1, \quad x_1^2 + x_2^2 = 2, \quad x_1^3 + x_2^3 = 3 \\
& \quad x_1^4 + x_2^4 = 4 \\
& \quad x_1^5 + x_2^5 = 5 \\
& \quad x_1^6 + x_2^6 = 6 \\
& \quad p_1(x_1), p_2(x_2), p_3(x_3) \in [0,1].
\end{align*}
\]

Conclusions

To address the uncertain probability distribution of wind power resultant from the historical data, a data-driven stochastic security-constrained unit commitment was set up to optimize the unit commitment under the worst probability distribution in this paper. Furthermore, a novel duality-free decomposition method was proposed for the data-driven stochastic security-constrained unit commitment. The key point is that the second-stage sub-problem has a special structure that can be decomposed into several parallel sub-problems without the duality information. However, it is required by the traditional Bender’s decomposition method. Numerical results have shown that the proposed method performs better than the Benders decomposition method especially for the problem with a large number of scenarios.

Table VI. Comparison of computational efficiency by three methods on Hainan power grid in China (min).

<table>
<thead>
<tr>
<th>(N_i)</th>
<th>DSSCUC</th>
<th>RSCUC</th>
<th>SSCUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM</td>
<td>92</td>
<td>78</td>
<td>34</td>
</tr>
<tr>
<td>PM</td>
<td>12</td>
<td>13</td>
<td>375</td>
</tr>
</tbody>
</table>

The global optimal solution is \((x_1^* = 1, x_2^* = 0)\) and the optimal objective value is \(h^* = 2\).

For the proposed duality-free decomposition method, we can solve three small models by (37)-(38) in parallel, such that

\[
\begin{align*}
\text{min} & \quad 2x_1^3 + 2x_2^3 \\
\text{s.t.} & \quad x_1^2 + x_2^2 = 1, \quad x_1^4 + x_2^4 \geq 0
\end{align*}
\]

The global optimal solution is \((x_1^* = 1, x_2^* = 0)\) and the optimal objective value is \(h^* = 2\).

\[
\begin{align*}
\text{min} & \quad 2x_1^3 + 2x_2^3 \\
\text{s.t.} & \quad x_1^2 + x_2^2 = 1, \quad x_1^4 + x_2^4 \geq 0
\end{align*}
\]
The optimal solution of the above model is \((p_2 = 0.1, p_2 = 0.4, p_3 = 0.5)\) and the optimal objective value is 4.8, which is the same as the traditional method.

It can be concluded that the optimal solution and optimal objective value by the proposed method is absolutely the same as those by the traditional method, which verifies the effectiveness of the proposed method. Moreover, it can be observed that the models (A7), (A8) and (A9) are independent that can be solved in parallel. Besides, the proposed model only needs to solve small linear programs comparing to the traditional method that needs to solve one large-scale optimization model.

REFERENCES

Tao Ding (S'13–M'15) received the B.S.E.E. and M.S.E.E. degrees from Southeast University, Nanjing, China, in 2009 and 2012, respectively, and the Ph.D. degree from Tsinghua University, Beijing, China, in 2015. During 2013 and 2014, he was a Visiting Scholar in the Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA. He is currently an Associate Professor in the State Key Laboratory of Electrical Insulation and Power Equipment, the School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China. His current research interests include electric market clearing in wind-integrated interconnected power systems: A fast parallel decentralized method, "Energy Conversion and Management, vol. 113, pp. 131-142, 2016.

Frede Blaabjerg (S'86–M'88–SM'97–F'03) was working toward the Ph.D. degree at Aalborg University, Aalborg, Denmark from 1988 to 1992. He was with ABB-Scandia, Randers, Denmark, from 1987 to 1988. He became an Assistant Professor in 1992, an Associate Professor in 1996, and a Full Professor of power electronics and drives in 1998 at Aalborg University. His current research interests include power electronics and its applications such as in wind turbines, PV systems, reliability, harmonics, and adjustable speed drives. Prof. Blaabjerg has received 17 IEEE Prize Paper Awards, the IEEE Power Electronics Society Distinguished Service Award in 2009, the EPE-PEMC Council Award in 2010, the IEEE William E. Newell Power Electronics Award in 2014, and the Villum Kann Rasmussen Research Award in 2014. He was an Editor-in-Chief of the IEEE Transactions on Power Electronics from 2006 to 2012. He was nominated in 2014 and 2015 by Thomson Reuters to be between the most 250 cited researchers in Engineering in the world.