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ABSTRACT This paper presents a reduced-order-enhanced state observer (RESO)-based control strategy
for the PWM dc–dc buck converter. With the proposed RESO control strategy, the output voltage regulation
of the dc–dc buck converter is able to achieve robust characteristics against the external disturbance and
the internal parameter variation even without output current measurement. In addition, by incorporating the
RESO in the controller, the output voltage regulation can be easily achieved with only a proportional gain
to realize a zero steady-state error. Finally, the parameter design is discussed and the effectiveness of the
proposed control strategy is verified with an experimental case study.

INDEX TERMS DC-DC buck converter, disturbance rejection, reduced-order enhanced state observer,
robustness, system parameter variation.

I. INTRODUCTION
In the last few decades, the DC-DC buck converters have
been commonly applied in the industrial systems, such as
DC motor drive, more electrical aircraft, electric vehicles,
dc microgrid, etc [1]–[4]. In such applications, the DC-DC
buck converter needs to precisely regulate its output voltage.
It is, however, still a challenging task, as various factors, such
as: load sudden change and system parameter variation, may
greatly affect the precise regulation of the output voltage [5].
Thus, to obtain a satisfactory performance, it is required for
the controller to achieve a high disturbance rejection capa-
bility, a zero steady-state error, a small overshoot and a fast
dynamic response during the transient process [6].

Because of its simplicity, a proportional-integral (PI) or
proportional-integral-differential (PID) control strategy is
usually adopted to regulate the DC-DC buck converter,
but it always leads to the poor performance if large dis-
turbance and system uncertainties exist in the system [7].
In order to alleviate the disturbance influence on the volt-
age regulation, a feedforward controller is usually added in
the control system [8], [9]. However, the feedforward con-
trol strategy cannot detect/compensate the system parameter
variation. To conquer this issue, several advanced control
methods have been recently presented and adopted for the
DC-DC buck converter [1], [2], [10]–[14]. Among these

studies, [5] and [12] have proposed the sliding mode-based
control strategy for the DC-DC converter. However, the dis-
turbance rejection ability of these methods still needs to
be improved. In order to deal with the aforementioned
issue, [14] and [15] proposed an observer-based sliding mode
control strategy to overcome the matched and mismatched
disturbances of the buck converter, which showed good per-
formance in disturbance rejection. However, as the nonlinear
control strategies are implemented, it is quite difficult to
analyze the system’s performance and design the controller.
Besides, the chattering issue in the sliding mode control
may cause high-frequency harmonics, which demands spe-
cial attention. Other control methods, such as robust con-
trol [13], adaptive control [16], geometric control [17], may
also be adopted to the DC-DC converter. The nonlinear nature
of these approaches, however, makes their implementation
difficult for a practical engineer. In addition, all the afore-
mentioned works adopt a single-loop control strategy for the
output voltage regulation. However, compared to a dual-loop
control strategy, which simultaneously regulates the inductor
current and the capacitor voltage of the DC-DC converter,
the single-loop one may not be able to directly regulate the
inductor’s current from overshoot during the transients [7].
Without such regulation, system may be tripped due to the
current overshoot particularly when the load is suddenly
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connected or disconnected. In [10], a reduced-order gen-
eralized proportional integral (GPI) observer-based model
predictive control strategy is suggested for the DC-DC buck
converter. This method offers good performance in rejecting
the disturbance, but selecting its control parameters is quite
difficult. Notice that these parameters are inside a cost func-
tion, and, therefore, it is quite complicated to establish a con-
nection between them and the control performance indices,
such as settling time, overshoot, and the damping ratio of the
system.

Recently, the enhanced state observer, which is proposed
by [18], has been successfully implemented for the DC-link
voltage control. Inspired by [18], a reduced-order enhanced
state observer (RESO)-based proportional controller is pro-
posed for the output voltage regulation of a DC-DC buck
converter. With the proposed control strategy, system’s fast
disturbance rejection ability and the strong robustness against
the parameter variation are achieved. In addition, the fre-
quency domain analysis of the RESO is first presented to pro-
vide an insight into RESO’s compensation for the disturbance
and present a guideline on designing the RESO. The design
principle is based on the state observer’s bandwidthω0, which
can be easily implemented by the engineers. Finally, the pro-
posed method is verified with experimental results.

II. MODELING OF THE DC-DC BUCK CONVERTER
A. DYNAMIC MODELING OF THE
DC-DC BUCK CONVERTER
As shown in Fig.1, the circuit diagram of the DC-DC buck
converter is comprised of a PWM MOSFET SW, a DC
voltage source Vin, a diode, an inductor L with its associated
parasitic resistance rL , a capacitor, a parallel resistor rc and
the load (which is here assumed to be a resistor R). It is noted
that the parallel resistor rc acts to discharge the capacitor as
a protection method [19]. In addition, rc can be considered
as the system parameter variation, and this system parameter
variation will be considered as an additional state variable
that is estimated and cancelled by RESO as explained in the
next section. Hence, the dynamic average model of the buck
converter is expressed as:
dvo(t)
dt
=

1
C
iL (t)−

1
C
io (t)−

1
C
vo(t)
rC

(1a)

diL(t)
dt
=

1
L
m (t)Vin(t)−

1
L
rL iL (t)−

1
L
vo (t) (1b)

FIGURE 1. Circuit diagram of a DC-DC buck converter.

where vo is the average output capacitor voltage, iL (t) is the
average inductor current, and m (t) is the PWM input signal
respectively.

The Laplace transform of the Eq.(1a) results in:

vo(s) =
rC

CrCs+ 1
iL(s)−

rC
CrCs+ 1

io(s) (2)

As mentioned before, a cascaded dual-loop control approach
is often recommended for the control of the DC-DC buck con-
verter instead of using a single-loop output voltage regulation.
In the dual-loop control, a wide bandwidth current regulation
loop is nested inside a narrow bandwidth voltage control
loop. The main benefit of this control approach is the direct
regulation/limitation of the converter current, which gives an
overcurrent protection feature to it. Meanwhile, the dual-loop
strategy ensures that the current sharing in a systemwith mul-
tiple DC-DC buck converters (a DC microgrid application) is
satisfactorily performed [1].

FIGURE 2. Power stage of the DC-DC Buck converter with traditional PI
-based cascaded dual-loop control strategy.

A typical dual-loop control strategy with the power stage
of the DC-DC converter is shown in Fig. 2, where the dual
PI controllers are adopted to regulate the output voltage and
inductor current. In order to improve the dynamic perfor-
mance under the disturbances, the feedforward control strat-
egy by measuring the output current should be added to the
control structure. It, however, requires an additional sensor,
which inevitably increases the cost and reduces the reliability
of the system. In addition, any uncertainty in the system,
particularly parameters variations, cannot be directly mea-
sured by the feedforward control strategy. Therefore, in what
follows, a RESO-based observer is designed to achieve an
enhanced dynamic system performance under disturbances
and system uncertainties.

B. REDUCED-ORDER ENHANCED STATE
OBSERVER DESIGN
The proposed complete control diagram of the buck con-
verter is shown in Fig.3. The control structure consists of
the RESO-based output voltage loop and an inner current
loop to regulate the inductor’s current. The detailed control
structure of the proposed dual-loop control strategy is shown
in Fig.4 for the DC-DC buck converter. Normally, in order
to design the dual loops, the dynamic of the outer voltage
loop is considered to be much slower than that of the inner
current loop. It indicates that dynamics of the inductor’s
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FIGURE 3. Diagram of the DC-DC buck converter with the RESO-based
control strategy.

current closed-loop transfer function can be considered as a
one when designing the outer voltage loop, in other words,
it is assumed that iL ∼= iL_ref , where iL and iL_ref are the
inductor’s actual and reference currents, respectively (Fig. 4).
This approximation decouples the dynamics of these two
loops and greatly simplifies the controller’s design.

As shown in Fig.4, the proposed output voltage control
strategy is comprises of a RESO and a proportional con-
troller. The RESO is adopted to estimate and cancel the
system disturbances/uncertainties in real time; then, only a
proportional controller is able to regulate the output voltage
without steady-state error. In the following section, the RESO
is first constructed and the design procedure is discussed.
Then, the proportional controller is discussed.

Equation (1a) can be expressed as:

dvo(t)
dt
=

1
C
iL (t)−

1
C
io (t)−

1
C
vo
rC
=

1
C
iL (t)+ ftotal

(3)

where ftotal indicates the total disturbance that include
external disturbance (− 1

C io (t)), system parameter variation
((− 1

C
vo
rC
))and other unmodeled disturbance, such as electro-

magnetic interference (EMI) of the capacitance.
By considering that vo, ftotal and ḟtotalare the system

state variables, the corresponding state-space model can be
written as: ẋ1ẋ2

ẋ3

 =
 0 1 0
0 0 1
0 0 0

 x1x2
x3

+
 b00

0

 u+
 0
0
1

 h (4)

where x1 = vo, x2 = f total = −
1
C io (t) −

1
C
vo
rC
, x3 = ḟ total ,

u = iLref b0 = 1
C , h =

dx3
dt .

Hence, the high-order ESO (HESO) is constructed as: ξ̇1ξ̇2
ξ̇3

 =
 0 1 0
0 0 1
0 0 0

 ξ1ξ2
ξ3

+
 b00

0

 u+
 b1b2
b3

 [x1 − ξ1]

(5)

where ξ1, ξ2, and ξ3 are the estimations of x1, x2, x3,

 b1b2
b3


is the observer’s gain.

In order to increase the HESO’s estimation ability and
also reduce the computation burden due to the high-order
estimation, a new RESO, instead of the high-order ESO,
is proposed for the voltage control of the DC-DC buck con-
verter, as explained below.

By re-writing Eq.(4), the following equation is derived:[
ẋ2
ẋ3

]
=

[
0 1
0 0

] [
x2
x3

]
+

[
0
1

]
h (6)

ẋ1 − b0u = x2 (7)

Therefore, the RESO is designed as:[
ξ̇2
ξ̇3

]
=

[
0 1
0 0

] [
ξ2
ξ3

]
−

[
k1 0
k2 0

] [
ξ2
ξ3

]
+

[
k1ẋ1
k2ẋ1

]
−

[
k1b0u
k2b0u

]
(8)

where
[
k1
k2

]
is the RESO gain, ξ2 andξ3 are the estimated

value of x2 and x3.
However, in (8), the variable ẋ1 cannot be directly mea-

sured, hence, by manipulating
[
k1ẋ1
k2ẋ1

]
into the left hand of

the equation, meanwhile, by adding and substracting the term[
−k1 1
−k2 0

] [
k1x1
k2x2

]
, the following equations are derived as:[

ξ̇2
ξ̇3

]
−

[
k1ẋ1
k2ẋ1

]
=

[
−k1 1
−k2 0

]{[
ξ2
ξ3

]
−

[
k1x1
k2x1

]}
−

[
k1b0u
k2b0u

]
+

[
−k1 1
−k2 0

] [
k1x1
k2x1

]
(9)

Based on (5) and (9) that signals ftotal and ḟtotal both can be
observed by the HESO and the RESO. However, the order
of the presented RESO is only two. This reduced order
observer can alleviate the computation burden compared with
the full order one. In addition, it will be shown in subsection.
F that with the RESO, the controller’s design will be greatly
simplified.

C. SYSTEM STABILITY ANALYSIS
The system stability can be analyzed by subtracting Eq.(6)
from Eq.(8), the error of these two equations is written as:[

ė2
ė3

]
=

[
−k1 1
−k2 0

]
︸ ︷︷ ︸

Ne

[
e2
e3

]
+

[
k1ẋ1
k2ẋ1

]
−

[
b0u
b0u

]
(10)

where e2 is the difference between x2and ξ2, and e3 is the
difference between x3 and ξ3 respectively. From (10), it can
be found that if all of the roots of the matrix Ne are selected
to be at the left half plane, the system will be stable.

Therefore, the desired roots of the polynomial of Ne are
expressed as:

µ (s) = s2 + k1s+ k2 (11)

In order to make the design process easy to be implemented,
suppose the observer poles are both located at −ω0 and
expressed as:

µ (s) = s2 + k1s+ k2 = (s+ ω0)2 (12)
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FIGURE 4. Proposed structure diagram of output voltage control strategy with RESO.

Hence, k1 = 2ω0, k2 = ω2
0, In addition, it is found that

the parameter selection of ω0 is an important process that
will influence the estimation accuracy and system dynamic
response. Normally, the bandwidth of the RESO is speci-
fied to be much larger than the voltage controller’s band-
width, which indicates that the observer’s bandwidth should
be 10 times larger than the voltage controller’s bandwidth.
Meanwhile, observer’s bandwidth should not be too large,
as too large observer’s bandwidth may inevitably reduce
the system noise immunity. Therefore, the design procedure
involves a tradeoff between accuracy and noise immunity.
In this paper, in order to realize fast tracking ability, the induc-
tor current controller’s bandwidth is specified as 2000rad/s.
In addition, the RESO’s bandwidth should not be selected to
be over 1/3 of the current controller’s bandwidth in order to
decouple these two loops. Therefore, the RESO’s bandwidth
is designated for 600 rad/s. Finally, the voltage control loop
possesses the slow dynamics and it needs to be decoupled
from the RESO’s bandwidth as well. So, the bandwidth of
the voltage controller is set as 20 rad/s.

D. EQUIVALENT TRANSFER FUNCTION ANALYSIS
IN FREQUENCY DOMAIN
By substituting ξ2 − k1x1 = ζ2 and ξ3 − k2x1 = ζ3. (9) is
expressed as:[

ζ̇2
ζ̇3

]
=

[
−k1 1
−k2 0

] [
ζ2
ζ3

]
+

[
−k1b0 −k21 + k2
−k2b0 −k1k2

] [
u
x1

]
(13)

By substituting k1 = 2ω0, k2 = ω2
0 into (13), the RESO is

constructed as:[
ζ̇2
ζ̇3

]
=

[
−2ω0 1
−ω2

0 0

]
︸ ︷︷ ︸

Az

[
ζ2
ζ3

]
+

[
−2ω0b0 − 3ω2

0

−ω2
0b0 − 2ω3

0

][
u
x1

]
(14)

(14) can be transformed into the transfer function by facili-
tating the following equation:

Gζ2_u (s) =
ζ2 (s)
u (s)

[
1 0

]
[sI−Az]−1

[
−2ω0b0
−ω2

0b0

]

= −
b0ω2

0

(s+ ω0)
2 −

2b0ω0s

(s+ ω0)
2 (15)

Gζ2_vo (s) =
ζ2 (s)
vo (s)

=
[
1 0

]
[sI−Az]−1

[
−3ω2

0
−2ω3

0

]
= −

2ω3
0

(s+ ω0)
2 −

3ω2
0s

(s+ ω0)
2 (16)

where ξ2 − k1x1 = ζ2, and x1 = vo, k1 = 2ω0. There-
fore, by combing (15) and (16) and substituting z2 − k1
x1 = ξ2, the transfer function of RESO is shown in Fig.5 and
expressed as:

f̂total(s) =

[
−

b0ω2
0

(s+ ω0)
2 −

2b0ω0s

(s+ ω0)
2

]
u (s)

+
sω2

0 + 2s2ω0

(s+ ω0)2
vo(s) (17)

FIGURE 5. Frequency domain expression of RESO.

The modified model from u0(s) to vo(s) is written as the
transfer function ḠL(s):

ḠL (s) =
vo (s)
uo (s)

=

GL
b0

1+
Gf_u
b0
+

GLGf_vo
b0

=
GL/b0

1− 1(
s
ω0
+1
)2 − 2( s

ω0
)(

s
ω0
+1
)2 + (GLb0 )

(s+ 2s
ω20

)(
s
ω0
+1
)2

(18)

where GL =
rC

CrC s+1
. Moreover, it can be easily derived

from (18) that when the system’s bandwidth is much less
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than the RESO‘s bandwidth (ω � ω0), the complicated
transfer function of (18) is reduced to a pure integrator and
written as:

GL ≈
1
s

ω � ω0 (19)

On the contrary, when the system’s bandwidth is much higher
than the RESO’s bandwidth, it will follow the original plant
and expressed as:

GL ≈ GL/b0 ω � ω0 (20)

E. ROBUSTNESS EVALUATION AGAINST
PARAMETER VARIATION
The output capacitance variation may affect the control per-
formance and system stability. Hence, the closed-loop poles
need to be investigated to ensure the controller’s robustness
against this uncertainty. In the system, the nominal value
of the capacitance is 0.0022 F, but the output capacitance
may vary from its nominal value, therefore, the evaluation
of the pole’s movement with the model GL is conducted
when the actual capacitance varies its value from 2200 uF
to 5500 uF. It is observed in Fig.6 that when the output
capacitance increases its value, the poles tend to move to
the imaginary axis, which makes the systemmore oscillatory.
But even when the capacitance reaches 0.0055 F, the system
still provides a satisfactory robustness, as the poles’ location
are around −250rad/s, which are quite far away from the
imaginary axis.

FIGURE 6. Pole’s movement when system capacitor’s parameter varies
from 0.0022F to 0.055F

F. PROPORTIONAL GAIN CONTROL
STRATEGY DERIVATION
From the previous discussion in section II.D, it was shown
that within the bandwidth of RESO, the modified plant can
be well-approximated by an integrator (Gp ≈ 1

s ). Consid-
ering this fact and the internal model principle, a simple
proportional controller can realize the output voltage reg-
ulation with zero steady-state error. Moreover, the band-
width of the output voltage controller can be decided by kp.
Hence, the closed-loop output voltage transfer function is

expressed as:

Gvc =
kp 1s

1+ kp 1s
=

kp
kp + s

=
1

1+ s/kp
(21)

In this paper, the bandwidth of the voltage loop is designated
for 20 rad/s; therefore, kp = 20.

III. EXPERIMENTAL RESULTS
In order to verify the effectiveness of the proposed control
strategy, a DC-DC buck converter illustrated in Fig.1 is built
up in Fig.7. Parameters of the power stage and controller are
shown in Table 1. The dSPACE 1006 platform is used for
controlling the DC-DC converter, and the figures are captured
by an oscilloscope. In the experimental study, the sampling
frequency fs is chosen to be 10 kHz. Moreover, the PI control
strategy for the voltage loop control and PI with feedforward
control strategy for the voltage loop control of the DC-DC
buck converter are evaluated and compared with the proposed
control strategy. In order to have a fair comparison, these
three control strategies have the same voltage loop and cur-
rent loop bandwidth.

FIGURE 7. The experimental setup.

Test 1: In this test, the capacitor is selected to be 0.0022 F,
A 25 ohm resistor is suddenly disconnected from the con-
verter output and its performance in response to this sudden
change is investigated. It can be observed in Fig.8 that PI
controller performs an overshoot voltage that is equal to
16V and the settling time is around 0.2s, which shows the
worst performance. Meanwhile, the feedforward-based PI
controller has the overshoot voltage of 4V with the settling
time of 0.2s as well. When the RESO-based control strategy
is applied in the system, the overshoot in the system is similar
with the one with the feedforward-based PI control strategy,
but the recovery time reduced to 0.15s.
Test 2: In this test, system’s capacitance parameter varies

from 0.0022F to 0.0044F. System’s dynamic performance
under 100% increase of capacitance will be examined. The
controller’s parameters does not change in this test. The
experimental results for this test are illustrated in Fig.9.
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FIGURE 8. Performance comparison of the three control strategies under load disturbance when the output capacitor is 0.0022 F.

FIGURE 9. Performance comparison of the three control strategies under load disturbance when the output capacitor is 0.0044F.

As can be seen from Fig.9, when the traditional PI con-
troller is applied, the voltage overshoot is reduced with
more oscillation, and the settling time increased to 0.35s.

When the feedforward-based PI controller is applied, the volt-
age overshoot reduced to 2.5V, at the same time, the recov-
ery time is 0.2s. Meanwhile, when the RESO-based control

VOLUME 6, 2018 56189
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TABLE 1. System parameters.

strategy is adopted as the control strategy, the performance is
the same as the feedforward-based PI control strategy with an
overshoot of 2.5V and the settling time is reduced to 0.1s

IV. CONCLUSION
In this paper, a RESO-based voltage control strategy was
proposed for the voltage loop of the DC-DC buck converter.
In addition, the proposed control strategy can achieve almost
the same effect as feedforward control in disturbance rejec-
tion without needing the additional sensor as well as bet-
ter ability in reducing the voltage overshoot and fasten the
settling time. Moreover, the system’s robustness against the
parameter variation is discussed by checking the system’s
poles. Finally, the proposed control strategy is verified using
experimental tests.
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