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Abstract — Electroluminescence (EL) imaging inspections of 
PV power plants can bring a huge improvement in accuracy. The 
use of InGaAs camera will also make such inspections fast, but 
the restriction to acquire the images during dusk or evening is a 
limitation. Performing lock-in EL is a way to go for daylight EL. 
This paper proposes an extension of the SNR50 quality measure 
to estimate the quality of a stack of N images and evaluates the 
impact of some factors over the measured and visual quality of 
images acquired with InGaAs sensors. The factors analyzed are 
the characteristics of the noise in the acquired images, the 
influence of the sun variations and the averaging over multiple 
acquired images.  

I. INTRODUCTION 

Electroluminescence imaging can be used to rapid and 
accurately detect a large range of major and minor faults in 
PV modules, unlike the most commonly used techniques for 
large scale PV inspection. The faults entitle to be detected 
with EL include Potential Induced Degradation (PID), cell 
cracks, broken busbars and interconnections, among others 
[1], [2]. Due to price, accessibility and high resolution, the 
most commonly used camera for EL have silicon-based 
detectors (such as CCD), which present a weak spectral 
sensitivity in the EL emission range of crystalline silicon solar 
cells. Their long integration times (in the order of seconds) 
directly limit inspection speed and their application in 
unmanned aerial vehicle (UAV) face crucial technical 
challenges. Cameras with InGaAs-based detectors have a good 
spectral response to the silicon luminescence emission and 
therefore short integration times, which can be even shorter 
than 1 ms [3].  

A signal-to-noise ratio (SNR) quality criteria is established 
by the EL standard [4] as SNR50: it is performed on three 
images (two with bias current applied to the panel and one of 
unpowered module). It is computed as: 
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where k is the pixel index, EL1 and EL2 two biased images and 
BG one image acquired with unpowered module. 

For daylight outdoor imaging, a set of two or three images is 
too noisy. However, outdoor EL under sunlight can be 
performed with the application of synchronized electrical 
signal and camera triggering and acquisition of more than 3 
images alternating between each mode [5]–[8]. A “de-noised” 
image ELAVG is then obtained by filtering all the biased 
images, for example by averaging them. The same procedure 
is applied to create a denoised unbiased image BGAVG. Finally, 
the difference image is computed DiffAVG=ELAVG-BGAVG and 
used to evaluate the defects on the considered panel. 
Therefore, for daylight outdoor imaging, there is a need for 
evaluating the quality of the final DiffAVG obtained from a 
stack of images, which is not covered by the SNR50.  

In this paper, we propose an extension of the SNR50 to the 
case of multiple images acquired as a sequence. The paper is 
organized as follow: first, the extension is presented in Sec. II, 
then some factors influencing the quality of outdoor EL 
imaging are presented and studied in Sec. III. One of those 
factors, the effect of motion between images of a set, is further 
analyzed in Sec. IV, before a discussion of the results and 
presentation of planned future work in Sec. V. 

II. SNRAVG: THE PROPOSED EXTENSION TO SNR50 

Even though the standard does not explain in depth the 
formula for SNR50, it can be understood in the following way. 
As the name indicates, a measure of signal to noise ratio 
contains two elements, the estimated power of the signal and 
that of the noise. In the SNR50 formula, the estimate of the 
signal is the average between the two EL images minus the 
background image. The noise term is the absolute difference 
between the two EL images, scaled by a constant. 

Let us assume that 2|N| images have been acquired 
alternatingly: |N| of the panel with bias current (ELi) and |N| of 
the unpowered panel (BGi). The following equation is 
proposed as extension of SNR50:  
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 (as for the SNR50 measure), N1 
representing the odd numbers between 1 and  |N|, and N2 the 
even ones.  

III. FACTORS INFLUENCING THE QUALITY 

In order to evaluate the performance of the proposed use of 
multiple images and the measure, the dataset from [7] is used. 
It consists of 31 sets of 100 images (50 biased and 50 
background images for each set, acquired alternatively). Each 
set was acquired outdoor at various GHI levels ranging from 
668 W m-2 to 927 W m-2. The acquisition system consisted in 
an InGaAs camera Hamamatsu model C12741-03, and an 
OD>4.0 1150 nm band-pass filter with 50 nm FWHM from 
Edmund Optics. The camera resolution is 640 x 512, although 
before computing the measure, the images were cropped to the 
region of interest (approximately 450 x 450 pixel). The PV 
panel imaged is a mechanically stressed 36 cell 
multicrystalline silicon solar panel with 1 x 1 meter 
dimension. 
 

A. Varying sun irradiance 

As shown in previous work [7], the average pixel value 
varies with the sun irradiance. Therefore, it is necessary to 
acquire alternatingly EL and BG images to obtain similar 
average value variation on both types (otherwise, the 
difference computed in the SNRAVG formula would account 
considerably for unwanted terms). For similar reasons, the 
extension of the noise part of the SNRAVG formula splits 
images between even and odd, therefore “interleaving” the 
images. 

Fig. 1 shows two images with similar visual quality and 
SNRAVG acquired at different GHI. The images presented in 
this section are scaled between [-3, 47] (corresponding to the 
minimum and maximum 1/1000 of the dataset at 671 W m-2). 

 

 
SNRAVG=6.05,  

GHI = 671 W m-2 

 
SNRAVG=5.96,  

GHI = 815 W m-2 

Fig. 1 Average difference images at two GHI 

B. Number of images acquired 

Another important factor for the quality level is the number 
|N| of images acquired of both types (biased and unpowered 
module). The impact of the number of images over the 
SNRAVG value is illustrated in Fig. 2. It shows that the 
measure increases with the increase of number of images used. 

 

 
Fig. 2 SNRAVG as function of image number 

(acquired at GHI = 685 W m-2) 

 
This is furthermore illustrated in Fig. 3 by displaying the 

difference between the average over |N| EL and |N| BG images 
and the corresponding SNRAVG values. 

 



 

 
SNRAVG=3.04, 5 images 

 

 
SNRAVG=4.45, 10 images 

 

 
SNRAVG=5.54, 15 images 

 
SNRAVG=7.04, 20 images 

 

 
SNRAVG=8.3, 25 images 

Fig. 3 Part of a difference image using various number of images  
(acquired at GHI = 685 W m-2) 

 
The tendency pictured in Fig. 3 is visible on all datasets: the 

measured SNRAVG increases with the number of averaged 
images. The increase in image quality for daylight EL imaging 
is crucial to the identification of faults with small dimensions, 
such as micro-cracks, fingers interruptions, among others. 
Assumably for this reason, [4] establishes that the minimum 
acceptable SNR for EL outdoor measurements is ≥5. 

C. Noise Estimation 

For an additive noise, the simple model is: 
 

𝑎𝑎 = 𝑓𝑓 + 𝑛𝑛 
 
where g is the observed image, f the original “noise free” 
image and n an additive noise. If we consider that averaging 
over the |N| biased images yields a good estimation of f, then 
an estimate of the noise can be computed as  
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where i is the image index (i є [1, |N|]) and meani(g(i)) 
represents the estimation of the real image. The validity of this 
equation depends mainly on two points: how good is the 
“clean image” estimation meani(g(i)) and whether we can 
consider that the noise is purely additive. This section focuses 
on the validity of the estimated noise image. 

Using projections of each noise image onto the X and Y 
axes, it is possible to evaluate how accurate the estimation is. 
Fig. 4 illustrates such a noise image and the corresponding 
sum of squared pixel respectively over the X and Y axes. It is 
visible in both the image and the projection on the Y axis that 
some of the panel structure is still present. One probable 
origin of those patterns is camera motion between some of the 
images from the same set. As the presence of such structure 
has been noted in many noise images (almost all of the 31 sets 
x 50 biased images), a study on the role of motion inside a set 
of images is presented in the next section. 

 
Fig. 4 Estimated noise image (upper right corner) and corresponding 

sum of squared pixel values on X and Y axes 

IV. MOTION ESTIMATION AND SELECTION 

As the final aim is to apply the processing to images 
captured by a camera mounted on a UAV, camera motion is 
inevitable. 

A. Process applied 

For each of the 31 sets of images, the first stage of the 
motion estimation process is to choose which of the 50 
acquired images will serve as the reference to estimate motion 
against. It is done by selecting the image which is the closest 
(in the mean squared error sense) to the average image. Then 
for each of the 49 other images, the motion is estimated using 
the method presented by Chan et al. in [9]. As this method 
estimates motion with subpixel accuracy, it is not possible to 
compensate for all of it without some kind of interpolation. 
The first approach used here is then to select only the images 

that are “close enough” to the reference one. This is 
determined using a threshold on the maximum amplitude of 
the computed displacement (called motion vector). In this 
paper, only images with an estimated motion smaller than 0.05 
pixels (i.e. around 0.1mm) were kept. 

B. Influence on the quality and noise 

Fig. 5 presents the obtained difference image based on 
averages for one of the sets of images (at GHI 671 W m-2, i.e. 
the same set used for Fig. 4). As explained in the previous 
section, for this paper a threshold of 0.05 pixel on the 
maximum estimated displacement relatively to the average 
image is chosen. Practically for this set, 23 images, over the 
50 available ones, are selected as having a motion estimation 
(i.e. displacement) smaller than 0.05 towards the average 
image. Fig. 5 illustrates the effect of selection by motion over 
the obtained quality by presenting for comparison the average 
difference image over 23 randomly chosen images (left) as 
opposed to the 23 images selected as “close enough” to the 
reference one. 

 

  
Fig. 5 Example of the effect of selection by motion on a portion of 

average difference image: using 23 random images (left, 
SNRAVG=4.2) or using 23 motion selected images (right, 

SNRAVG=4.7) 

The effect on the noise image is illustrated in Fig. 6, which 
is similar to Fig. 4, except that the average image is computed 
on the 19 motion selected images only. In comparison to Fig. 
4, the amount of structure present in Fig. 6 is significantly 
decreased. It is clearly visible in the projections onto the X 
and Y axes, which are about an order of magnitude smaller 
with the selection. 

As illustrated in Fig. 5 and Fig. 6, by selecting carefully the 
images used to average, it is possible to obtain better quality 
than by using the same number of image randomly selected. 
This is shown both on the visual evaluation in Fig. 5 and 
quantitatively on Fig. 6. 

 



 

 
Fig. 6 Estimated noise image and corresponding sum of squared 

pixel values on X and Y axes for the same image as in Fig. 4 

V. DISCUSSION AND FUTURE WORK 

In this paper, we study some factors influencing the quality 
of EL images and present the SNRAVG, an extension to the 
existing SNR50 measure to the case of multiple images. 
Results show that averaging over several images improves the 
quality both visually and by the SNRAVG. In the context of 
outdoor EL imaging, it is also recommended to acquire the EL 
and BG images alternatingly to account for varying sun 
intensity. Furthermore, it is shown that using motion 
estimation for selecting images can improve the visual and 
measured quality. Finally, this paper illustrates that various 
SNRAVG levels correspond to the visual visibility of different 
defect types, and an extension would be to establish a more 
direct correspondence. 
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