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Abstract—This paper proposes a two-stage stochastic model 

for optimal frequency-security constrained energy and reserve 

scheduling in an islanded residential microgrid (MG) with price-

responsive loads. Based on this model, scheduling of the 

controllable units in both supply and demand sides is done in a 

way not only to maximize the expected profit of MG operator 

(MGO), but also to minimize the energy payments of customers. 

To study the effect of uncertain parameters and demand-side 

participation on system operating conditions, an AC-optimal 

power flow (AC-OPF) approach is also applied. The proposed 

stochastic optimization model is then applied to a typical islanded 

MG and its effectiveness is demonstrated through different 

scenarios. Simulation results show that participation of 

customers in price-driven demand response (DR) programs can 

reduce energy consumption cost of customers while improving 

the MG frequency response in steady state. 

 
Keywords— Demand response (DR), Frequency-Security, 

Reserve scheduling, Renewable energy resources (RESs) 

I. INTRODUCTION 

In recent years, demand-side management (DSM) has been 

contemplated as a crucial option in most energy policy 

decisions. In restructured power systems, the scope of DSM 

has also been considerably expanded to include demand 

response (DR) programs [1], to provide many potential 

benefits such as reduction of operation cost and emission [2], 

improvement of system reliability [3]-[4], shaping of daily 

load profile [5] as well as providing financial incentives to 

customers to benefit from lower hourly demands [6]. 

The advent of microgrids (MGs) in modern power systems 

has provided a high potential to facilitate the active 

participation of end-use consumers in DR programs [7]. 

However, due to the increasing penetration level of renewable 

resources such as wind and solar, it is necessary to efficiently 

manage operation of such systems in presence of uncertainties 

[8]. This is even more important in islanded MGs where there 

is lower inertia (compared to conventional power systems with 

high inertia provided by synchronous machines) and higher 

risk of stability issues [9]-[10]. Thus, the operational security 

of MG is a great challenge (especially in the presence of 

uncertainties) that should be investigated accurately. 

Frequency as a key control variable represents the MG 

security, properly. The relation between frequency and energy 

and reserve scheduling enables the MG central controller 

(MGCC) to apply proper energy management mechanisms to 

keep the MG security in a cost-effective manner. With the 

application of DR programs, MGCC can manage the 

responsive loads not only to reduce energy costs, but also to 

provide the MG frequency security in a more reliable and 

economical manner [11]. The effects of DR programs on day-

ahead energy and reserve scheduling in islanded MGs 

considering both security and economic goals are studied in a 

few works [12]-[15]. For example, a stochastic multi-objective 

framework is proposed in [12] for joint energy and reserve 

scheduling in day-ahead, but it does not consider AC network, 

voltage security, load and wind power uncertainties. In [13], 

 authors addressed the problem of the probabilistic steady-

state analysis of an electrical distribution system that includes 

wind and photovoltaic power plants. A new method is 

presented that takes into account the uncertainties due to the 

time variations of power load demands and the random nature 

of solar and wind energy. Also, in [14] a stochastic scheduling 

of microgrids is proposed that energy exchange with the 

macrogrid is coordinated ahead of time. A scheduling problem 

is formulated for a microgrid system and chance-constrained 

optimization is used to minimize operational cost and ensure 

the energy exchange commitments are met.  Also, an energy 

management strategy is proposed in [15] to coordinately 

manage the DR resources and generation units in a way to 

meet the frequency security requirements. However, in none 

of the reviewed literatures, the effect of real time pricing 

(RTP)-based DR programs on frequency security is reported. 

Also, an economic-based DR model based on consumers’ 

preferences is not investigated. 

In this paper, a scenario-based two-stage stochastic 

programming is developed to model the effects of MG 

uncertainties on energy and reserve management. Different 

DR actions enabled under RTP scheme are also investigated 

and their effects on the frequency deviations in a residential 

islanded MG are studied. Furthermore, an AC-optimal power 

flow (AC-OPF) approach is applied to model the actual 

operating conditions and to assess the influence of DR 

resources on frequency security.  
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II. MODEL DESCRIPTION 

In this work, MGCC is responsible for energy and reserve 

scheduling of the residential MG in islanded mode. The MG 

operator (MGO) monitors the optimization process and has a 

supervisory control on decisions. It is also assumed that the 

customers are equipped with in-home energy management 

controllers and several smart household appliances. Due to 

different location of customers in the network, NJ groups of 

loads are also considered for evaluating the influence of 

participation in DR programs. The participation level 

(percentage) of each group of customers in DR program is 

represented with coefficient η. Customers participate in DR 

programs using two general categories of devices including 

shiftable and sheddable loads [16]. In load shedding scheme, 

customers would apply energy efficiency as an alternative to 

reduce their hourly electricity usage without shifting it to other 

hours. Shiftable loads are also related to such consumption 

units that must be run in the course of a day however there is 

no specific run time for them. In the examined environment, 

the hourly meteorological information (e.g., wind speed, and 

solar irradiation) and load level required for scheduling 

purposes are estimated based on the methods presented in 

[17]. The energy and reserve scheduling is also done by the 

MGCC in a way to maximize the MGO expected profit and to 

minimize consumers' bills while fulfilling the MG securities 

and technical constraints. 

A. Scenario Generation and Reduction 

The uncertainty of renewable generation, load and demand 

elasticity are considered as stochastic variables in this study 

and their forecasting errors are modeled as a continuous 

probability density function (PDF). It is assumed that each of 

the stochastic variables is a zero-mean normal distribution 

with different standard deviation error and various 

probabilities dedicated to each interval. Roulette wheel 

mechanism (RWM) is also used to generate stochastic 

renewable generation and load reduction scenarios over the 

examined period [18]. In the next step, K-means algorithm 

[19] is applied to reduce the computational burden of the 

stochastic procedure by eliminating the scenarios with very 

low probabilities and those that are very similar. 

B. Economic Model of DR 

Each group of consumers that participate in DR programs 

can modify the consumption pattern based on load 

shifting/shedding mechanisms. Adding the non-sheddable 

loads to the consumption mix, the total demand can be 

calculated as: 
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where, ,

NDR

j tD , ,

CDR

j tD and SDR

tjD , represent the non-sheddable, 

sheddable and shiftable loads of group j, at hours t, 

respectively. The benefit of group j, for single period elastic 

loads (i.e., sheddable loads) can be calculated as: 
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where, ρj,t is the electricity price offered to customers j, 
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tjDB are benefit and income of group j at 

period t after implementing DR only with sheddable loads, 

respectively. To maximize the benefit of group j, the following 
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Based on a quadratic model of DR, the utility of group j of 

customers is obtained as: 
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where, Ej,t,t is the self-elasticity of load j, 0
,tjB and 0

,tj are the 

initial value of income and electricity price associated with 

customers of group j, respectively. Differentiating (4) with 

respect to CDR

tjD , and substituting it into (3) gives: 
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Therefore, the consumption of group j at time t is obtained as 

follows: 
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Furthermore, shiftable loads are modeled based on cross-

elasticity which are defined as demand sensitivity of the t-th 

period with respect to the price elasticity at h-th period and 

can be written as [20]: 
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where, Ej,t,h is the cross-elasticity and
0

,tjD is the initial value of 

demand of group j. The amount of shiftable loads after DR 

using cross-elasticity and applying quadratic function can be 

obtained as: 
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When the customers participate in DR with both options (i.e., 

sheddable and shiftable loads), their responsive load is 

obtained with the summation of (6) and (8) as follows: 
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III. PROBLEM FORMULATION 

      In the proposed optimization framework, the aim is to 

optimally manage the system supply and demand sides in such 

a way to maximize the expected profit of the MGO and to 

minimize the customers’ payments considering different 

constraints. In this regards, a network-constrained day-ahead 

market clearing model including a two-stage stochastic 

programming is developed. In the first stage, the energy and 



reserve resources are scheduled jointly and in the second 

stage, the MG operational aspects are formulated using 

scenario-dependent variables. 

A. Objective function 

     As described earlier, the objective function can be 

presented as: 
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where, (.).,t,s  denotes at time t in scenario s. i, w, v and j are 

indices of DGs, wind turbine, PV unit and load, respectively. 

C(Pi,t) is cost of power production of DG i, R represents 

allocated reserve, 
UR
tiC , , 

DR
tiC ,  and 

NSR
tiC ,  represent bid of up, 

down and non-spinning reserves submitted by DG i, 

respectively. 
UR
tjC ,  and 

DR
tjC , represent bid of up and down-

spinning reserves submitted by customers j, ρw,t and ρv,t 

represent cost of wind and PV energy, U

stir ,, ( U

stjr ,, ) is the up-

spinning reserves and D

stir ,, ( D

stjr ,, ) is the down-spinning reserve 

deployed by DG i (load j), SDCi,t (SUCi,t) is shut-down (start-

up) cost of unit i, Dep
ti, ( Dep

tj, ) is buying (selling) real-time 

price offered to unit i (load  j). Moreover, in the above 

equation, the first line represents the revenue of selling energy 

to customers. The second line is the cost of DG units and their 

scheduled reserve costs. The third line represents costs of 

scheduled reserve loads and costs associated with energy 

provided by wind and PV units. The fourth line represents the 

costs associated with energy provided by wind and PV units. 

Moreover, the fifth line denotes the start-up/shut-down costs of 

DG units at scenarios. The sixth line is the cost of deploying 

reserves from DG units. Finally, the last line represents the cost 

of deploying reserves from loads in real-time and the cost of 

expected energy not served (EENS) for the inelastic loads. 

VOLL in this line represents the value of lost load.  

B. Constraints of the Problem 

The constraints of the problem consist of first-stage and 

second-stage constraints. The first-stage constraints are 

associated with the capacity cost and do not depend on any 

specific scenario, while, the second-stage constraints are 

scenario-dependent and account for stochastic operating 

conditions. The first-stage constraints expressing as follows: 

 

Equation (11)-(12) represent the active and reactive power (Q) 

balance in MG in steady state, in which P

trnf ,,  and Q

trnf ,,  are 

active and reactive power flows from bus n to bus r at time t, 

respectively. The real power generation and the reserve 

provided by DG units are constrained by (13)-(15). 
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The demand-side constraints determine the degree of 

participation of each group of customers in energy and reserve 

scheduling. Here, the residential loads are categorized in 

different groups based on their location and response type in 

different buses. For each group, the following criteria must be 

met: 
max
,,
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, tjtjtj DDD   (16) 
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By providing up- and down- reserve, the customers are 

committed to decrease and increase their consumption, 

respectively. The logic constraints of unit commitment are 

represented as follow: 

1,,,,  titititi uuzy  (18) 

01,,  titi zy  (19) 

where, ui,t represents commitment status of DG i {0, 1} and  

yi,t and zi,t are startup and shutdown indicators of DG i, 

respectively. The constraint (18) determines the start-up/shut-

down status of units, while (19) states that a unit cannot start-

up and shut-down during the same period.  

The second-stage constraints are similar to the first-stage 

constraints. 

IV. SIMULATION AND NUMERICAL RESULTS 

      The simulations are performed in a typical low-voltage 

MG which is depicted in Fig. 1. The MG is operated in the 

islanded mode and contains five droop-controlled DG units, 

namely, two micro-turbines (MT1 & MT2), two fuel cells 

(FC1 & FC2), and one gas engine (GE). The data associated 

with the installed generation units is extracted from [15]. 

Additionally, three similar WTs, each with a capacity of 80 

kW are installed at buses 6, 9, and 16 and two similar PV 

plants, each with a capacity of 70 kW. Besides, the MG feeds 

eight three-phase balanced aggregated loads (Loads 1-8 in Fig. 

1) that are equipped with proper controllers to participate in 

DR programs. All loads are also assumed to be operated at 

lagging power factor of 0.95.  The forecast power of WT and 
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PV units and also, the total demand load of MG are shown in 

Fig. 2, [20]. 
 

 
Fig. 1. Single line diagram of the simulated autonomous microgrid. 

      

      The load profile has been created by aggregating the 

electricity demands of 200 residential homes. The price 

elasticity of total demand is obtained from [20]. Moreover, the 

hourly time-varying energy price for the study period is also 

shown in Fig. 3. Also, the value of lost load (VOLL) is 

assumed to be 1 $/kWh. To simulate the 

environmental/behavioral uncertainties within the system, 

2000 initial scenarios are generated based on PDFs to 

represent forecast errors of wind speed, solar irradiation and 

demand-side contribution. Also, standard deviation of forecast 

errors of the wind speed, solar irradiation and load demand are 

considered ±10%, ±10%, and ±20%, respectively [20]. Here, 

the PDFs are divided into seven discrete intervals with 

different probability levels. In the next step, by implementing 

an efficient scenario reduction algorithm, 25 scenarios are 

selected that represents well enough the uncertainties. Then, 

the reduced scenarios are applied to the proposed MIP-based 

optimization model to maximize the expected profit of 

islanded MGO while considering system voltage and 

frequency security constraints. The optimization is carried out 

by CPLEX solver using GAMS software on a PC with 4 GB 

of RAM and Intel Core i7 @ 2.60 GHz processor. In order to 

analyze the effect of RTP program on frequency response of 

MG in steady-state and in different consumers’ consumption 

patterns, the residential devices are divided in three categories 

and studied in four case-studies. 

 
Fig. 2. The output power of WTs, PVs and total demand load of MG. 

 

 
Fig. 3. Hourly energy price (RTP). 

 

In case 1 which is considered as the base case scenario, it 

is assumed that the loads are not responsive, so there is no 

contribution from the demand side. In case 2, only DR actions 

based on sheddable loads are considered while in case 3, DR 

programs based on load shifting capabilities are studied. 

Finally, case 4, describes the situation in which the customers 

participate in RTP-based DR programs using both load 

shedding and shifting mechanisms. 

The optimal values of the expected profit of MGO, 

customers’ payments and cost of DG units have been listed in 

Table I for the examined scenarios. These values have been 

obtained for a 24-hour scheduling horizon with regard to the 

system’s economic objectives and constraints as mentioned 

earlier. As can be observed from Table 1, with increasing 

customers’ participation in DR programs in different working 

conditions, the expected profit is increased. The reason is that 

the expensive units are not dispatched to meet the demand of 

peak periods as the peak loads are decreased by 

shifting/shedding activities. Moreover, higher contributions in 

DR activities result in lower customers’ bills in all cases.  As 

an example, with 40% DR contribution, the reductions of 

consumers’ bills in cases 2, 3 and 4 are 2.8%, 2.9% and 5.7%, 

respectively. Moreover, as can be seen in Table I, the 

operational costs of DGs are reduced significantly with DR 

actions. For example, by enabling 40% of DR activities, the 

TABLE I. THE OPTIMAL VALUES OF THE OBJECTIVE FUNCTION IN DIFFERENT CASES 

  

(%) 

Expected profit ($) Customers’ payments as bills ($) Cost of DG units ($) 

Case  1 Case 2 Case 3 Case 4 Case 1 Case  2 Case 3 Case  4 Case 1 Case  2 Case  3 Case  4 

0 229.09 - - - 1236.23 - - - 835.52 - - - 

10 - 292.27 296.42 307.96 - 1227.63 1227.20 1218.60 - 819.70 820.69 813.36 

20 - 303.21 304.40 320.21 - 1219.03 1218.17 1200.96 - 808.74 813.17 798.13 
30 - 310.27 313.07 333.75 - 1210.42 1209.14 1183.33 - 801.76 807.79 786.04 

40 - 324.27 319.57 347.62 - 1201.82 1200.11 1165.69 - 795.17 800.57 773.75 

50 - 331.66 324.59 363.71 - 1193.22 1191.00 1148.06 - 787.43 795.49 756.75 
60 - 340.46 325.27 379.68 - 1184.61 1182.05 1130.43 - 780.16 799.24 746.29 

70 - 347.65 323.87 382.56 - 1176.01 1173.01 1112.80 - 772.37 799.47 744.92 

 



daily cost of DGs is decreased from 835.52 $ in case 1 (no 

DR) to $795.17 $, 808.57 $ and 773.75 $ in cases 2, 3 and 4, 

respectively. Table II depicts the cost of scheduled and 

deployed reserves of MG in different cases. Through 

incorporating DR activities, the scheduled reserve capacity 

can be provided by DG units (including up-, down- and non-

spinning reserve) as well as responsive loads (including up- 

and down-spinning reserve). As mentioned, the MG reserves 

are managed by MGCC in a way to minimize the operational 

cost of MG while satisfying the system constraints. In other 

word, MGCC would be responsible to determine the 

contribution of reserve capacity provided by DG units and DR 

resources, economically to assure power balance under any 

working condition. Without applying DR program, the costs 

of scheduled and deployed reserves are 174.75 $ and -102.68 

$, respectively. But, as it can be observed from Table II, by 

increasing DR activities, the cost of scheduled reserve is 

decreased in all cases as provision of reserve service is 

partially done by responsive loads at lower prices. Also, with 

increasing DR participation, cost of deployed reserves by DG 

units in real-time to accommodate the uncertainties is 

decreased. It should be noted that, the minus sign of the 

deployed reserves cost is interpreted as the expected profit of 

the MG operator. The simulation results show that with 

applying proposed approach the system frequency is regulated 

well enough around the nominal value (i.e. 60 Hz) through 

optimal coordination of DERs and DR actions based on a 

meaningful trade-off between technical and economical issues. 

In order to provide more elaboration about the system 

frequency security, it is analyzed in two worst case scenarios 

in this section. The highest frequency drop is related to 

scenario 21 where demand level and RESs generation have 

their maximum and minimum values, respectively. The other 

extreme case happens in scenario 5 where the load 

consumption and RESs generation have their minimum and 

maximum levels, respectively and the system frequency jumps 

to the highest value. The frequency profiles regarding the 

scenario 5 at 10% and 40% DR participants for all cases 

during 24 hours of the scheduling time horizon are depicted in 

Fig. 4. As shown in Fig. 4-(a), in case 1, the frequency 

excursion is at the maximum allowable value (i.e. 60.36 Hz). 

But with 10% DR participants, due to the reduction of 

customers’ consumption, especially during peak hours, the 

frequency excursion reduces and remains within a secure 

range. Because, with consideration of DR influence on 

frequency regulation, the difference between DGs generation 

level and their power set-points is lower than that of in case 1, 

so, the frequency deviations are relatively higher in the cases 

with DR. As it can be observed from Fig. 4-(b), with 

increasing DR participants, due to the higher contribution of 

responsive loads in frequency regulation, its standard 

deviation in this condition is relatively. In case 4, both 

sheddable and shiftable loads participate in DR and as the 

result, system frequency security has better conditions in 

comparison with other cases. 
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Fig. 4. Hourly frequency profiles of different cases in scenario 5, (a) 10% DR 

participants, and (b) 40% DR participants. 
 

The frequency profiles in scenario 21 are shown in Fig. 5. As 

observed, in this scenario the frequency drops severely 

because of the demand load has its highest value. As depicted 

in Fig. 5, the frequency security is improved relatively better 

in case 2 than the other cases due to the fact that some of the 

loads are curtailed and as the result, low inertia units are not 

committed. In addition, it can be also observed that with active 

participation of end-users in DR programs, especially during 

peak hours, the system frequency goes under less variation as 

more reserve is allocated by responsive loads. It should be 

noted that, in this study in order to evaluate the frequency 

security, the worst scenarios (i.e., scenarios 5 and 21) are 

analyzed. These scenarios represent the frequency deviation in 

worst case scenarios with a probability of occurrence which is 

very low (i.e., 0.0041). The results show that the frequency 

TABLE II. COST OF SCHEDULED AND DEPLOYED RESERVES OF MG IN DIFFERENT CASES 

  

(%) 

Case  2 Case  3 Case  4 

Scheduled 

reserve cost ($) 

Deployed reserve 

cost ($) 

Scheduled 

reserve cost ($) 

Deployed reserve 

cost ($) 

Scheduled reserve 

cost ($) 

Deployed reserve 

cost ($) 

DGs DR DGs DR DGs DR DGs DR DGs DR DGs DR 

10 115.05 44.92 -98.71 0.30 118.35 42.39 -99.42 -4.01 121.84 39.23 -103.44 -5.44 
20 114.17 44.98 -94.43 -4.46 116.95 44.10 -95.03 -9.80 117.42 43.05 -90.26 -17.26 

30 113.61 44.74 -90.76 -8.73 119.87 42.46 -93.91 -15.72 117.17 43.41 -78.86 -31.99 

40 120.01 38.87 -97.32 -10.79 117.97 44.93 -84.56 -25.44 116.99 44.68 -64.75 -50.60 
50 118.85 39.29 -92.71 -15.63 117.10 45.88 -77.35 -33.65 117.44 44.51 -64.68 -51.70 

60 120.47 37.76 -92.97 -18.15 114.45 48.96 -77.56 -39.09 117.94 44.79 -68.64 -55.92 

70 119.11 38.38 -87.36 -23.78 112.96 51.78 -76.84 -41.04 119.28 46.11 -67.41 -62.87 

 



deviations in other scenarios are lower than the mentioned 

scenarios. 
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(b) 

Fig. 5. Hourly frequency profiles of different cases in scenario 21, (a) 10% 

DR participants, and (b) 40% DR participants. 

 

V. CONCLUSIONS 

This paper presented a stochastic model for frequency 

security-constrained unit commitment associated with DR 

actions. In the proposed model the MG frequency security was 

managed by MGCC in order to maximize the expected profit 

of MGO. The MGCC also adjusted the power set-points of DR 

and DG resources such that not only the steady-state 

frequency was assured but also the customers’ payment was 

minimized. To study the uncertainties of load consumption 

and RESs productions, a scenario-based stochastic 

programming method was also employed. Moreover, an AC-

optimal power flow (AC-OPF) approach was applied to model 

the actual operating conditions and to determine the effect of 

DR programs on frequency security in steady state. The 

numerical results revealed that customers’ participation in 

energy and reserve scheduling, have a great impact on the MG 

frequency security provision. It was also demonstrated that 

with the application of DR programs, the frequency deviation 

could be reduced significantly and the DG capacities could be 

managed with higher degrees of freedom. 
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