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Abstract 

The major objective of the present study is to experimentally investigate the thermophysical 

properties and heat transfer capability of ZnO- and MgO-engine oil nanofluid as a coolant and 

lubricant in various engineering applications. The viscosity and thermal conductivity 

measurements have been performed in different temperatures (ranging from 15 °C to 55 °C) and 

solid concentrations (ranging from 0.125 % to 1.5 %). The nanofluids showed Newtonian 

behavior over the studied range of temperatures, and solid concentrations. Furthermore, the 

results revealed that the samples containing ZnO cause more increase in the dynamic viscosity 

compared to the samples containing MgO. The thermal conductivity has also been measured 

over the same range of temperatures and solid concentrations. The maximum enhancement of 

just over 28 % and 32 % at the temperature of 55 ºC and solid concentration of 1.5 % has been 

observed for the ZnO- and MgO-engine oil nanofluid, respectively. Furthermore, the heat 

transfer performance of the nanofluids has been evaluated based on different figures-of-merit, 

and it is revealed that using the MgO-engine oil nanofluid is advantageous just in laminar flow 

regimes while the ZnO-engine oil nanofluid would be advantageous in a limited range of 

temperatures. 

Keywords: Thermal Oil; Rheological behavior; Thermophysical properties; Heat transfer 

performance; ZnO and MgO nanoparticles.  

1. Introduction  
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One of the widely used thermal fluid in heat transfer applications is thermal oils. Thermal oils 

can be used in a vast range of engineering applications and industries, on which high temperature 

is the main barrier, such as automotive, aerospace, marine and military industries as well as 

internal combustion engines, compressors, gears, processing equipment and so forth. Heat 

transfer oils are available in various types on the market such as circulating coolant, chiller 

fluids, and refrigerant which are used as a cooling media in machinery, process equipment, and 

combustion engines.   

Since for the first time Choi [1] introduced the nanofluid as a suspension of nano-sized particles 

in conventional fluids such as water, ethylene glycol, and oil, many researchers have paid careful 

attention to this new type of fluids [2-12]. Moreover, the contribution of various nanofluids in 

different applications has been reviewed by researchers; employing nanofluids in microchannel 

heatsinks [13], Cooling of electronics [14], pool boiling [15], and responsible mechanism to 

improve the heat transfer of nanofluids [16]. There are also some papers that reviewed the results 

of different papers on thermophysical properties and heat transfer performance of various 

nanofluids [17-21].   

The principal duty of engine oils is to decrease or even diminish the friction among the moving 

segments and on the other hand cooling the moving segments by removing the heat away from 

them [22]. Since engine oils vary regarding kinematic and dynamic viscosity, operating 

temperatures, thermal conductivity, pour point, flash point, boiling point, and so forth, many 

factors must take into consideration in selecting an engine oil for heat transfer applications. 

Lower viscosity in engine oils means lower pumping power and pressure drop while higher 

thermal conductivity means higher heat transfer performance. Thus, having an appropriate 

thermal oil might result in improving the efficiency and energy management of engines. To this 

end, there is a limited number of published literature on thermophysical properties of oil-based 

nanofluids [23-26]. A summary of the published literature on oil-based nanofluids has been 

presented in Tab. 1.  

One of the most important features of nanofluids is their rheological behaviors. In this ground, 

Hemmat et al. [44] conducted an experimental study on the effect of temperature and solid 

concentration on dynamic viscosity of Al2O3-engine oil nanofluid. Their results indicated that the 

dynamic viscosity of the nanofluid decreased as the temperature increased while it showed an 
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increasing trend as the solid concentration increased. Asadi and Asadi [45] investigated the 

rheological behavior of MWCNT-ZnO/engine oil hybrid nanofluid in various temperatures and 

solid concentrations. They proposed a new correlation to predict the dynamic viscosity of the 

nanofluid. In another experimental investigation, the rheological behavior of MWCNT-

SiO2/SAE40 hybrid nanofluid has been studied by Afrand et al. [22]. Their results revealed that 

the dynamic viscosity of the nanofluid increased as the solid concentration increased. Ettefaghi et 

al. [46] conducted an experimental study on thermal and rheological properties of oil-based 

nanofluids with various carbon nanostructures. In another study, the effect of temperature and 

solid concentration on dynamic viscosity of MWCNT-SiO2 (20-80)/SAE40 hybrid nanofluid has 

been experimentally investigated by Hemmat et al. [47]. Their results showed that the dynamic 

viscosity of the nanofluid increased as the solid concentration increased while it showed a 

decreasing trend as the temperature increased. In another experimental investigation, Asadi et al. 

[35] studied the rheological behavior of MWCNT/MgO (20-80)-SAE50 hybrid nanofluid in 

different solid concentrations and temperature. They proposed a new correlation to predict the 

dynamic viscosity of the studied nanofluid regarding solid concentration and temperature.  

Another crucial parameter is, undoubtedly, the thermal conductivity of the nanofluids. Many 

researchers have investigated the thermal conductivity of different nanofluids [48-52], but there 

are just limited numbers of published literature on the thermal conductivity of oil-based 

nanofluids [53-55]. Aberoumand and Jafarimoghaddam [56] investigated the thermal 

conductivity of Cu engine oil-based nanofluid in a limited range of solid concentrations. Their 

results indicated that the thermal conductivity of the nanofluid gradually increased as the 

temperature increased. This trend was similar in all the three studied solid concentrations. The 

thermal properties of the MWCNT-engine oil nanofluid have been experimentally investigated 

by Ettefaghi et al. [57]. They just conducted the experiments at the temperature of 20 ºC and in 

low solid concentrations (0.1, 0.2, and 0.5 wt %). Their results showed the maximum thermal 

conductivity enhancement of 22.7 % at the solid concentration of 0.5 wt %. In another 

experimental investigation, which is done by Aberoumand et al. [58], the thermal conductivity of 

the silver-engine oil nanofluid has been investigated. Based on the experimental results, they 

proposed a new correlation to predict the thermal conductivity of the nanofluid in the studied 

range of solid concentrations and temperatures. Recently, a review of the affected mechanism of 

thermal conductivity for both the normal and hybrid nanofluids has been published by Das [59].         
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From what has been discussed, it can be concluded that improving the thermophysical properties 

of engine oils is of paramount importance to their industrial applications. However, there are 

only a limited number of studies on the rheological behavior of oil-based nanofluids. 

Furthermore, to the best of the authors’ knowledge, there is a limited number of studies on the 

heat transfer performance of oil-based nanofluids to investigate the capability of using this new 

generation of coolant and lubricant in heat transfer applications both in internal laminar and 

turbulent flow regimes. Quiet the recently, Asadi et al. [39] investigated the possibility of using 

Mg(OH)2-MWCNT/thermal oil nanofluid in heat transfer applications. They conducted the study 

on different temperatures (25-60 ℃) and solid concentrations (0.25-2 %). They reported the 

maximum thermal conductivity enhancement of 50 %. Moreover, their results showed that using 

the studied nanofluid instead of base fluid would be advantageous in heat transfer application in 

both the internal laminar and turbulent flow regimes. In another experimental investigation, the 

capability of Al2O3-MWCNT/thermal oil as a heat transfer fluid has been studied by Asadi et al. 

[42]. Their results showed that using the studied nanofluid is pretty advantageous in internal 

lamina flow regime as a heat transfer fluid although it showed different behavior in internal 

turbulent flow regime.    

In the present investigation, the effect of temperature and solid concentration on dynamic 

viscosity and thermal conductivity of ZnO- and MgO-engine oil nanofluid have been 

experimentally studied. The experiments have been conducted in different temperatures (15 °C, 

25 °C, 35 °C, 45 °C, and 55 °C) and solid concentrations (0.125 %, 0.25 %, 0.5 %, 0.75 %, 1 %, 

and 1.5 %). The stability of the prepared samples has been investigated over the period of fifteen 

days after preparation using Zeta potential analysis. Furthermore, two new correlations to predict 

the dynamic viscosity and thermal conductivity of the nanofluids have been proposed based on 

the experimental data. The deviation analysis has also been performed to investigate the accuracy 

of the proposed correlation. Moreover, the heat transfer performance of the nanofluid has been 

evaluated in both the internal laminar and turbulent flow regimes.            

2. Materials and methods 

2.1.Sample preparation 

It is known that the most crucial step towards using different nanofluids in heat transfer 

applications is, undoubtedly, the preparation of long-time stable samples. Applying two-step 
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method and without using any surfactant, the ZnO- and MgO-engine oil nanofluid have been 

prepared as the experimental sample in six different solid concentrations (0.125 %, 0.25 %, 0.5 

%, 0.75 %, 1 %, and 1.5 %). The average diameter of ZnO and MgO nanoparticles is 40 nm. To 

produce a long-time stable nanofluid (at least two weeks), the nanoparticles have been dispersed 

into the mentioned solid concentration. After that, a magnetic stirrer has been employed for 3 

hours. Then, the suspension was subjected to 1 h ultrasonic processor (20 kHz, 400 W) to break 

down the probable cluster of nanoparticles and achieve a nanofluid with superb dispersion. In 

this manner, a long-time stable nanofluid has been prepared, and no sedimentation has been 

observed by the naked eyes. Figure 1 shows a TEM image of the ZnO and MgO nanoparticles 

and the specification of the nanoparticles has been presented in Tab. 2.  

2.2.Stability measurement:  

Investigating the stability of the prepared samples, different methods have been employed by 

researchers thus far. The most usual method is the visual observation which is widely done by 

researchers. However, this method is not that precise especially for the nanofluids which have a 

dark color such as CNTs-based or oil-based nanofluid. In such cases, the most reliable method is, 

undoubtedly, Zeta potential analysis [39, 42]. Thus, in the present paper, the Zeta potential 

analysis has been done on the prepared samples in four different time periods; right after 

preparation, after 5 days, after 10 days, and after 15 days of preparation. It is known that a 

sample with Zeta potential values under 30 mV is considered as bad/unacceptable stability, 

between 30 and 45 mV possess moderate stability, and above 45 mV shows good stability with 

possible sedimentation [60, 61]. The results of the Zeta potential analysis of the prepared 

samples have been clearly presented in Fig. 2. As can be seen, the prepared samples showed 

good stability even after 15 days of preparation.  

2.3.Dynamic viscosity measurement  

Measuring the dynamic viscosity of the ZnO- and MgO-engine oil nanofluid in different 

temperatures and solid concentrations, a Brookfield Cone and Plate viscometer (CAP 2000+, 

USA) has been employed.  The detailed information of the viscometer has been presented in 

Tab. 3. It must be noted that the calibration of the viscometer has been tested by measuring the 

viscosity of the base fluid (pure oil 10W40) and comparing the results with those available in the 
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literature [45]. The maximum deviation between the measured data in the present study with 

those of literature was less than 1 %.  

2.4.Thermal conductivity measurement  

In the present study, to determine the thermal conductivity of the samples, a KD2 Pro thermal 

property analyzer (Decagon Devices Inc., USA) has been employed. The device works based on 

the transient hot-wire method. It can measure the thermal conductivity in the range of 0.02 to 2 

W/m. ºC with the maximum deviation of 5 % and the accuracy of ±0.001.  First, the device has 

been calibrated using the glycerol supplied by the manufacturer, and then the thermal 

conductivity of the samples has been measured. A hot water bath temperature has been employed 

to set the temperature during the measurement. Fig. 3 depicts a schematic view of the 

experimental thermal conductivity set up.   

To investigate the repeatability of the experiments, all the samples have been tested three times, 

and the mean values have been recorded. More detailed information about the KD2 pro thermal 

analyzer has been presented in Tab. 4.  

To investigate the accuracy of the KD2 Pro device, the calibration of the device has been tested 

by measuring the thermal conductivity of water in different temperatures and comparing the 

results with those available in ASHRAE handbook [62]. Fig. 4 shows the comparison between 

the experimental results with the data available on the ASHRAE handbook. As can be seen, the 

maximum deviation between the experimental results and ASHRAE data is less than 1 %, which 

shows the accuracy of the KD2 Pro thermal analyzer.  

3. Results and discussion: 

3.1.Dynamic viscosity 

3.1.1. Newtonian behavior 

The behavior of the nanofluid to determine whether it is Newtonian or non-Newtonian has been 

investigated over the range of the studied temperatures (15 °C, 25 °C, 35 °C, 45 °C, and 55 °C) 

and solid concentrations (0.125 %, 0.25 %, 0.5 %, 0.75 %, 1 %, and 1.5 %). Fig. 5 demonstrates 

the dynamic viscosity of the studied nanofluids concerning rotational speed (shear rate) in 

different temperatures and solid concentrations of 0.5 % and 0.75 % for MgO- and ZnO-engine 

oil, respectively. As can be seen, there is a negligible decrease in the dynamic viscosity of the 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

7 
 

nanofluid as the rotational speed increases. Thus it can be concluded that the viscosity of the 

nanofluid is independent of the rotational speed. This means that the nanofluid shows Newtonian 

behavior over the studied range of temperatures and solid concentrations. 

3.1.2. Theoretical models:  

There are many theoretical models to predict the dynamic viscosity of the suspensions containing 

nanoparticles, which are widely used by researchers. Among many models, three commonly 

used models, Einstein  [63], Wang et al. [64] and Batchelor [65] have been selected to examine 

whether they can predict the dynamic viscosity of the studied nanofluid within the acceptable 

range of accuracy or not. These models are as follows: 

, (1 2.5 )nf Einstein bf     (1) 

2

, (1 7.3 123 )nf Wang      (2) 

2

, (1 2.5 6.2 )nf Batchelor      (3) 

where μnf, μbf and φ represent dynamic viscosity of nanofluid, the dynamic viscosity of the base 

fluid, and solid concentration, respectively. The comparison between the theoretical models and 

measured data have been presented in Fig. 6. Based on this figure, it can be inferred that neither 

of the models is able to predict the dynamic viscosity of the nanofluids in the acceptable range of 

accuracy.  

3.1.3. Dynamic viscosity in different temperatures and solid concentrations  

In the present investigation, the effect of temperature and solid concentration on dynamic 

viscosity of ZnO- and MgO-engine oil nano-lubricant has been precisely investigated. Fig. 7 

shows the variations of the dynamic viscosity of the nanofluids versus solid concentration in 

different temperatures. It can be seen that the increase in the dynamic viscosity of the nanofluids 

by increasing the solid concentration, in all the studied temperatures, is not that noticeable. 

However, this increase is more noticeable at lower temperatures (15 °C and 25 °C) compared to 

those higher. The variations of the dynamic viscosity of the nanofluid versus temperature in all 

the studied solid concentrations have also been presented in Fig. 7. As can be seen, the dynamic 

viscosity of the nanofluid significantly decreased as the temperature increased in all the studied 
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solid concentrations, which is in accordance with the previously published papers [22, 35, 45, 

66].  

Fig. 8 shows the percentage of enhancement in dynamic viscosity of the studied nanofluids 

concerning temperature in different solid concentrations. As can be seen, for the ZnO-engine oil 

nanofluid, the minimum increase in dynamic viscosity of the nanofluid with respect to the base 

fluid, took place at the temperature of 45 °C and solid concentration of 0.125 % by 

approximately 27.5 % while the maximum increase took place at the temperature of 55 °C and 

the solid concentration of 1.5% by 124.3 %. Furthermore, it can be seen that in all the solid 

concentrations, the minimum increase in dynamic viscosity took place at the temperature of 45 

°C. Thus the temperature of 45 °C can be taken into account as a critical temperature of this 

nanofluid in which the nanofluid can be used instead of the base fluid (engine oil) experiencing 

the minimum enhancement in dynamic viscosity. Minimum enhancement in viscosity means that 

the increase in the pressure drop and pumping power is at the lowest rate which can be taken into 

account as a paramount finding of the present study. As for the MgO-engine oil nanofluid, the 

maximum and minimum increase has been occurred at the temperatures of 15 °C and 55 °C and 

solid concentrations of 0.125 % and 1.5 % by just over 30 % and 75 %, respectively. It is 

interesting to note that the MgO nanoparticles showed less impact on increasing the dynamic 

viscosity of the base fluid compared to ZnO nanoparticles while it has higher thermal 

conductivity, which is in accordance with the finding of Xie et al. [67].  

3.1.4. Proposed model 

It has been proofed in section (3.1.2) that the commonly used theoretical models are not able to 

predict the dynamic viscosity of nanofluids, due to the fact that suspensions of different 

nanoparticles in different base fluids show different rheological behavior. On the other hand, 

several correlations to predict the dynamic viscosity of different nanofluids have been presented 

by different researchers thus far. But these proposed correlations are for the nanofluids with 

different base fluids and solid particles which none of them can predict the dynamic viscosity of 

different suspensions of nanoparticles in working fluids. Thus, in the present study, a new 

precise experimental correlation has been proposed to predict the dynamic viscosity of ZnO- and 

MgO-engine oil nanofluids. The general form of the correlations is as follows:  
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nf A B     (4) 

Where μnf and φ represent the dynamic viscosity of the nanofluid and solid concentration, 

respectively. A and B are constant values which are listed for the respective temperatures in Tab. 

5 and 6.  

Fig. 9 proofs the capability of this correlation (Eq. 4) in predicting the dynamic viscosity of the 

ZnO- and MgO-engine oil nano-lubricant over the studied range of temperatures and solid 

concentrations with high accuracy.  

Proofing the accuracy of the proposed correlation, deviation analysis has been performed using 

the following equation:  

   

 
. Pr .

.

100(%)
nf nfExp ed

nf Exp

Dev
 



 
  
 
 

 (5) 

The maximum deviation of the proposed correlation is just under 3 % and 4 % for the ZnO- and 

MgO-engine oil nanofluid, respectively, which are clearly shown in Fig. 10. 

3.2.Thermal conductivity 

3.2.1. Effects of temperature and solid concentration  

Fig. 11 presents the thermal conductivity of the studied nanofluids in various temperatures and 

solid concentrations. As can be seen, the thermal conductivity of both the nanofluids showed 

increasing trend as the temperature increased, which is in accordance with the previously 

published literature [58, 61] while the base fluid showed decreasing trend as the temperature 

increased. This decreasing trend is also in accordance with the previously published 

investigations conducted by Aberomand et al. [37, 56] and Asadi et al. [39, 42, 66]. This 

increasing trend has been observed in all the solid concentrations. Increasing the collisions 

between the nanoparticles and increasing the Brownian motions could be the main causes of 

increasing the thermal conductivity by increasing temperature. The thermal conductivity 

behavior of the studied nano-lubricant by increasing the solid concentration has also been 

presented in the Fig. 11. As can be seen, the thermal conductivity of the nanofluids showed an 

increasing trend as the solid concentration increased. This increasing trend has been observed in 
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all the studied temperatures. This figure also proofed that adding nanoparticles to the base fluid 

definitely leads to enhancing the thermal conductivity of the base fluid, which has been reported 

widely in the literature. Since one of the main missions of the engine oils is to cool down the 

different parts of an engine, using these nano-coolants in the solid concentration of 1.5 % could 

be recommended in cooling applications. 

 Fig. 12 demonstrates the thermal conductivity enhancement of the two studied nanofluids. As 

can be seen, the maximum enhancement in thermal conductivity of the ZnO-engine oil nanofluid 

is just over 28 % which took place at the temperature of 55 ºC and solid concentration of 1.5 % 

while for the MgO-engine oil nanofluid, the maximum enhancement is just over 32 % which has 

been occurred at the same temperature and solid concentration. 

3.2.2. Proposed correlation  

There are several parameters affecting the thermal conductivity behavior of nanofluids such as 

the solid concentration of particles, temperature, and the nanoparticles’ material. On the other 

hand, predicting the thermal conductivity of the nanofluids are important to pre-assessment of 

using nanofluids instead of conventional cooling fluids such as water, ethylene glycol, oil, etc. 

To this end, several correlations have been proposed by researchers so far [68-72]. But, it is 

crystal clear that it is not possible to have a single theoretical model to predict the thermal 

conductivity of various suspensions due to the aforementioned affecting parameters. Thus, in the 

present study, based on the experimental data, two new accurate correlations to predict the 

thermal conductivity of the ZnO- and MgO-engine oil nanofluids in the studied range of 

temperature and solid concentration have been proposed. The proposed correlations have been 

presented in table 6 and 7.   

Fig. 13 shows a comparison between the experimental data and the output of the proposed 

correlations for the thermal conductivity of the nanofluids.  

Furthermore, using the Eq. 6, the deviation analysis has also been performed to evaluate the 

accuracy of the proposed correlation. The results of the deviation analysis have been presented in 

Fig. 14.  The maximum deviation of well under 1 % has been achieved for the proposed 

correlation of both the studied nanofluids.  
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Pr ..

.

( ) ( )
. 100(%)

( )

ednf Exp nf

nf Exp

k k
Dev

k

 
  
  

  (6) 

 

3.3.Assessment of heat transfer performance 

In the previous sections, the viscosity increase and thermal conductivity enhancement of the 

ZnO- and MgO-engine oil nanofluids have been precisely studied. Having the value of these two 

important parameters, it is possible to investigate the advantage of using nanofluid instead of 

conventional fluids in heat transfer applications in both the laminar and turbulent flow regimes. 

For the laminar flow regime, the assessment of heat transfer performance can be done based on 

the ratio of viscosity increase and thermal conductivity enhancement which is presented by 

Prasher et al. [73] as follows: 

( )

( )

nf bf bf

k nf bf bf

C

C k k k

   



  (7) 

Using nanofluids instead of base fluids could always be considered as advantageous for the ratios 

of less than 4 (Cµ/Ck˂4) in heat transfer applications [73]. Fig. 15 depicts the results of this 

assessment. As can be clearly seen, for the ZnO-engine oil nanofluid, at the temperature of 45 ºC 

and in all the studied solid concentrations, using this nanofluid is better than the base fluid as a 

heat transfer fluid. However, at the temperature of 25 ºC and the solid concentration of 1.5 % and 

at the temperature of 35 ºC and the solid concentrations greater than 0.75 %, using this nanofluid 

can be advantageous as well. But for the MgO-engine oil nanofluid, the trend is totally different. 

Using this nanofluid is highly advantageous in all the temperatures and solid concentrations 

except the temperature of 15 ºC and solid concentrations less than 0.75 %. It is known that most 

of the flows in the practical situation are turbulent and the laminar flow regime is just 

encountered when the highly viscous fluids, i.e., oil, flow in narrow passages and small pipes 

[74]. Since in automotive applications the oils mostly used as coolant and lubricant among 

different moving parts of engines and in most cases there is only a narrow gap among these 

moving parts, thus the flow regime in this region is laminar. Therefore, from what has been 

discussed in this section, it can be concluded that regarding the higher thermal conductivity of 
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MgO-engine oil nanofluid compared to that of the base fluid (engine oil), using this nanofluid is 

highly advantageous although it possesses higher viscosity.       

  As for the turbulent flow regime, based on the Mouromtseff number [75], the advantage of 

using nanofluid as a heat transfer fluid can be evaluated as follows: 

0.8 0.67 0.33

0.47

pk c
Mo




   (8) 

Where Cp represents the specific heat capacity and ρ is the density, µ is dynamic viscosity, and k 

is thermal conductivity. The thermal conductivity and dynamic viscosity of the studied 

nanofluids and the respective base fluids (oil) have been measured, and the results were reported 

in the previous sections. As for the specific heat capacity and density of the nanofluid, the values 

have been calculated using the following correlations presented by Pak and Cho [71]: 

(1 )nf bf Particle        (9) 

, , ,P(1 )p nf p bf p articleC C C      (10) 

Generally, the higher the Mo number, the better the nanofluid for heat transfer applications. 

Moreover, the nanofluid considered advantageous for heat transfer applications for the ratios of 

Mo number higher than 1 (Monf/ Mobf˃1). Figure 16 shows the results of heat transfer 

performance of ZnO- and MgO-engine oil nanofluids in different temperatures and solid 

concentrations. As can be seen, using neither of these two nanofluids can be advantageous in 

turbulent flow regimes.  

4. Concluding remarks 

In the present investigation, the thermal and rheological properties of the ZnO- and MgO-engine 

oil nanofluid has been experimentally investigated. The samples have been prepared using the 

two-step method in various temperatures (ranging from 15 °C to 55 °C) and solid concentrations 

(ranging from 0.125 % to 1.5 %). The Zeta potential analysis has been performed to investigate 

the stability of the prepared samples over the period of fifteen days after preparation. 

Furthermore, the heat transfer performance of the studied nanofluids has been investigated based 
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on different figures of merit for both the internal laminar and turbulent flow regimes. Based on 

the measurements, the conclusion can be drawn as follows:  

 The studied nanofluids exhibit Newtonian behavior at different rotational speeds (shear 

rates). 

 It has been proofed that the commonly used theoretical models to predict the dynamic 

viscosity and thermal conductivity of nanofluids are not able to predict the viscosity, and 

thermal conductivity of the studied nanofluids accurately.  

  There is a slight increase in the dynamic viscosity of the nanofluid at a constant 

temperature as the solid concentration increased. The maximum increase in dynamic 

viscosity of the nanofluids took place at the temperature of 55 °C and the solid 

concentration of 1.5% by just over 124 % and 75 % for ZnO- and MgO-engine oil 

nanofluid, respectively.  

 The thermal conductivity of the nanofluids showed increasing trend as the temperature, 

and solid concentration increased. The maximum enhancement was just over the 28 % 

and 32 % for ZnO- and MgO-engine oil nanofluid, respectively.  

 Based on the experimental measurements, two new correlations to predict the dynamic 

viscosity and thermal conductivity of the studied nanofluid have been proposed with the 

maximum deviation of less than 4 % and 1 %, respectively.  

 The evaluation of heat transfer performance of the nanofluid revealed that while using 

MgO-engine oil nanofluid is advantageous at all the temperatures and solid 

concentrations except the temperature of 15 ºC and solid concentrations less than 0.75 % 

in laminar flow regime; the ZnO-engine oil nanofluid recommended to use in a very 

limited range of temperatures. It has also found that neither of these two nanofluids is 

suitable to use instead of the base fluid in turbulent flow regime.  

Nomenclature 

K: Thermal conductivity  

Cp: Specific heat capacity  

Mo: Mouromtseff number    

  : nanoparticles volume fraction  

Greeks 

Subscripts  

bf: Base fluid 

nf: Nanofluid  

p: Particle 
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  : Density 

  : Shear stress  

  : Shear strain 

  : Dynamic viscosity  
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Figures:  

  

A B 

Fig. 1 TEM image of A) ZnO, and B) MgO nanoparticles. 
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Fig. 2 Absolute Zeta Potential values of the prepared samples in four different times; After 

preparation, after 5 days, after 10 days, and after 15 days of preparation. 

 

 

Fig. 3 A schematic view of the thermal conductivity set up. 
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Fig. 4 Comparison between the experimental results of thermal conductivity of water of 

the present investigation with the data available in ASHRAE handbook. 
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Fig. 5 Dynamic viscosity concerning the rotational speed in various temperature and at 

the solid concentration of A) 0.75 %, and B) 0.5 % 
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Fig. 6 Comparison between the output of the theoretical models and the measured data. 
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Fig. 7 Dynamic viscosity of the ZnO- and MgO-engine oil nanofluids in different solid concentrations and 

temperatures.  
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Fig. 8 Dynamic viscosity enhancement versus temperature in different solid 

concentrations. 
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Fig. 9 Comparison between the correlation output and experimental data. 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

27 
 

 

 

Fig. 10 Margin of deviation for the proposed correlations. 
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Fig. 11 Thermal conductivity of ZnO and MgO-engine oil nano-lubricant in different solid concentrations and 

temperatures. 
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Fig. 12 Thermal conductivity enchantment. 
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Fig. 13 comparison between correlation output and experimental data. 
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Fig. 14 Margin of deviation for the proposed correlation to predict the thermal 

conductivity. 
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Fig. 15 Evaluation of heat transfer performance of ZnO and MgO-engine oil nanofluid 

for laminar flows. 
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Fig. 16 Evaluation of heat transfer performance of ZnO- MgO-engine oil nanofluid for 

turbulent lows 
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Tables: 

Table 1 A summary of the recently published literature on oil-based nanofluids 

Reference Studied nanofluid 
Solid 

concentrations 
Temperatures 

Measured parameters 

Saeedinia et 

al. [27] 
CuO-oil 0.2-2 wt% 20-70 ℃ 

Viscosity, thermal conductivity, 

density, and specific heat capacity 

Pakdaman et 

al. [28] 
MWCNT/ oil 

0.1, 0.2, and 0.4 wt 

% 
40-100 ℃ 

Viscosity, thermal conductivity, 

density, and specific heat capacity 

Hemmat et al. 

[29] 
MWCNT-TiO2/oil  0.0625-1 % 25-50 ℃ 

Viscosity 

Asadi [30] MWCNT-ZnO/oil 0.125-1 % 15-55 ℃ 
Viscosity, thermal conductivity, 

and heat transfer performance 

Dardan et al. 

[31] 

Al2O3-

MWCNT/engine oil 

(SAE40) 

0.0625 % to 1 % 25-50 ℃ 

Viscosity 

Hemmat Esfe 

et al. [32] 

MWCNT-SiO2/ 

engine oil (SAE40) 
0.0625-2 vol.% 25-50 ℃ 

Viscosity 

Afrand et al. 

[33] 

MWCNT-SiO2/ 

engine oil (SAE40) 
0-1 vol.% 25-60 ℃ 

Viscosity 

Li et al. [34] SiC/diathermic oil 0.2-0.8 vol.% 25-60 ℃ Viscosity and thermal conductivity 

Asadi et al. 

[35] 

MWCNT-MgO/ 

engine oil (SAE50) 
0.25-2 vol. % 25-50 ℃ 

Viscosity and thermal conductivity 

Hemmat Esfe 

et al. [36] 

MWCNT-ZnO/ 

engine oil (SAE40) 
0.05-1 vol. % 25-60 ℃ 

Viscosity 

Aberoumand 

et al. [37] 
Ag/oil 

0.12, 0.36, and  0.72 

wt % 
25 to 60 ℃ 

Viscosity and thermal conductivity 

Goodarzi et 

al. [38] 

MWCNT-ZnO/ 

engine oil 
0.05-0.8 % 5-55 ℃  

Viscosity  

Asadi et al. 

[39] 

MWCNT-

Mg(OH)2/engine oil  
0.25 to 2 vol. % 25 to 60 ℃ 

Viscosity and thermal conductivity 

Li et al. [23] 
SiC/waste cooking 

oil 
0.05 and 1 vol. % 25-65 ℃ 

Viscosity and thermal conductivity 
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TiO2/waste cooking 

oil 

Asadi and 

Asadi [40] 

MWCNT-

ZnO/engine oil 

(10W40) 

0.125-1 vol. % 5-55 ℃ 

Viscosity and thermal conductivity 

Wei et al. [41] 
SiC-

TiO2/diathermic oil  
0-1 vol. % 25-60 ℃ 

Viscosity and thermal conductivity 

Asadi et al. 

[42] 

MWCNT-

Al2O3/engine oil  
0.125 to 1.5 vol. % 25 to 50 ℃ 

Viscosity and thermal conductivity 

Motahari et 

al. [43] 

MWCNT-

SiO2/engine oil 

(20W50) 

0.05 to 1 vol. % 40 to 100 ℃ 

Viscosity 

 

Tab. 2 Specification of the studied nanoparticles 

Characteristic  ZnO MgO 

Purity 99 + % 99 + % 

Size (nm) 35-45  40  

Specific surface area (SSA) (m
2
/g) ˃ 60  ˃ 60  

Color White White 

True Density (ρ) (g/m
3
) 5.606  3.58 

Specific heat capacity (Cp) (KJ/Kg. K) 0.514  0.937 

Thermal Conductivity (W/m. K) 29 54.9 

 

 

Tab. 3 Detailed information of the viscometer. 

Working 

Temperature 

Range 

Speeds Accuracy Repeatability 
Measuring 

range 

Torque 

range 

5-75°C 5-1000 RPM ±2% ±5% 0.3-1028 c.P 
797-7, 970 

dyne.cm 
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Tab. 4 Specifications of KD2 Pro thermal analyzer device 

Measurement speed 2 min 

Accuracy ±5 % Thermal conductivity 

Operating environment Controller: 0 to 50 ºC 

Sensor: -50 to 150 ºC 

Range of measurement 0.02 to 2 W/m. k 

Sensor Needle length: 6 cm 

Needle diameter: 1.3 mm 

 

Tab. 5 Constant values of the proposed correlation to predict the dynamic viscosity of 

ZnO-engine oil nanofluid in different temperatures 

Temperature (ºC) A B 

15 269.85 2110.65 

25 165.17 1387.78 

35 106.85 971.49 

45 71.69 657.72 

55 50.27 444.55 

 

Tab. 6 Constant values of the proposed correlation to predict the dynamic viscosity of 

MgO-engine oil nanofluid in different temperatures 

Temperature (ºC) A B 

15 247.72 1200.95 

25 143.57 738.2 

35 80.59 1265.62 

45 52.52 636.16 

55 33.58 610.77 
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Tab. 7 proposed correlation to predict the thermal conductivity of ZnO-engine oil 

nanofluid. 

Temperature (ºC) Proposed Correlation 

15 0.1435 0.8526nfk    

25 0.1453 1.0026nfk    

35 0.1462 1.1928nfk    

45 0.1479 1.2522nfk    

55 0.1489 1.405nfk    

 

 

Tab. 8 proposed correlation to predict the thermal conductivity of MgO-engine oil 

nanofluid. 

Temperature (ºC) Proposed Correlation 

15 0.1519 0.909nfk    

25 0.1532 0.867nfk    

35 0.1551 0.858nfk    

45 0.1552 1.0007nfk    

55 0.1561 1.05nfk    
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 The prepared samples of both the nanofluids showed Newtonian behavior  

 ZnO nanofluid showed higher viscosity increase compare to MgO 

 MgO nanofluid showed higher thermal conductivity enhancement compare 

to ZnO 

 MgO nanofluid is favorable to use as heat transfer fluid in internal laminar 

flow 

 ZnO nanofluid is recommended as heat transfer fluid in limited temperatures  
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