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Abstract—Rehabilitation after traumatic brain injury (TBI)
is very critical as it is largely unpredictable depending upon
the nature of the injury. Rehabilitation process and recovery
time also varies, as it takes months and years, depending upon
the assessment of treatment, mental and physical conditions and
strategies. Due to non-cooperative behaviour of patients, and
increase in negative emotional expressions it is very beneficial
to evaluate these expressions in a contactless way, and perform
a rehabilitation physiotherapy, cognitive or other behavioral
activities when the patient is in a positive mood. In this paper
we have analyzed the methods for facial features extraction for
TBI patients to determine optimal time to have aforementioned
rehabilitation process on the basis of positive and negative facial
expressions. We have employed a deep learning architecture
based on convolutional neural network and long short term
memory on RGB and thermal data that were collected in chal-
lenging scenarios from real patients. It automatically identifies
the patient’s facial expressions, and inform experts or trainers
that ”it is the time” to start rehabilitation session.

I. INTRODUCTION

Traumatic brain injury (TBI) causes life-long damage to
cognitive, physical, behavioural and social functions. It may
take up to 5 years or more for recovery after TBI [1].
According to International Brain Injury Association (IBIA),
annually one million people suffer from traumatic brain injury
(TBI) only in America whereas same number of people
suffer with TBI in Europe [2]. American Center for Disease
Control and Prevention estimates more than 3.7 million people
are living with long term disability after TBI [3]. During
rehabilitation period, patient has to live in a specialized care
center called neuro-center or care home where the main focus
is on the retraining of activities of daily life, cognitive, social
and physical exercises through a set of protocols. Recovery
targets are based on determination of combination of cognitive,
behavioral and physical shortfalls. It is seen that rehabilitation
activities are performed daily on set time table of neuro-center,
regardless of mental conditions of subject. This leads to more
time expensive training with less result oriented outcome.

There is high urgency of fast and accurate rehabilitation
process so the TBI patients have to spend less time in care
centers or have to suffer less with limited independence and
low quality of life. Caregivers, trainers or experts dealing with
TBI patients face severe difficulty in performing rehabilitation
activities as the patients have limited or reduced ability to
perceive social and interaction signals [4]. In addition to that
there is relative increase in negative emotions like depression,

anger, anxiety, sadness, verbal or physical aggression and lack
of social communication after TBI [5][6]. Extra consideration
and care need to be made while interacting with these patients.
Experts and trainers believe that with assessment of impact
of injury to positive and negative emotions, caregivers can
provide more accurate and faster rehabilitation services[7].
Goal and activity setting, for brain injury rehabilitation by
involving patients emotional states, increase the chances of
faster recovery with broader aspects[6]. It will provide flexi-
bility to staff to work around with many more patients at the
same neuro-center in less time.

Experts are putting emphasis on implementing Computer
Vision (CV) techniques in health care sector as population
is growing, so as the number of brain injured patients.
Therefore, automatic diagnosis of mental and physical health
states through unobtrusive computer vision techniques by
using facial features has rapidly increased since past decades
[8][9][10]. The fundamental approach for utilizing these CV
techniques is to diminish the errors by human assessment.
Furthermore, these approaches are cost effective as compared
to medical examination by physicians or doctors, and can
provide continues monitoring of the patients.

Existing CV techniques for facial expression recognition
(FER) systems are mostly designed and implemented for
healthy people. However, TBI patients’ emotional states are
quite different from healthy people as they have high degree of
imbalance of six common emotional expressions accompanied
by reduced muscle movement or paralysis. The database estab-
lished for TBI patients for FER described in our previous paper
[5], shows that it is very difficult to have all six expressions.
Therefore, in this paper we suggest to classify the facial
features into two emotional states either positive and negative.
If patients are found to be in a positive mood, the caregivers
are alarmed to start the rehabilitation. Furthermore, we do
bimodal analysis of facial images in both the color RGB and
thermal modalities. To do this, we have expanded our previous
database of [5] by including more TBI patients. Experts
and psychologists have been asked to help us annotating the
collected data. They characterized positive expression as smile,
laugh, surprise and few unique neutral expressions, while
fear, disgust, anger, sad, stress and fatigue are categorized as
negative expressions, sometimes additionally associated with
lips trembling, teeth grinding and frequent eye blinking[11]. In
case of TBI patients, negative expressions are more frequent as
compared to positive ones. Our obtained experimental results
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using deep learning techniques show that the two employed
modalities can complement each other on classifying patients
status to positive or negative.

In terms of methodology, contributions by [12] and [13] are
probably most close to our method but these systems work
well for healthy people in controlled environment. Moreover
these systems have luxury of data sets where subjects were
cooperative with no or less pose variation, minimum occlu-
sions and high quality images unlike with TBI patients. As
described in our previous paper [5], our database in [5] was
established with Face Quality Assessment (FQA) but with
only contained RGB images. In the current paper, we have
improved the database with both RGB and thermal images
with additional subjects and more pre-processing techniques
like face frontalisation. We have verified the proposed system
with real data of TBI patients collected in real environment
at neuro-center where these TBI individuals are looked after
24/7.

The rest of this paper is organized as follows: The related
work on FER are reviewed in the next section. Section III
describes the new database including data collection and
pre-processing techniques. Section IV describes the proposed
methodology for facial feature extraction and expression
recognition. Section V presents the results obtained from the
experiments. Finally, Section VI concludes the paper.

II. RELATED WORK

Current FER system can be categorized on the basis of
methods used for feature extraction and classification. Our
main focus is on the methods involving Convolution Neural
Networks (CNN) or other deep learning approaches as they
provide state of the art results for, e.g., face recognition [14]
[15] [16], facial expressions recognition [17] [18] [19] [20]
[21] [22] [23] [12] [13] and emotional states identification
[24] [25] [26] [27]. Handcrafted features such as Local Bi-
nary Pattern (LBP), SIFT, Local Quantized Pattern (LPQ)
and Histogram of Oriented Gradients (HOG) applied in [28]
[29][30][31][32] are outperformed by CNN based deep neural
networks despite their low computational cost.

In [17], Tang proposed deep CNN along with Support Vec-
tor Machines (SVM) and achieved state of the arts results for
FER with 1st prize in FER-2013 competition. In 2014, Liu [19]
performed three functions- feature learning, feature selection
and classification in unified manner through Boosted Deep
Belief Networks (BDBN). This method worked exceptionally
well even for extremely complicated features from facial
image. [22] used DBN models to overcome the limitations of
linear feature selections. Yu and Zang [20] in 2015, presented
their work for Emotion recognition in Wild challenge for
image based static FER. They have applied multiple deep CNN
with random initialization of each network and minimized
likelihood and hinge loss. Their results surpassed the challenge
baseline significantly. In year 2017, [13] exercised CNN to
learn features from VGG-Faces and integrated with Long Short
Term Memory (LSTM) to gain the temporal information. This
approach was further improved by [12] who applied deep CNN
for features classification into expressions and feed the system
with super-resolved facial images.

III. TBI PATIENT DATABASE FOR FER

A. Data Acquisition

To analyze facial expressions, data is collected in three pre-
specified scenarios from seven TBI patients in two modalities:
RGB and Thermal. Pre-specified scenarios in data collection
are maintained to have reliable data for further use. Those
scenarios are: 1) cognitive activity 2) physiotherapy and 3)
social communication. These scenarios are selected after con-
sulting many experts and care givers, who are working on
rehabilitation of TBI individuals in Denmark. On contrary to
healthy people, as mentioned in [5], data acquisition task is
quite complicated due to extreme behavioural responses, ver-
balization, physical aggression, impaired reasoning, reduced
cognitive skills along with frequent pose variations.

Ilyas et al. [5], collected RGB database by Axis RGB-Q16
camera with resolution of 1280 x 960 to 160 x 90 pixels at
30fps (frames per second) and applied pre processing tech-
niques of face detection, FQA, (Supervised Decent Method)
SDM for landmark detection and tracking before logging into
a face log. We have operated with a Logitech camera as well
to record the starting and ending time stamp of particular
expressions. Along with RGB, we have gathered thermal
images of TBI subjects with Axis Thermal-Q1922 camera with
focal lens of 10 mm. RGB cameras are prone to difficulties
in challenging conditions like shadows or when subject are
obscured with complex background. Thermal cameras, on
the other hand, can provide addition information of a scene.
Thermal and RGB imagery are synchronized with the help of
time stamps and annotation are made in sequence of facial
expressions. Both RGB and thermal images are collected
with same 30 fps. Furthermore, homography estimation is
employed for image registration by determining homography
matrices from RGB to thermal by [33].

TABLE I
DATABASE OF TBI PATIENTS WITH ACTIVITY PARTICIPATION

Subjects Number
of Sessions

Activities Participated

Cognitive Social Comm Physiotherapy

Subject A 7 Y Y Y

Subject B 5 Y Y Y

Subject C 5 Y Y Y

Subject D 7 Y X Y

Subject E 3 Y X X

Subject F 4 Y Y Y

Subject G 3 X Y Y

B. Database Structure

Data is collected from seven TBI patients in 34 sessions
on the above mentioned three pre-specified scenarios. Few
subjects did not take part in all activities, details are described
in Table I. Two categories of expressions are recorded: Positive
Expression (PE) and Negative Expressions (NE). PEs are
smile, laugh, surprise and few unique neutral expressions,
while NEs are fear, disgust, anger, sad, stress and fatigue. We
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Fig. 1. CNN+LSTM based deep learning architecture for both modalities to exploit spatio-temporal information for FER.

have got 861 video events, each of maximum 5 seconds in
length.

IV. THE PROPOSED METHODOLOGY

This section presents the architecture of the intended ap-
proach for FER analysis of real TBI patient in realistic
environment. We have employed the same method as followed
in [5] but employed new pre-processing technique of face
frontalization because of large pose variation. We tested the
deep learning method of [5] on both modalities, with early and
late fusions. Facial expressions are recognized by employing
CNN (to use spatial features) and linking with LSTM to utilize
spatio-temporal attributes of RGB, thermal and fused RGB-
thermal modalities. The block diagram of the proposed method
is illustrated in Figure 1. The steps of the proposed system are
further explained in the following subsections.

A. Pre-Processing

Firstly, the face is detected, and facial landmarks are iden-
tified and tracked using [34] from a synchronized input video.
TBI patients have large pose variations so to avoid loss of
information, the posed faces are rotated using a frontalization
algorithm. For face frontalization, landmarks are calculated
with arbitrary facial positions and by finding inverse of the
transpose matrix, the face is frontalized. In next step, face
cropping is done in RGB modality, and associated faces
in thermal modality is cropped by applying a homography.
Homography is a special technique that allows geometric
transformation of fixed points from one plane to another. In
this case, RGB and thermal planes are homo-graphed with
subject face. To remove erroneous detection and ensuring high
quality of images, face quality assessment is applied before
feeding the faces into the CNN pipeline.

B. CNN + LSTM Architecture

After the pre-processing of the data, it is fed to 2D-CNN
for training purpose for mood recognition based on PE and
NE. This network is fine tuned by VGG-16 face model [35]
for spatial feature extraction. CNN parameters are initialized
randomly and through back propagation using gradient descent
its weights are adjusted. Thermal data is also fine tuned
with pre-trained VGG-16 face (RGB) model. CNN deals with
frames in isolated manner. For capitalizing on relation with
time, special Recurrent Neural Network (RNN) called LSTM

is employed. LSTM is gate controlled network with input
(i), output(o) and forget (f ) gates. LSTM gates holds the
input information as long as its forget gate is not triggered
to acquire the temporal information between frames for said
purposes. These gates control the flow of instructions by point
wise multiplication and sigmoid functions σ, which bound the
information flow between zero and one by the followings:

i(t) = σ(W(x→i)x(t) +W(h→i)h(t− 1) + b(1→i)) (1)

f(t) = σ(W(x→f)x(t) +W (h→ f)h(t− 1) + b(1→f)) (2)

In these equations, W are weights associated with activated
neurons for particular input i. Where as σ squashes the value
of activation between the range of 0 and 1

z(t) = tanh(W(x→c)x(t)) +W(h→c)h(t− 1) + b(1→c)) (3)

c(t) = f(t)c(t− 1) + i(t)z(t), (4)

o(t) = σ(W(x→o)x(t) +W(h→o)h(t− 1) + b(1→o)) (5)

h(t) = o(t)tanh(c(t)), (6)

where z(t) is the input to the cell at time t, c is the cell, and
h is the output. W(x→y) are the weights from x to y. In the
classification, LSTM finally provides a decision score for the
expression recognition.

C. Fusion Scheme

In order to analyze the ability of both modalities in FER
applications, two approaches were employed: 1) data level
fusion (early) 2) feature level Fusion. In the first approach both
modalities are combined into data array for feature learning
through CNN. In the second method, both RGB and thermal
imagery features are fed separately into deep learning system
for feature learning and combined together as input for second
classifier (LSTM) for final output. Block diagram of both
modalities can be seen in Figure 2.

V. EXPERIMENTAL RESULTS

We demonstrate the results in the following contexts:
a) Classification of six basic expression groups in both early

and feature level fusion scenarios to evaluate the performance
of CNN+LSTM based FER

b) PE and NE classifications before and after face frontal-
ization on all individual modalities and fusions.
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TABLE II
RECOGNITION ACCURACY OF PROPOSED METHOD IN DIFFERENT CONTEXTS

Confusion Matrix % RGB Non-Frontal RGB Frontal Thermal Early Fusion [13] Feature Level Fusion

PE NE PE NE PE NE PE NE PE NE PE NE

Positive Expression (PE) 0.75 0.17 0.86 0.15 0.69 0.25 0.84 0.14 0.79 0.12 0.86 0.11

Negative Expression (NE) 0.21 0.71 0.11 0.87 0.21 0.65 0.16 0.79 0.1 0.82 0.09 0.89

Recognition Accuracy (%) 79.34 86.93 74.45 84.39 87.97 89.74

Fig. 2. Block diagram of early and Feature Level Fusion of modalities for
FER.

TABLE III
CONFUSION MATRIX BY EARLY FUSION OF MODALITIES FOR 6 BASIC

FER.

Neutral Happy Angry Sad Fatigued Surprised

Neutral 0.77 0.03 0.02 0.07 0.07 0.01

Happy 0.04 0.71 0.02 0.03 0.05 0.16

Angry 0.04 0.02 0.81 0.09 0.03 0.02

Sad 0.07 0.01 0.05 0.76 0.13 0.01

Fatigued 0.09 0.01 0.09 0.1 0.55 0.11

Surprised 0.07 0.14 0.1 0.02 0.06 0.56

First we produced results of positive and negative mood
identification (based on PE and NE) without employing face
frontalization (FF) and then with face frontalization. It is
seen in table II column 1-4, after FF recognition accuracy
is increased to 86.93 percentage from 79.34. In second case,
we trained our system for thermal data, true positive and true
negative are 69 and 65 percentage with high miss classification
rate of 23.74 percentage. Overall recognition accuracy is
achieved up to 74.45 percentage. In next stage we combined
both RGB with FF to thermal data in early fusion scheme and
obtained accuracy of 84.39 percentage for mood recognition.
We also employed early and feature level fusion to analyze the
results for 6 common facial expressions in Table III and Table
IV. In both cases, fatigue and surprise have less recognition

TABLE IV
MCONFUSION MATRIX BY FEATURE LEVEL FUSION OF MODALITIES FOR 6

BASIC FER.

Neutral Happy Angry Sad Fatigued Surprised

Neutral 0.77 0.03 0.02 0.07 0.07 0.01

Happy 0.04 0.71 0.02 0.03 0.05 0.16

Angry 0.04 0.02 0.81 0.09 0.03 0.02

Sad 0.07 0.01 0.05 0.76 0.13 0.01

Fatigued 0.09 0.01 0.09 0.1 0.55 0.11

Surprised 0.07 0.14 0.1 0.02 0.06 0.56

accuracy due to less available data. If we compare table II
with table III and IV, we can see that accuracy of system is
increased for positive and negative expressions as compared
to all 6 expressions. In the next stage we employed the [13]
system on our database II. It is observed that its accuracy
is 87.97 percentage much lesser than [13] 97.2 percentage,
when he implemented on CK+ database. In last stage, we em-
ployed the feature level fusion and achieved 89.74 percentage
of accuracy. By feature level fusion, despite computational
expensive surpassed other state of art methods for positive and
negative expression recognition. That shows that our system
is producing competitive results with challenging data sets.

VI. CONCLUSIONS

Mood recognition is important task for rehabilitation and
care centers. In this work we have faced the challenge of
mood recognition of TBI patients rather than facial expression
recognition for healthy people. In case of TBI individuals, ex-
traction of all expression is very complicated and its dependant
to patient disability and FER did not provide good results [5].
However, we recognized the mood of patients with accuracy
of 86.93 percentage that is very close to [13] system when
implemented on TBI patient database. So this system can help
physiotherapist and trainers in fast rehabilitation process after
recognizing the positive mood of the patient. Furthermore,
we applied early and feature level fusion to enhance the
recognition rate of the system. Our system results can be
improved further by employing 3D face frontalization. Even
though the results are encouraging, efforts are still in progress
to provide the robust solutions to deal with real time and
environment challenges like real time computation or patient
positioning.
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