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Abstract—Optimum design of the weighting factors for a multi-
objective cost function is one of the major challenges of Finite-Set
Model Predictive Control (FS-MPC) operated power electronic
converters. Especially for multi-level topologies, where multi-
objectives must be included in the cost function to ensure a safe
operation of the converter, the complexity of the optimization
problem is rapidly growing with each new objective included in
the cost function. In this paper a new approach for design of the
weighting factors for a three level neutral point clamped (NPC)
converter using artificial neural network (ANN) is proposed. The
ANN is used as a surrogate model of the detailed converter model.
In the first step a detailed converter model is simulated for
different weighting factor combinations. From the simulations
obtained performance metrics (e.g. total harmonic distortion
(THD), average switching frequency, DC-link voltage balance)
are used to train the ANN. Once the network is trained, it can be
used to estimate the performance metrics for any combination
of weighting factors. By defining a fitness function using the
metrics, weighting factor combinations that optimize the function
are found to be very fast. The design is also validated on an
experimental set-up, where the measured performance metrics
are compared to the ones predicted by the ANN. It is concluded
that the results match very well with a difference being below
10%.

I. INTRODUCTION

Due to the increase of computational power of micropro-

cessors a large number of advanced control algorithms for

power electronic converters has been proposed over the past

years. New algorithms are aiming to overcome the limitations

of the well known classical control algorithms based on linear

cascaded loops. Especially for multilevel converter topologies

like neutral point clamped (NPC) converters, algorithms that

can easily include multiple objectives are becoming attractive

alternatives. Finite set model predictive control (FS-MPC)

is one of them and it gained the popularity because of

a straightforward inclusion of the objectives and a simple

implementation [1]. Using the discrete model of the system,

future values of the system voltages and currents are calculated

for all possible converter switching combinations. The desired

behavior of the converter is defined through a cost function

and the balance of the objectives is set by weighting factors.

How to find the optimum weighting factor values is still

an open research question [2]. The problem is not trivial

as a trial and error approach can be very time consuming.

There have been several attempts to solve this issue and

some of them even proposed to remove the weighting factors

[3]–[5]. In [3] it must be noticed that with the removal of

the weighting factors, there still remain coefficients in the

cost function that are chosen by a heuristic approach and

the approach in [4] is only suitable for systems where there

are no conflictive objectives. One of the first proposals to

reduce the time consumption was to use the branch and bound

search [6], but the approach was still too empirical. In [7],

[8] methods for online adaptation of the weighting factors

were proposed. However, an online approach could impose

a large computational burden for evaluation of complex cost-

functions. Another attempt was made using a genetic algorithm

optimization to find the two optimum weighting factors [9].

The drawback of this offline method is that each design

objective needs a new set of simulations.

A good defined approach for weighting factor design should

offer the user a way to easily obtain an optimum system

performance for a design criteria like low THD, low switching

frequency etc. and not present a heavy computational burden

for the algorithm application. In this paper we are proposing

to use artificial neural networks (ANN) to automate this

procedure and to obtain the optimum weighting factors. The

method is used offline and does not require any modifications

of the cost function nor is it increasing the computational

burden. Once the ANN is trained it can be used to find the

optimum weighting factors for any design criteria and the

result will be calculated in just a few seconds. The training

data collection from a detailed simulation model can easily

be parallelized and automatized. Therefore the execution on

a multi-core computer can be very fast. The collection of the

training data needs to be performed once and not several times

like in [9] if a different design objective is selected. The criteria

for the weighting factor design is defined in a fitness function

using the performance metrics, which are chosen depending

on the converter application and topology e.g. for the two-
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level voltage source converter topology the THD of the output

voltage or current and switching frequency could be sufficient

but for the multilevel topologies like NPC, the balance of the

DC-link voltages should also be included.

The paper is structured as follows: in the first part the system

model along with the control algorithm is introduced. Section

III explains the proposed ANN based weighting factor design

method and Section IV presents the application on a 3L-NPC

converter. For the obtained weighting factor combinations,

ANN performance metrics, detailed simulation model metrics

and metrics from experimental results are compared. At the

end of the paper conclusions and future work aspects are given.

II. SYSTEM MODEL

The FS-MPC algorithm is using the system model of the

configuration shown in Fig. 1 to predict the behavior of the

system for all 27 possible switching combinations in a 3L-

NPC converter. The presented configuration is typically used

for Uninterruptible Power Supplies (UPS) where the main

objective lies on high quality of the output voltage. In every

sample step new measurements of the filter and DC-link

capacitor voltages and filter currents are obtained to calculate

the system predictions using the differential equations which

capture the DC and the AC side dynamics of the system.

On the DC-side predictions of the DC-link capacitor volt-

ages and charging currents are calculated using the following

equations:

vdc1,2(t) = Cdc1,2
didc1,2(t)

dt
(1)

idc1,2(t) = idc(t)∓
∑

x=a,b,c

H1,2x · ifx(t) (2)

where vdc1,2(t) are voltages across the DC-link capacitors

Cdc1,2 and idc1,2(t) are the respective charging currents.

if abc(t) are the inverter phase currents and idc(t) is the DC

source current. H1x and H2x are indicator functions with the

following logic: H1x will return 1 if the phase leg x ∈ a, b, c
is connected to Vdc/2 while H2x returns 1 if the phase leg is

connected to −Vdc/2, otherwise the function values are 0.

On the AC side LC output filter equations in the stationary

αβ frame are used to predict the filter voltages and currents:

vi αβ(t) = Lf
dif αβ(t)

dt
+ vc αβ(t) (3)

if αβ(t) = Cf
dvc αβ(t)

dt
+ io αβ(t) (4)

where io αβ are the load currents, vc αβ and vi αβ are filter

and inverter output voltages, Lf and Cf are filter inductance

and capacitance. Using the Euler forward method as presented

in [10] the equations are discretized and used to calculate

the future states of system voltages and currents. For a safe

operation of the 3L-NPC converter in this configuration two

objectives must be included in the algorithm cost function:

minimization of the reference tracking error and neutral point

voltage balancing (gdc). In this example which will further

be used for application of the ANN weighting factor design
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Fig. 1. Schematics of a 3L-NPC converter system for UPS.

approach, two additional terms will be included in the cost

function: a derivative term to further improve the reference

tracking by taking into account the heading of the capacitor

voltage trajectory as demonstrated in [10] and minimization of

the switching frequency (gsw). The latter part is achieved by

comparing the previous Sx(k−1) and current Sx(k) switching

state for all converter phase legs x ∈ a, b, c. These objectives

will be included in the algorithm as follows:

g = (v∗cα − vPcα)
2 + (v∗cβ − vPcβ)

2 + λd · gd + λdc · gdc
+λsw · gsw (5)

gd = (iPfα − ioα + Cf · ωref · v∗β)2 + (iPfβ − ioβ −
Cf · ωref · v∗α)2 (6)

gdc = (vPdc1 − vPdc2)
2 (7)

gsw =
∑

x=a,b,c

|Sx(k)− Sx(k − 1)|, (8)

where vPcαβ , iPfαβ and vPdc1,2 are the predicted values of the

filter voltage, filter current and DC-link voltages; and v∗c αβ
are the reference values of the filter voltage. As it can be

noted three weighting factors are present in this cost function:

λd,λdc and λsw and each of them defines the importance

of different objective. To illustrate the complexity of the

optimization problem, if for example the weighting factor

range for the three factors is chosen from 0 to 5 with a step of

0.5 to cover the practical design range, 11 different values are

possible for one factor which in total results in 1331 different

combinations. It is clear that if for example a branch and

bound method [6] would be used to solve this optimization

problem the process would be too time consuming and that a

non-empirical method should be used to solve this problem.

Therefore, in the following section a solution for this problem

based on ANN will be presented. We don’t expect a higher

problem complexity because the highest number of objectives

in the cost functions, presented in the recent publications for

power electronics applications, is rarely larger than two [2].



III. WEIGHTING FACTOR DESIGN

In this section the concept of weighting factor design using

the ANN will be explained. Three stages in the process of

obtaining the optimal weighting factors can be noticed:

1) Performance metrics data set collection from a detailed

simulation model.

2) ANN training using the obtained data sets.

3) Fitness function minimization using the trained ANN

model.

In the first stage for numerous weighting factor combi-

nations λd,λdc and λsw the performance metrics: THD of

the filter voltage, average switching frequency fsw avg , DC-

link capacitor voltage ripple vdc rip and error vdc error are

obtained from the simulations of the detailed system model.

This step can easily be executed on a multi-core computer

using the parallel computing tool in MATLAB to speed up the

process. It is important to notice a trade-off between the future

ANN model precision i.e. the number of data samples and

the execution time. More samples will lead to a more precise

model, however more computing resources will be needed to

obtain the data in a reasonable time.

The data-sets are then normalized and used in the next

step to train the ANN, which afterwards can be used to

quickly obtain the performance metrics for any combination

of the weighting factors. The speed of this process is several

magnitudes higher compared to the simulations of the detailed

model. Also these two steps need to be done just once for the

set-up model parameters. Because of the static relationship

between the input and output data, a feed-forward type ANN

was selected. In Fig. 2 an example of a feed-forward ANN

is shown. Three types of layers can be identified from the

figure: input layer which has 3 neurons, a hidden layer and

an output layer with 3 neurons. In every layer the neurons

process the information received from the lower layer. The

outputs of a neuron is calculated using the outputs of all layers

below multiplied by associated weights and summed together

with a bias term. The process of adjusting the parameters

of the ANN (weights and bias terms) is done using back-

propagation algorithm [11]. This algorithm is implemented in

standard softwares like MATLAB’s Neural Networks toolbox,

which will be used in the next section. For more information

about the feed forward ANN the reader is referred to the

following references [11], [12]. In the last step of the design,

the trained ANN is used to evaluate the user-defined fitness

function fANN . The fANN is a combination of performance

metrics, where the user defines the preference of the low THD,

low switching frequency or low DC-link voltage ripple.

IV. APPLICATION ON A 3L-NPC CONVERTER

In this section the application of the ANN based weighting

factor design will be presented on a 3L-NPC converter for

UPS application. For the application on a 2L-VSC topology

the reader is referred to [13] where more information is given

about which metrics to use for this application and how the

ANN can be structured. Using MATLAB/Simulink a detailed

Fig. 2. Schematics of a feed-forward artificial neural networks

(ANN) structure in Fig. 1.
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showing the relationship between the training data (o) and

predicted data (blue line).

simulation model with the parameters presented in the Table I

was created. The parameters are equivalent to the experimental

set-up, which will be used for design validation. Converter

dead time Td = 3 μs and one step computational delay were

also included in the simulation model in order to reproduce

the conditions in the experimental set-up.

TABLE I: System parameters used for testing.

Parameter Value

DC-link voltage (VDC ) 520 V

DC-link capacitors (Cdc1,Cdc2) 4 mF

Output filter inductance (Lf ) 2.4 mH

Output filter capacitance (Cf ) 15 μF

Load resistance (Rload) 60 Ω

Reference voltage and frequency (V ∗
c , f∗

vc
) 230 V, 50 Hz

Sampling time (Ts) 25 μ s



A. ANN training

For a range from 0 to 5 with a step of 0.5, weighting

factors λd,λdc and λsw were varied in every simulation.

Altogether 113 = 1331 different combinations were simulated.

The duration of each simulation was set to 0.5 s. During the

testing it was noticed that if a shorter simulation time was

used some initial transients in the DC-link capacitor voltages

were captured, which resulted in very random data-sets of the

measured DC-link ripple and error. Consequently the precision

of the trained ANN was lower. Therefore, the measurements

from the time interval 0.3 to 0.5 s (10 cycles) were used for

further evaluation. In this period Fast Fourier Transform (FFT)

algorithm from the SimPowerSystems toolbox was used to

calculate the THD of the filter voltage and the DC-link voltage

error was selected to capture the performance of the neutral

point balancing.

The average switching frequency was calculated using the

following expression:

fswavg
=

8000∑

i=1

|ΔSa(i)|+|ΔSa(i)|+|ΔSa(i)|
12

, (9)

where ΔSx(i) represents the number of switches that changed

the switching state in each phase leg. The summation is

performed until 8000 as this is the number of samples in the

time interval with the sample time Ts = 25μs. The simulations

were performed using the parallel computing toolbox from

MATLAB. Because the duration of simulation was long, a

multi-core computer with 24 cores was used to obtain the

results.

In the next step the obtained data sets were used to train the

ANN with 3 neurons in the input layer, 2 hidden layers with

10 and 5 neurons and the output layer with 3 neurons. The

training was performed using the Neural Networks toolbox

in MATLAB and the training performance can be seen in

Fig. 3. The toolbox provides several plots that can be used to

evaluate the performance of the training. One of those plots is

the regression plot, which shows the relationship between the

output and input data. It can be observed that the data points fit

the linear regression line. Another indicator of the relationship

between the outputs and targets that the toolbox provides is the

R value, which is close to 1 meaning the relationship is almost

linear. The ANN training is therefore successfully completed.

B. Fitness functions

In the next step a fitness function using the performance

metrics can be defined. To demonstrate the approach, follow-

ing two fitness functions will be used:

fANN = THD2
ANN + 1/v2dc ripANN (10)

fANN = THD2
ANN + 0.5fswANN + 1/v2dc ripANN (11)

The objective in the first fitness function is to find the optimum

weighting factor combination to produce the minimal output

voltage THD and a good balancing of the DC-link voltages

vdc 1,2 regardless of the converter switching frequency. In the

(a) Plot of the fitness function (10) and found optimal weighting
factors: λd = 5,λdc = 1 and λsw = 0.

(b) Plot of the fitness function (11) and found optimal weighting
factors: λd = 2.35,λdc = 5 and λsw = 5.

Fig. 4. Results of the ANN training for the two fitness

functions and system parameters in Table I.

second fitness function a third objective is added, minimization

of the switching frequency fANN .

The results are shown in the Fig. 4a and Fig. 4b with the

following optimum weighting factors obtained as a minimum

of (10): λd = 5,λdc = 1 and λsw = 0; λd = 2.35, λdc = 5
and λsw = 5 for the (11). The minimization of the fitness

function (10) resulted with a λsw = 0, which is exactly

what was expected as we didn’t include the fswANN in the

fitness function and gave the higher priority to achieve a low

THD. This can also be noticed in the selection of the λd

which was selected as maximum of the weighting factor range

and also in the plot of the fitness function in Fig. 4a where

all combinations with the switching frequency minimization

objective produced a large fANN value. It is important also

to notice that the vdc ripANN always needs to be included in

the fitness function as otherwise combinations that have a low

THD and highly unbalanced vdc 1,2 may be selected and in the

extreme cases even the options without any balance (λdc = 0).

In Fig. 4b for (11) a very high value of the fitness function

was calculated for combinations with a high λsw and low λdc

while the combinations of higher values resulted in minimal

fANN values. A high λdc was computed as a result of DC-

link balancing and minimization of switching frequency being

opposing control objectives. Therefore, if we want to obtain a

low switching frequency we also need to increase the weighing

factor of the DC-link balancing objective to get a good balance

of the DC-link voltages. In case the λsw is much larger than

the λdc it is not possible to safely operate the system because

the DC-link balance can not be established. Compared to the
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(b) Voltage reference tracking error waveform in αβ reference plane
with weighting factors λd = 2.35,λdc = 5 and λsw = 5 that
minimize the fitness function (11).

Fig. 5. Reference tracking performance of the detailed

Simulink model for two weighting factor sets.

first case, λd = 2.35 was here selected in the middle of the

range as now the fitness function needs to find a combination

of weighting factors that will produce a good balance of low

THD and low switching frequency.

The voltage reference tracking error waveform in αβ refer-

ence plane for the obtained weighting factor combinations for

the fitness functions are presented in the Fig. 5a and Fig. 5b

while the metrics predictions of the ANN for these weighting

factors and metrics from a detailed simulation model can be

found in Table II. It can be seen that the error for the ANN

predicted THD is below 3.5% and the fsw is below 1.5%.

C. Experimental validation

The weighting factor combinations were also validated on

a Semikron 3L SKiiP28MLI07E3V1 Evaluation Inverter [14]

with the control algorithm implemented on a MicroLabBox

DS1202 PowerPC DualCore 2 GHz processor board from

dSpace shown in the Fig. 6. In Fig. 7 and Fig. 8 the output

filter voltage and the voltages on the two DC-link capacitors

are shown. It can be noticed that both combinations produced a

very good balancing of the DC voltages. From Table II a very

good match with the experimental results can be observed.

More weighting factor combinations were also compared and

the difference to ANN was always below 10%.

V. CONCLUSION

A new method based on ANN for design the weight-

ing factors for a FS-MPC controlled 3L-NPC converter was

Fig. 6. 3L-NPC experimental set-up.
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Fig. 7. Experimental results for the fitness function (10).

presented. Once trained ANN can very fast produce opti-

mum weighting factor combinations for user-defined fitness

functions. The approach is applicable to various converter

applications. It does not impose an additional computational

burden as the selection of the weighting factors is performed

offline nor does it change the structure of the cost function. The

process of collecting the data through the detailed simulation

model can be automated and paralleled in order to save time.

The predicted response from the ANN matched very well

the detailed model results (less than 5% error) and a good

match with experimental results was also observed (less than

10% error). In the future work the performance of the ANN



TABLE II: Comparison of metrics from ANN, detailed model and experimental set-up.

fANN Metrics ANN results Detailed model results Experimental results

THD2
ANN + 1/v2dc ripANN THD 0.79 % 0.79 % 0.86%

THD2
ANN + 1/v2dc ripANN fsw 6 kHz 5.8 kHz 5.5 kHz

THD2
ANN + 1/v2dc ripANN vdc error < 1 V/period < 1 V/period < 1 V/period

THD2
ANN + 0.5fswANN + 1/v2dc ripANN THD 1.26.% 1.3% 1.23%

THD2
ANN + 0.5fswANN + 1/v2dc ripANN fsw 2.2 kHz 2.19 kHz 2.3 kHz

THD2
ANN + 0.5fswANN + 1/v2dc ripANN vdc error < 1 V/period < 1 V/period < 1 V/period

(a) Filter capacitor voltage vc abc.
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(b) DC-link capacitor voltages vdc1,2.

Fig. 8. Experimental results for the fitness function (11).

could be improved by training the ANN using the metrics data

obtained from experiments. Then even a closer match with

the experimental results could be achieved. It would also be

interesting to explore in the future work if other types of ANN

could produce an even better match to the detailed simulation

model.
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