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body with a depth-integrated approach — hence the term ‘unified’. Recently, a similar setting v 1s rigorously analyzed
by Lannes [29]. Lannes extended the work of John [27] to include nonlinear contributions 2 .o ‘~rived semi-analytic
nonlinear solutions for the wave-body problem using the nonlinear shallow water equations. 'Thus, the study of Lannes
mainly kept within the traditional shallow water limit. The ‘roofed’, congested shallow w .cer ows are discussed also
in [23].

In this study we propose a depth-integrated unified Boussinesq model for nonline. - wave “ody interaction based
on the approach introduced by Jiang [26]. Adapting the original idea in terms of governing ~auations and discretiza-
tions, we employ a spectral/Ap finite element method for the simulation of nonline .r an ! Yispersive waves interacting
with fixed and heaving bodies. In particular, we employ the continuous spectral;, ~ e’ :-ment method [28] inside each
domain, and implement flux-based coupling conditions between domains in '“ne w..™ the discontinuous Galerkin
spectral/hp element method [8]. This results in a new efficient and accurate nodel t. 1t simulates the wave propaga-
tion and the nonlinear interaction of waves with bodies. However, as all mod. 's based on Boussinesq-type equations,
the model is limited to shallow and intermediate depth regimes. The v~_ of specual/hp elements give support for
the use of adaptive meshes for geometric flexibility and high-order acci rate - pp. yximations makes the scheme com-
putationally efficient. High-order finite element methods for depth-integ.ated v ave models have been presented in
[20, 21, 15, 13, 11, 44].

The current study, which expands and improves the concepts ‘ntroduce. in [18], presents the underlying formu-
lation of the method as well as verification and validation of the numc “cal aodel. Although the model is not limited
to applications in marine renewable energy, the rationale for develop ~¢ a medium fidelity wave-body model is found
in the present state of modelling wave energy converters (V'_-C.,. Loday the industry standard description of the
interaction between waves and WECs is based on models solving “he Cummins equation [9] using hydrodynamic co-
efficients computed from linear potential flow (LPF). The .77 madels are based on the small-amplitude assumption
and they are widely used for their simplicity and efficiency, “.c. see [34]. Thus, the LFP models can not account for
nonlinear hydrodynamic effects which are of importan . =spec ally for survival cases as well as for WECs operating
inside the resonance region. The LPF models over-predi. * t.. nower production in the resonance region unless drag
coefficients are calibrated. Moreover, WEC farms .- ~fte. planned to be placed in near-shore regions where it is
unlikely to have a flat seabed. Hence, waves are expe. “2d to exhibit nonlinear dynamics, as steepening and energy
transfer between harmonics. More recently, Reynolds Averaged Navier-Stokes (RANS) simulations have been em-
ployed for point absorber WECs, e.g. [47, 40 3]. +.ANS is a complete and accurate model with respect to nonlinear
phenomena but computationally very costly. <or exan )le, a simulation with a full sea state for a WEC may require as
much as 150 000 CPU hours per simulatio [19]. *t- resent RANS models are therefore unsuited for the optimization
of single devices, not to mention energy arm . In shallow to intermediate waters, Boussinesq-type models as the one
proposed here, are an intermediate way . »* #eer the efficient but too simple linear model and the complete but too
expensive RANS model.

The paper is structured as fol’bw. In section 1 we outline the governing equations based on the enhanced
Boussinesqg-type equations of Madsen ana sgrensen (MS) [33]. Further, the fluid under the body is defined and it
is illustrated that high-order ter .1s a : negligible in the body domain under the assumption of no rotational degrees
of freedom. The numerical dis. -t sation in space and time is described in section 3. In particular we discuss the
coupling between free surfr .e dom. ~ and the body constrained domain. In section 4 first the model coupling is
verified by means of the n :tho’ of r~anufactured solutions (sections 4.1 — 4.4). Then, the model is validated against
test cases found in literature | actir as 4.6 — 4.7). A heaving box test is presented in section 4.8 and the results from
the Boussinesq model *, compareu to LPF and RANS simulations. A proof-of-concept highlighting the flexibility of
the framework with m 'Itiple bc lies interacting with weakly nonlinear incoming waves is demonstrated in section 4.9.
Finally, the the conclus, s ar found in section 5.

2. Governing E¢ 1ation

We prese. « ... - *he governing equations of the nonlinear wave-body interaction problem. In the proposed unified
Boussinesq app. 7 ch, the domain is decomposed into an outer free surface sub-domain Q,, and a inner sub-domain
that represents the area under the structure, as shown in figure 1. The present work is limited to straight-sided body
interfaces that are assumed vertical at the wave-body intersection. Additionally, only heave motion is considered
here for simplicity. Boussinesq-type models for free surface flows can be derived from the fully nonlinear potential
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Figure 1: 3D Layout of the problem describing the nonlinear wave-body interac.._. in a ¢ ymain decomposition framework.

equations for an incompressible, irrotational and non-viscous fluia . * expan .ing the velocity potential in terms of the
vertical coordinate and integrating the Laplace equation over the w *er ac,. 1. Let Ag, hg and Ay denote the characteris-
tic wave amplitude, characteristic still water depth and characteristic w. "= length. Boussinesq-type equations are then
obtained as an asymptotic approximation in terms of nonlinea. *v (¢ = Ag/ho) and dispersion (u = 27why/Ay). These
asymptotic and depth integrated models have the advantage of redu. ‘ng the original problem to a lower-dimensional
one (R? — R?!), but it comes with an application windo. - th? u.pends on the approximation order of nonlinearity
and dispersion assumed in the derivation procedure [321.
2.1. Free surface domain

The shallow water approximation is relevant o»lv for -ery long waves and, in general, when the dispersion pa-
rameter khy is less than = 7/20, with k = 27/ the “vavenumber and A the still water depth. To account for the
dispersive effects taking place for shorter waves, we consiuer Boussinesq-type models that includes weakly nonlinear
and dispersive effects. In this work we will e’ ... the enhanced Boussinesq-type model proposed by Madsen and
Sgrensen (MS) [33] which can be written (ac suming « >nstant bathymetry) as

d+V-q- 0, (1a)
@ +V-® )+ P =BV - q) - aushiV(AP), (1b)

where d(x, t) is the water depth meas +ed as the height of the water column and ¢(x, ¢) is the mass flux. The mass flux
is simply ¢ = du in which u(x, t) i. the u. ~th-averaged horizontal velocity. The acceleration of gravity is denoted by
g. Please note the use of horizor ... sradient (V) and Laplace (A) operators. In eq. (1b) the total specific pressure is
defined as

P(x,t) = gd(x,1) + I1(x, 7). 2)

Here II(x, ¢) represents the pres: are at the free surface and it is equal to the atmospheric pressure. It is custom to set
the atmospheric pressure ab. *  the “cee surface to zero. The free parameters a5 and B are used to optimize the linear
dispersion relation of tr _ ,ystem , (2]. The parameters are defined in the literature as ayg = 1/15and B = 1/3 + ays
[42] to give an applice ion wind ow of khy = m, for which the error in linear phase velocity is less than 5% with respect
to the exact phase veloc *v of t* ¢ Euler incompressible flow [22]. Note that varying the two parameters we can recover
other long wave e’,aadons. Setting ays = B = 0 we recover the standard nonlinear hydrostatic shallow water (NSW)
model. The NSW model 1 valid only for hydrostatic pressure.
2.2. Body model

As showi . [~ eq. (1) with @y = 0 is also valid in the domain below the body Q,. However, as shown in [32],
under the stanu v . Boussinesq assumption we can derive the MS model valid for every ay. In the inner domain,
IT represents the |. -2ssure on the body surface, which is a priori neither constant nor known. Further, d still denotes
the elevation of the water column but is now restrained by the body geometry and is known. However, in the inner

domain we can prove the following result:
3
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Proposition 1. Under the standard assumption of the Boussinesq theory of
w<l, pPre 3)

and in absence of pitch, roll and yaw, all terms accounting for higher-order dispersive ef >cts 1 the inner domain are
negligible, within the classical Boussinesq truncation of O(u*, i*e, 7).

Proof. Introducing the inner domain nondimensional variables

N h - h t - - d(x,t
R R N S 1 R A e B Ll A e T R Rt
]’lo h() h() ]’lo Sho h()
“)
e u g=di. we-—t—w Po—1 p p=B 4, 9
= , =di, = ) = g = Ms - -
£+/ghy &+/ghg epw&ho h h

where 7 is the instantaneous wave elevation and w the vertical velocity ¢- mpor~nt. The nondimensional MS problem
reads

di+V-§ =0 el &), (5a)
§i— 1’ BV(V - §)) + &V - (@ ®q) + pudVP + @p_ *puV( P) = O, 617, £%). (5b)

From the mass eq. (5)
Vd, +V(V-7, -, (6)

but in the inner domain the water elevation is at the bottom of the vy, therefore d represent the body geometry and
Vd,; = 0 as it is the derivative of a constant value in spac. anu ... dispersion term is zero. To demonstrate that the
term V(AP) = 0, consider the nondimensional momentum eq. 3b) under the Boussinesq assumption eq. (3):

G+ pudVP - Ot e, &%), @)
the variable d = hy + O(e) so we simplify eq. (7) to c. ~ress 1. in the form
G + 0 hgVP = O(u, eu®, £2). ®)
Taking the gradient of the divergence of eq. 3)
V(V - i+ pus V- (hVP) = O, e, %), ©)
for a constant bathymethry, 1o can be m¢ ~ out ne derivation
Y(V - §) + puhoV(AP) = O, e12, &%), (10)

but we know that V(V - §,) = 0, = “ich proves that V(AP) is within the asymptotic error and within this assumption
leads to the conclusion that this .erm .s negligible. O

Thanks to proposition 1, . is pos. *hle to use the NSW model in the inner domain. The total pressure P is evaluated
by taking the divergence o eq. /.1b) with ays = B =0

-V-dVP)=V-q,+V-(V-(u®q)). 11)
Introducing the vertic: | acceler tion a = dy;, and using the continuity eq. (1a) we have
a+(V-q) =0, (12)
and assuming tha all vari: oles are continuous, we can change the order of the space and time derivative
a=-V-(q). (13)

Combining eqs. "«1) and (13), we can show that in both the inner and outer domains the total pressure satisfies the
following equation
-V-(dVP)=—-a+V-(V-(u®yq). (14)

4
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»
»

Figure 2: 1D Layout of the problem describing the nonlinear wave-body in‘ +action in » .omain decomposition framework.

2.3. Boundary and coupling conditions

The coupling conditions between hydrostatic free surface and be 'v domains have been presented in [29]. The
transmission/coupling conditions between the fully non-hyd.. auc tree surface domain and the submerged domain
under the body have not been rigorously formulated in the nonlm. ~r case [29, 30]. Thus, to reduce the complexity
of this coupling we have decided to handle them numeric. 'y 1, . 'icing an intermediate (thin) hydrostatic coupling
layer (denoted by €;) in which the flow is described by the N~ # equations (egs. (21a) and (21b) with ayg = B = 0).
The role of this layer is to introduce a first transition. v *wec * non-hydrostatic and hydrostatic conditions, and a
second between free surface and constrained flow. Note t. at u.e equations of the coupling layer can be found setting
the dispersive term D in eq. (25b) to zero.

The flow in separated domains is coupled through .~ mass flux g and the total pressure P. At the interface
between the body and free surface domains, (x;: v=) € Q; N Q, the coupling conditions at the waterline read

QX 1) = qu(xii, Yii)s (15)

Pi(xii, yii) = Pp(xii, yii)- (16)

where (q;, P;) € Q; and (g5, Pp) € €. Note “at e pressure coupling condition eq. (16) can be expanded and written
also as

g X, yi) = gdp(xgiy yii) + Oy i) (17)

When coupling the two free sur ace 'omains, at (X, Vi) € €, N €y, II(x,, yyy) is zero and the condition states that
the wave elevation and the flow “w'(be equal through the interface

d\(Xi, ywi) = dl(xwl» ywl);

(18)
qW(le3 YWI) = ql(xwl’ ywl)-
On the external bounc iries of « ‘e outer domains (on the far field), we impose the absorption of the wave, thus
dylio = h 5
wli 0 (19)
quioo = 0
2.4. Complet~ model
We introdu. = ! 1e linear operators
L() = (1= BRgV(V),  B3() = dV(l + aushih). (20)
5
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Note that the operator 85(-) contains also the high order component dependent on d. This is possible since the still
water depth iy and the instant elevation d are of the same order of approximation and they ca . v. <ubstituted one with
the other (see in proposition 1).

We have a set of three equations which have to be satisfied

P, +gV-q=0, xeQuUQ,; (21a)

Lpq+V-u®q) +BiP=0, (21b)
1/15,1/3 , Q,,

(ams,B) = a/ /3 + aus) x€ (21c)
0,0), xe Q.

d+V-qg=0,eQ (22a)

-V-@dVP)=-a+V-V-u® ), (22b)

¢+V-u®q) +dVP =0, (22¢)

where the mass eq. (21a) has been multiplied by g such that all the moJ~1s ai- Lolved in (P, ¢) formulation. The main
difference between the free surface domain and the body domain is that in .Y, the total pressure and the free surface
elevation are readily obtained by eq. (21a), automatically satisfying c._ (21b* (which should include high order terms).
On the other hand, in the inner domain €, the relation (22a) acw, s a constraint on the flux divergence, exactly as
in incompressible flow. In particular, this is where the coupline with = dynamics of the body appear. For a purely
heaving body, the vertical acceleration will be determined by tu. 2oplication of Newton’s second law to the body

-

mpd = =i vy . (23)

The hydrodynamic force F), is evaluated integrating thr hydr¢ vnamic pressure IT over the body bottom
N
Fy=p, | linldx, (24)

where p,, is the water density, m;, the mass of the body an. n” is the vertical component of the inward normal vector
to the surface. Eq. (23) is added to the final »’2"" system to account for the movement of the body caused by the
wave-body interaction.

3. Numerical Model

The focus of this paper is to model wavr and wave-body interaction in 2D (vertical plane) using a coupled 1D
system of PDEs. As the domains will he ¢. - oled .ollowing a DG-FEM approach the equations are re-written as a first
order system by introducing auxiliar variables. In the free surface domain, unless otherwise stated, we will solve the
1D MS eqgs.(21)

% +89:,=0; (25a)
g +uq, +dP,=D; (25b)
L = BR}G, + ayshidF ., xeQ,: (25¢)
J—qu=0; (25d)
F-N,=0; (25¢)
N-P,=0. (25f)

where we have mr' »lieu ...c mass eq. (25) by g such that we can use the same set of variables (P, g), through all
the domains. The transit: n domain (¢ € ) is given by eq. (25) with D = 0. In the body domain we solve the non
dispersive 1D NS V syste' 1 (22)

g + (uq)x + dPy =03 (26a)

—wy=—-a+k,, x € Qyp; (26b)

w—-dP,=0; (26¢)

k — (qu), = 0. (26d)
6
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3.1. Spatial Discretization

Consider the domain €, which can represent the any of the domains presented, and a test .unc ‘on ¢ defined in the
discrete space V*
V' =g € LX(Q) : pila € P}, @7

where P7 is the space of polynomials of degree at most p. We propose a spectral/hp ~lemc. * approach to discretize
in space the models presented in section 1. Following a DG-FEM type recipe based on do. ~le integration by parts on
each sub-domain [10, 24], we multiply the eqs. (25) and (26) by ¢ and integrate “ .1 ea 'k domain to obtain the weak
form. However, the systems present non-conservative products, namely the d. te .ns, which are not continuous
over the boundaries from the free surface domains to the body one. The non-conse. ~tive products are handled by
introducing penalty terms consistent with a local linearization of the quasi-li' ear for 1 ot the system [10, 6, 37]. The
weak form of the free surface equations reads:

f piPidx + g f g dx + g f pilglndx = 0, (28a)
Q, Q, 0Q,,NOY

v

f goiq,dx+f <pi(qu)xdx+f cpi[qu]ndx+f @i dPdx + G go,-c?[P]ndx:f ¢;Ddx, (28b)
Q, Q, 90, Q, Jac ,NOQY Q,

W

f p;Ddx = Bh(z, (f 0iGdx + f go;[G]ndx) + onSn;/ | @i dF,dx + f goicf[F]ndx), (28¢)
Q, Q, 090,,N0% \o. 09,00

f iGdx — f iqx — f ¢ilg:1ndx = 0, (28d)
Q, 89,,N90,
f oF — f @iN, — f @i[Nlndx = (28e)
Q. Q, aQ, m?Q,
f oiN — f @iP, — f @i[Plndx = (28f)
Q, Q, 0Q,, man
where n represents the outward pointing normal vector. In general, the integral boundary terms are in the form
L1=7-1 (29)

where f represent a numerical flux throv _h th= bou.dary interface and £~ the value of the function on the boundary
for x inside the domain. Note that the umr .rica’ flux between the domains is often based on an approximate Rie-
mann solver for the advective parts [? J] anu ~ I cal discontinuous Galerkin type [46] or hybridizeable discontinuous
Galerkin [44] for the higher-order t¢ . “<. Here we have used simple central fluxes

A1 B
F=50m+1). (30)
Substituting in eq. (29), we r otain L. iumps between the domains for first derivative terms
1, .,
=50 1), 31

where u* is the values Hn the be undary in the neighbor domain. The coefficient multiplying non conservative terms is
treated taking the averag . ~»' ¢ of the depth on the two side of the boundary

L dt+d
d= . 32
5 (32)
This simple ci. vice auuws to recover the conservative form in the hydrostatic free surface region, as we have exactly
that R
5 2 (d*\
dldl= —-|—=] . 33
-t (%) -
7
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In the same manner, we evaluate the weak formulation in the body domain

f wiq:dx + f wi(qu)dx + f wilqulndx + f @idP,dx + f @-ATPlndx — 0, (34a)
Q N 80,N00 Q 9Q,N00Y,
- f gpiwxdxf pilwlndx = —f piadx + f goikxdxf ilk]ln. (34b)
Qp QN0 Q, Qp QN0
f piw — f @idP, — f ¢id[klndx = 0, (34c)
Q, Qp 0Q,N0QY
f pik — f eilqu)x — f pilqulndx = 0, (34d)
Q, Q 0Q,N00QY,
with the force balance on the body surface
mpa = —mpg +pwf Idx. 35)
Q,

Definition 1. We define as hydrostatic equilibrium, the state
(dy.1, dp(x), P, g, 11, @) = (ho, ap . ghy, v, 0,0), (36)

with dp(x) and hy equilibrium depths under the body and in tiw. *vee surface regions, linked by the hydrostatic equilib-
rium relation

M _ f N 2. (37)
Pw Qs

Proposition 2. The variational formulations eqgs. (28), 5, are exactly well balanced: the hydrostatic equilibrium
eq. (36) is an exact solution of the weak form.

Proof. The main idea of the proof is to show that replaci., the steady state in eq. (36) with condition of eq. (37) in the
variational form, results in an identity 0=0. As i~ =q. (36) all the fluxes and velocities are zero, only the terms related
to variations of the total pressure P may cont (bute tc ‘o form.We look at each domain separately.

In the outer domain, by definition P,, = g.._ and cr astant in time. So eqs. (28b)-(28f) leadtoN = F =G = D = 0.
The only term which may remain is the or ¢ relateu » the jump of the total pressure between the outer domain and the
coupling layer fog oy @i[-Indx. Howe' er, 2, in fie latter we also have by definition P; = ghy, these jumps are also
identically zero.

In the coupling layer P; = ghg 7 A it is constant in time, so only terms which may give a non-zero contribution
are the one related to total pressu.e jum, with the below body region faﬂm 90, ¢i[-Indx. If P, = ghg too, then the
proof is achieved. This is easily < ... from the force balance on the body at steady state. In particular, substituting the
hydrostatic equilibrium eq. (3¢ in tt 2 force balance eq. (35), using eq. (37), one gets to the condition

0=py, f Pydx - p,, f ghodx, (38)

Q, Q.
which must be true inc’ _pendently on the body shape and on the domain size. In particular, this is true if P, = ghg
throughout the inner ¢ »main, w 1ich also satisfies the auxiliary relations eqs. (34c) and (34d). O

To obtain a ful’, .iscrewc model, we now replace the unknowns with a spectral/ip element approximation spanned
by high-order po ynomiai Hasis functions i

Naoy

Feen = g0, (39)
J=0

fj(®) are expansion coefficient of f in the domain Q and Ny, the number of degrees of freedom in the domain
considered. Following the standard Galerkin formulation the test function and the interpolation polynomial are the
8
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3 |
Q b Q b D,+C,, (be
Q Q| D+C, .,
Global ~ B B
Q co | !
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Q, C. D*C,.

e —

Figure 3: Representation of the global first derivativ matrix

same, i.e. ¢ € span{y/;}. In this study we use the abscissas of the Gaw. ~-Legendre-Lobatto quadrature rule to define
the nodal Lagrange polynomials [28]. We introduce then the 1..<s and differentiation matrices, defined as

M,'j = f lﬂ,’l,lljdx, (403)
QY

Qi = fﬂ i )adx + 0.5 (Wiilea, — Yiinlea,. = O S \Wainlea, — Uniilea,. ). (40b)

0= L Yid; (Y )xdx + 0.5(d)y- <¢l¢l lea, — v .\"N|EQY+) —0.5(d), o+ (le//Nleﬂy — YNy |eﬂy+), (40c)

having defined €, the domain of interest, Q) - the do 1ains at its right and left. The first derivative coupled matrices
0 and @ can be written as
Qy - Dy +Cyy + Cyyr

N L . 41
0 =D,+C,, +C,.

In particular D, and D, are the fir ~derivative matrices internal to the domain Q,, C,, and C,, are the coupling
matrices internal to the domain Q, and ¢, - and C,,+ are the coupling matrices that evaluate the value in the domain
Q,+ on the interface 0, N 0Q,+ .. “epresentation of the global Q matrix is presented in figure 3 as an example. The
semi-discrete formulation of ec (22’ reads

M, P+ g0,.19=9, xeQ, U, (42a)
Lpg + () + B5P =0, xeQ,, (42b)
My, s Qn )+ 0P =0, XEQUQ, (420)
- WM,;'G P=-Myla+Q,M,'Qyug), x€Qy. (42d)

where 1, in eq. (“_uy, represents a vector of ones as the acceleration is a scalar variable. The subscripts {w, I, b}
indicates if the n atrices a ¢ defined in the domains Q,,, ©; and Q, respectively. The global discrete linear operator
are defined as

Lz =M, - BhjQ,M,'Q,, B% = Q,, + aus 5 0.M, (.M, Q). (43)

Proposition 3. . e discrete variational form eq. (42) is well balanced: the steady hydrostatic equilibrium in eq. (36)
witha = a = 0, is ¢ cactly preserved.

Proof. Identical to the continuous case in proposition 2 O
9



O©CoO~NOUIAWNER

118

119

120

121

122

123

124

125

126

127

U. Bosi et al. | Comput. Methods Appl. Mech. Engrg. 00 (2018) 1-25 10

Remark 1. The total pressure P verifies the same discrete equation in all domains. In fact, eq. 42d) is a consequence
of the semi-discrete mass eq. (42a) solved in the free surface domains. In the inner domain € j, . "2 satisfaction of the
mass equation Myd; + Qpq = 0 is obtained by imposing it implicitly as a constrain. This nrovides .. 1 exact discrete
consistency between the mass and pressure equations in all domains.

3.2. Time Discretization

In this paper we implement an extrapolated backward differentiation formula of * "~d orv. = (eBDF3). The eBDF3
scheme has the same computational cost of the explicit Euler time integration. (hus, . ~ eBFD3 with spectral/hp
elements method results in a very efficient method in time and space to solve o. ' ave-body interaction problem.
Introducing the notation f" = f(x, "), the time derivative for eBDF3 time inte-....don 15 . xpressed as

B llfn+1 _ 18fn + 9fn—l _ 2fn—2

of 66t et

for constant time steps ¢¢. The nonlinear term are evaluated at time n 4+ 1 %~ a lin‘ ar extrapolation. This extrapolation
is

fe — 3fn _ 3fn—l + fn—2. (45)

The time step 6t is chosen in relation with the mesh dimension ¢: throu_* = standard CFL condition [14]. For the grid
convergence studies, ot is appropriately reduced such that the error 1. “‘me is always dominated by the error in space.
Note that the linear operator By is evaluated with the extrapc. -cu uepwun d.

3.3. Added mass

As already mentioned, in the case of a moving bodv the a eleration is defined by Newton’s second law

X
+1 +1
mpa™ = —mig + 0, " n,dx. (46)

Q,
We define the vector w of the Gauss-Lobatto-Legendre integration weights giving the discrete formulation

n+1

Cud™ = —mpg + pw  TI (47)
We can prove the following proposition.

Proposition 4. Provided that the matvix 1., is ir ertible, the discrete acceleration eq. (47) is
(my + Maaa)d” ' = mpg — gpuw' dy = puw” Ky (Qu M, Qu(ug) + GyPy). (48)

where the added mass is definec as
Mada = —puw'K;'w. (49)

Moreover, in case of cc ista  t depih and flat bottom body d, it can be shown that Q), = d,Qy and the matrix
Ky, = d,K,, is positive sem. Jef iite / °SD) and thus the added mass is non-negative

Maaa = 0. (50)

Proof. Consider the disc =ti7~ 4 first order formulation presented in egs. (25)- (26). For simplicity we define the free
surface domain ', = Q,, 'J ©;. We replace the first derivative matrix Q;, according to the definition in eq. (41)

—(Dy + Cpp) wyp, + beWf =-M,la+ Qnglquu, (SIa)

wp = My ((Dy + Cy) Py + CiPy). (51b)

wp =M, (Dy+Cpp) Pp+CpPy). (51c)
10
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We define the matrices Kj, and G r using the definition of w, and w/ in eq. (51a) and collecting che matrices,
K, = (Dy + Cop) My, (Dy + Cp) + Cop M Cy,
Gy = (Dy + Cyy) My Cpp + Coy M3 (D + Cpy).
From the definition of total pressure eq. (2) and inverting Kj,, we have an expression fu - TI
1= K,'M,1a - K;' QyM;' Qyqu — gd, - K;,'G,7 ;.
Eq. (53) is substituted in the discrete formulation of the acceleration eq. (47)
mpa = —mpg + pwa (i(;lM;,]la - KZIQhMb_Iquu -y — I;L‘IGfPf) .

Note that M, 1a™*! = wa™!, in fact
Naor

[M,1]; = f D).
Qb j
From the definition of Gauss-Lobatto-Legendre basis function, we get that

Naof

Zlﬁjz 1.
J

As a consequence

‘

(M1, = ’ )

s

and by analogy with the notation used for the pressure in.>g.. ' in eq. (47)

L)
L sy - Wi

11

(52a)
(52b)

(33)

(54)

(55)

(56)

(57)

(58)

To show that the added mass is always non-negative for constant depth and flat bottom body, consider the quadratic
function —w’ Kyw = —w” (D}, + Cp) M;' (D + Cpyp. w+wTbeMJ:1Cﬂ,w. The mass matrices M, and M are positive

definite (PD) so also their inverse [25]. Fron. . (40t , we can define the matrices D;, + Cpp and (Dp, + Cpp)T

[Db + -’lbb]' = { wl(lﬂ])de"' 05[ lﬁilﬂjnbﬂbd-x,
Q, oQ,

(D, )] = fg Y i(Wi)xdx +0.5 fa |, it jloo, dx.

We also know that
f (. ax = f Wi jdx + f Ui ) = f Yoy dx.
Q, Qp 0%y

Q,
Using eq. (60) in eq. (59a) .t ca . be shown that
[Dy + Cpp)ij = - [(Db + Chh)T]

ij’

(59a)

(59b)

(60)

(61)

Since the matrix M, ' ‘s PD, it exist a unique PD matrix By, such that B; = B] B, = M;"' [25]. Thus, it holds the

equivalence
—w" (D, + Cpy) M;" (D} + Ci)w = —w" (D}, + Cyp) B} By, (D}, + Cpp) w,

In the same way, 1.  the f e surface-body coupling matrices

[Chf],»j = 0-5f Vi inlag,dx,
0QN0Q ¢

[C_fb]ij = 0.5f Y jnlaq, dx.
0QrNAQ,

11

(62)

(63a)

(63b)
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Decay test added mass
0.95 T T

Heaving box added mass, o 0.025
0.052 T T T T T T

T
- NSW
- MS

i
=l

0.038
0

I I I I I
20 40 il 20 100 120 140 160

Figure 4: The added mass over the body mass in the test presented in sections 4.6 and 4.. We sce that in all cases, decay movement solved with
NSW and MS in figure a and a free heaving box with different incoming waves in b, the value ¢ the added mass is always positive

and it can be shown that
;
[Cor], = =101, 64)

Since also the matrix My is PD, it exists a matrix By such u.. "Jz — BJTCB = ijl and
W CoyM;'Cppr - —w Ty BIBCppw, (65)
As a consequence of eqs. (61) and (64), we can sut “*mte t,.= first Dy, + Cpp and Cpr

—WT (Dy, + Cyp) BTBb (D +Cppy w — WTbeB;-Bfob =
=w' (Dy+Cy, B >+ (Dy+Crp)w+w' C,B;BCp =
7 T (66)
= (B(Dy + Cpp)o>" B (Dy + Cop)w + (BsCpyw) ByCpyw =
2
=By, (D +Cp) w + (Bfobw) > 0.

So —Kj, is positive semi-definite (PS™ ). When .. is invertible also its inverse must be PSD [25] and the added mass is
non-negative for constant depth. O

Remark 2. Note that non pos' ive + dded mas can occur in the free surface flow with floating structure [36]. Here,
for flat structure, the above p~opo.. “on shows that accounting for added mass has a stabilizing effect. This result can
be generalized within an or .er C{Ax) if a truncated Taylor series is introduced:

[
Ja,

where C; is a mesh dep. ~dent onstant. Eq. (67) can be readily used to show that

piw, )0xpidx = dh(xi)f 0.pjdx + Cilldxdp()||Ax + O(AX), (67)
Qp

O'M'Q=0"M"D,;0 +0x), (68)

where D is the diagu.... of dy(x;). This leads to the conclusion that for bodies having a bounded variation profile,
accounting fo. the ww2d mass will still provide a stabilizing effect, at least on a fine enough grid.

For non-flat b. ‘tom body, we can not demonstrate the non-negativeness analytically. However, we have shown
numerically that M4, > O in figure 4. These plots show the trends of the ratio of added mass over the mass of the
body in few of the tests presented in section 4. For the added mass eq. (48), we can prove the following result

12
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Proposition 5. The hydrostatic equilibrium eq. (36) is a solution of the added mass accelerat’ ,n equation.

Proof. Substitute the eq. (36) in the acceleration eq. (48)

- N
0= —mypg — gouw' dp — puw" (Kb) (GfPf) . (69)
At the hydrostatic equilibrium, the pressure is constant through all the domains. This me. ~s thac

dp0. Py, = QpPy =0

0Py =QsP;=0 70

and the auxiliary variable M, = Q,P, is also equal to zero. Using the matr, es intro uced in eq. (52)
0wy, = KyPy + GyP; =0 (71)

thus G;P; = —K,P},. Moreover, we know by definition that m, = p,». " (hy — 4. and eq. (69) becomes
0= —pugw’ (ho = dy) = gouw" 7 + puw IPy. (72)
where I is the identity matrix. Eq. (72) at equilibrium (d,, Pp) is sau. Sed. ]

The strategy adopted to solve the whole problem is to eva. "ate at each step first the added mass M,y and the
vertical acceleration of the body in eqs. (49)-(48), with th= extrapuiated values of the variables from the previous
timestep. The updated value of the acceleration is substitut. 1 ir .0 ¢y. (42d), as a right hand side term, which coupled
with eq. (42a) gives us P(x,**"). Finally, we solve eq: (42b, and (42c) for the updated values of the flow g(x, £"*!).
Note that all coupling conditions of the flow and elevaticn v “*ween outer and inner domains are accounted for by the
coupling terms in the @,,;, and Q,,;, matrices.

4. Numerical Results

We consider in this section different tests » demon trate the versatility of the proposed spectral/hp depth-integration
model given in section 3. First, we conside - the v. "ve propagation problem in hybrid modelling approach to that verify
the coupled solver strategy leads to the - xper .ed convergence. Then, we consider the more complex problems with
fixed, forced and free movement for a bo. F.nall , we seek to compare the solver with the results of CFD simulations
as a validation means and to demons’ ate the « ?.ciency of the proposed numerical modelling strategy

4.1. Coupling domains with different wave ,.10dels

As the coupling is enforcec by f ax conditions that handle only the balance of incoming and outgoing flow, we
can easily couple different free s. *.ce wave models. In particular, we report here the coupling between a free surface
domain with MS and one v ith NSWw. Each domain has a length of 27 meters and is discretized over a grid of 40
elements. Two kind of wr 7es 7 .e te' ied: a linear wave (A = 10™%m, hy = 0.1m) and a nonlinear wave (A = 0.02m,
hy = 0.5m). The simulation. ~re presented respectively in figures 5a and 5b. The linear wave cross the different
domain without altera’ .ons while the solution for the nonlinear wave shows multiple harmonics. That is due to the
signal that decomposc s propag iting through NSW domain, as the model can not solve properly this set of waves.
This test allows us to ex.. ~i»~ che behaviour of the solution at the coupled interfaces. As anticipated, the free surface
elevation is conti’ aous (t“e jump on the interfaces is of order 107!3, close to the machine precision) and there are no
oscillations at the interfacr s.

13
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Solution, MS to NSW 0.56 Solution, MS to NSW
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Figure 5: Wave elevation at ¢ = 25 s using a MS domain and a NSW domain: . 'ineai . .ve case and 5b nonlinear wave case.

4.2. Grid convergence for the free surface model

An exact solution for the MS model does not exist. The converean- of the mixed wave model is evaluated using
the manufactured solution method. We consider a known functic * Z(x—ct) = A cos(x —ct), with A the wave amplitude
and c the phase speed, to be imposed as the solution of the ~rablem, ..e.

P" =d"(x,t) = {(x — ¢ + hy,
m c
wix, 1) = 2 {(x—ct), (73)

q"(x, 1) =d"(x,Hu"(x,.> = Z{(x —ct)(¢(x = ct) + hy).

Equation (73) will not exactly satisfy the ori ,mai J*fferential equation and the substitution will result in a residual
r({) # 0. This residual is treated has the sou ~e term 1 r the differential equations considered, such that for NSW and
MS free surface models, we have

dt tgx=Trq (: !
g+ (ug), - gd(P); - rM(), (74)
G + (g + g™y = (3 + @urs ) M — Qushidsee = ().
Now the function {(x — ct) is t".e ex ct solution of the problem and that can be compared to the numerical one for a
convergence study. We have chos. * {(x — c¢f) = Asin(x — ct) since it is a simple, periodic, C*(IR X R, ) function of

which we can calculate all f .e dr vivatives. Thus the residuals r({) are known exactly.
This residual terms ac. ~s s ,urce cerms for the equation and are discretized in space. The discretized model is

AU, = RHS + MF. (75)

The source term is evai. ~ted xactly at time step 7,+;. The convergence of the NSW and MS equations is shown in
figure 6 N; = [6, 2,24] ~ud p =[1,2,3,4,5]. As seen in figure 6, we reach the optimal rate of convergence p + 1 for
odd polynomial ¢ -der and ;ub-optimal rate p for even polynomial order. The sub-optimal convergence rate is caused
by the choice of ce.. > .uxes [8].

14
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Figure 6: Convergence trend in a MS-NSW-MS model, with number of elementws 7.7 = [6, 12,24] and polynomial orders p = [1,2,3,4,5].

4.3. Grid convergence for a fixed inner model

We use a similar approach to test the convergence for a w7 utactured model with a fixed structure in the central
domain, see figure 7. The manufactured solution consi ved rc 'ds

Pior = 8({(x = 1) + ),

q"(x1) = §§<x = N(x = eb) + ho),
(76)

d"(x, ) = {

’:\lv_Ct)"'hO’ erw;
hO ‘hd’ xegb.

where h, is the draft of the body. As f r th- free surface convergence test, the models solved are MS for the free
surface domains and NSW in the body a. > «in. 7 ne convergence of the method is presented in figure 8 for the depth
and total pressure. This can be due f , the disc. atinuity in depth and nonlinear term which can not be solved exactly
and results in oscillation around thr co., ling nodes.

We remark here on the efficiency of the spectral element method: considering a simulation of one period 7 =
1.95s, we use N; = 5000 time < .eps .nd we test different meshes. The efficiency of the model has been checked for
the medium size mesh, with N, = [2 for each domain. The error drops with five orders of magnitude going from
p = 1to p =5 while the cc nputatic. 2l time remains comparable. On the other hand, if we want to reach a similar
precision with linear elemr ats, * ve nf 2d a much finer grid with 1500 DOF per domain against the 60 DOF of the high
polynomial order and the co... mtaf onal time grows with 5 orders of magnitude.

4.4. Time convergenc

The time convercenc. ~* che method is evaluated using the manufactured solution presented in figure 7 with
N, = 12 elemer s per Jomain and polynomial order p = 5. Normally, to maintain stability of the solution for
the eBDF3, the t. nestep « / is taken to be always small than the space element dimension 6x determined by a CFL
condition [141], as we _.csented in section 3.2. Thus, comparing the numerical solution to the exact one, the space
error will alw “ys « ... ‘nate on the time one. We have evaluated a reference numerical solution with a small time
step (number o1 " me step N, = 64000 over two wave periods) and the convergence is computed using this solution.
The resulting conv rgence plot is reported in figure 9. The rate of convergence in time is seen to be 3, same as the
theoretical convergence rate of the eBDF3 scheme.

15
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Depth

Figure 7: Solution of the manufactured problem for p = 5, with nu. “er of elements N = 12, final time 7 = 2s.

4.5. Forced motion test

This test includes forced oscillation of a box with a rou *d ! ottom [29], shown in figure 10a. The body is placed
with its center at x = 0 and the water flume extend' for 2. Ym before and after it. The body is composed by a
rectangular box of height H = 2R sin(r/3) — R and width & The circular segment has radius 2R with the center placed
on the vertical line passing through the middle poin* The acsity of the object is half the density of water, p, = 0.5p,,.
We can easily evaluate the mass of the object as m = ¢V wuere V is the volume

v=32(«/§—2+23—”). (77)

In the test we use R = 10m. The fluid ¢omain .. .efined with a still-water depth hy = 15m and density of water
Pw = 1000kgm™3. The structure moves i a fo ced motion starting from initial position 2C,eq = 4.57m and an oscillation
of 2m over 10s time. The height z¢, cu  *spo .ds to the equilibrium in case of the free floating body and can be

calculated as
pn 1-— -2+ 78

The numerical setting is: polyr ymia  order p = 3, N,, = 25 free surface elements and N, = 5 internal elements.
In the hydrostatic case, we ha. an analytic solution for the water elevation at the contact points x, and x_, where
water and body interact, [2€ ;. T} 2 evo.ution of the water level at x. is described by

2
d(t, x.) = (To (x; :/g‘ vg)) , (79

vG = d, is the given velc #tv o’ the center of gravity of the object. The parameter 7 is obtained from

To(r) = (\/_ +C(r) +

80
o) ®

with C(r) give * by

wl—

C(r) =

N W

(car+ o+ =0 81)

3
and ro = 5-h..
16
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Figure 8: Convergence trend in a MS-NSW-MS model, in figure a for the depth va. hles «.__. in figure b for the total pressure variable.

Figure 10c shows the position of the contact point in time. T}~ nun.. = ul solution presents the same behaviour of
the exact solution. The error on the mass is evaluated with the body a. e equilibrium position: the method conserves
the mass within the limits of the finite domain and the absc. »on layer at the boundary. The figure 11 presents a
convergence study. We get a lower rate of convergence for all the 1. ~sh tested, compared to the results of sections 4.2
and 4.3. This is probably due to the fact that the initialize. Tou . 2 first two steps of eBDF3 method are evaluated
with Euler and the error is then propagated to the rest of the . - iulation.

4.6. Decay test

For the decay test, we consider the same strucw. *= a. -~ he previous test freely floating in the vertical direction.
The body is released from an initial position zc differc. « from the equilibrium position z¢,. In the simulation the
body starts with the center of gravity below the water line zcp = zcq — 2m and it returns to the equilibrium position.
We can validate the model solving the semi-a- alytica solution for the movement of the body’s center of gravity, given
by the differential equation [29]

(my  mg oG = —cdg —v(66) + B(66)(66)
N (82)
(6 ~0¢, f= f) = (6(()}70)’
the parameters v(6¢) and 8(6¢) are .ew. ~ as
2
V( 6) = pug(rs - x.) lho - (To (x* —= 6'0)) } :
‘e (83)

Yx—xo, ((x—x0)?
5e) =
B(56) = pu f - ax( o

with h,(t) = dq + 66/ , wie posion of the wetted surface, d., the geometry of the bottom of the body at rest and
lox = L(t,x2) = d,(t, =) — hy. The added mass term m,4, and the stiffness coefficient ¢

X4 1
Maga = PwVar(x)a a'=f —dx,
¢ =P Iy (84)
¢ = Pypg(xy — Xx).
We define a vc sian ¢ uperator as
Var(f) = (f*) = (H%
1 " 85
(Y= = idx. ®5)
fx, E X_ hw
17



O©CoO~NOUIAWNER

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

U. Bosi et al. | Comput. Methods Appl. Mech. Engrg. 00 (2018) 1-25 18
Time convergence
10°®
—¥— Convergence eBDF3
107 ¢
3
- ‘ N |
g 1
8 108 1
S
o
10°F
100 ~g
102 3

log(N ;)

Figure 9: Time Convergence for the fixed .. ~nufactured test

The ODE eq. (82) is solved with a eBDF3 time integratior ~heme, sach that the integration is consistent with one of
the numerical problem. In figure 12c we see the tracking o1 he center of gravity and the semi-analytical solution and
the numerical solution give comparable results. As in = prev ous test the total mass is conserved in the limit of the
boundary wave absorption.

4.7. Fixed pontoon

The case considers a weakly nonlinear solitary wave propagating past a rectangular box [16, 31, 43]. In particular,
we are going to concentrate reproducing the V JF-K. NS results in [31] and FNPF results [16]. We consider a pontoon
of length L = 5m and draft Ty = 0.4m in . Aume o' constant still water depth 4y = 1.0m. The total length of the
flume is 185m of which 90m before the b .dy an. 9 m after. The two wave gauges are located at G; = —31.5m and
G, = 26.5m assuming the center of the ' ox I cated at x, = Om as shown in figure 13. The incoming solitary wave is
defined by the equation from [4] and has . - on-¢ mensional amplitude % = 0.1. The simulation is done with a mesh
of N,, = 25 elements on the free surf .ce doma. . and N, = 5 elements for the body to have a better resolution, with a
polynomial order p = 3.

We can not use the NSW mor~! since tue solitary wave is dispersive and it will not be able to solve it correctly,
subsequently the MS model mv .c be 1sed in the outer domain. Anyway, because of proposition 1, we solve the NSW
equations in the inner domain. *r _e the coupling between MS and NSW has been proven effective, especially for
free surface flow, we set a s' 1all free . irface layer around the pontoon where NSW is solved. This layer length must
be calibrated and for the p cpos . of t:e fixed pontoon we kept it as small as possible to avoid the loss of the dispersive
characteristic of the reflectea . *d tr .nsmitted waves. Figure 14 shows the solution at two different times. The problem
is solved correctly, wit’ the wave wransmitting and reflecting smoothly against the structure. The comparison between
the elevation registere by the ; auges in the VOF-RANS simulation and the MS is presented in figure 15a. The wave
generated is not perfec. ' co® ,cident with the wave of the original study, due to the fact that we do not have any
information but tt ¢ wave elevation. This results shows little discrepancies between our solution and the VOF-RANS
one, in particular *he elev: .ion of the transmitted wave is over-predicted and the first peak of the trail of the reflected
wave is under-prea.. “>* Regardless, the simpler Boussinesq model can still capture the salient characteristics of the
transmitted a. 1. ~*=d waves. The figure 15b shows the total water mass during the simulation, the drops from time
t = Ostor ~ 2 ¢ and at the final time, represent the absorption of a trail from the incident soliton wave and of the
resulting waves in ‘he sponge zone. Anyway we can see that, once the trail is absorbed (around ¢ ~ 20s) and before
time ¢ =~ 37s when the waves are absorbed, the mass is conserved.
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Solution at t = 0.01 Solution at t = 6.67
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Figure 10: Snapshot of the forced motion test case: a 1. “ial state, b solution at t = 6.66s. Figure c shows the evolution of the contact point and
the exact solution from eq. (79). Figure d shows the - mounu « “ e Jr on the total mass during the simulation.

4.8. Heaving body

We consider a heaving box inte ac.’ ~e with a stream function wave [18]. The body is a rectangular box of length
[ = 6m and height = 10m, with a displacemc..t volume of 30m>. Because of the characteristics of the waves generated,
the outer domain must be solvec wit, the MS equations. As in section 4.7 we define a small free surface layer around
the body where we solve the N."W _quations, coupled with the inner NSW model. The layer here is calibrated to be
long enough such that we av sid the , *»pagation of dispersive terms under the body, where they are equal to zero and
short enough to permit the - rop: zaticn of the wave with minimal distortions. In practice, we have seen that Lygw = %,
gives acceptable results.

We tested three set v waves of increasing steepness o = %, where A is the wave amplitude and A the wave
length. These are liste | in the t. ble 1. The main results in figure 17 are presented in terms of the Response Amplitude
Operator (RAO), whicl, ‘< eva’ iated as
max(7;) — min(r;)

2A ’
where 7; is the elev. “~r _f the body. We notice that, for linear waves in figure 17a, we can retrace the behavior of the
linear model, w.... “~= characteristic peak at the resonance frequency. For wave with a low steepness of o = 0.025,
we have a RAC ~"ose to the CFD model where the peak at 7 = 65 is about half the respons of the linear model. For
larger wave steep, »ss the RAOQ, in figure 17c, of the Boussinesq model has a value halfway between the linear and
the RANS result. Note that for the fastest and shortest waves (T < 6s) we do not have any result for the Boussinesq

RAO = (86)
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Figure 11: Convergence in time for the forceu “otion test

Table 1: Period, amplitude and steepness « ~*he wa- : tested

Period T[s] | Amplitude A[m] Sw. -ness o[—]
6.00 2.75% 1073 1074
7.00 3.6x 1073 94
8.01 445x%10 * 0™
9.99 6.05x 1073 10
5.99 0.69 N 0.025
6.99 0.9 0.0249
8.01 1.1 0.025
10.01 1.53 0.025
5.97 278 0.0495
6.95 1.8 0.0494
7.92 2.23 0.0497

20

model as we are outside its applicatior wi.. ow, ~ aggesting that a Boussinesq model with improved properties should

be used instead.

The performance of the RANS ana .. »~ Boussinesq models are presented in table 2 in the form of computational
time per wave period. The RANS “mulations use existing codes on OpenFOAM [39] with a mesh of 250 000 cells for
the waves of period T = 65 and ,f 35 ) 000 cells in the other cases. The Boussinesq simulations are done on a in-house
code in Matlab [35] with a mesh « © .1 elements in total and of polynomial order p = 3. As we can see from the table 2,
the computational time per  eriod usec by the Boussinesq model is two to three orders of magnitude smaller than the
CFD ones. This, together with che » americal results presented in figure 17, confirm that the Boussinesq model is a
cost effective alternative to a 1. "' R ANS model if applied within the range of validity.

Table = Computational effort per wave period for the CDF and Boussinesq models

o Period T[s] | CFD [s/T] Boussinesq [s/T]
0.025 5.99 52000 92

6.99 77000 123

8.01 92 000 143
0.05 5.97 71000 102

6.95 120000 120

7.92 150000 145

20
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Solution at t = 0.01 Solution at t = 6.67
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Figure 12: Snapshot of the decay test case: a initial sta. 12b solv .on at # = 6.66s. Figure c shows the evolution of the center of gravity and the
exact solution and figure d the conserved mass of we >r durn._ thr simulation.

4.9. Multiple bodies

With our framework, we can use (e ‘omain decomposition to simulate multiple bodies. In this section we consider
a two bodies configuration, as shown in fiy.re 18. Each body can be alternatively fixed or a heaving. Both bodies
have length [ = 6m and height /, = 'Om. The dimension of the free surface domains is defined by the length of the
wave tested, such that we can . ~o' imodate the generation and the absorption layer. The left free surface domain is
52 long, the central domain "5 24 an the last domain is 41. The NSW layer around the bodies is a single element of
length equal to a fifth of a - /ave .ength. The polynomial order is p = 3.

The figure 19 shows the = :spo’ se of the moving bodies of the simulations to four set of waves of period T =
[6,7,8, 10]s and steepr .s> o = [+.0001, 0.025]. We can see from the figure 19, that the interaction of the transmitted
and reflected waves f r the tw » bodies affects the RAO. We can see that, a part from the short linear wave where
the single body (the da. “ed li- e in the plots) is at resonance frequency, the first body (blue stars and squares *, [])
benefits by the re”.ccted waves on the second one (red Xs and triangles X, <), especially when the latter is another
heaving body. It s interes ing to notice that the variations of the RAO of the two bodies present similar trends to the
single body RAO. ™is i< probably do to the fact that the space between the to bodies is not fixed through the different
simulations t .. " *~ always proportional to the wave length. We expect that the RAO can vary with less predictable
trends in case . ‘e Jistance is fixed. This can be seen for example in figure 20, where the distance between the two
bodies is fixed at . I meters. In this case the reflected wave has a dampening impact on the movement of the first body,
resulting in it having a smaller movement than the second one in most cases. This test shows also the importance, in
the future, to be able to optimize the placement of several bodies in such a way that the constructive behaviors are
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Flat Pontoon, Solution at t = 0.0s
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Figure 13: Set of the fixer ...coou provlem.

enhanced and the destructive ones minimized.

5. Conclusion

We have presented a nonlinear numerical model to. “vave-body interaction using Madsen and Sgrensen equations.
These models are based on depth-integrated Boussinesq-type equations, a computationally efficient method for wave
propagation in near-shore waters. The unified .ppic <h of Jiang [26] has inspired the model, as has the recent work of
Lannes [29]. The model uses continuous sp ctral’hp lement discretization in the different domains and are coupled
by numerical fluxes [21]

We tested the model using manufactr.ed s slutions and showed the exponential convergence. In addition, we have
validated our model against analytical s.ti ;ns @ well as CFD simulations. With the nonlinear shallow water model,
we can reproduce the results of Lan .es [2Y, ~.d we have agreement with the exact and semi-analytical solutions.
These results show that we can sim .ta. > different shapes of body. The simulation of the Madsen and Sgrensen model
for the fixed pontoon shows a similar outc. mes for our Boussinesq model and the CFD solution by Lin [31]. The
heaving floating body simulatic 1s s ow agreement with assessed result for linear and small steepness wave and a
clear improvement in case of . ~di .m steepness compared to the linear model. Moreover, the computational time
of the Boussinesq model is ew or. * of magnitude smaller than the RANS model, making it an efficient tool for
the simulation of wave-bc 1y ir .eraction. The next step is to include some form of optimal control such that we
can optimize the power ouy. ~ of t'.e device. However, there are minor problems mainly related to instabilities that
arise in the MS-NSW - Lupling « in evaluation the inner pressure. A smoothing and stabilizing method should be
implemented for the [ essure.

In spite of these chu'enges ahead we believe the present work indicates that a medium-fidelity unified Boussinesq
based model can F .ing benetits in terms of efficiency without compromising on the accuracy of the results, if applied
within the applic: 7ion win. ow of the underlying Boussinesq equation. In ongoing work, we will consider the extension
to two horizontal s, ~tial ©.mensions as well as allowing the body to move in more degrees of freedom.
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Figure 18: Multi bod probler. Each body can be either a fixed pontoon or a heaving body. In figure a the initial set up and in figure b the

Solution at t = 0.000000
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simulation of two he: 'ing bodie. with a wave of period T = 10s and steepness o = 0.025
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Figure 19: RAO plots .or a stream wave of period 7' = [6, 7, 8, 10]s and steepness oo = 0.0001 for the multiple bodies tests with the distance
between the bodies d pendent o the wave length / = 24 in figure a and for a fixed distance of 20 meters in b: the dashed line is the single body
RAO, = and X the first 'nd secor . heaving bodies in series, [] a heaving body in front of a pontoon and finally <, a heaving body behind a pontoon.
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a Strea.. wave of period 7' = [6, 7, 8, 10]s and steepness o = 0.025 for the multiple bodies tests with the distance
between the bodies d pendent . » the wave length / = 24 in figure a and for a fixed distance of 20 meters in b: the dashed line is the single body
RAO, = and X the firs and secon heaving bodies in series, [J a heaving body in front of a pontoon and finally <, a heaving body behind a pontoon.
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