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Privacy-Preserving Distributed Average Consensus
based on Additive Secret Sharing

Qiongxiu Li1, Ignacio Cascudo2, Mads Græsbøll Christensen1
1Audio Analysis Lab, CREATE, Aalborg University, Aalborg, Denmark

2Department of Mathematical Science, Aalborg University, Aalborg, Denmark

Abstract—One major concern of distributed computation in
networks is the privacy of the individual nodes. To address
this privacy issue in the context of the distributed average
consensus problem, we propose a general, yet simple solution
that achieves privacy using additive secret sharing, a tool from
secure multiparty computation. This method enables each node
to reach the consensus accurately and obtains perfect security
at the same time. Unlike differential privacy based approaches,
there is no trade-off between privacy and accuracy. Moreover, the
proposed method is computationally simple compared to other
techniques in secure multiparty computation, and it is able to
achieve perfect security of any honest node as long as it has one
honest neighbour under the honest-but-curious model, without
any trusted third party.

Index Terms—Distributed average consensus, additive secret
sharing, privacy preserving, secure multiparty computation

I. INTRODUCTION

The consensus problem has received a lot of attention
from researchers over the past decades since it has many
practical uses, such as distributed data fusion [1] and group
coordination [2]. To solve the average consensus problem
in arbitrary random connected distributed networks (e.g., in
wireless sensor networks), many distributed averaging algo-
rithms have been proposed, such as basic average consensus
algorithms [3], gossip algorithms [4], [5], ADMM [6] and
PDMM [7] algorithms based on convex optimization. These
iterative approaches require to exchange information among
participants to compute the average result. However, the in-
formation exchange is a cause for concerns with respect to the
privacy of the data, as private information may be revealed.

To achieve privacy-preserving solutions in the average
consensus problem, two categories of algorithms have been
proposed. The first type of algorithms [8]–[12] implements
average consensus by modifying the basic average consensus
algorithm [3] based on the concept of differential privacy
[13]. If there are two databases that differ only in one single
element, it is easy to get the information of this element by
comparing the query results of two databases. Differential
privacy aims at protecting the privacy of this single element by
introducing randomness in query results. The underlying idea
is to maintain a balance between the individual privacy and
output accuracy by inserting noise to obfuscate the function
output in a random manner. Many algorithms [8]–[12] applied
this idea to achieve privacy-preserving average consensus with
a careful zero-sum noise insertion process. A detailed analysis
of the trade-off between maximum information disclosure and

estimation accuracy is performed in [14]. However, as proven
in [12], exact accuracy and differential privacy cannot be ob-
tained at the same time. Thus, [15] refers to differential privacy
methods as consensus-perturbing algorithms and proposed a
new consensus-preserving algorithm that, with the help of
a trusted third party, assigns to each node a single noise
value the sum of which equals zero. Unfortunately, the trusted
third party assumption is not practical in many real-world
applications. Another type of algorithms [16]–[19] applies
garbled circuits (GC) [20], [21] and homomorphic encryption
(HE) [22], [23] techniques, as known from secure multiparty
computation [24], to general gossip algorithms [4] to preserve
privacy. Secure multiparty computation allows all nodes in a
network to jointly compute a function and keep their inputs
private. Two GC based gossip algorithms were proposed in
[16] to iteratively compare the state values of two nodes and
update the state values with a step-size while keeping each
state value secret. However, the computational complexity is
big and only asymptotic consensus is achieved. The step-
size parameter also requires global information beforehand.
The HE technique was applied in [18], [19] to compute the
consensus in the encrypted domain. The initial state value
of each node is kept private because only encrypted values
are accessed by other nodes. Unfortunately, the computational
complexity of the HE technique is big and a trusted third party
is also required.

In this paper, we propose a general, yet simple algorithm
to solve the privacy-preserving distributed average consen-
sus problem using the principle of additive secret sharing.
Note that additive secret sharing has been applied in various
applications such as smart grids [25] to address privacy
concerns under a strong assumption of network topology
(e.g., fully connected). This differs significantly from the
proposed algorithm, since we here assume a more practical
and general network topology (i.e., arbitrarily connected). In
a decentralized network, the average consensus is usually
computed by iterative distributed averaging algorithms such
as [3]–[7]. Thus, the question of how to achieve the privacy
concern during all iterations is the main challenge.

The proposed approach is lightweight compared to the
above mentioned HE and GC approaches in [16]–[19], as
only additions are involved. The underlying idea of additive
secret sharing is to replace each initial state value with another
obfuscated value by subtracting and adding random numbers.
Unlike the differential privacy approaches [8]–[12], there is no



trade-off between privacy and estimated accuracy. The main
properties of the proposed approach can be summarized as
follows: 1) the proposed approach achieves perfect security
and exact accuracy at the same time; 2) it is computationally
simple; 3) individual privacy is guaranteed as long as it has one
honest neighbour under the honest-but-curious model without
any trusted third party; 4) it is convenient since only an
additive randomization step is needed; and 5) it is very general
since it can be applied in any distributed averaging algorithm.

II. PRELIMINARIES AND PROBLEM SETUP

A. Privacy-preserving distributed average consensus problem
A distributed system composed of a set of nodes can be

modelled as an undirected connected graph G = (N , E).
The node set of the graph is denoted as N = {1, 2, ..., n}
and E ⊆ N × N denotes the communication links between
nodes. The communication of two nodes is enabled if there
is one edge connecting two nodes, i.e., (i, j) ∈ E , and
ni = {j|(i, j) ∈ E , j 6= i} denotes the neighbours of node i.
The initial state value held by node i is denoted as ai, and the
initial state values in the network can be written as a vector
a = [a1, a2, ..., an]T . The main goal is to address the following
two challenges at the same time:

1) Compute the average result of the private values

aave =
1

n

n∑
i=1

ai, (1)

in a distributed network without having any centralized
coordinator, an iterative algorithm is usually adopted.

2) Protect the private value ai of each node throughout the
algorithm execution.

B. Privacy concern and adversary model
An important aspect of this work is the definition of privacy.

Our goal here is to protect the initial state value ai of each
node, which constitutes the private information, during the
execution of the algorithm. The reason is that it may represent
an individual’s opinion [26] or private information [18], [19].

In this paper, a general honest-but-curious (also called
”passive” or ”semi-honest”) model is considered. It means that
all nodes in the network follow the designed protocol, but
some of them might be curious about the other nodes’ private
information. Such curious nodes are said to be passively
corrupted, and they can cooperate to share their received
information with the aim of inferring other honest nodes’
private information, here the initial state values. We assume
the worst case situation within this model, where passively
corrupted nodes know the following:
• The whole graph topology.
• The initial state values of all passively corrupted nodes.
• The transmitted information over the communication

links involving the corrupted nodes.
Thus, the corrupted nodes will know all the information except
the information kept by the honest nodes themselves and
exchanged between every two honest nodes, as long as it
cannot be deduced from the above.

III. ADDITIVE SECRET SHARING

A secret sharing scheme is a cryptographic tool that splits
a secret into a number of shares, where each node in a group
will receive one share. The secret can be reconstructed only
if a sufficient number of shares are collected, otherwise no
information about the hidden secret will be revealed. General
secret sharing schemes usually consist of two parts:
• The secret sharing algorithm takes a secret s as input and

some randomness r, and outputs n shares of this secret:

FS(s, r) = (s1, s2, ..., sn). (2)

• The secret reconstruction function (which technically is a
family of functions, one for each subset of shares that can
reconstruct the secret) takes the shares of some subset of
the nodes {Λ1, . . . ,Λt} as inputs to reconstruct the secret
s:

FR(sΛ1 , sΛ2 , ..., sΛt) = s, (3)

where si denotes the ith share of secret s. If we have a
reconstruction function for any set of at least t shares, but
no set with less than t shares provides any information about
the secret, then the secret sharing scheme can be referred to
as (n, t) threshold secret sharing scheme.

One of the simplest secret sharing schemes is the additive
secret sharing where t = n. This is defined over an algebraic
group F , usually given by the integers {0, . . . , p−1} together
with the additive operation modulo p. While p is a prime
number in many applications (so that the group is also a
finite field), this is not required here. The additive secret
sharing scheme is defined as follows: choose n − 1 integers
r1, ..., rn−1 in F uniformly at random. Then the output of the
function (2) consists of si = ri for i = 1, . . . , n − 1 and
sn = (s −

∑n−1
i=1 ri) mod p. Given the full set of n shares,

the secret can be reconstructed by

s = (

n∑
i=1

si) mod p. (4)

It is easy to see that the secret s cannot be reconstructed
even if only one share is missing, and the secret is, in fact,
uniformly distributed over the integers within F even though
the knowledge of n−1 shares is given. Additive secret sharing
has the following property, which enables secure computation
of additions: if two secrets s, s′ ∈ F are shared among some
set of nodes, then the nodes can reconstruct the sum of the
secrets, without needing to reconstruct the individual secrets,
as follows: each node i locally add the received shares si,
s′i and reveal only this sum of shares hi = si + s′i mod p
to the other nodes. Then applying the reconstruction function
(4) to these share sums hi will give the sum of the original
secrets s+s′ = (

∑n
i=1 hi) mod p, without revealing anything

else. This can be extended to summing an arbitrary number
of secrets, and it can be turned into a secure computation
protocol to compute the sum of the secrets of a set of n nodes
in a fully connected network, where every node first sends
shares of its secret among the full set of nodes, and the process



described above is used to reconstruct only the sum. This is
secure against an arbitrary number of passive corruptions (see
[24, Section 1.3.1] for further details).

IV. PROPOSED ALGORITHM

In this section, the details of the proposed algorithm will be
described. The algorithm itself is shown in Algorithm 1, where
di denotes the total number of elements in ni and T denotes
the maximum iteration number, F is the set of integers modulo
p for a large enough number p (p >

∑n
i=1 ai), c denotes the

penalty parameter in PDMM algorithm [7].

Algorithm 1 Proposed algorithm
Additive randomization:

1: Each node i ∈ N extract di random numbers as shares rki
with uniform probability in F .

2: Node i sends shares rki to its neighbours k ∈ ni and keep
the share ri as.

ri = (ai −
∑
k∈ni

rki ) mod p. (5)

3: Node i receives shares rik from its neighbours k ∈ ni.
4: Node i updates ai as the obfuscated value

ui = (ri +
∑
k∈ni

rik) mod p. (6)

Distributed averaging (e.g., PDMM):
5: Each node initializes the primal variable x0

i and dual
variable ξ0

i|j as zeros, i, j ∈ N .
6: For iteration t = 1, 2, 3, ..., T
7: Activate node i ∈ N randomly with uniform probability.
8: Node i updates xti and broadcasts to its neighbours

xti =
ui +

∑
k∈ni

(cxt−1
k + ξt−1

k|i )

1 + cdi
. (7)

9: After receiving xti updates, all neighbouring nodes k ∈ ni
update the dual variable as

ξti|k = −ξt−1
k|i + c(xti − xt−1

k ). (8)

10: Repeat until the primal variable xti converges

Average consensus computation
11: Each node obtains the average as

xave =
1

n
(xTi × n mod p). (9)

The first stage of the algorithm is additive randomization,
where each node uses additive secret sharing for distributing
shares of its private value ai to its neighbours. We remark
that the difference between this use of additive secret sharing
and the one described at the end of the previous section is the
assumption of the graph topology. The scheme described in
the previous section assumes a fully connected network where
each node sends shares to all other nodes. However, a fully
connected graph scales poorly in the number of connections.

In this paper, we assume an arbitrarily connected graph, which
is much more practical and scalable in real-life applications.
Each node only sends shares to its neighbours and an iterative
distributed averaging algorithm is used afterwards. The main
goal of additive randomization is to address the privacy chal-
lenge in Section II-A by replacing the private value ai of each
node with an obfuscated value ui, which can then be revealed.
In Section V-C we show exactly how much information this
provides to the corrupted nodes. An important observation
is that by construction we have that

∑n
i=1 ai = (

∑n
i=1 ui)

mod p.
After additive randomization, we take the obfuscated values

ui as inputs to a distributed averaging algorithm [3]–[7] to
compute the average, which meets the requirements described
in Section II-A. Here we apply the asynchronous PDMM
algorithm as it has the fastest convergence speed [7]. After
convergence, the primal variable xTi for all nodes i ∈ N will
reach the average of obfuscated values, i.e., xTi = 1

n

∑n
i=1 ui.

The last part of the proposed algorithm is to compute the
final average result by (9) with an assumption of knowing
the total number of nodes n. The average result xave of the
proposed algorithm is identical to aave since

aave =
1

n

n∑
i=1

ai =
1

n
((

n∑
i=1

ui) mod p) = xave. (10)

Concerning data representation, we remark that the values in
the additive randomization process should be integers within
the modular domain {0, ...p − 1} due to the additive secret
sharing. Floating point numbers can be scaled up as integers
and negative numbers can be represented using modular ad-
ditive inverse. Note that integers are not required afterwards
because additive secret sharing scheme is no longer applied in
the distributed averaging step, which is also why the division
operation can be used in (7).

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental results

Simulations are conducted here to investigate the perfor-
mance of the proposed approach. A random geometric graph
[27] with n = 100 nodes is simulated and the connectivity
of nodes is enabled if their distance is within a radius√

log n
n to have a connected graph with high probability [27].

Based on the same initial state values over the network and
additive randomization procedure, the simulation results are
demonstrated in Fig. 1, where the solid blue, green, red lines
denote the conventional non-privacy concerned random gossip
[4], asynchronous ADMM [6] and PDMM [7] algorithms, re-
spectively, and the related dashed lines represent the proposed
secure approaches which add additive randomization before
the above mentioned conventional algorithms, and the penalty
parameters in both ADMM and PDMM are set as 0.4.

As demonstrated in Fig. 1, we can see that the estimated
accuracy of all the proposed secure approaches is identical
to conventional non-secure approaches. The convergence rate
of the proposed approaches will be slightly slower than the



Fig. 1. Experimental results

traditional approaches as the initial mean square error becomes
higher after additive randomization. We remark that the extra
additive randomization will not affect the convergence speed
but only cause higher initial errors.

B. Comparisons

A comparison of the proposed approach with existing
methods is shown in Table I, where β denotes the number
of bits needed to represent transmitted message [28]. The
same passive adversary model is considered in all approaches.
We can see that HE and GC based approaches both require
expensive computational function as encryption is involved,
and the communication bandwidth is also big since the cipher
text after encryption usually require much longer bit lengths
than plain text, and a trusted third party is also required in
HE. Moreover, the proposed approach is able to achieve iden-
tical accuracy and perfect security with same communication
bandwidth and computational function as differential privacy
approaches. Note that the maximum number of corruptions
for algorithms without an accuracy trade-off is n−2, because
the corrupted nodes can always know the initial state value
of the only honest node given the knowledge of the exact
consensus result and the initial state values of the corrupted
n−1 nodes. For differential privacy and GC based approaches,
the maximum number of corruptions can be n − 1, as the
average result is inexact. Furthermore, the proposed algorithm
can protect the privacy of any honest node only if it has at
least one honest neighbour, which is not required in the other
approaches, e.g., in differential privacy approaches.

C. Security guarantee

In this section, we analyze the security of the proposed
algorithm in more detail. The statement we will argue is as
follows: Let C ⊆ N be the subset of passively corrupted nodes,
and let H = N \C be the set of honest nodes. If the subgraph
H is connected, then the only information about the honest
nodes’ initial state values can be learned by the corrupted
nodes is

∑
k∈H ak, but nothing more than that. And we remark

that learning this information is logically unavoidable if we

have exact accuracy, since this information can always be
deduced from the average result and the initial state values
of the corrupted nodes:∑

k∈H

ak = n× aave −
∑
k∈C

ak.

This in implies the following: The individual privacy of
the honest nodes is protected as long as it has some honest
neighbours, even in the case where there are only two honest
nodes. If the two honest nodes i, j are neighbours, the cor-
rupted nodes do not learn the individual private value ai and
aj , but only its sum.

The proof is as follows: adopting a pessimistic view, the
information set obtained by C, also known as the information
view, after reaching consensus is in the worst case the union
V = V1 ∪ V2 ∪ V3 of the information sets

V1 = {uk|k ∈ N},
V2 = {aave, ak|k ∈ C},
V3 = {rmk , rkm|k ∈ C,m ∈ dk} ∪ {rk, k ∈ C}.

Note that all the obfuscated values ui in the distributed
averaging step are included in V1 as the primal and dual
variables are initialized as zeros in (7), these values ui can
therefore be considered non-private.

Now suppose a ”real” instance

I = {ak, k ∈ N},

has produced the above view V with real initial state values
and randomness r`, ` ∈ N and rm` , (`,m) ∈ E .

Let i,j be two honest nodes which are neighbours of each
other. We now produce a ”fake” instance

I ′ = {a′k, k ∈ N},

having the view V ′ with all a′k = ak, k ∈ N , k 6= i, j and
a′j = aj − d, a′i = ai + d for some d. Note that

∑
k∈H ak =∑

k∈H a
′
k by setting the randomness as r′i = ri + d, rij

′
=

rij − d, and leave all other random values r`, rm` unchanged.
Thus, the information view V ′ produced by the fake instance

I
′

will be exactly the same with V produced by the real
instance I , which means that the corrupted nodes cannot
distinguish the ”real” from the ”fake”. Since H is connected,
we can repeat the argument to modify the initial state values
of H in any way that we want, as long as this modification
does not change the sum of the honest initial state values,
and still produce the same view for corrupted nodes. The
corrupted nodes can only learn the sum of honest nodes’ initial
state values

∑
k∈H ak, but no other information. Hence, the

proposed algorithm is perfectly secure in the sense of secure
computation, as it protects all information that is not implied
by the average result and corrupted nodes’ initial state values.

We remark that if the subgraph of the honest nodes is not
connected, then the corrupted nodes can infer the partial sums
of the initial state values held by the connected subsets in
H, but nothing else beyond that. In an extreme case, if a
honest node has only one honest neighbour, then the leaked



TABLE I
PRIVACY-PRESERVING DISTRIBUTED AVERAGE CONSENSUS APPROACHES UNDER ARBITRARY CONNECTED GRAPHS

Proposed HE [18], [19] GC [16] Differential privacy [8]–[12]
Accuracy Identical Identical Dependent on step size Degraded with noise
Security Perfect Computational Computational Differential privacy

Involved function Linear Exponential Exponential Linear
Trusted Third Party No Yes No No

Adversary model Passive Passive Passive Passive
Communication bandwidth per round O(1) O(β) O(β) O(1)

Maximum number of corruptions n-2 n-2 n-1 n-1

information is only the sum of the initial state values held by
these two honest nodes, we emphasize that that the privacy
of the individual node is always protected, which is our goal
here. Hence the privacy of individual node is guaranteed as
long as it has one honest neighbour.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a general and simple
solution to address the privacy concern in distributed average
consensus problems with the help of the additive secret sharing
scheme. An additive randomization step is applied before dis-
tributed averaging to replace the initial state value of each node
with a non-private obfuscated value for privacy-preserving.
The proposed solution outperforms differential privacy based
approaches, as it obtains perfect security and accurate con-
sensus at the same time. Moreover, it is computationally less
complex compared to HE and GC based approaches. The
proposed algorithm is general and can be used with arbitrary
distributed averaging algorithms. Moreover, it does not require
any trusted third party, and the privacy of each individual
honest node is protected as long as it has one honest neighbour.
Future work will focus on how to maintain privacy under more
challenging adversary models (i.e., active attacks) where the
corrupted nodes may not follow the protocol correctly but
deviate from it to interfere with the computation result.
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[23] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” Advances in
Cryptology–CRYPTO, pp. 643–662, 2012.

[24] R. Cramer, I. B. Damgrd, and J. B. Nielsen, Secure multiparty
computation and secret sharing, Cambridge University Press, 2015.

[25] K. Kursawe, G. Danezis, and M. Kohlweiss, “Privacy-friendly aggrega-
tion for the smart-grid,” in Privacy Enhancing Technologies. pp. 175–
191, 2011.

[26] M. H. DeGroot, “Reaching a consensus,” J. Am. Statist. Assoc., vol.
69, no. 345, pp. 118–121, 1974.

[27] J. Dall and M. Christensen, “Random geometric graphs,” Physical
review E, vol. 66, no. 1, pp. 016121, 2002.

[28] R. L. Lagendijk, Z. Erkin, and M. Barni, “Encrypted signal processing
for privacy protection: Conveying the utility of homomorphic encryption
and multiparty computation,” IEEE Signal Process. Magazine, vol. 30,
no. 1, pp. 82–105, 2013.


