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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Mie theory is very important in meteorological optics and atmospheric science. In radiative heat transfer, Mie theory is used to 
assess the heat transfer in participating particulate media. The effect of Mie scattering in a 2D irregular geometry is numerically 
investigated in this study. The medium participates in the radiative heat transfer and is filled with particulate media. FTn finite 
volume method is applied to solve the radiative transfer equation numerically. Mie theory is applied for calculation of scattering 
phase function in particulate media. To discretize the irregular geometries, non-orthogonal mesh is used. To calculate the 
radiative intensity at the cell faces, the high resolution CLAM scheme is applied. The particulate media contains particles of 
different sizes, ranging from 250 nanometers to 5 micrometers. Cases of scattering in media with dielectric particles and 
absorbing particles are considered. Also the influences of the number of particles per unit volume on the dimensionless radiative 
heat transfer quantities are studied. 
Copyright © 2018 Elsevier Ltd. All rights reserved. 
Selection and peer-review under responsibility of the scientific committee of the 10th International Conference on Applied 
Energy (ICAE2018). 

Keywords: Radiative heat transfer; Mie Theory; FTn finite volume method; Non-orthogonal grid; Nano particles 

1. Introduction 

The radiative scattering in particulate media and combustion particles find many applications in both nature and 
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FVM the angular domain is uniformly subdivided into Nθ and Nϕ in polar and azimuthal angles, respectively. As it 
can be seen, the control angles do not have the same size (they are smaller near the poles). But for FTn FVM the 
polar angle is distributed into n uniform subdomains where n is an even number. The azimuthal angle is then divided 
into the number of sequence of 4, 8, …, 12, 2n, …, 12, 8, 4 in each level of polar angle. They have almost the same 
size with the aspect ratio of unity. The total number of control angles is Ns=n(n+2). 
The discretization procedure of RTE is according to that of Chai et al. [15] and is not repeated here. By integrating 
the RTE (Eq. (1)) over a 2D non-orthogonal control volume (Fig. 1c) and over a control angle of FTn FVM (Fig. 
1b), the final discretized equation can be derived as [14]: 
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Fig 1. (a) Angular discretization for popular FVM; (b) Angular discretization for FT6 FVM;  
 (c) An arbitrary control volume with its representative node and surface normal vectors 

 
The formulation of terms associated with the CLAM scheme can be found in [12, 13] and is not repeated here. 

The Eq. (4) is solved with an iterative approach with TDMA algorithm. The iteration stops when the following 
condition is satisfied: 
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If the analytical expression for scattering phase function (Φ(s,sʹ)) exists, the average scattering phase function in 
Eq. (2) can be obtained by the following relation: 
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When the integration is not feasible or Φ(s,sʹ) is an unknown function but its value for different s and sʹ can be 
obtained, its average can be estimated by the following formula: 
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For particulate media of this study, the analytical expression for scattering phase function does not exist and 
therefore Eq. (7) must be used. Scattering phase function in any combination of s and sʹ is obtained by applying Mie 
theory. The details of complicated Mie theory are beyond the scope of this work. We have used the same 
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science. Scattering of sunshine in the atmosphere, red sunset and colourful rainbow, and combustion systems, are 
some instances of radiative heat transfer in particulate media. The most famous and general rule which governs the 
radiative scattering in such media is Mie theory. This theory is founded by Gustav Mie who solved the Maxwell 
equations to relate the scattering phase function to the medium properties. Trivic et al. [1] considered Mie scattering 
in the square and cubic enclosures. They successfully coupled the finite volume method (FVM) with Mie theory to 
perform a numerical study of the effect of anisotropic scattering on the radiative heat transfer. Khademi Moghadam 
et al. [2] presented the solution for transient radiative heat transfer in irregular geometries. They discretized the 
transient radiative transfer equation (TRTE) by FVM and compared Mie theory to isotropic approximation.  

Among various methods for solving radiative transfer equation (RTE), FVM has been widely used in numerous 
problems such as non-orthogonal grid [3], inverse problems [4], combustion applications [5], and irregular 
geometries [6]. In addition to be consistent with other numerical techniques used in determining the flow and 
temperature fields, this method has other merits such as being easily programmable, fairly accurate and 
computationally cheap. However, applying FVM is accompanied with two major drawbacks due to discretizing the 
spatial and angular domains; i.e. false scattering and ray effect. Therefore, the attempt for improving this method to 
achieve higher accuracy and lower computational time has been going on since its foundation by Raithby and Chui 
[7]. Although these two effects are not independent from each other [8], in general, false scattering is attributed to 
spatial discretization and finer grids can mitigate this undesirable effect. Chai [9] and Chai et al. [10] have 
concluded that the FVM with Curved-Line Advection Method (CLAM) schemes gives more accurate results than 
FVM with step scheme in 2- and 3-D geometries. The angular discretization is responsible for the ray effect. FTn 
FVM was proposed by Kim and Huh [11]. They utilized a new angular discretization for 3-D radiative heat transfer 
problems. They demonstrated that the ray effect becomes less by using this angular grid in comparison with classical 
FVM. Together with CLAM scheme, FTn FVM was successfully used in radiative problem in inhomogeneous 
media and the irregular geometries of the combustion chambers [12, 13]. 

To the author’s best knowledge, the study of the effects of Mie scattering in an irregular geometry has never been 
done. The numerical solution by coupling of Mie theory and FTn FVM with CLAM scheme and non-orthogonal 
grid is presented. Radiation heat transfer in an irregular geometry filled with particulate media is considered. 
Different cases of the forward, backward and isotropic scattering as well as scattering in media with real and 
complex index of refraction are studied. 

2. Mathematical formulation for RTE solver 

Modest [14] presents complete derivation of the RTE and definition of each parameter. A brief review of the 
RTE and the applied numerical method are given here. The radiative transfer equation in a grey emitting, absorbing 
and scattering media at any position, r, along a path, s, is given by:  

     srsrsr ,,, SI
ds

dI
   (1) 

where the source function can be defined as: 
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b sssrrsr ,,
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The boundary condition for a diffusely emitting and reflecting wall can be written as follows: 
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The angular discretization for popular FVM and FTn FVM is shown in Figs. 1a and 1b, respectively. For popular 
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Another noticeable remark in Fig. 3a is the influence of cold walls on the radiative heat flux of the bottom wall. 
The heat flux is low at the beginning because this region of wall 1 sees more area of the cold wall 4. When x 
increases, the influence of wall 4 diminishes and in the midsection of the bottom wall (around x=1m), the heat flux 
reaches its peak under the influence of hot wall 3. Then, due to the presence of another cold wall (wall 2) the 
decrement of q starts and at the end of the bottom wall, it again reaches minimum.
In Fig. 3b the dimensionless G is displayed along the centerline. As it can be seen, the difference between minimum 
and maximum of G tends to increase as the backward scattering increases. The forward scattering tends to unify the 
intensity field by distributing energy into forward directions. But in the backward scattering, the difference between 
cold and hot regions becomes more because the amount of energy which scatters into forward directions, and 
transfers between hot and cold regions is not as high as the radiative energy of forward scattering.  
The absorbing particles are indicated in Table 2. 
 
                                                                Table 2. Media with different complex indices of refraction [14] 

Particle material n k 
Carbon 2.20 1.12 
Anthracite 2.05 0.540 
Bituminous 1.85 0.220 
Lignite 1.70 0.066 
Ash 1.50 0.020 

 
The particle density is NT=105 particles/cm3. Particle radius is ap=1 μm resulting in xp=2. The scattering phase 

function for different materials is shown in Fig 4a. The scattering phase function for different sizes of the carbon 
particles is also shown in Fig 4b. It is easily noticed that all particles have the forward scattering character because 
their scattering phase functions have higher values for acute angles of scattering. The peak of the function happens 
at =0. This forward characteristic becomes more significant for higher values of size parameter (xp) as can be seen 
in Fig. 4b where the peak of the scattering phase function at =0 becomes more pronounced at higher values of xp. 

 
Fig 4. Scattering phase function for (a) different material of table 2 at xp=2; and (b) for ash  

for different particle size parameters 
Figure 5a shows the dimensionless radiative flux on the bottom surface. As shown in Fig. 4a the difference in the 

scattering phase function for various particles is not much. Therefore the difference in the values of radiative flux of 
Fig. 5a is mainly attributed to the values of β and ω. Besides the fact that the radiative intensity travels with lower 
changes in a media with lower extinction coefficient, the value of single scattering albedo has a significant impact 
on radiative transfer according to Eqs. (1) and (2). In a cold medium, the first term on the right of Eq. (2) tends to 
zero and the source term reduces. Therefore the ratio of σs to β becomes important and higher ω leads to higher 
radiative intensity. As a result the heat flux in a medium such as ash with lower value of β and higher value of ω 
must be stronger. The same condition rules the dimensionless G along the centerline of the enclosure as depicted in 
Fig. 5b. 
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formulations and approximation method as explained in [2]. 

3. Results and discussion 

The radiative heat transfer in the quadrilateral of Fig. 2a is studied. All walls are black. The wall number 3 is hot 
(Ebw=1 W/m2). Other walls as well as medium are cold at 0 K. The 2525 non-orthogonal grid is shown in Fig. 2b. 
 
 

 
Fig 2. (a) Geometry; and (b) grid system of computational domain 

 
First the dielectric particles of Table 1 in a purely scattering media with β=1 m-1 are considered. The effect of 

different particulate media on the dimensionless G of the line a-a, and the dimensionless heat flux on the bottom 
wall is studied. It is worth to mentioning that all variables in Table 1 are described in reference [1].    

 
Table 1. Different media with real index of refraction (dielectric particles) [1] 

Medium type xp n k 
F1 5 1.33 0 
F2 2 1.33 0 
B1 1 108 0 
B2 0.01 108 0 

 
As displayed in Fig. 3a, the radiative heat flux for F1, a strong forward scattering media, is higher relative to the 

others. It is because more radiative energy scatters into the angles which are close to the original direction of 
intensity and not to its opposite direction. Therefore, a beam of ray carrying radiative intensity travelling from the 
hot wall to the cold ones does not lose much of its intensity due to scattering into the backward directions. The same 
reasoning can be applied to explain why B2 (explained in reference [1]), a strong backward scattering media, has the 
lowest value of heat flux among all. In addition, the values of heat flux for the isotropic scattering media, in which 
the scattering is identical between all directions, lie somewhere between forward and backward scattering media as 
expected. 
 

 
Fig 3. Results for different types media of Table 1 at xp=2, β=1 and =0, (a) dimensionless heat  

flux on the bottom wall; and (b) dimensionless G along line a-a 
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radiative intensity. As a result the heat flux in a medium such as ash with lower value of β and higher value of ω 
must be stronger. The same condition rules the dimensionless G along the centerline of the enclosure as depicted in 
Fig. 5b. 
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formulations and approximation method as explained in [2]. 

3. Results and discussion 

The radiative heat transfer in the quadrilateral of Fig. 2a is studied. All walls are black. The wall number 3 is hot 
(Ebw=1 W/m2). Other walls as well as medium are cold at 0 K. The 2525 non-orthogonal grid is shown in Fig. 2b. 
 
 

 
Fig 2. (a) Geometry; and (b) grid system of computational domain 

 
First the dielectric particles of Table 1 in a purely scattering media with β=1 m-1 are considered. The effect of 

different particulate media on the dimensionless G of the line a-a, and the dimensionless heat flux on the bottom 
wall is studied. It is worth to mentioning that all variables in Table 1 are described in reference [1].    

 
Table 1. Different media with real index of refraction (dielectric particles) [1] 

Medium type xp n k 
F1 5 1.33 0 
F2 2 1.33 0 
B1 1 108 0 
B2 0.01 108 0 

 
As displayed in Fig. 3a, the radiative heat flux for F1, a strong forward scattering media, is higher relative to the 

others. It is because more radiative energy scatters into the angles which are close to the original direction of 
intensity and not to its opposite direction. Therefore, a beam of ray carrying radiative intensity travelling from the 
hot wall to the cold ones does not lose much of its intensity due to scattering into the backward directions. The same 
reasoning can be applied to explain why B2 (explained in reference [1]), a strong backward scattering media, has the 
lowest value of heat flux among all. In addition, the values of heat flux for the isotropic scattering media, in which 
the scattering is identical between all directions, lie somewhere between forward and backward scattering media as 
expected. 
 

 
Fig 3. Results for different types media of Table 1 at xp=2, β=1 and =0, (a) dimensionless heat  

flux on the bottom wall; and (b) dimensionless G along line a-a 
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Fig 5. Results for different types media of Table 2 at xp=2 and NT=105 (particles/cm3) (a) dimensionless heat flux on the bottom wall and (b) 

dimensionless G along line a-a 

4. Conclusions 

In this work the radiative heat transfer problem in particulate media is solved numerically. The computational 
domain is an irregular enclosure. It is assumed that the medium itself (without the particles) does not participate in 
radiative transfer. Particles are considered spheres whose radii vary between 250 nanometers to 5 micrometers. The 
effects of particle size and particle density in the media are investigated. It is found that: 
 Various particulate media of table 2 have forward scattering characteristics that intensify with enhancement in 

particle size. 
 Radiative heat flux on the cold surface is higher for forward scattering media, moreover the range of G is wider 

for backward scattering. 
 At a constant particle diameter fly ash particles have the highest value of ω because they have the lowest 

absorptive index among other materials of Table 2. 
 The radiative flux and integrated intensity are higher for media with smaller particles. 
 For a denser media, the radiative flux is lower but the values of the directionally integrated intensity cover a 

wider range due to more radiative heat transfer. 
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