Aalborg Universitet

Biogas upgrading with hydrogenotrophic methanogenic biofilms

Maegaard, Karen; Garcia-Robledo, Emilio; Kofoed, Michael V.W.; Agneessens, Laura M.; de Jonge, Nadieh; Nielsen, Jeppe L.; Ottosen, Lars D.M.; Nielsen, Lars Peter; Revsbech, Niels Peter

Published in: **Bioresource Technology**

DOI (link to publication from Publisher): 10.1016/j.biortech.2019.121422

Creative Commons License CC BY-NC-ND 4.0

Publication date: 2019

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Maegaard, K., Garcia-Robledo, E., Kofoed, M. V. W., Agneessens, L. M., de Jonge, N., Nielsen, J. L., Ottosen, L. D. M., Nielsen, L. P., & Revsbech, N. P. (2019). Biogas upgrading with hydrogenotrophic methanogenic biofilms. *Bioresource Technology*, *287*, Article 121422. https://doi.org/10.1016/j.biortech.2019.121422

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Accepted Manuscript

Biogas upgrading with hydrogenotrophic methanogenic biofilms

Karen Maegaard, Emilio Garcia-Robledo, Michael V.W. Kofoed, Laura M. Agneessens, Nadieh de Jonge, Jeppe Lund Nielsen, Lars D.M. Ottosen, Lars Peter Nielsen, Niels Peter Revsbech

PII: DOI: Article Number: Reference:	S0960-8524(19)30652-2 https://doi.org/10.1016/j.biortech.2019.121422 121422 BITE 121422
To appear in:	Bioresource Technology
Received Date:	5 March 2019
Revised Date:	2 May 2019
Accepted Date:	3 May 2019

Please cite this article as: Maegaard, K., Garcia-Robledo, E., Kofoed, M.V.W., Agneessens, L.M., de Jonge, N., Lund Nielsen, J., Ottosen, L.D.M., Peter Nielsen, L., Peter Revsbech, N., Biogas upgrading with hydrogenotrophic methanogenic biofilms, *Bioresource Technology* (2019), doi: https://doi.org/10.1016/j.biortech.2019.121422

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Biogas upgrading with hydrogenotrophic methanogenic biofilms 2 Karen Maegaard¹, Emilio Garcia-Robledo^{1,3}, Michael V. W. Kofoed², Laura M. Agneessens², 3 Nadieh de Jonge⁴, Jeppe Lund Nielsen⁴, Lars D. M. Ottosen², Lars Peter Nielsen¹ and Niels Peter 4 Revsbech^{1*} 5 6 ¹WATEC, Section of Microbiology, Department of Bioscience, Aarhus University, Aarhus, 7 8 Denmark ² Biological and chemical engineering, Department of Engineering, Aarhus University, Aarhus, 9 Denmark 10 11 ³Department of Biology, University of Cadiz, Cadiz, Spain ⁴Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark 12 13 *Corresponding author 14 **C**C 15

16 Abstract

17 Hydrogen produced from periodic excess of electrical energy may be added to biogas reactors where it is converted to CH₄ that can be utilized in the existing energy grid. The major challenge 18 19 with this technology is gas-to-liquid mass transfer limitation. The microbial conversions in reactors designed for hydrogenotrophic methanogenesis were studied with microsensors for H₂, pH, and 20 21 CO_2 . The H₂ consumption potential was dependent on the CO_2 concentration, but could partially 22 recover after CO₂ depletion. Reactors with 3-dimensional biofilm carrier material and a large gas headspace allowed for a methanogenic biofilm in direct contact with the gas phase. A high density 23 of Methanoculleus sp. in the biofilm mediated a high rate of CH₄ production, and it was calculated 24 that a reactor filled with 75% carrier material could mediate a biogas upgrading from 50 to 95% 25 CH₄ within 24 h when an equivalent amount of H₂ was added. 26 27 Keywords: microsensor, biofilm, CO₂ limitation, methane, methanogenesis, mass transfer

28

29

CCER

30 1. Introduction

The rising concern for the increase in atmospheric CO_2 content and the dependence on fossil fuels emphasize the need for a shift towards renewable energy sources. Renewable energy technologies as wind power and solar power periodically produce energy that cannot be utilized in the power grid. A storage of this excess energy remains one of the major challenges in a society relying on renewable energy sources (Götz et al. 2016).

An important source of renewable energy is biogas produced in anaerobic digesters (Weiland 2010). 36 37 Sludge, waste, manure, agricultural residues etc. are degraded in anaerobic digesters to produce 38 CH₄ that can be used for electricity and heat production. The organic matter is broken down in a series of reactions yielding a biogas consisting of CH₄ (50-70%), CO₂ (30-50%) and trace gasses. If 39 40 biogas should be used in the natural gas grid, a CH₄ content of at least 95% and removal of sulfur-41 and silicon-containing gasses are required. The CO_2 can be removed by various techniques as water 42 scrubbing, scrubbing with organic solvents, pressure swing absorption, chemical washing and membrane technologies (Weiland 2010; Ghorbanian et al. 2014; Gaj 2017; Angelidaki et al. 2018). 43 44 Another way of removing the CO_2 is to use the excess energy from wind and solar power to produce H₂ that is converted to CH₄ when combining with CO₂ in an anaerobic bioreactor. The 45 46 upgraded CH₄ can be stored and later utilized on demand (Angelidaki et al. 2018), or it can be 47 converted to more storage friendly fuels as methanol and dimethyl ether (Alvarez-Galvan et al. 48 2011). Homoacetogenic bacteria also utilize the substrates H₂ and CO₂, producing acetate that 49 subsequently fuel acetotrophic methanogenesis (Angelidaki et al. 2011). Methane has the advantage over H₂ that the volumetric energy density is higher and the infrastructure for CH₄ utilization and 50 51 storage already exists (Luo et al. 2012).

Hydrogen addition has been successfully applied in small scale reactors where the H₂ was readily
consumed by the inherent microbial community (e.g. Luo et al. 2012; Wang et al. 2013; Díaz et al.

54 2015; Agneesens et al. 2017) and the biogas was upgraded to 95-99% CH₄ (Luo et al. 2012; Wang et al. 2013; Díaz et al. 2015). The reported problems revolve around pH increase and CO₂ limitation 55 56 (Luo et al. 2012; Bassani et al. 2015; Garcia-Robledo et al. 2016). During anaerobic digestion CH₄ 57 production occurs at pH values of 6.5-8.5 with a pH optimum between 7 and 8, which would make 58 pH control necessary to maintain the CH₄ production in liquid-based reactors for biogas upgrading 59 (Demirel and Scherer 2008; Weiland 2010). The addition of H₂ could cause volatile fatty acids 60 (VFAs) to accumulate in the reactor by inhibiting degradation of VFAs due to the increase in H₂ concentration and due to stimulation of homoacetogenesis leading to acidification and reactor 61 failure (Schmidt and Ahring 1993; Cord-Ruwisch et al. 1997; Liu et al. 2016). 62 One of the major challenges with the H₂ to CH₄ technology is the introduction of H₂ into the 63 64 anaerobic digester, where the mass transfer tends to be inefficient due to a low H₂ solubility. 65 Efficient H₂ to liquid mass transfer is essential for developing this technology, ensuring that H₂ is consumed in the reactor and does not escape to the gas phase (Luo et al. 2012). The H₂ can either be 66 introduced *in-situ* to the main reactor or *ex-situ* to a secondary reactor with a specialized design 67 (Angelidaki et al. 2018; Jensen et al. 2018). In small-scale reactors, the H₂ has been introduced by 68 bubbling (Luo et al. 2012; Luo and Angelidaki 2013a; Bassani et al. 2016), hollow fiber membranes 69 70 (Luo and Angelidaki 2013b; Wang et al. 2013; Díaz et al. 2015), silicone membranes (Garcia-71 Robledo et al. 2016) and headspace injection (Agneessens et al. 2017). The H₂ injection method 72 needs to be designed so that the gas-liquid contact and gas retention time is extended while the 73 bubble size is decreased (Bassani et al. 2016; Jensen et al. 2018). Hydrogen injection combined 74 with gas recirculation has been tested in a full-scale reactor, but a relatively large bubble size 75 limited full conversion of the H₂ (Jensen et al. 2018). Hollow fiber membranes and silicone 76 tubing/membranes have been shown to facilitate a full conversion of the H₂ without bubbling 77 (Wang et al. 2013; Díaz et al. 2015; Garcia-Robledo et al. 2016), but upscaling of such technologies

78 may be difficult. A trickling filter supporting a methanogenic biofilm has been implemented in 79 biogas upgrading with H₂, demonstrating that a quite efficient gas-biofilm mass transfer can be 80 obtained with this technology (Rachbauer et al. 2016). Several biofilm carrier materials have been 81 implemented in wastewater treatment and anaerobic digestion to increase the surface area and retain the microbial community (E.g. Pérez et al. 1997; Cresson et al. 2008; Pandey and Sarkar 2007; 82 83 Gagliano et al. 2017), and there are thus several options to choose among for biogas upgrading 84 based on biofilm technology. 85 In this study, we seek to address some of the major challenges with biofilm mediated H₂ to CH₄

conversion, focusing on CO₂ limitation and gas-to-liquid mass transfer. The effect of CO₂ depletion 86 was investigated at a microscale by supplying H₂ through a silicone membrane. We hypothesized 87 88 that supply through a silicone membrane would facilitate full H₂ conversion making it an ideal 89 system to study H₂ conversion and CO₂ limitation by determining the microscale dynamics of H₂, CO₂ and pH under varying CO₂ supply rates. We propose that large headspace reactors, fitted with 90 91 carrier material covered by methanogenic biofilm, could lower the mass transfer limitations seen by 92 other reactor approaches and thereby promote conversion of H₂ and CO₂ to CH₄. Our hypothesis was tested by measuring microscale H₂ profiles in the biofilms, determining the CH₄ production 93 94 rates, VFAs accumulation over time, and analyzing the microbial community composition.

95

96 2. Materials and methods

97 2.1 CO₂ limitation of methanogenesis

A mini-reactor with two compartments separated by a silicone membrane was designed according
to Garcia-Robledo et al. (2016). The mini-reactor was constructed of a Plexiglas cylinder closed

100 with a rubber stopper in the bottom. The Plexiglas cylinder was separated into two compartments by

101 a stainless steel mesh (mesh size 0.1 cm) casted into a 0.1 cm thick silicone rubber membrane (Dow 102 Corning 732 Multi-Purpose Sealant). Gas flow through the bottom compartment was ensured by 103 inserting two hypodermic needles through the butyl rubber stopper in the bottom compartment. One needle was connected to a gas mixer (Brooks Instruments 0260 with Thermal Mass Flow 104 105 Controllers GF40) and the other needle allowed the gas to exit. The gas flow $(100 \text{ mL} \cdot \text{min}^{-1})$ was 106 conducted through Tygon tubing and all gases were humidified by bubbling through demineralized 107 water to avoid excessive evaporation from the analyzed samples. In the upper compartment, an 108 about 0.5 cm thick layer of digestate mixed with 40-60 µm glass beads rested directly on the 109 silicone membrane. It was necessary to ensure that there was no turbulent mixing in the analyzed 110 digester content during the microsensor analysis, and stabilization with chemically inert glass beads was used to ensure that diffusion was the only means of transport. The upper compartment was 111 112 covered with Parafilm and flushed with humidified argon. This allowed microsensors to be introduced through a hole in the Parafilm to measure chemical parameters down through the 113 digestate. Samples of mesophilic digester content were obtained from Bånlev biogas plant (Trige, 114 115 Denmark), sieved through a 0.1 cm mesh and mixed with glass beads for physical stabilization. The 116 digester content was transferred to the experimental set-up within 3 h of sampling. Bånlev biogas 117 plant has a mesophilic reactor treating agricultural waste products with a hydraulic retention time of ~23 days. The CH₄ production rate is 0.6-1 $L_{CH_4} \cdot L_{slurry}^{-1} \cdot day^{-1}$. The dynamics and time 118 course of H₂ consumption as affected by CO₂ depletion was investigated by flushing a mixture of 119 120 75% H₂ and 25% N₂ through the lower compartment of the mini-reactor. Measurements of H₂, CO₂ and pH were done every second hour until stable profiles were observed. Hereafter, the H₂ was kept 121 122 at 75% while the CO₂ concentration was gradually increased from 0% and up to 20% to evaluate 123 the relationship between CO₂ concentration and H₂ consumption.

125 2.2 Methanogenic biofilm

126 The methanogenic biofilm growing on the carrier material was contained in 1 L serum bottles sealed with a butyl rubber stopper that were regularly flushed with 80% H₂ and 20% CO₂ and 127 incubated at 38 °C. The serum bottles had three 1 cm drilled holes in the side allowing for 128 129 microsensor profiling of the biofilm. Butyl rubber stoppers sealed the holes except for during profiling. The carrier material tested was EXPO-NET BIO-BLOK Filter Media (EXPO-NET, 130 Denmark A/S). The controls were flushed with either 80% N₂/ 20% CO₂ or 80% H₂/ 20% CO₂ and 131 132 had no biofilm carrier material. Each treatment had four replicates. All bottles were inoculated with 300 ml digester content from Bånlev Biogas plant leaving a headspace of ~75%. The digester 133 content was sieved through a 0.1 cm screen before inoculation. The liquid phase in the bottles was 134 partially exchanged once a week during the first 5 weeks by removing 10-50 mL and resupplying 135 136 with mineral medium (Angelidaki et al. 2009). The amount of medium exchange was increased 137 from 10 mL to 50 mL at week 5 since a decrease in the CH₄ production rate was observed. The buffer capacity of the mineral medium had been increased as compared to the original recipe by 138 adding NaHCO₃ to a concentration of 0.25 mol \cdot L⁻¹ to match the bicarbonate concentration in 139 digestate. The original medium contained Na₂S and resazurin, but these were excluded in the 140 applied medium. To minimize the amount of CH₄ originating from degradation of organic matter, 141 142 nutrients were only supplied by mineral medium. The bottles were flushed 1-2 times per week with 143 a gas mixture of 80% H₂ and 20% CO₂. The pressure was recorded with a pressure gauge (Keller, 144 Eco 1) before flushing the bottles and adjusted to a slight overpressure of 0.25 bar after flushing. 145 Periodic wetting of the biofilm was achieved by turning the bottles upside down 1-5 times a week. 146 The CH₄ production rates were determined after one, two, five, six, seven and eight weeks of 147 incubation. All the bottles were flushed with a gas mixture of 80% H₂ and 20% CO₂. Gas samples 148 were collected from the headspace with a glass syringe (SGE Analytical Science) by penetrating the

149	butyl rubber stopper with a 0.4 mm hypodermic needle. The gas samples were transferred to Labco
150	Exetainers flushed with N_2 . The CH_4 content in the gas samples was determined within 1 day of
151	sampling using a gas chromatograph equipped with a flame ionization detector (SRI Instruments,
152	SRI 310C). Concentration profiles of H_2 were determined in the slurry from the H_2/CO_2 controls
153	and in the biofilms on the BIO-BLOK. The headspace of the bottles was flushed with a humidified
154	mixture of 80% H ₂ and 20% CO ₂ at 600 mL \cdot min ⁻¹ during profiling to ensure a defined gas
155	composition and to avoid contamination with air. In the bottles containing the biofilm and carrier
156	material, the microsensor was introduced through the prepared holes while the bottle was oriented
157	horizontally. When H ₂ concentration profiles were recorded in the slurry, the microsensor was
158	introduced from above through the neck of the bottle while the diameter of the opening was
159	restricted to ~0.9 cm with Parafilm. Replicate profiles were recorded in several spots. The VFA
160	content of the slurry was analyzed using a gas chromatograph (System 7890A Agilent
161	Technologies, United States), equipped with a flame ionization detector and a HP-INNOWAY
162	column (30 m \cdot 0.250 mm \cdot 0.25 µm) (Agilent Technologies).

- 163
- 164 2.3 Sensors and recording of profiles

165 A H₂ microsensor with a sulfide trap making it insensitive to sulfide was applied (Nielsen et al. 166 2015). The H₂ microsensors applied had a tip size of 20-60 μ m and a sensitivity of 1.3-6.1 pA · 167 (μ mol · L⁻¹)⁻¹. A newly developed electrochemical CO₂ microsensor (Revsbech et al. 2019) was 168 applied. The CO₂ microsensors had a tip size of 30-60 μ m and a sensitivity of 0.03-1.4 pA · (μ mol · 169 L⁻¹)⁻¹. The least sensitive sensors were made especially for measurement of very high CO₂ 170 concentrations as the very sensitive sensors exhibited non-linear response at high CO₂. Since the 171 CO₂ sensor is sensitive to H₂S, the H₂S was removed by adding FeCl₂ to a concentration of 5 mmol

 \cdot L⁻¹ before application of the CO₂ microsensor. The absence of H₂S was confirmed by analysis with 172 a H₂S microsensor (Jeroschewski et al. 1996). Microprofiles of CO₂ through pasteurized digester 173 content placed in a similar set-up did not indicate that other substances in the digester content. 174 interfered with the CO₂ measurements (data not shown). Further, simultaneous pH profiles were 175 recorded with a pH microelectrode with an external Ag/AgCl reference (Unisense A/S). The 176 177 microsensors were connected to a multimeter with pA channels for the H₂ and CO₂ microsensors 178 and a mV channel for the pH microsensor (Unisense A/S). The multimeter was connected to a computer collecting the digitized data. The vertical positions of the microsensor tips were controlled 179 by a motorized micromanipulator connected to the computer, and concentration measurements were 180 done every 50 or 100 µm. Data acquisition was performed with the software Sensor Trace Pro 181 182 (Unisense A/S). During microsensor profiling the silicone membrane mini-reactor or serum bottle was submerged in a water bath kept at 38 °C. Calibration of the H₂ microsensor was performed in 183 demineralized water by adding various volumes of water saturated with H₂. The H₂ saturated water 184 was slowly extracted with a 10 mL syringe equipped with a 1.2 mm needle, followed by extraction 185 of demineralized water to mix the solution in the syringe in ratios of 25%, 50% and 80% H₂. A new 186 solution was prepared for each concentration. The microsensor was placed in a 15 mL Falcon tube 187 with a stopper where the H₂ solutions were carefully added and the calibration was performed. The 188 solubility of H₂ in water at 38 °C is 728 μ mol · L⁻¹ at 1 atm pressure according to Crozier and 189 Yamamoto (1974). The calibration of the CO₂ microsensor was done by adding various volumes of 190 a 100 mmol \cdot L⁻¹ KHCO₃ solution to 0.5 L of acidic water (pH ~1). The pH microsensor was 191 calibrated in standard buffers (VWR chemicals). All calibrations were performed at 38 °C. In the 192 193 mini-reactor microprofiles of H₂, CO₂ and pH were recorded, while in the methanogenic biofilm 194 only H₂ and pH profiles were recorded.

196 2.4 Modelling

197 Modelling of the H₂ reaction rate was performed using the program "Profile" by Berg et al. (1998). A H₂ diffusion coefficient in water at 38 °C of $7.0 \cdot 10^{-5}$ cm² · s⁻¹ was used (Unisense A/S). The 198 digestate diffusivity (D_s) was described according to $D_s = \phi \cdot D$ where D is the diffusivity in water 199 200 and φ is the porosity. The porosity of the digestate with glass beads was 0.63 (Garcia-Robledo et al. 2016). In the biofilm, a φ of 0.9 was assumed as this value and thereby (by $D_s = \varphi \cdot D$) derived D_s 201 values previously gave good fits to experimentally derived $\varphi \cdot D_s$ values in a dense biofilm (Glud et 202 203 al. 1995). The H₂ flux was determined from the H₂ gradient at the surface of the biofilm using Fick's first law of diffusion (Crank 1975) using the same expression for diffusion coefficient as in 204 205 the modeling approach.

206

207 2.5 Statistics

Analysis of variance (ANOVA) and t-tests were performed in R (R version 3.3.1) with the interface
R commander (Rcmdr Version 2.2-5).

210

211 2.6 DNA extraction and amplicon sequencing

All reactors were sampled for sequencing at the end of the experiments. In replicates containing slurry as well as carrier material both were sampled. DNA was extracted using the FastDNA Spin Kit for Soil (MP Biomedicals, USA) according to the supplier's recommendation. Prior to DNA extraction the slurry or carrier material were subjected to enzyme digestion according to Juretschko et al. (1998). The V4 hypervariable region of the 16S rRNA gene was universally amplified in accordance with previously described protocols (Albertsen et al. 2015), and subsequently barcoded

218	for sequencing using the Nextera XT protocol (Illumina, USA). The obtained libraries were
219	sequenced in equimolar concentrations on a MiSeq platform using reagent kit v3 (2x300 PE)
220	(Illumina, USA).
221	The raw sequencing reads were quality checked using trimmomatic (version 0.32) (Bolger et al.
222	2014) and merged using FLASH (version 1.2.7) (Magoc et al. 2011). The reads were then formatted
223	for use with the UPARSE pipeline (Edgar et al. 2013), screened for chimeric sequences and
224	clustered into Operational Taxonomic Units (OTUs) at 97 % sequence similarity using
225	USEARCH7. Taxonomy was assigned using the RDP algorithm implemented in QIIME (Caporaso
226	et al. 2010) using SILVA database release S132 (Quast et al. 2013). The microbial community data
227	was analyzed using R (version 3.5.2) (R Core Team, 2019) and RStudio (version 1.1.463)
228	(http://www.rstudio.com) using the package ampvis2 (version 2.4.2) (Andersen et al. 2018).
229	Microbial community structure was visualized using heatmaps.
230	

- 231
- 232 3. Results and discussion
- 233 3.1 Time course and dynamics of CO₂ depletion

It has not previously been possible to measure CO_2 microprofiles in chemically aggressive substrates like digester content, and the data presented here are thus the first direct measurements illustrating the spatial effects of CO_2 limitation on hydrogenotrophic methanogenesis. It was possible to investigate this effect by supplying hydrogen to digester content in the previously described membrane mini-reactor. Hydrogen was readily consumed in a narrow zone next to the membrane until the process became CO_2 limited after several hours of flushing with H_2/N_2 . Initially, when high CO_2 was still present, H_2 was consumed in a very narrow zone of 0.6 mm next

to the membrane at an integrated rate of 0.58 nmol \cdot cm⁻² \cdot s⁻¹. CO₂ depletion for 10 h led to a pH 241 increase from 8.5 to 9.5. The integrated H_2 consumption rate decreased to 0.22 nmol \cdot cm⁻² \cdot s⁻¹and 242 the H₂ penetration into the slurry increased to 1.7 mm. The surface of the digester content moved 243 1.5 mm during the 10 h due to evaporation (Fig. 1). It should be noted that the CO_2 profiles are 244 dissimilar from normal gas profiles where there is a straight curve through inactive layers between 245 246 source and sinks. In the CO₂ profiles presented here there is an abrupt decrease at the slurry surface. This is caused by the high bicarbonate concentration in the slurry with which CO_2 is an equilibrium 247 delayed by the slow dehydration of carbonic acid (e.g. Mustaffa et al. 2017). The depletion of CO_2 248 thus led to pH increase, a decrease in H₂ consumption rate and an expansion of the H₂ consumption 249 250 zone which is consistent with the findings of other studies (Luo et al. 2012; Bassani et al. 2015; 251 Garcia-Robledo et al. 2016). The effect of H₂ addition through silicone membranes/tubing on CO₂ 252 and pH will, however, be very local in a full-scale reactor setup where the tubing is submerged in digester content. A localized effect could explain the limited VFA accumulation observed in some 253 studies (Luo and Angelidaki 2013a; Wang et al. 2013). If the effect is local, the potential negative 254 effects of VFA accumulation would not affect the entire reactor until low CO₂ concentrations are 255 present throughout the reactor. 256

A supply of H₂ through silicone membranes or hollow fiber membranes can mediate a full conversion, but the approach is associated with a risk of clogging (Luo and Angelidaki 2013b), and fragility must also be a major problem in a scenario with heterogeneous digester content. The initial maximum specific rate of ~16 nmol H₂ · cm⁻³ · s⁻¹ (Fig. 1A) corresponds to a CH₄ production rate of ~8 $L_{CH_4} \cdot L^{-1} \cdot day^{-1}$ which is ~10 times higher than the average CH₄ production rate in the Bånlev biogas reactor. In a biofilm reactor only a minor part of the whole reactor would, however, be occupied with active biofilm, so the actual rate per reactor volume would be much lower.

264 3.2 CO₂ concentration supporting methanogenesis

265	After CO ₂ depletion, CO ₂ was stepwise resupplied starting with 2% CO ₂ and then gradually
266	increasing the CO ₂ concentration to 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, and 20% CO ₂ . The profiles were
267	allowed to stabilize for 2 h between each increase in CO_2 concentration. It is evident that the H_2
268	consumption zone moved closer to the membrane and that the H_2 flux increased when the CO_2
269	concentration was increased (Fig. 2). At 5% CO ₂ , the H ₂ consumption zone was 2.2 \pm 0.1 (SD, n=3)
270	mm and the H ₂ flux was 0.23±0.01 (SD, n=3) nmol \cdot cm ⁻² \cdot s ⁻¹ . The addition of 10% CO ₂ yielded a
271	consumption zone of 1.3±0.0 (SD, n=3) mm and a H ₂ flux of 0.33±0.00 (SD, n=3) nmol \cdot cm ⁻² \cdot s ⁻¹ .
272	When 18% CO ₂ was added the H ₂ consumption zone was 1.0±0.1 (SD, n=3) mm and the H ₂ flux
273	was 0.45±0.06 (SD, n=3) nmol \cdot cm ⁻² \cdot s ⁻¹ . Finally, when 20% CO ₂ was supplied, the average
274	consumption zone was 1.0±0.1 (SD, n=3) mm and the H ₂ flux was 0.52±0.12 (SD, n=3) nmol \cdot cm $^{-2}$
275	\cdot s ⁻¹ (Fig. 2). Evaporation resulted in the surface of the digester content moving closer to the silicone
276	membrane during the experiment, decreasing 1.5 mm during the course of the experiment. The
277	surface was always >1 mm away from the H_2 consumption zone (Fig. 2AB), but the loss of water
278	by evaporation might have elevated the microbial density and thereby contributed to the elevated
279	activity. The rise in ion strength might, on the other hand, have decreased the cell-specific activity.
280	A water loss by evaporation could have been avoided by keeping the humidifier vessel at a higher
281	temperature. Analysis of variance (ANOVA) on the data in Fig. 2CD showed a significant effect of
282	CO ₂ concentration on both H ₂ flux (p= $2.8 \cdot 10^{-10}$) and width of H ₂ consumption zone (p= $3.4 \cdot 10^{-10}$).
283	The initial H ₂ consumption rate of 0.58 nmol \cdot cm ⁻² \cdot s ⁻¹ obtained from the data in Fig. 1A was not
284	exceeded even when 20% CO ₂ was resupplied, resulting in a consumption rate of 0.52 nmol \cdot cm ⁻² \cdot
285	s ⁻¹ . The initial CO ₂ concentration was comparable to a 5% CO ₂ supply, but the initial H_2
286	consumption rate was 60% higher than when 5% CO_2 was re-supplied and the H ₂ consumption zone
287	was 3 times wider after the CO ₂ re-supply (Figs. 1 and 2). This points to a relatively slow recovery
288	of the H ₂ consumption potential after re-introduction of CO ₂ , and it is likely that some of the

289 apparently positive effect of CO₂ higher than 5% (Fig. 2) was due to gradual physiological recovery 290 during the period when CO₂ was elevated. Experiments with longer stabilization periods for each 291 stepwise addition of CO₂ did not show any positive effect on H₂ consumption above about 6% CO₂ 292 (Garcia-Robledo et al. 2016), while others have observed inhibition of methanogenesis below 12% 293 CO_2 (Agneessens et al. 2017). Even though the H₂ consumption potential was dependent on the 294 CO_2 availability, it is apparent from Figs. 1 and 2 that CO_2 was always in excess and never fully 295 consumed in the H_2 consumption zone. In environments where methanogens occur, CO_2 concentrations are normally high as in anaerobic digesters (30-50% in the headspace) and it does 296 not appear that there is any microbial selection for high CO₂ affinity. The experiments resulting in 297 298 Figs. 1 and 2 were repeated 7 times (data not shown), all showing similar chemical profiles and 299 conversion rates.

300 3.3 Development of a methanogenic biofilm

301 The CH₄ production rates in the 1 L reactors were determined one, two, five, six, seven and eight weeks after incubation. The CH₄ production rates for both the controls were relatively stable 302 303 throughout the experiments. The CH₄ production rate for the BIO-BLOK was highest at the 304 beginning of the experiment, decreased during the first 5 weeks of incubation, and then started 305 increasing again after 6 weeks. The CH₄ production rate in the BIO-BLOK was four times higher than the H_2/CO_2 control one and two weeks after incubation, two times higher five and six weeks 306 307 after incubation, three times higher after seven weeks and four times higher after eight weeks of 308 incubation (Fig. 3). At all time points there was a significant difference (t-test, p=<0.05) between 309 the CH_4 production rate of the H_2/CO_2 control and the BIO-BLOK which shows that there is an 310 effect of the presence of the carrier material on the CH₄ production rate. The composition of the 311 microbial community was analyzed by amplicon sequencing and the 15 most abundant operational 312 taxonomic units (OTUS) indentified (Fig. 4), and it appears that the genus Methanoculleus was

313 highly enriched in the biofilm as compared to the treatments without carrier material. Methanogens 314 were thus enriched in the biofilm as hypothesized (Fig. 4). Due to periodic wetting with slurry we 315 still expect significant occurrence of slurry organisms in the biofilm, but syntrophic bacteria like "Syntrophomonadaceae" were present in lower numbers in the biofilm as compared to the N_2/CO_2 316 control, as were fermentative bacteria like "Clostridia" and "Rikenellaceae". 317 318 The CH₄ production rate of the BIO-BLOK decreased until week five where the loading of media 319 and contact with the slurry was increased. The loading of medium and increased contact of the 320 carrier material with the slurry resulted in an increase in the CH₄ production rate, indicating that supply of constituents in the slurry or removal of constituents in the biofilm were essential for 321 322 optimal biofilm functioning. VFA accumulation was limited and acidification does not seem likely 323 as an explanation for the decrease in the CH₄ production rate. It appears that a biofilm was established within the first week of incubation, and during the following weeks the CH₄ production 324 potential was highly dependent on frequent contact with the slurry. Other studies report stabilization 325 of the biofilm development after 10-90 days (Pérez et al. 1997; Cresson et al. 2008; Brileya et al. 326 2014; Rachbauer et al. 2016; Pandey and Sarkar 2017) which is reasonably within the timeframe of 327 328 this study. However, the previous studies on methanogenic biofilms have not attempted to promote 329 biofilm formation by direct exposure to the gas phase. With this approach nutrients were only 330 periodically available, and it appears that nutrient availability may have determined the CH₄ 331 production potential in the present study. Likewise, mineral nutrient addition increased CH_4 332 production in a fixed-bed biomethanation reactor (Alitalo et al. 2015), suggesting the relevance of 333 nutrient availability during biofilm-based biomethanation. The CH₄ production rate was relatively 334 stable in both the N_2/CO_2 and H_2/CO_2 control throughout the experiment while the biofilm reacted 335 to the change in medium loading and wetting.

336 3.4 Hydrogen consumption in the biofilm

337 A H₂ microsensor was applied to determine the H₂ concentration profiles in the slurries and biofilms while the bottles were continuously flushed with a mixture of 80% H₂ and 20% CO₂ (Fig. 338 339 5). Profiles were recorded at several locations in the BIO-BLOK incubations where variation in the 340 H₂ flux and width of the H₂ consumption zone was observed. The consumption zone was up to 0.5 mm, the H₂ flux ranged from 0.73-3.11 nmol \cdot cm⁻² \cdot s⁻¹, and the minimum H₂ concentration in the 341 biofilm ranged from 0-400 μ mol \cdot L⁻¹. The presence of H₂ in the bottom biofilm layers at some 342 343 locations illustrate relatively poor biofilm formation at these locations. In the H₂/CO₂ control slurry, 344 the H₂ profiles showed limited variation and the H₂ was fully consumed in a surface zone of 0.9 ± 0.1 mm (SD, n=17) mm. Figure 5 shows typical examples of H₂ concentration profiles from slurry and 345 biofilm. The average H₂ flux in the H₂/CO₂ control slurry was 1.14±0.16 (SD, n=17) nmol \cdot cm⁻² \cdot s⁻ 346 ¹ while the H₂ flux at the biofilm/gas interface was 2.11±0.60 (SD, n=40) nmol \cdot cm⁻² \cdot s⁻¹. Hence, 347 the H₂ flux in the BIO-BLOK biofilm was approximately twice as high as the H₂ flux in the H₂/CO₂ 348 control slurry and significantly different (t-test, $p=2.5 \cdot 10^{-8}$). This is in agreement with our 349 hypothesis that the carrier material's direct exposure to the gas phase would stimulate biofilm 350 formation and make it more beneficial for the microorganisms to occupy the carrier material than to 351 grow in the slurry. The high rate of H₂ consumption in the biofilm is in accordance with the 352 353 enrichment of Methanoculleus (Fig. 4).

354 3.5 Hydrogen consuming pathway

The VFA content in the slurry was analyzed one, five and eight weeks after incubation where acetate was the only detected VFA. In the bottles, acetate concentrations changed at an average rate of -1.63 ± 1.05 (SD, n=3) µmol \cdot d⁻¹ in the N₂/CO₂ control, -4.16 ± 2.38 (SD, n=4) µmol \cdot d⁻¹ in the H₂/CO₂ control and 6.76 ± 2.20 (SD, n=4) µmol \cdot d⁻¹ in the BIO-BLOK slurry between day 10 and 38. Between day 38 and 59, the acetate concentrations changed at an average rate of -8.28 ± 1.78 (SD, n=4) µmol \cdot d⁻¹ in the N₂/CO₂ control, 0.54 ± 0.88 (SD, n=4) µmol \cdot d⁻¹ in the H₂/CO₂ control

and 13.64 \pm 16.44 (SD, n=4) μ mol \cdot d⁻¹ in the BIO-BLOK slurry. Acetate was the only VFA that was 361 362 detected which contradicts inhibition of VFA degradation by H₂ which has been observed in other studies (Luo et al. 2012; Luo and Angelidaki 2013a). In the first part of the experiment, acetate was 363 364 primarily degraded in both the N₂/CO₂ and H₂/CO₂ control while it accumulated in the BIO-BLOK slurry. In the second part of the experiment, acetate was degraded in the N_2/CO_2 control but 365 accumulated in the H₂/CO₂ control and the BIO-BLOK slurry. The acetate accumulation rate was 366 367 25 times higher in the BIO-BLOK compared to the H₂/CO₂ control. The acetate concentration in the present study was ~2-12 times lower in the control and ~3-28 times lower than in H₂ amended 368 reactors reported in other studies (Luo et al. 2012; Agneessens et al. 2017; Agneessens et al. 2018). 369 370 Acetate mainly accumulates in the start-up phase, but in this study the acetate concentration was 371 measured 1, 5 and 8 weeks after start of incubation which might explain the relatively low acetate 372 concentrations (Mulat et al. 2017; Agneessens et al. 2018). According to our measurements, the CH₄ production accounted for 74-85% of the H₂ consumption in the H₂/CO₂ control. However, the 373 374 acetate accumulation data indicates that only about 0.1% of the H₂ consumption resulted in net acetate accumulation in the H_2/CO_2 control. The 15-25% discrepancy in the hydrogen addition 375 376 budget may partially be due to reduction of CO_2 to biomass.

The H₂ flux measurements show a higher flux into the biofilm than into an equivalent area of the 377 378 surface in the liquid control, reflecting the pronounced enrichment of the genus Methanoculleus that 379 is associated mainly with hydrogenotrophic methanogenesis (Dianou et al. 2001; Holmes and Smith 380 2016) (Fig. 4). The comparatively higher H_2 influx into the biofilm means that the CH₄ production 381 in the BIO-BLOK reactors should have been even higher as compared to the H₂/CO₂ controls than 382 the difference in surface area indicates. The CH₄ production rate in the BIO-BLOK incubations was, however, only 2-4 times higher than in the H_2/CO_2 control, in spite of the carrier material 383 384 surface area being 7-8 times higher, indicating that the entire surface area might not have been

385 colonized. The high H₂ flux as compared to the total CH₄ production rate could also have been due to high rates of homoacetogenesis. However, only 0-0.2% of the H₂ consumption resulted in net 386 387 acetate accumulation in the BIO-BLOK slurry. The pH at the surface of the biofilm was determined in two locations of the biofilm with a pH microelectrode at day 58, and the pH was 7.6 and 8.1 388 which is in agreement with very limited acetate accumulation. Hence, homoacetogenesis does not 389 390 explain the discrepancy between the H₂ flux and CH₄ production rate, and limited colonization of 391 the carrier material appears as the most likely explanation. A contributing factor to the apparent discrepancy could be that the surface area stated by the BIO-BLOK supplier might not be realized 392 when a relatively thick biofilm is covering the material. 393 The N₂/CO₂ control produced CH₄ throughout the experiment, confirming breakdown of organic 394

matter to sustain methanogenesis at low rates. The methanogenesis persisted although 40% of the 395

inoculum was exchanged with mineral medium and only a limited amount of complex organic 396

397 matter must have remained.

398

408

3.6 Fitting carrier material in a full-scale reactor 399

400 The biogas reactor at Foulum biogas plant (Tjele, Denmark) was used as a point of reference for 401 calculating the amount of carrier material needed in a reactor. The headspace was assumed to be 402 75% of the total reactor volume and the carrier material to occupy 15% of the total volume of the 403 reactor. The calculations are based on the H₂ flux in the BIO-BLOK incubations. The H₂ 404 consumption was assumed independent of CO₂ concentration above 20% and linearly decrease to 405 half of the 20% rate when the CO₂ concentration was 2% (according to the data in Fig. 2). The H₂ flux was assumed to respond to the H₂ concentration according to $J = \sqrt{\frac{2 \cdot D \cdot C}{R}}$, where J is the H₂ 406 flux (mol \cdot m⁻² \cdot h⁻¹), D is the diffusion coefficient (m² \cdot h⁻¹), C is the H₂ concentration at the biofilm 407 surface (mol \cdot m⁻³) and R is the specific H₂ consumption rate (mol \cdot m⁻³ \cdot h⁻¹) (Revsbech et al. 1980).

The surface of the BIO-BLOK was assumed to be the $300 \text{ m}^2 \text{ m}^{-3}$ claimed by the company. The 409 initial CO₂ content of the biogas was assumed to be 50% and H₂ was added in a four times 410 volumetric equivalent. If a CH₄ content of >95% is required (Weiland 2010) a retention time of ~4 411 412 days is necessary with such a reactor configuration. Assuming this concentration dependency of the 413 H₂ consumption rate, the H₂ consumption substantially slows down at low concentrations. If the 414 carrier material occupies 75% of the total volume of the reactor, the retention time necessary would 415 decrease to one day. The carrier material should be fitted in the reactor in a fashion that would allow supply of nutrients to the biofilm. This could be achieved by periodically sprinkling the 416 carrier material with digester content. Since digester content is rather heterogeneous and contain 417 fragments of organic matter that are only partially degraded it would be necessary to sieve/filtrate 418 419 the digester content (as was done in this study) to allow for sprinkling. This would also aid in 420 preventing clogging of the biofilm carrier material with non-biofilm material. The biofilm would remain moist by the sprinkling, water vapor in the biogas and the H₂O produced during 421 hydrogenotrophic methanogenesis. Apart from the benefit of a very efficient mass transfer, the 422 problems with pH increase would be minimal since methanogenesis relies on the CO₂ in the gas 423 424 phase and not the bicarbonate pool in the digester content. Any metabolic effect on pH in the 425 biofilm will thus not be due to the catabolic metabolism, but there could be minor effects by 426 anabolic metabolism. The biofilm approach tested in this investigation is in principle similar to the trickling filter approach tested by Rachbauer et al. (2016), but the mass transfer was by our 427 428 approach facilitated by not having the hydrogen influx into the biofilm slowed down by diffusion 429 through a water layer above the biofilm. A similar effect could have been obtained by only periodic 430 watering of the trickling filter biofilm.

431

432 4. Conclusion

433	The successful application of H ₂ addition to bioreactors is highly dependent on efficient gas-to-
434	liquid mass transfer and on controlling the negative effects of CO ₂ limitation leading to pH increase.
435	The microbial community partially recovers after CO ₂ depletion, but hydrogenotrophic
436	methanogenesis is highly dependent on CO ₂ concentration and there appears to been no selection
437	for low CO ₂ affinity. Carrier material allowed for establishing a methanogenic biofilm for biogas
438	upgrading that was dominated by the genus Methanoculleus that is known to be associated with
439	hydrogenotrophic methanogenesis. A bioreactor based on a gas-exposed methanogenic biofilm
440	could lower the gas-to-liquid mass transfer limitations as well as the negative effects of CO_2
441	depletion and pH increase.
442	
443	Conflict of interest
444	The authors declare that they have no conflict of interest.
445	
446	Acknowledgement
447	This study was supported by the Innovation Fund Denmark project Electrogas, grant no. 4106-
448	00017B, and by the Poul Due Jensen Foundation. We are grateful for the technical support of Lars
449	Borregaard Petersen and Preben Sørensen.
450	6

451	References
452	
453	1. Agneessens, L. M., Ottosen, L. D. M., Voigt, N. V., Nielsen, J. L., de Jonge, N., Fischer, C. H.,
454	Kofoed. M. V. W., 2017. In-situ biogas upgrading with pulse H_2 additions: The relevance of
455	methanogen adaption and inorganic carbon level. Bioresour. Technol. 233, 256–263.
456	
457	2. Agneessens, L. M., Ottosen, L. D. M., Andersen, M., Olesen, C. B., Feilberg, A., Kofoed, M. V.
458	W., 2018. Parameters affecting acetate concentrations during in-situ biological hydrogen
459	methanation. Bioresour. Technol. 258, 33–40.
460	
461	3. Albertsen, M., Karst, S.M., Ziegler, A.S., Kirkegaard, R.H., Nielsen, P.H., 2015. Back to Basics
462	- The Influence of DNA Extraction and Primer Choice on Phylogenetic Analysis of Activated
463	Sludge Communities. PLoS One 10, e0132783.
464	
465	4. Alitalo, A., Niskanen, E., Aura, E., 2015. Biocatalytic methanation of hydrogen and carbon
466	dioxide in a fixed bed bioreactor. Bioresour. Technol. 196, 600-605.
467	
468	5. Alvarez-Galvan, M. C., Mota, N., Ojeda, M., Rojas, S., Navarro, R. M., Fierro, J. L. G., 2011.
469	Direct methane conversion routes to chemicals and fuels. Catal. Today 17, 15–23.
470	
471	6. Andersen, K. S., Kirkegaard, R. H., Karst, S. M., Albertsen, M., 2018. ampvis2: an R package to
472	analyse and visualise 16S rRNA amplicon data. <i>bioRxiv</i> .
473	

474	7. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J.,
475	Kalyuzhnyi, S., Jenicek, P., van Lier, J. B., 2009. Defining the biomethane potential (BMP) of solid
476	organic wastes and energy crops: a proposed protocol for batch assays. Wat. Sci. Tech. 59.5, 927-
477	934.
478	
479	8. Angelidaki, I., Karakashev, D., Batstone, D. J., Plugge, C. M., Stams, A. J. M., 2011.
480	Biomethanation and Its Potential. Methods Enzymol. 494, 327-351.
481	
482	9. Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., Kougias, P. G., 2018.
483	Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 36, 452-466.
484	
485	10. Bassani, I., Kougias, P. G., Treu, L., Angelidaki, I., 2015. Biogas Upgrading via
486	Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank Reactors at Mesophilic
487	and Thermophilic Conditions. Environ. Sci. Technol. 49, 12585-12593.
488	11. Bassani, L. Kougias, P. G., Angelidaki, L. 2016, In-situ biogas upgrading in thermophilic
489	granular UASB reactor: key factors affecting the hydrogen mass transfer rate. Bioresour. Technol.
490	221, 485–491.
491	12. Berg, P., Risgaard-Petersen, N., Rysgaard, S., 1998. Interpretation of measured concentration
492	profiles in sediment pore water. Limnol. Oceanogr. 43, 1500-1510.
493	
494	13. Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina
495	sequence data. Bioinformatics 30, 2114–2120.
496	

497	14. Brileya, K. A., Camilleri, L. B., Zane, G. M., Wall, J. D., Fields, M. W., 2014. Biofilm growth
498	mode promotes maximum carrying capacity and community stability during product inhibition
499	syntrophy. Front. Microbiol. 5, 693.
500	
501	15. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K.,
502	Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D.,
503	Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J.,
504	Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight,
505	R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7,
506	335–336.
507	
508	16. Cord-Ruwisch, R., Mercz, T. I., Hoh, C., Strong, G. E., 1997. Dissolved Hydrogen
509	Concentration as an On-Line Control Parameter for the Automated Operation and Optimization of
510	Anaerobic Digesters. Biotechnol. Bioeng. 56, 626-634.
511	17. Crank, J., 1975. The Mathematics of Diffusion, second ed. Oxford University Press. Oxford.
512	
513	18. Cresson, R., Escudié, R., Steyer, J-P., Delgenés, J-P., Bernet, N., 2008. Competition between
514	planktonic and fixed microorganisms during the start-up of methanogenic biofilm reactors. Water
515	Res. 42, 792-800.
516	
517	19. Crozier, T. E., and Yamamoto, S., 1974. Solubility of hydrogen in water, sea water, and sodium
518	chloride solutions. J. Chem. Eng. Data 19, 242–244.
519	
520	20. Demirel, B., Scherer, P., 2008. The roles of acetotrophic and hydrogenotrophic methanogens

- during anaerobic conversion of biomass to methane: a review. Rev. Environ. Sci. Biotechnol. 7,
 173–190.
- 523 21. Díaz, I., Pérez, C., Alfaro, N. and Fdz-Polanco, F., 2015. A feasibility study on the
- 524 bioconversion of CO₂ and H₂ to biomethane by gas sparging through polymeric membranes.
- 525 Bioresour. Technol. 185, 246–253.
- 526 22. Dianou, D., Miyaki, T., Asakawa, S., Morii, H., Nagaoka, K., Oyaizu, H., Matsumoto, S., 2001.

527 Methanoculleus chikugoensis sp. nov., a novel methanogenic archaeon isolated from paddy field

- 528 soil in Japan, and DNA–DNA hybridization among Methanoculleus species. Int. J. Syst. Evol.
- 529 Microbiol. 51, 1663–1669.
- 530 23. Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads.
 531 Nat. Methods 10, 996–998.
- 532 24. Gagliano, M. C., Ismail, S. B, Stams, A. J. M., Plugge, C. M., Temmink, H., Van Lier, J. B.,
 533 2017. Biofilm formation and granule properties in anaerobic digestion at high salinity. Water Res.
 534 12, 61-71.
- 535
- 536 25. Gaj, K., 2017. Applicability of selected methods and sorbents to simultaneous
- removal of siloxanes and other impurities from biogas. Clean Techn. Environ. Policy 19, 2181–
 2189.
- 539
- 540 26. Garcia-Robledo, E., Ottosen, L. D. M., Voigt, N. V., Kofoed, M. V., Revsbech, N. P., 2016.
- 541 Micro-scale H₂–CO₂ Dynamics in a Hydrogenotrophic Methanogenic Membrane Reactor. Front.
- 542 Microbiol. 7, 1276.

543	27. Ghorbanian, M., Lupitskyy, R. M., Satyavolu, J. V. and Berson, R. E., 2014	4. Impact of
-----	--	--------------

- 544 Supplemental Hydrogen on Biogas Enhancement and Substrate Removal Efficiency in a Two-Stage
- 545 Expanded Granular Sludge Bed Reactor. Environ. Eng. Sci. 31, 253-260.
- 546 28. Götz, M., Lefebvre, J., Mörs, J., Koch, A. M., Graf, F., Bajohr, S., Reimert, R., Kolb, T., 2016.
- 547 Renewable Power-to-Gas: A technological and economic review. Renew. Energy 85, 1371-1390.

548

- 549 29. Holmes, D. E., Smith, J. A., 2016. Biologically Produced Methane as a Renewable Energy
- Source, in: Sariaslani, S., Gadd, G. M. (Eds.), Advances in Applied Microbiology. Academic Press,
 pp. 1-41.

- 30. Jensen, M. B., Kofoed, M. V. W., Fischer, K., Voigt, N. V., Agneessens, L. M., Batstone, D. J.,
 Ottosen, L. D. M., 2018. Venturi-type injection system as a potential H₂ mass transfer technology
 for full-scale in situ biomethanation, Appl. Energ. 222, 840–846.
- 556
- 557 31. Jeroschewski, P., Steuckart, C. and Kühl, M., 1996. An Amperometric Microsensor for the
- 558 Determination of H₂S in Aquatic Environments. Anal. Chem. 68, 4351-4357.
- 559 32. Juretschko, S., Timmermann, G., Schmid, M, Schleifer, K-H., Pommerening-Röser, A., Koops,
- 560 H-P., Wagner, M., 1998. Combined Molecular and Conventional Analyses of Nitrifying Bacterium
- 561 Diversity in Activated Sludge: Nitrosococcus mobilis and Nitrospira-Like Bacteria as Dominant
- 562 Populations. App. Environ. Microbiol. 64, 3042–3051.
- 563 33. Liu, R., Hao, X. Wei, J., 2016. Function of homoacetogenesis on the heterotrophic methane
- production with exogenous H_2/CO_2 involved. Chem. Eng. J. 284, 1196–1203.
- 565

- 566 34. Luo, G., Johansson, S., Boe, K., Xie, L., Zhou, Q. and Angelidaki, I., 2012. Simultaneous
- 567 Hydrogen Utilization and In Situ Biogas Upgrading in an Anaerobic Reactor. Biotechnol. Bioeng.
 568 109, 1088-1094.
- 569 35. Luo, G., Angelidaki, I., 2013a. Hollow fiber membrane based H₂ diffusion for efficient in situ
- 570 biogas upgrading in an anaerobic reactor. Appl. Microbiol. Biotechnol. 97, 3739–3744.
- 571 36. Luo, G., Angelidaki, I., 2013b. Co-digestion of manure and whey for in situ biogas upgrading
- 572 by the addition of H₂: process performance and microbial insights. Appl. Microbiol. Biotechnol. 97,
- 573 1373–1381.
- 574 37. Magoč, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve
- 575 genome assemblies. Bioinformatics 27, 2957–2963.
- 576 38. Mulat, D. G., Mosbæk, F., Ward, A. J., Polag, D., Greule, M., Keppler, F., Nielsen, J. L.,
- 577 Feilberg, A., 2017. Exogenous addition of H_2 for an in situ biogas upgrading through biological
- 578 reduction of carbon dioxide into methane. Waste Manage. 68, 146-156.
- 579
- 39. Mustaffa, N. I. H., Stribel, M., Wurl, O. 2017. Enrichment of Extracellular Carbonic Anhydrase
 in the Sea Surface Microlayer and Its Effect on Air-Sea CO₂ Exchange. Geophys. Res. Lett. 44,
 12324-12330.
- 583
- 40. Nielsen, M., Larsen, L. H., Ottosen, L. D. M., Revsbech, N. P., 2015. Hydrogen microsensors
 with hydrogen sulfide traps. Sens. Actuators, B 215, 1–8.
- 586

507	11	Ourage	\mathbf{C}	Dunnagan	$\mathbf{\Gamma}$	Vilmon	D	Contron	т	Sahrwaan	т	Vanzo	D	Damling	Т	Clastman	\mathbf{D}
301	41.	Quast,	U.,	Pruesse.	, с.,	I IIIIIaZ,	r.,	Gerken,	J.,	Schweer,	1.,	I arza,	r.,	Pephes,	J.,	Glockner.	.г.
		`	,		, .,	, , ,	. ,		2	, ,	. ,		. ,	- r	,	;	,

- 588 O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-
- 589 based tools. Nucleic Acids Res. 41, 590–596.
- 590
- 591 42. Rachbauer, L. Voitl, G., Bochmann, G., Fuchs, W., 2016. Biological biogas upgrading capacity
- 592 of a hydrogenotrophic community in a trickle-bed reactor. Appl. Energ. 180, 483–490.

- 43. Revsbech, N. P., Jørgensen, B. B., Blackburn, T. H., 1980. Oxygen in the Sea Bottom Measured
 with a Microelectrode. Science 207, 1355-1356.
- 596
- 44. R Core Team (2019). R: A language and environment for statistical computing. R Foundation
 for Statistical Computing, Vienna, Austria. <u>http://www.R-project.org/</u>.
- 599
- 45. Revsbech, N.P., Garcia-Robledo, E., Sveegaard, S., Andersen, M. H., Gothelf, K. V., Larsen, L.
 H., 2019. Amperometic microsensor for measurement of gaseous and dissolved CO₂. Sens.
 Actuators, B, 283, 349-354.
- 603
- 46. Schmidt, J. E., Ahring, B., 1993. Effects of Hydrogen and Formate on the Degradation of
 Propionate and Butyrate in Thermophilic Granules from an Upflow Anaerobic Sludge Blanket
 Reactor. Appl. Environ. Microbiol. 59, 2546-2551.
- 607
- 47. Pandey, S. and Sarkar, S., 2017. Anaerobic treatment of wastewater using a two-stage packedbed reactor containing polyvinyl alcohol gel beads as biofilm carrier. J. Environ. Chem. Eng. 5,
 1575–1585.

- 611
- 48. Pérez, M., Romero, L. I., Nebot, E., Sales, D., 1997. Colonisation of porous sintered-glass
- 613 support in anaerobic thermophilic bioreactors. Bioresour. Technol. 59, 177-183.
- 614
- 615 49. Wang, W., Xie, L., Luo, G., Zhou, Q., Angelidaki, I., 2013. Performance and microbial
- 616 community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas

MP

617 upgrading. Bioresour. Technol. 146, 234–239.

618 50. Weiland, P., 2010. Biogas production: current state and perspectives. Appl. Microbiol.

619 Biotechnol. 85, 849–860.

- 621 Figure captions
- 622 Figure 1: Profiles in membrane reactor 1 h after addition of slurry while supplied with 75% H₂ and
- 623 25% N₂ below the membrane (A+C). Profiles in the reactor 10 h after supplying with a gas mixture
- 624 of 75% H₂ and 25% N₂ (B+D). H₂ (\circ), CO₂ (\bullet), pH (\bullet), modelled H₂ concentration (black line) and
- 625 modelled H₂ consumption rate (red line box). The depth scale is the reading on the
- 626 micromanipulator. The surface of the silicone membrane was at 6 mm on that scale. The surface of
- the slurry decreased from 0.8 to 2.6 mm during the 10 h of CO₂ depletion.
- Figure 2: Selected H_2 (A) and CO_2 (B) concentration profiles when a mixture of 75% H_2 and 5%
- 629 (•), 10% (O), 18% (•) or 20% (\diamond) CO₂ was supplied. Note different scale on horizontal axis. The
- 630 depth scale is the reading on the micromanipulator. The surface of the silicone membrane was at 6
- 631 mm on that scale. The surface of the slurry decreased from 2.7 to 3.4 mm during the experiment.
- The H₂ flux and width of consumption zone as a function of CO₂ supply are plotted in panels C and
- D, respectively.
- Figure 3: Average CH₄ production rate (\pm SD, n=4) as a function of time for the N₂/CO₂ control
- 635 (filled circle), H₂/CO₂ control (filled square) and BIO-BLOK (filled diamond).
- Figure 4: Examples of H₂ concentration profiles. H₂ concentration profiles in the control H₂/CO₂
 slurry (left) and BIO-BLOK biofilm (right).
- Figure 5: Microbial community analysis. Heat map of read abundance showing the 15 mostabundant OTUs.
- 640
- 641

Highlights 648

- Hydrogen addition resulted in CO₂ limitation and pH increase 649 •
- Hydrogenotrophic methanogenesis was highly dependent on CO₂ concentration 650 •
- A methanogenic biofilm was established on carrier material 651 •
- The methanogenic biofilm had a high rate of methanogenesis 652 •

- The methanogenic biofilm was enriched in the genus Methanoculleus _uh 653 •
- 654 655