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Fantastic plastic? An Image-based Test Method to Detect Aesthetic Defects in Batches Based on
Reference Samples

Anne Juhler Hansen,Hendrik Knoche, Thomas B. Moeslund
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Highlights

Fantastic plastic? An Image-based Test Method to Detect Aesthetic Defects in Batches Based on
Reference Samples

Anne Juhler Hansen,Hendrik Knoche, Thomas B. Moeslund

Visual defect detection utilizing existing 3D scans to classify Aesthetic Quality.

Image-based test method using median master comparison and contrast enhancement.

Batch images are given a quality index and sorted based on difference to the master.

The number of images in need of review by assessors is reduced by a factor of 13.

High classification of defects in synergy with the principles of Six Sigma.
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ARTICLE INFO ABSTRACT

The production of high-end manufactured products requires Aesthetic Quality Control (AQC) in
the form of human visual inspection. Manufactures can reduce AQC costs by incorporating semi-
automated visual defect detection in units with the existing 3D metrology scans. This paper demon-
strates how an image-based test method for defect detection can reduce the workload related to human
visual inspection by proposing a median master comparison of batch image series. Our contribu-
tion consist of a) contrast enhancing and sorting batch image series for human visual inspection and
b) providing a quality index (nQI) incorporated into statistical process control (SPC) for monitor-
ing and controlling the AQC process. Our data shows that the median master differencing together
with the nQI is great for classification of defects in batch images series. We introduce a SPC design
proposal where individual batches as well as aggregated data can be inspected in synergy with the
principles of Six Sigma. Based on Six Sigma control limits we have reduced the number of images in
need of review by AQC assessors by a factor of 13.
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1. Introduction

High-end manufacturers of high volume premium prod-
ucts need Aesthetic Quality Control (AQC) [9] including in-
specting for geometric and visual defects. Early defect de-
tection reduces the risk of lost production. In high-volume
manufacturing such as injection moulding assessors visually
inspect several individual units (see Figure 1, B) as a batch
(see Figure 1, A). Since in batch production items are pro-
duced together it is also logical to inspect units in batches to
increase the efficiency of finding defective units. Visual de-
fect detection requires inspecting units from various view an-
gles given the non-constant relationship between illumina-
tion angle and the unit’s surface for this task. Human defect
detection entails: a) high labour cost and knowledge sharing
between assessors and b) poor inter-assessor reliability [21].

A: Batch, w/o defects C: Batch, w/ defects

D: Unit, w/ defects

B: Unit, w/o defects

A solution to these problems entails automation using ma-
chine vision piggybacked onto existing 3D metrology scans
used for identifying geometrical deviations. So far, machine
vision research usually focuses on single units from a single
view angle and most importantly can only detect a subset
of all visual defect types [19, 12]. Assessors, however, can
detect all relevant defects and can be part of a human-in-the-
loop solution. But they do require support in reviewing the
multitude of view angle images obtained for a given batch.
Our semi-automatic aesthetic quality work-flow reduces
the workload of AQC assessors (hereinafter assessors) by
sorting a batch image series based on a master reference and
aderived quality index. Our contribution consist of contrast-
based image enhancement based on a median master and
image sorting for human-in-the-loop batch defect detection.
Our semi-automated visual inspections reduced the number
of view angles (images) in need of review by an assessor by
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Figure 1: Batch level defect enhancement: A) batch image
with 8 partially visible units, B) zoom-in on a single unit with-
out defects, C) batch image where several units have surface
imperfections, and D) zoom-in on a single defect unit. The
assessor can identify defects (red arrows) based on the log-
enhanced images. The red arrows indicate blisters. Notice the
color change; the unit’s surface (D) is brighter than the master
unit (B)).

a factor of 13 for visual defects (discolouration and blisters)
when employing a Six Sigma statistical processing control
(SPC) control limit. Our small scale feasibility study re-
lied on realistic image footage counting 10 different batches.
Each batch consisted of 12 units and 18 different view angle
images were captured per batch. As a side effect our ap-
proach can presumably also improve inter-rater reliability.
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Figure 2: Manual aesthetic quality control model with illumination light source, unit
surface (including potential defects) and human visual inspection. The visual appearance
of the unit changes with both the angle of light hitting the surface and the assessors viewing
angle to the surface. The 3D scanner employs two cameras for metrology measurements
and as a by-product we get a batch image series which can be used for semi-automated
visual inspection. The batch image series is sorted based on the absolute difference to the
median master (see e.g. D in Fig. 4).

2. Aesthetic Quality Control

Mass-manufacturing produces large amounts of standard-
ised products at both high and low volume using assembly
line techniques. The difference between high and low vol-
ume is expressed in number of units subjected to quality as-
surance. In low volume productions all individual units of-
ten undergo AQC whereas high volume production quality
control is performed by sampling batches. In quality man-
agement focus is on preventing non-conformity (i.e. devia-
tion from a standard or specification) and we examine this
problem by creating a test method for batch defect detection
of injection moulded plastic surfaces.

We draw on Levitt’s definition of manufacturing qual-
ity as conformance to specification [17] i.e. absence of de-
fects, deficiencies, and significant variations to prevent non-
conformity. Several standards exist for testing mechanical
properties of injection molded products but product appear-
ance is difficult for assessors to quantify [31]. Imperfections
in materials and failure during manufacturing produce ob-
servable aesthetic defects that customers find aesthetically
displeasing [8]. Manual inspection of visual appearance is
expensive and both accuracy and speed are difficult to im-
prove for human quality assessors. An alternative is auto-
matic and potentially non-destructive testing. Nondestruc-
tive inspection technology do not permanently alter the in-
spected object but the non-destructive methods should accu-
rately and rapidly detect defects for quality assurance [31].
Non-destructive inspection technology includes industrial ra-
diography, ultrasonic testing, magnetic particle inspection,
visual testing and more [15].

3. Automatic Visual Inspection (AVI)

To enable faster and more accurate inspection industrial
production nowadays routinely employs machine vision to
conduct automatic visual inspection (AVI) e.g. of circuit
boards [16] in which functional quality thresholds are easy to
define. Aesthetic quality evaluation is more complex due to
the number of dimensions involved, i.e. perception and cog-

nition. Aesthetic quality is part of a continuum where both
the holistic understanding as well as discrete measurements
comprise the product specification. This is reduced to a bi-
nary decision of OK/NOT OK represented by defect charac-
teristics. Profiling different defect types within manufactur-
ing can help in automating AQC for machine vision using
quantifiable anomaly descriptors. Many different materials
(e.g. leather [28], ceramic [3], stone [18], metals [19], [23],
and plastic etc. [12]) make AVI subject to real-time and in
situ testing and can contribute detection, localization and
classification of defects in polymer products. Highly reflec-
tive materials (e.g. plastic) gives varying reflectance and is
part of the problem for AVI since specular highlights on ob-
jects create noise in the images and eradicate homogeneity.
Homogeneity is particularly relevant when evaluating visual
appearance of injection moulded objects with uniform sur-
faces [27]. One way of introducing image enhancement is
to use structured backlighting with binary stripe patterns to
enhance contrast and make visual defects stand out from the
noise [8]. Contrast-based methods have also been success-
fully employed for quantitatively assessing scratch visibility
in transparent polymer films [5, 2]

Commonly AVI approaches take CCD-images as input
for fast evaluation of visual appearance. For AVI the fo-
cus is often on noise reduction, contrast enhancement, and
image segmentation [3] and often the detected number of
defect types is limited to only a selected few [19, 12] un-
less the approach is to detect surface homogeneity [27]. Re-
cent advances within AVI use varying approaches including
texture analysis methods [30], statistical analysis methods
(i.e. spatial distribution of texture values) [24], filter-based
approaches such as Fourier, Gabor, and Wavelet transform
etc. [29], and model-based methods including fractal, au-
toregressive, random field, and texem models [4].

4. Visual inspection within companies

Six Sigma is a methodology used for increasing product
quality and eliminating defects in the manufacturing process.
By deploying a structured, scientific, and data-driven pro-
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Figure 3: Flowchart; starting with input image I, we first cre-
ate the ROl image L, of a batch consisting of several units. We
then compare L; to the median master and calculate the ab-
solute difference image M, for each viewing angle. M, is then
contrast enhanced with a logarithmic transformation giving the
output image O, which can be sorted for visual inspection (see
Figure 6) and used for SPC (see Figure 9).

cess the Six Sigma methodology limits product defects to six
standard deviations i.e. six sigmas. DMAIC is a Six Sigma
improvement method which advance an existing process by
reducing the variation through five phases: Define, Measure,
Analyze, Improve, and Control [6]. As part of the control
phase, Statistical Processing Control (SPC) is used to anal-
yse, monitor and control a process performance. SPC use
statistical tools to observe the performance of the production
process by involving the use of control charts in order to ver-
ify if certain process variables remain close to their desired
values [20]. If the process has a normal distribution, 99.7%
of the population is within three standard deviations from the
mean. A measurement value beyond 3 standard deviations
indicates that the process has shifted since we see more vari-
ability. Hence, the control limit is typically three standard
deviations above the process mean. The Six Sigma improve-
ment methodology is a statistical-based and data-driven ap-
proach to quality management, but in situ the assessors are
prone to influencing the evaluation (e.g. attention, training
etc.), which is why they need help with the procedure in or-
der to reduce variability. Different methods to reduce vari-

@ Log-enhanced

Figure 4: Pipeline; starting with input image (A) and a
mask (B) we create the ROl image (C). We can then com-
pare it to the median master (D) and calculate the absolute
difference image (E). A contrast enhancement on the differ-
ence image employed log-transformation (F) to intensify the
defects on the individual units in the batch.

ability have been developed [1] and international standards
on surface imperfections (e.g. ISO8587 [10]) describe many
specific types of defects and their characteristics. Existing
measures used within manually performed quality assess-
ment include mean opinion scores (MOS) [25], binary ac-
ceptability ratings [22] etc. According to the CIE TC1-65
standard on visual appearance [26] the AQC process can be
divided into two stages: a) detection/exploration i.e. search-
ing for anomalies using either a random or systematic ex-
ploration strategy and b) decision/evaluation i.e. evaluating
anomaly type and deciding the intensity of the anomaly. Ex-
pert quality assessors represent a measuring instrument in
AQC [1]. In regular visual inspection the assessors judge
the anomaly based on their perception and cognition. Devi-
ations within AQC are represented as surface inhomogene-
ity in the form of various defect types (e.g. scratches, dents,
holes, color changes, etc.) [26] which can consist of both
geometrical changes (e.g. hole) and visually perceived dif-
ferences (e.g. color changes) [9]. A basic classification of
aesthetic defect includes various defect types (e.g. impuri-
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ties, stains, scratches, dents etc.) whereas a more complex
classification would consider the location, size and shape
of each defect [8]. One perceptual categorization include
differentiation between open and closed shaped anomalies;
closed shapes contain clear contours with unbroken edges
(often constituting geometrical defects as dents, sink marks,
etc.) whereas open shapes do not have to be bounded across
a clearly defined region of space (e.g. discolouration, flow
marks etc.) [13].

One of the main obstacles to detecting defects in poly-
mer plastic is that the illumination, material reflectance and
view angle influence the perceived appearance of a surface.
Hence, assessors account for the incoming light angle by ro-
tating the inspected objects in order to better detect defects.
The human visual systems excels at visually distinguishing
between materials by estimating the material properties of
surfaces [11]. Our perception usually makes us distinguish
between a variety of materials despite significant changes in
light, viewpoint, shape etc. In other words, glossier surfaces
manifest more salient specular reflections than less glossy
surfaces, and these salient features (size, contrast, and dis-
tinctness of highlights) help us characterize and distinguish
between materials and surfaces. Appearance of injection
moulded plastic parts is important, e.g. colour evenness, sur-
face texture, smoothness, gloss etc. Thus standard measure-
ment methods need to be precise, repeatable, reproducible,
and produce results which correlate with human inhomo-
geneity perception (see Section 4). In other words, a defect
detection test method should encompass all types of visual
deviations. A geometrical difference is one way of measur-
ing conformance to specification, but evaluation of visual
appearance includes all visually perceived deviations.

Many defects are only visible under a specific angle of
light and orientation of the object (see Figure 2). Thus de-
fect detection needs several viewpoints/rotation of the ob-
ject: a) for all unit surfaces subject to AQC, b) for defects
only visible from certain viewing angles, and c) for account-
ing for reflections/highlights. An image-based test method
for defect detection should incorporate these principles by
varying the angle of viewpoints over a series of images. This
aligns well with the process required for metrology measure-
ments where we can obtain a series of images from differ-
ent viewpoints without additional cost. We obtained sev-
eral batch image series from the 3D scanner setup where the
image series demonstrate different view angles of the same
batch of units. The images from different view angles repre-
sents the human rotation of the inspected object in relation to
the surface characteristics and the light source. Performing
defect enhancement on images for human-in-the-loop visual
inspection (i.e. model requires human interaction) not only
help the assessors to detect defects, but the image series cre-
ate new libraries of references. Therefore, an image-based
test method can foster an improved judgment process for the
assessors. By comparing reference images (defect free) with
test images (with potential defects) we can compute an ob-
jective quality index (see Section 8). The quality index can
help assessors by ordering the images according to an ob-

jective calculated quality index based on the contrast differ-
ence between reference and test image and therefore asses-
sors only need to evaluate a subset of the available images.

5. An Image-based Test Method within AQC

The developed imaging enhancement mechanism strength-
ens the visibility of defects for human visual inspection. The
implementation include several stages; noise reduction using
region of interest (ROI), creating a median master as defect-
free reference, enhancing each individual view angle image
using log transformation, sorting the batch image series, and
evaluating the results through SPC using an objective quality
index (nQI).

The experimental system consisted of a GOM ATOS Cap-
sule. The ATOS Capsule is an optical precision measuring
system with dimensions of 200140 mm. The structural
light 3D scanner was used as an integrated part of the qual-
ity control process for metrology measurements outputting
a 3D reconstruction based on an obtained image sequence.
Since handling is expensive it is impractical and infeasible
to inspect single units and, thus, we collect batch images
since batch inspection simulate the real-life setup. Captur-
ing the batch image from various views are constrained by
the amount of units visible in each image, but this variation
affords a strength that causes our method to be robust and
effective in a production setup. In our setup we focused on
quality inspection of visual appearance using machine vi-
sion on the image sequence. The only light used came off
the shelf from the central projector (see Figure 2, augmented
3D scanner) and was fixed to the moving camera. The image
resolution was 4248x2832 pixels and in the grey scale color
space.

6. Image Processing Pipeline

We developed our prototype in Python using several li-
braries (e.g. the OpenCV library for image processing, Pan-
das for data manipulation and structure, NumPy for multi-
dimensional arrays etc.). The pipeline starts with an input
image I; (image I of image series i) from where we find the
region of interest (ROI) L; (see Figure 3 and 4, A-C). We
then compare L, to a master reference (the median master
was created as an average of pixel values of several good
batch images) and calculate the absolute difference image
M, (see Figure 4, D-E). M, is then contrast enhanced with a
logarithmic intensity transformation giving the output image
O, which makes it easier to visualise differences with both
high and low intensity (see Figure 4, F).

We start by explaining the pipeline so the sections are
represented as the numbers from figure 4, A) input image,
B) mask, C) ROI, D) median master, E) absolute difference
image, and F) output image.

6.1. Input Image (A)

A GOM ATOS Capsule 3D scanner took images of a
batch from different view angles creating a batch image se-
ries. This process emulated the human AQC process of ro-
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Figure 5: Defect enhancement; A) unprocessed grey scale
batch image, B) zoom-in on a single unprocessed defect unit,
C) processed ROI and log-enhanced batch image, D) zoom-in
on ROI enhanced defect unit where the defects can be seen as
white stains.

tating an object to identify defects using the illumination to
calculate visual appearance. Not all units were fully visible
in all views (minimum 9 out of 12 units).

6.2. Masking (B) and Region of Interest (C)

We need a mask to differentiate between unit surfaces
and unwanted noise from the background and hence we cre-
ate a mask that covers only the surfaces of the units (see
Figure 4, B). The region of interest (ROI) can be calculated
either from automatically generated masks or with a pre-
defined mask. In our case using a simple handcrafted mask
was efficient since 1) we always compare images from the
same view angle, and 2) the masks are created once and
reused for all batches hereafter. The individual units are
not completely aligned (e.g. due to human error when plac-
ing the units in the fixture). However, in this paper image
alignment was not necessary since the difference between
defected and OK units were strong enough even without im-
age alignment (see Section 10). To remove noise from the
background (e.g. highlights, fixture markers used in 3D scan-
ning, etc.) we mask out the region of interest (ROI) to re-
move the non-important parts (see Figure 5 where B has a
strong highlight in the upper left corner of the background
which has been masked out in the ROI image D).

6.3. Median master (D)

To visually strengthen the signal of the defects we com-
pared a current batch to a master reference to focus on the
differences in pixel values. The master symbolizes a perfect
batch and is created from the median of several good batch
images. Using the median as a master reference removes
noise and increases the signal-to-noise ratio. The median
master image is created by taking several good batch images
and then running through all images pixel by pixel and cal-
culating each entry based on the median.

6.4. Absolute difference image (E)

The defects were then visually enhanced by creating the
absolute difference image between a current batch image and
the median master. The calculation of the absolute differ-
ence image is calculated as the absolute value of the pixel
difference between the current unit and the median master
for each pixel value. The absolute difference image was a
grey scale image only showing any differences in pixel val-
ues. The difference image pixels are black where no pixel
difference existed between the batch image and the master
and any change in pixel value will be indicated by the pixel
intensity in the grey scale spectrum. Therefore, any non-
black pixel indicate a difference to the master and a potential
defect (see Figure 5, D).

6.5. Log Intensity Transformation for image
contrast enhancement (F)

To further enhance the signal for human visual inspec-
tion on the absolute difference images we perform contrast
enhancement on the images using the logarithmic intensity
transformation. Contrast enhancement works well for low
contrast images where the contrast of the image is stretched.
We expect a low intensity difference image and, hence, the
logarithmic transformation enhance the brightness values of
low intensity pixels more than high intensity pixels. The
low intensity pixels are enhanced using log transform (see
Figure 4, E-F) so enhancement occurs at each pixel location
f(x,y). Weused alogl0 transform in which the base 10 log-
arithm of the grey value input pixels is returned pixel-wise
for the 2D image;

g(x,y) = loglOLf (x, y)] ey

This process makes the image features stand out more clearly
by changing the range of values in an image in order to in-
crease contrast. Making optimal use of the available pixel
values makes the defects not only more noticeable for hu-
man assessors but also increases the contrast of the defects
for image processing. For a faster human inspection, we as-
sume imaging the defect as a set of light pixels will improve
the human detection by reflecting more light compared to the
dark background where more of the light will be absorbed
(see Figure 5).

7. Sorting batch image series

Manual inspection is expensive and both accuracy and
speed are difficult to improve for human quality assessors.
Consequently, our focus is to reduce the workload related
to quality assessments and support the attention of assessors
by sorting images based on the pixel brightness sum to re-
duce the number of images in need of review. Although the
contrast-enhanced images are improved for human visual in-
spection, we still have many different images (i.e. different
view angles) that needs to undergo AQC. Hence, by sorting
the images for human visual inspection we create a helping
tool, which assessors can use to evaluate AQC. Jointly, the
image sorting works well with SPC charts (see Section 9).
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Figure 6: The x-axis shows image/image number and the y-
axis the pixel contrast sum per image. The batch image series
is sorted based on the sum of all non-black pixel. Images with
the highest sum differ most from the master and hence visual
inspection is performed on images with highest contrast.

We propose to sort the image sequences based on image
contrast (see Figure 6), since image contrast indicate a de-
viation from the master. The absolute difference image give
us the difference between the current batch image and the
master, hence non-black pixel exist only when there is a dif-
ference to the pixel value in the master reference (e.g. due to
a defect) and these areas should be visually inspected by an
assessor (see Figure 5). We determine the contrast in each
image by summing the value of non-black pixels per image
and then sort the images based on contrast intensity sum.
Images with the highest sum have the highest contrast and
differ most from the master. The contrast sorting is based on
the following summation per image which is then ordered
for all different image views:

C=2 20y @
x y

where C is the image contrast sum, I is the input im-
age, x is the pixel rows and y the pixel columns of the image
providing an x,y-position of each pixel. We sort based on the
grey scale pixel values as a proof of concept whereas other
measures (e.g. quality index (nQI), see Section 8) could like-
wise create basis for the image sorting.

8. Calculating the Quality Index (nQI)

For each batch image view angle we propose a quality
index to help assessors making fact-based decisions. We ex-
pect the defect to resemble a small part of the image, and
hence, we want to normalize the image according to the de-
fect and the typical noise-signal we get in the image. This
means that if we have a high contrast count value we want to
subtract the minimum noise value that occurs in every image
and divide by the variation we see in the data set. Therefore,
after creating the contrast difference images the quality in-

dex (nQI) is based on the following equation:

nOl = C —min_(X,) 3)
2. (C=p)
nL‘

where C is the total image contrast (i.e. pixel bright-
ness sum) per image view, X, is the contrast intensity of
the population of the same view angles across batches, y,. is
the contrast intensity sample mean of the same view across
batches, and n,, is the sample size. To determine the nQI we
calculated the standard deviation ¢ from the contrast values
(i.e. pixels being different from the master reference) of all
images from the same view angles. The standard deviation
gives a measure of how widely values are dispersed from the
average and is calculated using the "n" method [7] for each
individual batch image.

The nQI is calculated for all 10 different batches and their
18 respective view angles. A low nQI index signifies a good
batch with small deviations to the master whereas a high nQI
signifies that the batch have high contrast to the master (i.e.
which might be caused by defects). We used a simple colour
coding mapping a low nQI index (i.e. good batches) to white
and a high nQI index (i.e. potential defects) to red (see Fig-
ure 7).

9. Measurement Results

Based on our data set nQIs were calculated for all 10
batches and 18 view angles for a total of 180 images. Ap-
proximately 100 individual units (some units where used in
more than one image) were captured, processed and ana-
lyzed in ten different batches, where each batch consisted
of 12 blue plastic units. While not validated by AQC asses-
sors we identified 5 defected units with easily noticeable de-
fects within the defected batch defect. At least one defected
unit was visible in each view for the defected batch and an
average of approximately 10 partially visible unit surfaces
(with min=9 and max=12 visible units in each image for all
batches).

Our data shows that the median master differencing to-
gether with the nQI is great for classification of defects in
batch images series (see Figure 8). We visualize our results
to the assessors using control limits to illustrate a quality cut-
off threshold. The SPC chart presents our data in relation to
the control limits (see Figure 9).

We have created three different upper control limits (UCL)
based on goodl-good5 (UCLS), goodl-good9 (UCL9) and
all data points goodI-good9 and defect (UCLall) in our lim-
ited sample set. The control limit is set three standard devi-
ations above the process mean. The upper control limit (see
Figure 7) is e.g. 3.61 for UCL5 whereas the lower control
limit (LCL) is set to 0 since we operate with no negative nQI
values. The purpose of the SPC chart is to check whether
data points lie above or below the control limit where data
points lying above three standard deviations away from the
master indicate unacceptable deviations within the batch.
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Viewl View2 View3 View4 View5 View6 View7 View8 View9 View 10 View 11 View 12 View 13 View 14 View 15 View 16 View 17 View 18
defect
good1l 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.94 0.00 0.57 0.00 0.20 0.00 0.00 0.00 0.00|
good2 0.00 0.58 0.72 0.09 1.09 0.25 0.03 0.13 0.00 0.00 0.51 0.00 0.73 0.00 1.79 1.67 1.16 1.41
good3 1.85 1.53 2.16 1.87 2.24 1.90 1.29 1.53 1.02 1.69 1.36 0.99 1.02 0.57 1.28 1.95 1.64 1.20|
good4 2.30 1.34 2.13 1.80 2.29 2.52 213 2.40 1.68 2.45 2.12 1.76 1.97 1.96 1.56 2.02 2.09 1.57|
good5 1.78 1.05 2.38 1.92 2.60 231 2.03 2.27 1.10 1.85 1.75 2.00 2.11 2.03 2.53 2.78 2.48 2.4
good6 1.74 1.63 2.27 2.10 2.49 2.19 1.90 2.22 1.89 2.61 2.34 1.95 1.80 2.07 2.11 2.48 1.88 1.92|
good7 1.84 1.19 2.10 1.69 2.75 1.87 2.23 2.27 2.18 1.79 2.36 2.28 2.09 2.20 2.40 2.69 2.37 2.2
good8 2.03 2.08 2.59 2.24 2.55 241 2.12 2.30 1.58 2.34 2.36 2.47 2.10 2.04 2.61 2.89 2.84 2.7
good9 1.66 1.77 2.37 1.90 2.53 2.23 2.37 2.45 1.82 2.66 2.44 2.40 2.47 2.31
Figure 7: Color coded table of the nQI for all batch images and all view angles. The x-axis
shows the different view angles and the y-axis shows the different batches. White cell color
coding signifies a low nQI and red cells a high nQl indicating that these batch images or
view angles should potentially undergo visual inspection.
Density Plot for Batch Defect Inspection RN SPC on visual quality per batch
251 Batch 5
Defect Optimal | 45 UCL (all)
oK Quality |
2.0 A Threshold | 4 UCL(9 good) [
3.5 UCL (5 good) s
3 Optimal Quality Threshold
2] 25 T B SR S S
g 2 . ! ¥ E ‘ )
S 101 15 >
1 -
0.5
0.5 1 0 L Cx=omme
: goodl good2 good3 good4 good5 good6 good7 good8 goodd defect
A |
0.0 . i " y " =
0.0 0.5 1.0 1.5 2.0 2.5 30 | 35 4.0
1

Quality Index (nQl

Figure 8: Density plot of all batch images; goodl-9 n=162
(green) with area under the curve (AUC)=1 and defect n=18
(red) with AUC=1. The calculated nQIl divides the good
batches and the defected batches into two data groups that
can be separated by a set quality threshold. For our data set
a favorable quality threshold can be set at nQI=3.3.

From UCLS5 (see Figure 9) one defected batch (defect)
were identified based on 14 data points above the UCLS re-
sulting in 14 true positives but with 4 false negative view
images. Based on this we calculate the precision and re-
call of defected views based on true positives (TP=14), true
negative (TN=162) false positives (FP=0) and false nega-
tives (FN=4). Precision and recall are calculated as follows;
precision = TP/(TP+FP) and recall = TP/(TP+FN). This re-
sulted in a precision of 100% (14/14) while the recall was
78% (14/18) for our limited batch sample size. The accu-
racy is 98% given accuracy = (TP+TN)/(TP+FP+FN+TN)
= (144+162)/(14+0+162+4)). The number of view angles
in need of review by assessors is reduced from 180 images
to the 14 images whose values exceeded the control limit in
defect. This decreases the number of images in need of re-
view by a factor of 13 (180/14). The control limit can also
be calculated from all good batches good1-9 (UCL9) giving
a process mean of 1.90 and a control limit of 4.76 (see Fig-

Figure 9: Statistical processing control chart; The red lines
represents the upper control limit (UCL) three standard devi-
ations from the process mean and the lower control limit set
to 0. The process mean and control limit is based on good1-
good5 for UCL5, goodl-good9 for UCL9 and includes all good
batches and the defected batch in UCLall. The blue data mark-
ers indicate the averaged quality index of image views and the
blue line the average (AVR) over all nQls. All good batches
(good1-good9) are below the control limits whereas the im-
age series with defects lies above UCL5 but below UCL9 and
UCLall.

ure 9, UCL9). Here the SPC control limit lies above all data
points and does not provide a clear threshold between good
and defected batches. The same results are evident when
calculating the control limit based on all data points good1-
good9 and defect where UCLall is set too high to function as
a proper quality threshold. The best fit quality threshold for
our data set lies at nQI = 3.3 (see Figure 8) where we have
a clear cut-off between goodI-good9 and defect.

10. Discussion

Our calculated nQI indices (see Figure 7) are remarkably
low for the batches goodI-2 (i.e. the scores are close to zero
for both individual batch images and for the different image
views) indicating very close resemblance to the master refer-
ence. Since the median master was created based on good-9
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SPC on visual quality /per day Batch 1 Bach2  [Batch3 . Batchn

Rt
‘ I 29 July 2019) 184 119 210 .. 187

SPC on visual quality /per batch

30 July 2019)| 178 167 168 1.70|

31July 2019| 1.66 1.77, 237 253
01 August 2019)| 178 1.05) 238 .. 2.60|
02 August 2019)| 1.74 1.63 227 .. 2.49|
03 August 2019 203 208 259 255|
04 August 2019 160 130 140 1.09
05 August 2019 230 1.34 213 .. 2.29|
06 August 2019)| 1.85 1.53) 216/ .. 2.24|
07 August 2019 4.10/ 3.98 393 . 3.80|

View 1 View 2 View 3 ... |View n=18
good1 184 119 2.10 275
good2 0.22 0.00 0.00 .. 0.00|
good3 1.66 1.77| 237 .. 2.53|
: : goodd 178 1,05/ 238 .. 2,60
25 T goods 174 1.63] 227 .. 2.49
. good6 2.03 2.08 259 .. 2.55
good7 0.00 0.58 072 .. 1.09|
good8 2.30 1.34) 213 .. 2.29)
good9 1.85 1.53) 2.16 .. 2.24|
defect 3.80 3.98 391 . 398

Figure 10: Alternate views: The SPC charts show a clear
relation to the control limit (red line) whereas the color coded
table provide an easy look-up table for nQls over image series
and individual image view angles. Aggregated data can be
used to compare quality over different days and the nQI values
can be used to explore the quality of specific batches.

(including goodI-2), this is most likely an artifact from in-
cluding goodI-2 in the median master. This means that the
pixel values for these views lie close to the median values and
that the baseline for some batches can be zero due to min(X,)
being based on the same values as those being assessed. The
remaining data points (good3-good9) have a higher average
(see Figure 9). Since our ground truth validation is not per-
formed on individual units (but instead on batches contain-
ing multiple units), all good batches might include smaller
surface deviations on a few units and/or noise in the form of
dust, particles, hair etc. on the surface. This should be taken
into account when creating a quality threshold based on a
Six Sigma control limit since it affects the calculated pro-
cess mean. The SPC control limit is calculated as 3 standard
deviations from the process mean and may need to be contin-
uously updated in order to maintain the most efficient quality
threshold. This implies that the human assessors also need
to focus on evaluating the process mean which the control
limit is based on, but on the other hand this also provides ex-
tra control if the production quality intentionally is changed.
When the control limit is based on goodI-5 (UCLS) we get
a cut-off limit that excludes the defect, but when the con-
trol limit is based on good1-9 (UCLY), all batches (including
the defect) lies below the control limit. The UCLall is pre-
sented to show the relative difference since a control limit
should not contain defected batches. A control limit based
on Six Sigma SPC limits might be arbitrary and the cut-off
threshold should presumably be tweaked by quality asses-
sors to obtain the best cut-off limit per product (see Fig-
ure 8). This argues in favour of a human-in-the-loop ap-
proach where batches with nQI values both above and below
a given control limit requires human judgment. Even though
it might still be a challenge to decide on the best possible
quality threshold our data shows that the nQI can be a valu-
able estimator for the quality spectrum of batch images se-
ries (see Figure 8). The nQI is not only beneficial during the
human-in-the-loop defect detection but creates an auditable
document trail that can help assessors standardize by using

A defected batch image (left, view 15 defect,
nQl=3.84) and a non-defected batch image (right, view 15

Figure 11:

good9, nQI=3.08). The nQI values are in the same range
and the high nQI is most likely due to misalignment of units
creating noise around the edges.

the nQI archive as reference (see Figure 10).

Prior studies have compared image brightness values of
scratch damaged areas on transparent polymer films with
background areas and found contrast as a useful digital im-
age analysis method [5, 2]. Other studies have found that an
optimal combination of image pre-processing steps in de-
fect detection is accomplished through noise reduction, con-
trast enhancement, and image segmentation [3]. We im-
plemented this through the use of masking ROI to reduce
noise and segment the image. Contrast enhancement was ac-
complished through log-enhancement of images computed
from image differencing to a median master reference im-
age. Not all steps in our process included complete automa-
tion (e.g. for proof of concept we have manually created
masks, we have no image alignment, etc.) and the defect
detection pipeline can be further improved by automating
tedious manual steps.

The UCLS calculated for our batch image series yielded
an overall classification of visually defected batches with
100% precision, 78% recall and an accuracy of 98%. Even
though these results are only preliminary they give higher ac-
curacy than previous comparable results for defect detection
within e.g. rolled steel (87% on the three defect types; weld-
ing, clamp and identification holes) [19] or ceramic ground
workpieces (93% on grinding surface damage such as breaks
and cracks) [3] potentially due to our limited sample size of
10 batches (compared to sample sizes of several hundreds).

The number of view angles in need of review by asses-
sors is reduced from 180 images to the 14 images whose val-
ues exceeded the control limit, but potentially those 14 data
points could be considered as one since assessors might only
need to look at one or maybe a few images to classify a batch
as OK or defected. The different view angles do not include
all units i.e. in some images some units might be outside the
image view. This simply means that not all units are evalu-
ated in all images which evidently affect the results. When
capturing batch images (i.e. images covering several units)
the number of units affect the contrast of the image, since an
image with more individual units is assumed to have higher
contrast from the master due to noise caused by the total sur-
face area of all visible units in an image. Also, this approach
is prone to error since units with defects might not be present
in all images. This is problematic since it will affect the im-
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age sorting and Six Sigma control limit. Since our testing
method is based on a calculated nQI for all image views we
argue that as long as all units are captured in at least one
image the provided nQI will deviate for that respective view
which should then be evaluated by a human assessor. In our
case sorting the batch images based on contrast and using
control limits on the nQI scores worked even though all de-
fected units where not visible in all images (see Section 5).
This indicate a strong starting point for our approach and for
the SPC design proposal.

We demonstrated that image series can be employed to
detect defect in batches but the pipeline could potentially be
extended to also be used within individual unit defect de-
tection. The individual units were not completely aligned
in our setup which means that when the absolute difference
images are created from a current batch image and the me-
dian master reference we can expect noise, especially around
edges, due to images not being completely aligned (see Fig-
ure 11). Also, if the used pre-defined mask is not making
a perfect overlap we might miss some defects close to the
unit edges due to the masking. The signal-to-noise-ratio in
the difference image could be strengthened by making an
exact overlapping match between the images that are com-
pared. This signifies that our preliminary results could be
even further improved by image alignment since we get a lot
of noise from the misalignment of units. This goes hand in
hand with the fact that we get no false-positives from any of
our set control limits (UCL5, UCL9 or UCLall), but if we
look at image views with values close to the defected batch,
we see that the high nQIs is most likely due to misalignment
and noise around the edges (see Figure 11). It could be bene-
ficial to perform feature extraction and detection for creating
an automatic ROI and conducting individual unit alignment.
A homography transformation (i.e. a perspective transfor-
mation of a plane reprojecting points from one view point to
a different view point) [14] could align individual units and
create better comparison between batch images. This ap-
proach would allow for processing individual units since we
already have the units divided into ROIs that can be operated
on individually.

Future work needs to focus on image alignment based
on individual units to improve the signal-to-noise ratio and
remove noise causes by physical misalignment of units. Au-
tomated classification within AVIis mostly limited to a finite
number of defect [19, 12], but for AQC it is essential to detect
all types of defects which means that we need the human-in-
the-loop approach. Potentially the joint 3D metrology and
visual appearance inspection could be further improved by
visualizing the aesthetic defects directly on a 3D model. This
could be done by highlighting, for example through project-
ing, the white pixel areas in the difference images to the
planes of the 3D model and hence creating a fully compatible
geometric and aesthetic quality control process.

2

1. SPC on visual quality /per day

Z I I I
| 1 I I I
o -

01 August 2019 02 August 2019 03 August 2019 04 August 2019 05 August 2019 06 August 2019 07 August 2019

Quality index

5‘"0" 2. SPC on visual quality /per batch image series
45 UCL (all)

T %
35 TUCL(5 good) g

3 Optimal Quality Threshold
25 3 b, " 3 4 4

2 S 4 : . . =
15 B

1 s A
05 *

N
0 heren)
goodl good2 good3 goodd goods5 goods good7 good8  goodd | defect

3. Sorted image series /per batch

13 15 11 14 20 12 9 7 8 6 17 16 5 4 3 2 1 0

4. Batch image /per view angle

5. Defect image /per unit

Figure 12: The SPC design proposal include overviews; 1) per
day, 2) per batch image series, 3) sorting, 4) image per view
angle, 5) defects per unit.

11. SPC Design Proposal

We propose an SPC design which can use enhanced im-
age data for monitoring and controlling processes in AQC.
The goal of our SPC design proposal is to assist in standard-
ising the defect detection process by automating parts of the
inspection process with machine vision and statistical pro-
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cessing control. The nQI can be used to create an overview
of aggregated data (e.g. examining and comparing quality
over different days, see Figure 12, 1), reduce the image views
in need of review (see Figure 12, 2-3), and evaluate a single
image via image differencing and contrast image enhance-
ment (see Figure 12, 4-5). Using image contrast enhance-
ment, the nQI calculated for each image, and quality control
limits assessors are able to navigate and zoom in/out on po-
tential defects e.g. mouse clicking an image to enlarge it for
full inspection.

All data (base data plus aggregated data) is logged and
used for statistical processing (see Figure 10 and 12): 1) The
assessors get an overview of all collected data per day. They
can zoom in on specific dates to access data on all individ-
ual batch image series. 2) data per batch image series gives
a clear overview of certain batches that need to be evalu-
ated by human AQC (i.e. nQI data above the control limit
(see Figure 12, 2, defect)). They can zoom in on individual
batches to get access to the image data. 3) the sorted image
series per batch. All different view angles for one batch are
sorted and plotted based on contrast. Highest contrast sum
shows most difference to the master and hence we are likely
to unfold image views with higher contrast first. 4) we in-
vestigate the contrast enhanced difference image and search
for potential defects. 5) we zoom in on individual defects
and evaluate AQC. We consider a solution were it is possi-
ble to unfold data on the go (e.g. the data could be linked to
a digital twin) for both process control and as assistance for
human assessors. We propose to alternate between different
data representations to achieve overview of the entire AQC
process as well as individual data points (see Figure 10).

12. Conclusion

The existing visual quality control process of polymer
surfaces in high-volume manufacturing can benefit from ex-
amining visual appearance joined with 3D metrology scans.
Our SPC design proposal suggested a human-in-the-loop ap-
proach since we believe that assessors need a tool that can
help in the existing quality control process. We did this by
sorting contrast-enhanced batch images for human visual in-
spection and utilizing statistical methods to monitor and con-
trol the defect detection process of injection molded prod-
ucts. We have proposed a quality index nQI based on median
master image differencing which works great for classifica-
tion of defects in batch images series.

This paper presented an image-based test method for batch
defect detection for semi-automated human visual inspec-
tion. Specifically, our SPC design proposal established a
day-to-day overview of a nQIs over a batch image series
in interdisciplinary cooperation with the principles of Six
Sigma. Based on the inexpensive image series created from
3D metrology, we proposed image defect enhancement, batch
image series sorting and a pipeline assisting statistical pro-
cessing control limits to reduce labour costs within visual
inspection. Our contribution contains contrast-based image
enhancement in combination with image differencing with

a median master. Human-in-the-loop assessors can use this
approach to inspect and compare several images; both in-
dividual series from different viewpoints and over time for
several different batches. Our analysis showed that batch de-
fect detection can be automated using machine vision to ac-
commodate less biased quality judgments through Six Sigma
control limits compared to a human AQC inspection process
without our SPC design proposal. The precision and recall
of defected views are high and was computed 100% (14/14)
for precision while the recall was 78% (14/18). The asses-
sors can employ our semi-automated SPC design approach
as a tool in the existing visual inspection process, where the
semi-automated approach can guide assessors and improve
the use of objective quality measures in the human visual
inspection process through a quality control feedback loop.
The number of view angles in need of review by an asses-
sor has been reduced by a factor of 13 and, consequently,
created a tool that assessors can use to advance the existing
visual inspection process.
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