Drug-induced ECG changes
Graff, Claus; Matz, Jørgen; Andersen, Mads Peter Dahl; Kanters, Jørgen K.; Nielsen, Jimmi; Xue, Joel Q.; Toft, Egon; Struijk, Johannes Jan

Publication date:
2009

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
DRUG-INDUCED ECG CHANGES: BEYOND THE QT INTERVAL

Electrocardiographic QT interval prolongation is one of the most common causes of delays and non-approvals in drug development due to the qualitative relationship between this interval and Torsade de Pointes (TdP) arrhythmia. However, not all drugs that prolong the QT interval to the same extent carry the same risk for TdP. Other ECG indications, such as abnormal T-wave morphology, may play a role in differentiating between safe and unsafe drugs.

We used moxifloxacin (non-Torsadogenic) and d,l-sotalol (Torsadogenic) to investigate whether concurrent changes for QT and T-wave morphology could be used to describe the discrepancy in proarrhythmic risk between the two drugs. T-wave morphology changes (ΔMCS) were quantified using a composite measure of flatness, asymmetry and notches. QT interval changes (ΔQTcF) were measured using standard ECG software.

Our results provide evidence that these drugs have significantly different morphology-duration profiles at similar QT prolongations, figure 1. These findings could have important implications for cardiac safety evaluation of new medications because they challenge the current practice of using a fixed QT threshold as the limit for regulatory concern.

Fig. 1: The change in T-wave morphology (ΔMCS) for a given QT interval prolongation (ΔQTcF) appears to be drug and dose specific.