JOINT ESTIMATION OF SHORT-TERM AND LONG-TERM PREDICTORS IN SPEECH CODERS

Daniele Giacobello1,2, Mads Græsbøll Christensen1, Joachim Dahl1, Søren Holdt Jensen1, Marc Moonen2

1Dept. of Electronic Systems (ES-MISP), Aalborg University, Aalborg, Denmark
2Dept. of Electrical Engineering (ESAT-SCD), Katholieke Universiteit Leuven, Leuven, Belgium

\{dg,mgc,joachim,shj\}@es.aau.dk, marc.moonen@esat.kuleuven.be

ABSTRACT

In low bit-rate coders, the near-sample and far-sample redundancies of the speech signal are usually removed by a cascade of a short-term and a long-term linear predictor. These two predictors are usually found in a sequential and therefore suboptimal approach. In this paper we propose an analysis model that jointly finds the two predictors by adding a regularization term in the minimization process to impose sparsity constraints on a high order predictor. The result is a linear predictor that can be easily factorized into the short-term and long-term predictors. This estimation method is then incorporated into an Algebraic Code Excited Linear Prediction scheme and shows to have a better performance than traditional cascade methods and other joint optimization methods, offering lower distortion and higher perceptual speech quality.

Index Terms— Speech analysis, linear predictive coding.

1. INTRODUCTION

Traditionally, low bit-rate speech coders involve short-term linear prediction (LP) in order to reduce the highly redundant speech signal into a sequence of i.i.d. samples that is easier to quantize. The prediction coefficients are found by minimizing the 2-norm of the prediction error signal (difference between original and predicted signal) \cite{1}; this corresponds to finding the prediction coefficients in a maximum likelihood sense by fitting the error signal into a white Gaussian model. Although this approach is used in almost all commercial speech coder, the theoretical basis is fundamentally wrong as this analysis is optimal only if the input to the AR synthesis model is indeed spectrally white and Gaussian \cite{1}: this is hardly the case for voiced speech and a large set of unvoiced speech sounds. In order to counter this model mismatch, the general approach is to add a long-term predictor in the whitening process: the short-term predictor will first remove the redundancies due to the formants while the long-term predictor will subsequently remove the redundancies due to the presence of a pitch excitation. This scheme is inherently suboptimal for the short-term analysis that will necessarily be biased by the presence of the pitch excitation. The suboptimality of the first short-term prediction step will subsequently corrupt the long-term analysis: the minimum variance residual will not retain the structure of the original excitation but reflect something that has been attenuated and distorted making the analysis more difficult. The most significant works that have pointed out the sub-optimality of the sequential approach were \cite{2} and, more recently \cite{3}. In \cite{2}, information about the intermediate short-term residual is included in a new minimization framework that determines jointly the formants and pitch predictors. In \cite{3} a correction factor based on a previous pitch excitation is included in the short-term error minimization. Our main objection to these two methods is that they do not take into consideration the statistical properties of the analyzed signal as well as how the cascade of the two predictors influences their own coefficients.

The objective of this paper is to define a new one-step minimization framework corresponding to a new way of determining a prediction vector that can then be used to find jointly a non-biased short-term predictor and a more accurate pitch predictor, this also results in a residual error that is spectrally whiter and therefore easier to quantize. This is done by increasing the prediction order and by imposing in the 2-norm minimization of the prediction error signal a penalty term in order to keep the predictor sparse. This sparse predictor can then easily be factorized into the short-term and long-term predictor. The former will not be biased by the presence of a pitch excitation because this is already taken into account by the predictor while the latter will have a higher accuracy than those found through traditional methods. The residual is highly uncorrelated and with very few outliers. Thus, the novelty introduced in this paper is a minimization framework that better matches the statistical characteristics of the speech in order to define, in a latter stage, a more efficient quantization scheme.

The paper is organized as follow. A prologue will be given in Section 2 that illustrates the general formulation for linear predictors employed in speech coders. Section 2 and Section 3 will be dedicated to introducing the mathematical framework in which the joint estimator is developed and how this is formulated. In Section 5 we will show and discuss the performances of our estimator in an Algebraic Code Excited Linear Prediction (ACELP) scheme.

2. GENERAL FORMULATION FOR LINEAR PREDICTORS

The general approach in low bit-rate predictive coding is to employ a cascade of a short-term linear predictor $F(z)$ and a long-term linear predictor $P(z)$ in order to remove respectively near-sample redundancies, due to the presence of formants, and distant-sample redundancies, due to the presence of a pitch excitation in voiced speech.
The general form of the short-term linear predictor is:

\[F(z) = 1 - \sum_{k=1}^{N_f} f_k z^{-k}. \]

(1)

The coefficient vector \(f = \{f_k\} \) is determined by minimizing the norm of the prediction error signal:

\[
\min_f \|e\|_p^p = \min_f \|x - Xf\|_p^p
\]

where

\[
x = \begin{bmatrix} x(N_1) \\ \vdots \\ x(N_2) \end{bmatrix}, X = \begin{bmatrix} x(N_1 - 1) & \cdots & x(N_1 - N_f) \\ \vdots & \ddots & \vdots \\ x(N_2 - 1) & \cdots & x(N_2 - N_f) \end{bmatrix}
\]

and \(\| \cdot \|_p \) is the \(p \)-norm defined as \(\|x\|_p = (\sum_{n=1}^{N} |x(n)|^p)^{1/p} \) for \(p \geq 1 \). The starting and ending points \(N_1 \) and \(N_2 \) can be chosen in various ways assuming that \(x(n) = 0 \) for \(n < 1 \) and \(n > N \). For example, for \(p = 2 \), setting \(N_1 = 1 \) and \(N_2 = N + N_f \) will lead to the autocorrelation method equivalent to solving the Yule-Walker equations; setting \(N_1 = N_f + 1 \) and \(N_2 = N \) leads to the covariance method [4]. The order of the short-term predictor \(N_f \) is usually chosen to be between 8 and 16 and the frame length \(N \) between 5 to 20 ms (40 to 160 samples at 8 kHz).

The long-term predictor works in a similar way on the residual of the short-term analysis but using a larger number of data samples (\(2N_f \) to \(4N_f \)) in order to find values of the pitch lags that are higher than the length of the short-term window and to better spot long-term redundancies. The pitch predictor has a small number of taps \(N_p \) (usually 1 to 3) and the corresponding delays associated are usually clustered around a value which corresponds to the estimated pitch period \(T_p \); the general form is:

\[P(z) = 1 - \sum_{k=1}^{N_p} g_k z^{-(T_p+k)}. \]

(3)

The parameters \(\{g_k\} \) and \(T_p \) are determined by minimizing the norm of the residual error signal after the two predictors, just like in the short-term prediction. \(P(z) \) often has only one tap and the analysis is done by finding a first open-loop estimation of the long-term parameters and successively a closed-loop estimation where this is refined and finalized.

The final step is to encode the residual error signal after the two predictors that is hoped to be white and Gaussian. The encoding of the residual signal uses very few bits: in ACELP coders usually the residual is encoded with only 20-30% of non-zeros samples with constrained values of \(\pm 1 \) and a gain \(g_{res}(n) \) [5].

3. FORMULATION OF THE JOINT ESTIMATOR

The cascade of the predictors in (1) and (3) corresponds the multiplication in the z-domain of the two transfer functions:

\[A(z) = F(z)P(z) = 1 - \sum_{k=1}^{K} a_k z^{-k} \]

\[= (1 - \sum_{k=1}^{N_f} f_k z^{-k})(1 - \sum_{k=1}^{N_p} g_k z^{-(T_p+k)}). \]

(4)

The resulting coefficients vector \(a = \{a_k\} \) of the high order polynomial \(A(z) \) will therefore be highly sparse. We will then take this sparsity into account in a minimization process similar to (2) by adding a regularization term that imposes sparsity on the coefficient vector:

\[
\min_a \|x - Xa\|_2^2 + \gamma \|a\|_1.
\]

(5)

where \(\| \cdot \|_0 \) represents the so-called 0-norm, i.e. the cardinality of the vector. A relaxation of this non-convex problem is done by approximating the 0-norm with the more tractable 1-norm [6]:

\[
\min_a \|x - Xa\|_2^2 + \gamma \|a\|_1.
\]

(6)

Note that \(X \) has now been redefined as:

\[
X = \begin{bmatrix} x(N_1 - 1) & \cdots & x(N_1 - K) \\ \vdots & \ddots & \vdots \\ x(N_2 - 1) & \cdots & x(N_2 - K) \end{bmatrix},
\]

where \(K \geq N_f + N_p \).

The optimization problem in (6) can be posed as a quadratic programming problem and can also be solved in time equivalent to solving a small number of 2-norm problems (like the one in (2)) using an interior-point algorithm [7]. The left term is strongly convex, sufficient condition for the uniqueness of the solution [7] and also the corresponding polynomial \(A(z) \) is minimum phase when the choice of windowing is done as the autocorrelation method (see Section 2).

If we consider the problem in (6) from a Bayesian point of view, we notice that this may be interpreted as the maximum a posteriori (MAP) approach for finding \(\{a_k\} \) under the assumption that the coefficients vector is an i.i.d. Laplacian set of variables and the error is an i.i.d. Gaussian set of variables:

\[
a_{MAP} = \arg \max_a f(x|a)g(a) = \arg \max_a \{\exp(-||x - Xa||_2^2) \exp(-\gamma ||a||_1)\},
\]

(7)

which can be considered to be true observing the coefficients of the polynomial in (4). The regularisation term \(\gamma \) is then intimately related to the a priori knowledge that we have on the coefficients vector \(\{a_k\} \) or, in other terms, to how sparse \(\{a_k\} \) is, considering (6) as an approximation of (5). The problem of finding \(\gamma \) that offers the best fitting of the model in (6) will be addressed in the next section.

Once the solution of (6) has been found, corresponding to the estimated version of the coefficients of \(A(z) \) in (4), the first \(N_{stp} \) coefficients are used as the estimated coefficients of the short-term predictor \(A_{stp}(z) \). Then the polynomial \(A_{LTP}(z) \) is created by taking the quotient of the division between \(A(z) \) by \(A_{stp}(z) \). In other words:

\[A(z) = A_{LTP}(z)A_{stp}(z) + R(z); \]

(8)

where the deconvolution residual \(R(z) \) can be considered negligible. Once we have \(A_{LTP}(z) \) we can find the pitch gain and delay by taking the minimum value and its position in the corresponding coefficients vector:

\[
g_{LTP} = \min \{a_{LTP}\},
\]

\[
T_p = \arg \min \{a_{LTP}\},
\]

(9)

where \(\{a_{LTP}\} \) are the coefficients of \(A_{LTP}(z) \). An example is shown in Figure 1.

One of the main drawbacks is that even though the polynomial corresponding to the solution of (6) is intrinsically stable, by selecting the first \(N_{stp} \) coefficients we can risk having the roots of the
corresponding short-term prediction polynomial outside the unit circle. This problem is not easy to solve and a deeper analysis has to be done. However, we have observed that if the choice of γ is accurate, the coefficients of the short-term polynomial $A_{\text{stp}}(z)$ will usually occupy the first 8 to 16 positions of the high order polynomial $A(z)$ and their absolute value usually decays rapidly. We can reasonably assume that taking the first $N_{\text{stp}} \geq 10$ coefficients and ignoring the rest $A_{\text{stp}}(z)$ will still be a stable filter. Our intuitive analysis is corroborated by the results obtained: less than 0.01% of short-term filters where unstable in a large set of frames analyzed. As for the long-term predictor, if we choose a one tap filter, having $g_p < 1$ guarantees stability; an event in which $g_p \geq 1$ has not been observed in our analysis. It is important to notice that even if a pitch periodicity is not present, the algorithm will still find a pitch gain and delay. The delay values are usually in the same range as the estimates in case of pitch presence, while the pitch gain usually is small ($g_p < 0.01$) not creating any artifacts in the reconstructed signal.

An interesting aspect of this algorithm is that the number of taps is highly customizable. For example, we can choose fixed orders for both predictors or we can adjust them iterating over several values in an analysis-by-synthesis scheme without adding too much complexity to the architecture of the coder, considering that the order of the system of equations in (6) is fixed and we are just manipulating the resulting prediction coefficients vector $\{a_k\}$.

4. SELECTION OF THE REGULARIZATION TERM

In previous works on Tikhonov regularized minimization, notably [8], the L-curve has been used in order to examine which value of the regularization parameter γ offers the best trade-off between the variance of the residual and the variance of the solution vector. In our case, we will just substitute the variance of the solution vector with the sum of absolute values. This is done by means of plotting $\| x - X a_k \|_2$ versus $| a_k |$ for several values of γ, more precisely for $0 < \gamma < \| X^T x \|_\infty$ (where $\| \cdot \|_\infty = \| \|_1$ denotes the dual norm) the solution of (6) is a piecewise linear function of γ. It is clear that for values of γ that are too close to the bounds the optimal solution will be useless. In particular, for $\gamma = 0$ we will find a high order polynomial that cannot be easily factorized and for $\gamma \geq \| X^T x \|_\infty$ the coefficients $\{a_k\}$ will be all zeros. The L-curve is monotonically decreasing and we can easily find the “corner” that characterizes the L-curve [8] in which the best trade-off can be found. Analyzing about 100,000 frames of speech coming from speakers with different characteristics (gender, age, pitch, regional accent), we have found that the interval of values of γ in which (6) offers the best performances in terms of mere optimization is $0.02 \leq \gamma \leq 0.2$. We will concentrate further analysis, based on the magnitude of the difference between the encoded-decoded signal and the original signal, in this range.

We investigate three approaches, one with γ chosen to be constant, one with γ adaptively chosen based on the statistics of the signal and one with γ found in an optimal sense:

- **constant γ**

 The regularization parameter value that on average gave the best results was $\gamma = 0.0631$. This is the mean of the set of optimal γ’s found for each frame.

- **adaptive γ**

 The probability density function of γ shows to have a high variance due to the change in statistics of the analyzed frames of speech. Studying the behavior of the optimal γ we have seen that this is strictly related to how “voiced” the speech is in the analyzed frame, therefore it is intimately related to the pitch gain g_p. By observing the data of the values of the optimal γ over g_p at the n^{th} frame, we have found this approximate relation:

$$\gamma(n) = -0.18 g_p^2(n) + 0.2. \quad (10)$$

Considering the slow change in value of the pitch gain from one frame to another, starting with $\gamma(n = 0) = 0.0631$, we can update the value of γ using (10). A similar relation was used in another regularized linear prediction scheme [9].

- **optimal γ**

 An alternative approach is also investigated where γ is tuned for every frame analyzed in order to obtain the best result. This part of the process is based on the magnitude of the difference between the encoded-decoded signal and the original signal.

5. VALIDATION

In order to validate our results, we have analyzed about 100,000 frames of clean speech coming from several different speakers taken from the TIMIT database [11], re-sampled at 8 kHz. The used set of speakers is different from the one used in the analysis and training phase. The three regularized methods with constant, adaptive and optimal γ (R_{c}, R_{a}, R_{o}) are compared with the classical ACELP (A_{c}) and the ACELP scheme with joint optimization of long-term and short-term predictors (A_{j}) according to [3].

5.1. Experimental setup

In order to obtain comparable results, the regularized method are also implemented in an ACELP scheme, the order of the optimization scheme in (6) is $K = 110$ and the frame length is $N = 160$ (20 ms). The order of the short-term and long-term predictors are respectively $N_{\text{stp}} = 12$ and $N_{\text{LTP}} = 1$, obtained with the procedure of Section 3. The choice of $K = 110$ means that we can cover accurately pitch delays in the interval $[N_{\text{stp}} + 1, K - N_{\text{stp}} - 1]$.
or equivalently pitch frequency in the interval $[82Hz, 571Hz]$. The prediction residual vector is encoded according to [5] using 40 non-zero samples constrained with ± 1 values and a gain. In the classical and optimized ACELP scheme, the order of the short-term and long-term analysis are the same ($N_f = 12$ and $N_p = 1$). The coefficients of the short-term filter are found using the autocorrelation method on a subframe basis of 80 samples. The pitch delay and gain are found on the residual error signal according to traditional ACELP encoding [5]. The final residual error signal is also encoded according to traditional ACELP as shown in table 1, both in reducing objective and subjective distortion using PESQ evaluation [10]. The performances have shown what could have been reasonably assumed in the preliminary studies. The analysis method presented in this paper has shown to have attractive performances for the coding of speech signals offering both higher accuracy and lower number of parameters needed. This was done by presenting a new formulation for the minimization process involved in the linear prediction that offers a better statistical fitting for the model of speech making coding more straightforward and accurate.

6. CONCLUSION

The analysis method presented in this paper has shown to have attractive performances for the coding of speech signals offering both higher accuracy and lower number of parameters needed. This was done by presenting a new formulation for the minimization process involved in the linear prediction that offers a better statistical fitting for the model of speech making coding more straightforward and accurate.

7. REFERENCES