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Abstract 

The coexistence of many IoT networks in smart buildings poses a major challenge because they interfere 

mutually. In most settings this results in a greedy approach where each IoT node optimizes its own 

performance parameters like increasing transmit-power, etc. However, this means that interference 

levels are increased, battery powers are wasted, and spectrum resources are exhausted in high dense 

settings. To control interference levels, share spectrum resources, and lower the overall power-

consumptions this paper proposes a centralized control scheme which is based on a nonlinear cost 

function. This cost function is optimized by using machine learning in the form of a binary particle 

swarm optimization algorithm. It has been found that this approach shares the spectrum in a fair way, it 

saves power and lowers the interference levels, and it dynamically adapts to network changes.         
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Introduction 
The amount of traffic emanating from the indoor Internet of Things (IoT) in a 5G context brings many 

benefits and some major challenges (Lynggaard & Skouby, 2015). Especially, mutual interferences, 

energy consumptions, and (Quality of Service) QoS parameters are key challenges for IoT networks 

which call for a multi-objective optimization technique (Abdellaoui, et al., 2013), (Muhammad, et al., 

2015). Mutual interferences among the IoT nodes limit the network QoS by increasing the amount of 

packet-congestions, reduce the Signal to Noise Ratios (SNR), and limits the overall spectral efficiency 

(Lynggaard & Skouby, 2015), (Chincoli & Liotta, 2018). Most IoT networks handle this problem by 

using a greedy approach where each IoT node optimizes its own performance-parameters such as bit-

rate, energy consumption, and transmit-power (Lynggaard & Skouby, 2015). However, this approach 

increases the overall transmit-power, increases the energy consumption, and lowers the bit-rate for most 

nodes. Different approaches to deal with these challenges have been discussed in the literature. One 

approach implements a central controller that offers shared resource management to improve the QoS 

for all the IoT nodes in the same context (Yaacoub, 2016). A similar concept is proposed by Qiu et al. 

that optimizes the QoS for all the IoT nodes globally by using a fairness principle that leverages bit-

rates, energy consumptions, and transmit-powers (Qiu & Chawla, 1999). It is noted that regulating the 

transmit-power adaptively for a multi-access wireless IoT sub-network is an effective means for 

increasing the spectral efficiency, reducing the power consumption, and increasing the energy efficiency 

(Weng, et al., 2014). Nevertheless, a key challenge for centralizing adaptive interference-control is the 

ability of the controllers to continuously track changes in the IoT networks and to adjust the transmit-

power used by the individual IoT networks accordingly. These challenges have been addressed by 



Chincoli et al. that used a machine learning approach based on “packet reception ratio” to update the 

transmit-power for all the nodes in a network (Chincoli & Liotta, 2018). A similar approach is followed 

by (Chincoli, et al., 2016) which uses the packet reception ratio to characterise the interference levels. 

Gogu et al. address the challenges by developing an algorithm which uses a “min-max fair link” scheme 

(Gogu, et al., 2014). An approach that uses particle swarm optimization for a fully connected cluster of 

IoTs has been proposed by Fré et al.  (Fré, et al., 2015). They found that considerable energy savings can 

be obtained by controlling the transmit-power from a central controller. In addition, they concluded that 

the use of particle swarm optimization algorithm for optimizing the non-convex controller problem was 

a very efficient and resource limited method. Many similar approaches have been published as 

elaborated in a survey from Muhammad et al. (Muhammad, et al., 2015); However, there is a lack of 

research in approaches that use interference levels in combination with dynamically varying pathlosses, 

Rayleigh fading, and adjustable bit-rates to estimate the necessary transmit-power levels for the nodes in 

the system. A system based on this approach requires an efficient multi-objective nonconvex 

optimization scheme.  

In this paper a central controller for smart buildings is presented, simulated, and elaborated. It calculates 

the transmit-power used in each apartment (sub-network) in a smart building based on initial estimated 

losses and feedbacks from the sub-networks in the form of their received SNR. The results from this 

calculation are sent to the sub-network Gateway Nodes (GWNs) which distribute these to their 

respective Wireless Internet of Things Nodes (WINs). The central controller uses a nonconvex cost-

function to optimize the bit-rates of the sub-networks in a fair way and to minimize the amount of used 

power from the WINs. In order to solve this nonlinear cost-function a machine learning algorithm in the 

form of Binary Particle Swarm Optimization (BPSO) has been implemented. This algorithm has proven 

to be very effective in similar contexts to handle complex nonlinear problems (Fré, et al., 2015), 

(Kinhekar & Gupta, 2015), (Shi & Eberhart, 1999).  
The method used in this paper is based on designing and constructing a simulation model which 
combines pathlosses, fading, transmit-power, and masking possibilities for some sensor node types with a 
powerful BPSO algorithm to provide and substantiate the potential of this approach. It is noted that only 
Rayleigh fading has been included in this work because it provides a worse case fading scenario 
compared to situations where line-of-sight is established, i.e. Rician fading takes place (Pathak & Katiyar, 
2016), (Kumar, et al., 2013) . By using the simulation model, it has been found that the proposed 
approach is very effective, it provides a fair bit-rate allocation that is between 4 and 5 times fairer that a 
greedy approach, and it saves between 28 and 74 percent of the consumed energy compared to the greedy 
approach. This energy saving reduces the interference levels proportionally. Similarly, it has been found 
that the BPSO algorithm is very effective and efficient tool in this context.  

BPSO 
The Binary Particle Swarm Optimization (BPSO) algorithm is a specialization of the more generic 
Particle Swarm Optimization (PSO) algorithm family. This family is mostly used for optimization of 
nonconvex cost functions in a highly dimensional number space. Similar algorithms are: quasi-Newton 
BFGS, NEWUOA derivative free optimizer, Covariance Matrix Adaptation Evolution Strategy (CMA-
ES), and the Differential Evolution (DE). A test performed by Auger et al. showed that the quasi-Newton 
BFGS and the NEWUOA algorithms perform well in case of separable quadratic functions; however, 
they show a strong decline in performance if the cost function becomes ill-conditioned (Auger†, et al., 
2009). In contrast, the CMA-ES, DE, and PSO algorithms perform well even if the cost function becomes 
ill-conditioned; By using the principles of “Occam’s razor” the PSO algorithm is chosen, because it is the 
simplest in terms of implementation complexity.    

A mathematical description of the basic principles for the BPSO algorithm used in this work is presented 
in (1). 
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where φ1 and φ2 are positive random numbers from a uniform distribution. The velocity Vi is the 
probability that a bit in Xi will change in the next iteration. To quantise V a logistic function is used, i.e. if 
Sigmoid (Vi,j) is larger than φ1 or φ2 the corresponding bit j is changed in Xi,j (Kennedy & Eberhart, 
1997). 

 
Many PSO based WSN algorithms have been derived. To set this work in perspective to these a short 
survey of the operating principles and the improvements of performance are presented in Figure 1 and 
Table 3. This survey is partly based on the work and principles used by Raghavendra et al. (Kulkarni & 
Venayagamoorthy, 2011). 

 

Figure 1, Survey of the operating principles used by different SPO types in relation to WSN. 

Some of the key technical challenges in deploying and using WSN’s are dynamic topology, ad-hoc 
spatial deployment- and constraints in resources such as bandwidth, energy supply, and computational 
power (Kulkarni & Venayagamoorthy, 2011). In order to deal with these challenges, they can be 
organized into the categories: node deployment, localization, energy-aware clustering, and data-
aggregation. These categories are often formulated as nonlinear optimization problems with some given 
optimization criterions (Figure 1). To exemplify the optimization procedures often used in these 
categories selected works from different authors are provided in Table 1. It is noted that this is only a set 
of selected examples; nevertheless, a more in deep elaboration and many similar examples can be found 
in the work by Kulkarni et al. (Kulkarni & Venayagamoorthy, 2011). 

 

 

Type 

Algorithm type Ref. Performance discussion 

Deployment Particle Swarm (Wang, et al., 2016) Algorithm reaches a better network coverage 



Optimization with 
Coherent Velocity 

(more than 90 percent) compared to ordinary 
algorithms.  

Localization PSO-ANN (Gharghan, et al., 2016) The PSO–ANN algorithm outperforms those 
based on the LNSM-based traditional method. 

Energy-
Aware 
Clustering 

Improved PSO (ZHOU, et al., 2017) 

Similar work: 

(Kuila & Jana, 2014) 

Outperform many common algorithms such as: 
LEACH, TCAC, SEECH on parameters such 
as energy consumption and node-lifetime 

Data-fusion PECC-algoritme 
(PSO) 

(Vimalarani, et al., 2015) The algorithm improves performance in order 
to minimize the total consumed energy and 
increase the lifetime compared to similar WSN 
systems. 

Table 1, Exemplification of optimization procedures used in selected works. 

System Model 
It his section the system model used in the simulation section is derived and elaborated. 

System model overview 
The system model covers a collection of apartments in a smart building where each apartment contains a 
GWN and some serving WINs, Figure 2. The IoT nodes in one apartment are wirelessly connected to the 
gateway node in that apartment only. Similarly, the gateway nodes from each apartment are connected via 
a wired network to a central controller located in the smart building. By using this concept, it is possible 
to regulate the interference levels and to enhance the QoS parameters such as bit-rate, packet loss, and 
delay for each WIN individually. In the absence of a central controller each GWC would optimize its own 
sub-network without considering the global interference level and the global power consumption.  

 

Figure 2, A model of a smart building with its apartments, IoT nodes, gateway nodes, and a central controller. 

Ideally, such a system would work; however, in real-world settings, the spectrum available to the WINs is 
often limited to the ISM bands (ITU, 2018), which means that the GWN and WIN nodes must share the 
same spectrum. Many protocols are available for sharing spectrum in both the frequency and the time 
domains, but these are still limited by the laws of nature. One key problem is the interferences produced 
when many nodes use the same spectrum. In the settings illustrated in Figure 2 the spectrum used by a 
subsystem (a collection of a GWN node plus some WIN nodes) in one apartment potentially travels 
through walls, floors and roofs to the other apartments. Hence, when one of the WINs transmits to its 



GWN it causes interferences to the other GWN nodes. However, the transmission from the GWNs to the 
WINs causes limited interferences only, because most of the traffic from the GWN is acknowledge-
commands (ACK) and in some cases setting commands to actuators, etc. 

 

 

Figure 3, Sequence diagram with the steps performed when the model needs to be updated by the controller. 

 

Most of the time the system is stationary, i.e. the interference levels and the bit-rate-fairness are 
maintained; however, if a disturbance is imposed (e.g. a user moves furniture, etc.) the system parameters 
change, and a re-run of the central controller is needed. This is activated by one or more of the GWNs 
which use their received averaged SNR to trigger this event, Figure 3. 

Channel model 
The primary factor in most channel-models is the path-loss (Λ), which can be calculated by using the 
modified ITU indoor model as (ITU, 2001) (2): 

28)()()(log)(log20 1010 −+++= qPwnPfdNfdB  (2) 

 

In this equation f is the frequency (MHz), N is the distance-loos-coefficient, Pf() is the floor loss 
penetration factor, Pw() is the wall penetration factor, q is the number of walls, and n is the number of 
floors. By considering the losses from fading fluctuations (2) can be written as (3):   
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where Χ is the log-normal distributed shadowing effect with zero-mean and a standard deviation of σ and 
∆ is the contribution from Rayleigh fading, where it is assumed that the channels between the WINs and a 
GWN are stationary and have time-varying gains. The Rayleigh distribution assumes the impulse 
responses of the interference-channels are Gaussian distributed, which is true according to the central 
limit theorem in high density networks. The envelope of the channel response can be modelled by random 
variables having the following Probability Density Function (PDF) (Falahati, et al., 2003), (4): 
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where p(γ) is the PDF and Γ is average received SNR. Similarly, the upper bound for the Bit Error Rate 
(BER) can be found as an approximation if it assumed that the nodes uses low order QAM such as BPSK 
(5) (Chung & Goldsmith, 2001):  
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In this equation k1 is 0.2 and k2 is 2, and ζ is the number of constellation points in the QAM signal, which 
in this work is considered a continuous variable. However, without loss of generality, this can be 
converted into discrete constellation points. By rewriting this equation in a form where log2(ζ) is on the 
left side and the upper bound is used - the similarity with the Shannon channel capacity theorem is 
notable (Sklar, 2002), (6): 

2
2 2 2 1

1

2 2 1

2
1

1

log ( ) log (1 ) log (1 )

ln( )

( )
( ) log ( ) log (1 )

ln( )

k
c

BER

k

C
c

B

k
c

BER

k


 


  

= − = +

 = = = +

= −

 

(6) 

Where C is the Shannon channel capacity and B is the bandwidth for the channel, similarly the C/B is the 
spectral efficiency with the dimension bits/seconds/Hz.  

By combining (4) and (6) the average spectral efficiency for a channel with flat fading can be derived as 
(7):  
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The first step uses the integration by parts theorem and the second step handles the divergent integral by 
considering its asymptotic limit. Finally, the result is derived as a function that uses the exponential 
integral Ei(). 

Data-rates 
The obtainable average data-rates in the channel between the WINs and the GWNs can be found by 
multiplying the average spectral efficiency Ψ(γ) with the used bandwidth where it is noted that for QAM 
the spectral bandwidth is often equal to the symbol rate, i.e. the bandwidth excess-factor is close to one. 
Similarly, the SNR for a GWN can be found by dividing the received Rayleigh weighted signal with the 
sum of the interferences and the Gaussian distributed noise power in the channel. It is noted that the 
interferences from the other nodes (the nodes that do not participate in the communication) are considered 
as random noise in alignment with Arnab et al. (Nandi & Kundu, 2010). To elaborate the interferences 
some matrixes and vectors are defined (all vectors are column vectors):   



The first matrix L contains the path-losses (2) and (3) (where the Rayleigh part in (3) is given by (4)) 
between the sub-network centres (SNk in Figure 2 where k is 1,2,..,9). Without loss of generality, this 
approximation assumes that the sub-network centres represent the position of the WGN and the 
transmitting WIN (8):  
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In this equation I is the number of sub-networks. 

The second matrix contains a binary mask (m) which enables or disables the interferences that should be 
taken into account for each sub-network SNi where i={1,2,...,I} (9): 
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A transmit-power-vector is defined for each of the sub-networks as follows (10): 

  },...,2,1{,...,, 21, IiPPPP IiSN =  (10) 

Similarly, the path-loss between a WGN and a transmitting WIN in the same sub-network is defined as 
(11): 

  },...,2,1{,...,, 21, IiLLLL IiSN =  (11) 

 

By combining the path-loss matrix (L), the mask matrix (M), the transmit-power vector, and the path-loss 
inside a sub-network the SNR (γ) for each sub-network can be found (12):  
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where E is a hollow matrix, o is the Hadamard product operator, and o- is the Hadamard inverse matrix 
operator.  

Utility maximisation 
To maximize the utility of all the sub-networks in a smart building a QoS fairness-principle is deployed, 
which ensures that all the sub-networks have approximately the same bit-rates (ν). With Ui denoting a 
(GWN, WIN) pair in the i’th sub-network the objective is to maximize the overall bitrates (13): 
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In this equation ζ1 and ζ2 are fairness limits and χi is the bitrate for subnet Ui. 

A commonly used maximisation utility is the max-min algorithm-family, which states that a utility rate is 
min-max fair if and only if an increase of Utot is distributed equally between the Ui’s (Boudec, 2008). An 
algorithm that provides this is (Yaacoub, 2016), (14): 
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The α-parameter controls the degree of fairness. It is noted that this algorithm in addition to optimise 
fairness also minimises the total bit-rate U(ν). This means that power is saved in the WINs (they often run 
on batteries) and that a fair bit-rate is provided.   

The proposed framework – a simulation model 
A simulation model has been designed in Matlab (R2018a) to establish the performance of using BPSO to 
control interferences and at the same time provide fairness between the sub-networks. Without loss of 
generality, the model used in the simulations is a simplification of the previously discussed smart building 
model Figure 2 as shown in Figure 4. 

 

Figure 4, The simulation model with its node types (WINs) and the GWN connected to the central controller. 

The model uses three different types of WINs to generalize its usability.  Type 1 is a High Rate Node 
(HRN) which is assumed to transmit most of the time, i.e. it could be a camera-based user interface in an 
apartment. Type 2 is a Massive Machine Type Communication (MMTC) node which only transmits 
when activated, e.g. by a user that moves furniture in the apartment. Type 3 is an Ultra Reliable Machine 
Communication (uMTC) type which must have priority over the other nodes. An example application of 
this node type is important alarms, etc. The two last types are commonly known from the 5G evolution 
(Osseiran, 2014), (Yaacoub, 2016). In the process of simulating these node types the mask (9) needs to be 
deployed to sort and priorities the interferences. With regard to the MMTC nodes these only take the 
interferences from the HRNs into account by setting the M-mask appropriately. The reason is that the 



 1: Initialize all variables and define constants 

 2: Calculate L matrix  

 3: H=Mask L matrix with M matrix 

 4: p=0 

 5: X=default values // X is a tx power multiplier for SN1-9 

 6: Pcomp= default values  // measured SNR from GWNs 

 7: for p < P  // P is stop criterion 

 8:       X=BPSO(X,CF) 

 9: end for 

10: CF function  // Cost function 

11:       TxP=PSN*X   // eq(9)  

12:       γ=LSN*TxP*Pcomp /(H*TxP+Ng)  // eq(7-11) 

13:       ν =Bw*Se(γ) // eq(6-7)  

14:       U(ν)=f(ν) // eq (13) 

15:       return U(Rb) 

16: end function 

 

 

 

MMTC nodes do not need instantaneous channel access, i.e. they commonly use a protocol that senses 
the channel state before transmitting (e.g. CSMA) and deploys a retransmission scheme which will back-
off and retry if a collision occurs. Regarding the uMTC nodes these must always be able to get channel 
access, why all interferences are included by the mask (M-matrix-(9)). Similarly, the HRN must always 
be able to get channel access because these nodes need to continuously transmit data why the mask is set 
accordingly. In addition, the simulation model uses a distance matrix as indicated in Figure 4 (only paths 
for node SN-9 is shown) to find the path-loss matrix L (8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2,  Parameters for the simulation model. 

The following pseudo-code elaborates the working principles of the simulator code and how it uses the 
simulation parameters (Table 2) and the discussed equations (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5, Pseudo-code for the flow of the simulation software including. 

No. 
Simulation Parameters 

Type Value 

1 Noise floor (Ng) 
1.38e-23*300*1e6 

[W] 

2 Node bandwidth  1e6 [Hz] 

3 Target BER for all nodes <1e-3 

4 
Distance WIN to GWN inside 
a cluster 

1.0 [m] 

5 
Distance between cluster 
centres 

4.0 [m] 

6 Binary mask matrix (M) 

*HRN, MMTC 

,uMTC provides 

interferences to 

HRN. 

*Only HRN 

provides 

interferences to 

MMTC and 

uMTC. 

 Max transmit power 1e-3 [W] 

8 BPSO: number of particles 100 

9 
BPSO: bits for Tx power level 
in sub-network SNx 

4 [bits] 

 

 



where:  X parameter is a 4-bit transmit-power multiplier, γ is SNR, LSN is path-loss from a WIN to its 
respective GWN, Pcomp is SNR from the GWN nodes, L-matrix is path-loss between the WINS 
multiplied with the mask matrix (M), Ng is additive white Gaussian noise from the channel. ν is the bit-
rates.  

As previously discussed, the novelty of this work is regulating the fairness of the bit-rates for all nodes as 
a function of transmit-power by using a centralized controller equipped with a nonlinear BPSO 
optimization algorithm. By deploying this system significant power savings can be achieved, impact of 
interferences can be reduced, and spectrum utilization can be lowered relative to a greedy-based scenario. 
This optimization process takes place in the central controller, where each optimization step is presented 
as pseudo-code in Figure 5.The main functionality takes place in lines 7 to 9, where the BPSO algorithm 
is called with the parameters X and CF. The X parameter is a trial vector used by the BPSO algorithm to 
find the optimal transmit-powers given the parameters in Table 2, and the CF parameter is the cost 
function given in lines 10 to 15. In a real setting the cost function receives the SNR (γ) from all the nodes; 
however, in a simulator environment the node SNRs need to be calculated - this takes place in line 11 and 
12. The received SNR is used by the cost function (line 13) to find the bit-rates for all nodes given the 
conditions in Table 2. Based on the bit-rates the cost function calculates and return the cost in line 14 and 
15. Hence, by looping the BPSO with the cost function as parameter the transmit-power that optimises 
the fairness of bit-rates will be found and returned to the WINs.         

Simulation results 
In the following section the results from the simulations performed by the model discussed in the 
previous section is presented and elaborated. 

Simulation outcomes 
To be able to elaborate the principles and the algorithms the path-loss in the first three runs of the 
simulated model is fixed to 1e-6 for all sub-networks (SNs). From the simulated results it is observed that 
the spreading of the bit-rates between the WINS is low. This is caused by the central controller which 
optimises the bit-rates given the condition that the path-losses are all equal. 

 

 

Figure 6,  Simulated bit-rates for a fixed path-loss (1e-6) where the three columns are different runs with the same parameters.  

As discussed, the uMTC and HRN nodes needs to coexist why they share the same spectrum by using 
Space Division Multiple Access (SDMA), i.e. no masking takes place in the simulator. As regards the 
MMTC nodes they use access control schemes like CSMA, i.e. they back-off if the channel is busy. The 
channel is considered busy if and only if one or more uMTC nodes transmits, whereas the HRN nodes are 
considered as noise (their interferences are added to the noise part of the node SNR). Hence, the 
interferences from the HRN nodes are included the tx power allocation for the MMTC nodes. This means 
that the uMTC and the MMTC nodes share the same channel capacity, i.e. their effective bit-rates in 



Figure 6 cannot co-exist. The reason for this masking process is that the uMTC nodes in most smart 
building scenarios are allocated to short messages such as alarms and other important control information 
which needs a very short delay (Lynggaard & Skouby, 2015). However, these messages are not sent on a 
regular basis, i.e. they only use the available bit-rate for a very short time-period. Hence, the interferences 
produced by the uMTC nodes are masked out by the MMTC nodes. It is noted that this masking only 
works one way (from the uMTC to the MMTC), i.e. the uMTC devices can sense all interferences in the 
system. This is a necessary condition to ensure that these devices can send at any time. On the other hand, 
the MMTC devices are often allocated to sense events in its context such as movement sensors, 
temperature sensors, and different types of binary sensors. These types of events can be delayed without 
loss of contextual and temporal information (Lynggaard & Skouby, 2015). 

 

 

Figure 7,  Simulated transmit-powers for a fixed path-loss (1e-6). The three bars are three different runs with the same parameters. 

Figure 7 shows the amount of transmit-power needed by the WINs to achieve the bit-rates presented in 
Figure 6. It is observed that WINs 2, 6, and 9 (the MMTC nodes) use approximately 50 percent less 
transmit-power than the other WINs. This is a result of the used mask (M matrix) in the model-runs, 
because it forces the MMTC nodes to ignore the interference levels as stated previously. Hence, these 
nodes sense a reduced interference level where it is assumed that the uMTC nodes do not transmit. This 
means that in order to overcome the sensed interference level need less power compared to the other 
devices which sense the full interference level.    

 

 

Figure 8,  Simulated bitrates as a function of node numbers and usage scenarios. 

The results of model-runs with: greedy settings (scenario 0), fixed path-loss settings (scenario 1), full 
model (scenario 2), full scenario with 6 dB extra path-loss for node 3 (scenario 3), and full scenario with 



10 dB extra path-loss for node 3 (scenario 4) are presented in Figure 8 and Figure 9 respectively. 
Regarding the greedy scenario (scenario 0) it is noted that the bit-rates fluctuate significantly more than 
the regulated cases (scenario 1-4), i.e. its minimum and maximum values deviates from the average value 
with +48 and -64 percent. This should be compared to the full model (scenario 2) which deviate between 
+10 and -12 percent. Furthermore, it is noted that the effective bit-rate for the fixed path-loss model 
(scenario 1) provides approximately the double bit-rate compared to the other models. This is expected 
because the path-loss is smaller in this model. In addition, it is noted that the extra path-loss added to 
node 3 (scenarios 3 and 4) is equalized by the central controller. The 10 dB extra loss (scenario 4) means 
the controller needs to lower the transmit-power for all the nodes, why the averaged bit-rate drops for all 
nodes. 

 

Figure 9, Simulated transmit-powers as a function of node numbers and usage scenarios. 

From Figure 9 it is noted that the highest transmit-power is found in the greedy scenario (scenario 0) 
where all nodes use the maximum transmit-power. The second highest transmit-power consumption is the 
scenario with fixed path-loss (scenario 1). As elaborated, this is caused by the path-loss being the smallest 
and by the masking of some nodes. In scenario 3 and 4 it is observed that the attenuation imposed on 
node 3 forces the WINs to increase their transmit-powers to compensate for this. However, this increase 
in transmit-powers changes the interference patterns for all the nodes why the central controller re-
calculates the average transmit-power in the system.    

The transmit-power used by the WINS is directly proportional to their consumed (battery) power, why 
reducing this would save approximately the same amount of power (Lynggaard & Skouby, 2015). For 
scenario 1 to 4 the average transmit-powers are: 7e-4, 5e-4, 4e-4, 2e-4 W. By comparing these numbers to 
the numbers without this protocol, i.e. a greedy scenario (scenario 0) where all nodes use maximum 
power (1e-3 W each), the significance of this technique is presented, i.e. the savings are in the range of 28 
to 74 percent. 

The bit-rate performance and the transmit-power performance in terms of changing the BER for the 
receivers (scenario 2) from 10-3 to 10-5 are presented in Figure 10 and Figure 11 respectively. 

 



 

Figure 10, Bit-rate as function of received BER for each node. 

From Figure 10 it is noted that when the required BER for the receiving nodes is increased (from 10-3 to 

10-5) the central controller lowers the bit-rates and the transmit-powers (Figure 11) for all the WINS. 

This is the case because lowering the bit-rates increase the energy-per-bit divided by noise-spectral-

density (Eb/N0) to the level required by the given BER. In addition, lowering the transmit-power 

reduces the summed interference power from all the nodes. Hence, the central controller ensures that 

allocated transmit-powers for all WINS are regulated so the total channel capacity is divided in a fair 

way. In case a node is close to its sensitivity limit the central controller will gracefully degrade its QoS 

in the form of degrading its bit-rate. Similarly, if the load conditions vary over time one or more of the 

WINS will detect this in the form of a changing SNR and afterwards send a message to the central 

controller. The central controller then recalculates power allocations for all the WINS.       
 

 

Figure 11, Transmit power as a function of received BER for each node. 

 

Focusing on the convergence performance (y-axis) of the BPSO algorithm it is presented in Figure 12 

where the two curves show the “fixed path-loss” and the “full model” as a function of the number of 

iterations. 

 



 

Figure 12, The convergence-rate of the BPSO algorithm.  

As illustrated in Figure 12 the algorithm converges after approximately 25 iterations.  It is noted that even 
though the calculation complexity grows considerably in the full model compared to the fixed path-loss 
model the BPSO convergence rates are almost similar. This is caused by the optimisation process 
implicitly implemented in the BPSO algorithm. This process randomly moves the correlated particles in 
the direction of the optimum without using complexity dependent elements such as the least mean square 
algorithm would do in the form of a gradient vector. 

 

To establish some quantitative efficiency measures and to substantiate the performance results of the 

proposed system it is compared to similar state-of-the-art systems in terms of performance (Table 3). 

From the comparison it is noted that the proposed system is comparable with similar systems in terms of 

package-receiver-ration and that it offers a very good performance with respect to battery power savings.   
 

Number: Project: Package Receive Ratio 
(PRR) 

Battery power savings 

1 This work (scenario 4) 95% 74% 

2 ART (Chincoli & Liotta, 2018) 94% NP 

3 SVM method (Popovski, 2014) 84-89% NP 

4 Reinforcement learning method (Lu, et 
al., 2018) 

95% 52% 

5 PECC-algoritme (PSO) (Vimalarani, et 
al., 2015) 

95% 53% 

NP means that the data is not provided by the author. Data in reference 2 and 5 have been estimated from figures in the papers. 

Table 3, peformance comparison with similar systems 

Conclusion 
The current research efforts in centralized IoT device-control to reduce the impact of interferences, 
reduce transmit-powers, and reduce spectrum utilizations are oriented towards the deployment of machine 
learning. Machine learning algorithms are able to regulate the behaviour of IoT devices in a global 
context by deploying nonlinear cost functions. One such machine learning algorithm is the BPSO 
algorithm. It has some interesting properties, because it is able to optimize nonlinear cost functions; it is 
meta-heuristics, i.e. it does not make a lot of assumptions about the problem being solved; and it is able to 
deal with discrete variables which are commonly used in transmit-power control schemes for IoT nodes. 
In this paper a simulation model for a centralized controller concept based on a nonlinear cost function 
has been derived to substantiate the potential of this concept. This model simulates how a BPSO based 
centralized controller can handle the co-existence of IoT sub-networks to reduce interferences, save 
power and dynamically adapt to network changes. It has been found that the proposed algorithm 
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effectively solves a nonlinear cost function (less than 25 iterations) and that it produces a fair bit-rate 
allocation with a deviation from the average value with +/- 10 and 12 percent compared to a greedy case 
(no controller regulation) where the deviations from the average value are +/- 48 and 64 percent. In 
addition, the controller regulation saves between 28 and 74 percent transmit-power compared to a greedy 
case. These considerable savings in transmit-powers mean that interference levels decrease with similar 
percentages.  

The potential of deploying the presented system in future smart buildings is very large because it is able 
to regulate the transmit-powers as a function of the pathlosses and Rayleigh fading. By reducing the 
transmit-powers the interference levels are lowered proportionally which means that IoT devices in 
different apartments can coexist within the same building. In addition, the presented concept is able to 
offer selective bit-rates for the different node types meaning that different types of services with different 
QoS needs can coexist. Another significant outcome is the simulations results of the deployed nonconvex 
optimization algorithm (BPSO algorithm) which shows that this algorithm is very efficient in the context 
of optimising nonconvex cost functions in relation to constructing a services framework for smart 
buildings.   
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