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Abstract 

Objective. Intramuscular electromyography (iEMG) signals, invasively recorded, directly from the 

muscles are used to diagnose various neuromuscular disorders/diseases, and to control 

rehabilitative and assistive robotic devices.  iEMG signals are being potentially used in neurology, 

kinesiology, rehabilitation, and ergonomics, to detect/diagnose various diseases/ disorders. 

Electromyography (EMG) based classification and analysis systems are being designed and tested 

for classification of various neuromuscular disorders and to control rehabilitative and assistive 

robotic devices. Many studies have explored parameters, such as pre-processing, feature extraction 

and selection of classifier that can affect the performance and efficacy of iEMG-based 

classification systems. Pre-processing stage includes removal of any unwanted noise from original 

signal and windowing of the signal. Approach. This study investigated and presented optimum 

windowing configurations for robust control and better performance results of iEMG-based 

analysis system based on stationarity rate and  and classification accuracy. Both, disjoint and 

overlap, windowing techniques with varying window and overlap sizes have been investigated 

using a machine learning (ML) based classification algorithm called linear discriminant analysis 

(LDA). Main results. The optimum window size ranges are from 200ms to 300ms for disjoint and 

225ms to 300ms for overlap windowing technique, respectively. The inferred results show that for 

overlap windowing technique the optimum range of overlap size is from 10% to 30% of the length 

of a window size. Mean classification accuracy (MCA) and mean stationarity rate (MSR) was 

found to be lower in disjoint windowing technique as compared to overlap windowing at all 

investigated overlap sizes. Statistical analysis (two-way analysis of variance test) showed that 

MSR and MCA of overlap windowing technique was significantly different at overlap sizes of 

10% to 30% (p-values < 0.05). Significance. The presented results can be used to achieve best 

possible classification results and stationarity rate for any iEMG based real-time diagnosis, 

detection, and control system which can enhance the performance of the system significantly. 

 

Keywords: Windowing, Classification, Machine Learning, Electromyography
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1. Introduction  

Electromyography (EMG) is an electrical activity 

associated with muscles contraction generated due to 

underlying motor neurons. EMG can be recorded by 

Intramuscular (invasive) and/or Surface (non-invasive) 

recording techniques. Surface EMG (sEMG) is recorded 

from surface of the skin whereas intramuscular EMG 

(iEMG) is recorded directly from the muscle that generates 

electrical activity. The EMG produces an electric field in its 

surroundings and enables recording relatively away from the 

source [1]. Biological tissue that separates recording 

electrode from the source is referred as volume conductor 

and behaves as a low-pass filter [2]. iEMG allows to record 

EMG from relatively near vicinity of the source and thus the 

effect of volume conductor is minimum as compared to 

sEMG. There are various applications of EMG-based 

techniques; these have potentially been used to detect 

nervous system disorders in Neurology, to detect 

psychological and physical stress/disorders along with 

detection of musculoskeletal disorders in Ergonomics, to 

provide an insight for exercise physiology in Kinesiology, 

and to control rehabilitative and assistive robotic devices in 

Rehabilitation [3]. Myoelectric control schemes are being 

designed by mainly relying on sEMG signals due to their 

non-invasive recording techniques. But the systems designed 

using iEMG signals provide sensory control and feedback to 

body more efficiently [4].   

Whether the aim is to analyze EMG signals for diagnostic 

applications or to develop EMG-based control system for 

rehabilitative or assistive devices, windowing is of crucial 

importance. Windowing is a process that divides recorded 

EMG signals into smaller parts to analyze fine characteristics 

of the signal. The windowing process is used in 

decomposition of EMG signals, and also to design 

myoelectric control schemes for rehabilitative and assistive 

devices [5-7]. Classification and identification of action 

potentials by virtue of individual motor units through 

analyzing interference pattern is called EMG signal 

decomposition. Two steps are required for decomposition of 

composite EMG signal in classic approaches i.e. 1) detecting 

action potentials by using windowing and ii) recognition of 

detected action potentials as a member of specific class [8-

10]. 

Currently, iEMG is being used with additional advancements 

like implantable electrodes [11, 12]. Therefore, this has now 

become much easier to identify the parameters that can affect 

performance of an iEMG based classification system. 

Multiple studies have been conducted to assess parameters 

affecting performance of EMG-based control system [13-21]. 

But a limited research has been conducted to explore abilities 

and efficacy of iEMG signals. Herberts et al. (1968) for the 

first time in history recorded iEMG signals using telemetry 

system from 4 subjects for control purpose and measured 

contraction levels by applying various loads [22]. Stein et al. 

(1980) implanted 4 electrodes to control upper limb 

prostheses and reported to have a greater control 

[23].Various studies have been conducted to explore the 

efficacy of iEMG recordings for prosthetic and rehabilitative 

assistive robotic controls, however, no study has explored the 

optimum windowing configurations for iEMG-based control 

systems [23-25]. Goen (2013) used iEMG signals for 

classification of neuromuscular disorders (Normal, 

myopathic and neuropathic) by using data recorded from 34 

subjects (22 pathogenic and 12 normal) with sampling 

frequency of 2 kHz [26]. Various EMG features were 

investigated by deploying disjoint window with window size 

of 200 sampling points. The results showed that support 

vector machine (SVM) outperformed other investigated 

classifiers and achieved an accuracy of 91.2%. Another study 

conducted by Subasi et al. (2018) used iEMG signals, 

recorded at sampling frequency of 20 kHz, from 27 subjects 

for automatic detection of various neuromuscular disorders 

[27]. The recorded iEMG data was segmented using a 

disjoint window with window length of 1024 samples. The 

authors reported that, the SVM achieved highest 

classification accuracy of 98.96% among other investigated 

classifiers. Yaman and Subasi (2019) recorded iEMG signals 

with sampling frequency of 20 kHz and decomposed 

recorded signals for the classification of neuromuscular 

disorders [28]. The authors utilized disjoint window with 

window length of 2048 samples to extract various features. 

Based on the extracted features, the authors reported that the 

artificial neural network (ANN) achieved highest accuracy of 

98.33% among other investigated classifiers. All these 

studies used fixed window size without investigating the 

impact of window size on stationarity rate and classification 

accuracy.  

Bioelectric or physiological signals, generated from body  

due to any physiological activity are windowed according to  

their shape so that each window can represent actual activity 

of that area or muscle. For example, electrocardiography 

(ECG) is a bioelectric signal generated due to contraction 

and relaxation of heart, representing activities of cardiac 

muscle. It is segmented according the shape or pattern of the 

signal to represent activities of the heart. Unlike ECG, EMG 

signals cannot be segmented according to their shape due to 

their stochastic nature. Rather, these signals are segmented 

by length of time. A single window should be long enough in 

time to contain enough information that represent the pattern 

of original signal. Oskoei et al. (2008) reported that, for 

EMG signals, a window length of 200ms provides significant 

information for accurate representation of original signal 

[29]. Smaller windows have more variance and less bias 

whereas larger windows have more bias and less variance. 

Besides variance and bias, there are other factors that should 
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be taken in account during windowing process of EMG 

signals; such as its real-time performance of operation, 

computational load, and accuracy of the designed system. All 

these parameters get affected greatly by length of the 

window size in classification of EMG signals. Larger 

window sizes provide better performance in classifying EMG 

signals but real-time operation of any such system restricts to 

keep window size below 300ms for natural and robust 

performance of the device [30]. Furthermore, windowing of 

EMG signals can be done by using disjoint or overlap 

windowing techniques. In disjoint windowing technique, the 

window is only characterized by window size whereas in 

overlap windowing a window is characterized by window 

size and step/overlap size. Figure 1 describes the two types 

of windowing techniques. The step or overlap size should be 

greater than operation time of the device and less than the 

window size. Overlap windowing thus allows to use larger 

window sizes, as compared to disjoint window, without any 

delay in real-time operation of the device.  

Staionarity of the signals plays an important role in signal 

processing. As stated earlier, EMG signals are nonstationary 

and are segmented by length of time rather than shape. The 

nonstationarity causes complexities and affect the results 

catastrophically, specifically, when dealing with frequency 

analaysis [31]. The prerequisite for frequency analysis i.e. 

Fourier Transform, Wavelet Transoform and various Signal 

Decomposition techniques is that the signal under 

consideration should be stationary. A shorter segment of 

EMG signal can be locally stationary. For sEMG signals 

various studies have shown that shorter segments possess 

stationarity [32-34]. Beck et al. (2006) conducted a study to 

test the stationarity of the sEMG signals using RUNS test, 

Reverse Arrangement (RA) test, and Modified Reverse 

Arrangment (MRA) test [35]. Similarly, Messaoudi et al. 

(2017) tested the stationarity of the synthetic sEMG signals 

with respect to various disjoint window sizes and conluded 

that the window size of 225ms exhibits the maximum 

stationarity rate [36].  

 

 
Figure 1. Shows the difference between disjoint and overlap windowing techniques. The preprocessed EMG signal, is segmented into 

distinct segments, as shown in blue color fonts, in disjoint windowing technique. Whereas, in overlap windowing technique, each window 

is characterized by window size and overlap size (OS). The overlap is the portion of the segment overlapping between two consecutive 

windows. 

 

Any myoelectric control based rehabilitative and assistive 

robotic device should decode the EMG signal in less than 

300ms for natural and robust control of the device [37]. 

Similarly, for diagnostic and detection purposes the window 

size plays an important role in decoding and preserving the 

exact shape of motor unit action potential (MUAP). In 

clinical practice, the clinicians use a window size of 200ms 

to 300ms to examine the shape of MUAP for detection and 

diagnosis of various neuromuscular diseases [38,39]. No 

study has ever explicitly evaluated the optimum windowing 

configuration for an iEMG-based classification and control 

system for enhanced performance. The role of stationarity 

rate, for an iEMG-based analysis system, in determining 

optimum window type, window and overlap size is also yet 

to be explored. For sEMG-based control systems, it is 

evident that windowing type and window size have a great 

effect on the performance of the designed system [37]. As we 

have previously shown that the overlap windowing technique 

outperforms disjoint windowing for a sEMG-based 

myoelectric control and optimum windowing configurations 
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were presented for both windowing techniques [32]. The 

mentioned literature has revealed much information and 

promising results but most of the studies revolve around 

sEMG signals and for an iEMG-based diagnosis, detection, 

and control system there is no consensus on selection of 

window size. Various studies used various windowing 

techniques (Disjoint or Overlap), window and overlap sizes 

either with respect to time length or number of samples based 

on the sampling frequency of the data.  

The aim of this study is to investigate optimum 

windowing configurations for iEMG-based control system 

with respect to stationarity rate and performance of the 

system. Both windowing techniques with varying window 

sizes have been investigated using linear discriminat analysis 

(LDA) classifier. The effect of length of overlap or increment 

size, for overlap windowing technique, on stationarity and 

performance of an iEMG-based classification and control 

system has also been investigated. Three independently 

recorded datasets of iEMG recordings of hand motions have 

been used for generalization. The significance of the results 

has been evaluated using analysis of variance statistical 

analysis. The criteria followed to choose an optimum 

window size is that the selected window size should provide 

maximum stationarity rate and classification accuracy while 

adhering the real-time constraints of window size (less than 

300 ms) [41]. The selected window size should also have a 

balanced variance-bias tradeoff and the length of chosen 

overlap size should be greater than the processing time of the 

device and less than the window size while resulting 

maximum stationarity rate and classification accuracy. 

The rest of the study has been organized as: the detailed 

information about iEMG recordings, experimental paradigm, 

and methodology of the study is described in section 2. 

Section 3 describes results of all conducted experiments 

along with their statistical comparison. Section 4 discuss and 

interpret the achieved results and section 5 provides overall 

conclusion of the presented study. 

Figure 2. Shows the comparison between recorded and filtered EMG signal. Signals in time domain (Top), and and signals in frequency 

domain (Bottom). In both graphs, the signal plotted with red and black colors are raw and filtered EMG signals, respectively. 

 

2. Methodology 

25 (healthy and amputee) subjects participated in this 

study. Three independently recorded datasets were used. In 

all three datasets, iEMG signals from upper limbs were 

recorded. Dataset-1 is comprised of 10 healthy subjects and 

had been used in [9]. Dataset-2 with recordings from 8 

healthy subjects was also pre-recorded and had been used in 

[19]. Whereas, dataset-3 was comprised of 5 amputees which  

 

 

had different level of transradial amputation. The details 

about dataset-3 can be aquired at [9]. 

2.1 Dataset-1 

iEMG recordings for dataste-1 were recorded using 6 bipolar 

stainless-steel electrodes coated with Teflon (A-M Systems, 

Carlsborg WA diameter 50 µm). The wire electrodes were 

inserted into flexor carpi radialis, palmaris longus, flexor 

carpi ulnaris, extensor carpi radialis longus, flexor carpi 

radialis brevis and flexor digitorum superficialis muscles. 
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The insertion of wire electrodes was made possible using a 

sterilized 25-guage hypodermic needle. The needles were 

inserted into designated muscles to a depth of approximately 

10-15mm so that wire electrodes can stay inside the muscles 

for a specific time. An ultrasound scanner was also used to 

identify required muscles and for correct placement of 

electrodes. To avoid the risk of infections, all the 

precautionary measures were used.  Skin, wire electrodes and 

needles were sterilized. The tips of inserted wire electrodes 

were then connected to amplifier (AnEMG12, OT 

Bioellectronica, and Torino, Italy) to amplify signals. The 

signals were filtered (20-1500 Hz) with an analog bandpass 

filter and sampled at 8 kHz sampling frequency using 16-bit 

NI-DAQ card.  

The subjects performed ten active hand motions and rest 

motion (REST) which is a no-motion state. Active hand 

motions including Hand Open (HO), hand Close (HC), Wrist 

Flexion (WF), Wrist Extension (WE), Pronation (PRO), 

Supination (SUP), Side Grip (SG), Fine Grip (FG), Agree 

(AGR) and Pointer (POI) were performed by each subject. 

To record data a graphical user interface (GUI), BioPatRec, a 

publicly available data acquisition and pattern recognition, 

software was used [37]. To make it easy for subjects each 

motion was graphically visualized on computer screen before 

recording. Each subject performed experiment in such a way 

that at start of the experiment the subject kept hand at rest for 

5 seconds and then performed the displayed motion for 5 

seconds by contracting muscles. After each contraction of 5 

seconds the subject had to perform REST for 5 seconds and 

so on. 

Figure 3. In the scatter plot for all the extracted features, x-axis of the leftmost column corresponds to MAV feature. Y-axis of the bottom 

row corresponds to CARD feature. The scatter plot in the bottom left of the matrix compares MAV values (along the x-axis) to CARD 

values (along the y-axis). The color of each point depends on the hand motions (red, green, and blue represents HO, HC, and HF, 

respectively.). The diagonal plots are histograms showing the feature values for each hand motion. 

 

2.2 Dataset-2 

The dataset-2 was also pre-recorded and sampled at 

sampling frequency of 10 kHz, it has been used previously in 

[19]. The participants of this dataset performed following 4 

active hand motions: HO, HC, WF and WE along with 

REST. 

2.3 Dataset-3 

The dataset-3 was also pre-recorded and sampled at 

sampling frequency of 8 kHz, it has been used previously in 

[9]. The data collection protocol was same as dataset-1, the 

wire electrodes were inserted around the circumference of 

the forearm, equidistantly.  

2.4 Signal processing 
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Signals from all datasets were digitally filtered using a 

third-order Butterworth bandpass filter using cut off 

frequencies of 20 Hz and 1500 Hz. Also, a notch filter of 60 

Hz was used to cancel out the effects of power line 

interference. The signal recorded during contraction time was 

used to extract features, excluding the signal recorded during 

transient time. Figure 2 depicts the comparison between both 

raw and filtered EMG signals, from dataset-1, in time and 

frequency domain. It can be observed that applied digital 

filters significantly remove embedded noise from the original 

signal. 

2.4 Windowing 

To investigate which windowing technique, window size 

and step/overlap size provides best classification results for  

EMG signals, the recorded datasets were segmented by using 

both windowing techniques. For both techniques 19 different 

window sizes were used, such that the length of window size 

varied from 25ms to 500ms with an increment of 25ms. 

Similarly, for overlap windowing 9 different step/overlap 

sizes were used from 10% of original window length to 90% 

with an increment of 10% in length of overlap size. 

 

 

 

Figure 4. 3-Dimenional scatter plot for hand motions. PCA reduces the dimensionality of the data to prevent Over-fitting 

through elimination of redundant features. To decrease dimensionality to 3 dimensions, PCA and TSNE algorithms have been 

used. X-axis of the leftmost column corresponds to MAV feature. Y-axis of the bottom row of corresponds to CARD feature. 

Bottom left compares MAV values (along the x-axis) to CARD values (along the y-axis). The color of each point depends on 

the hand motions (red, green, and blue represents HO, HC, and HF, respectively.). The diagonal plots are histograms showing 

the feature values for each hand motion. 

 

2.5 Stationarity of iEMG 

A stationary process which has a spsecific state of 

statistical equilibrium such that its marginal distribution does 

not depends on time and its bivariate distribution depends on 

time difference or lag. These stated assumptions implies that 

the variance and mean of the signal are constant and the 

autocorrelation is dependent on time difference. Any 

stochastic process which satisfies the mentioned properties of 

a stationary process is called as wide sense stationary (WSS) 

process or simply a stationary process. To test which 

windowing technique, window size and overlap size provides 

the maximum stationarity for iEMG signals, all the 

windowed signals were first used for stationarity test. The 

stationarity of the segments were evalauted using two 

statistical stationarity tests i.e. RUNS test and Reverese 

Arrangment (RA) test. A segment was considered stationary 

only if a segment is proven stationary from both tests. The 

stationarity of each window or overlap size is reported in 

terms of stationarity rate. The stationarity rate is defined as 
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the number of total statioanry signals divieded by total 

number of signals. 

2.6 Feature extraction 

After windowing, next step was to extract useful 

information from each window that can distinguish window 

of one class from another. For this purpose, various statistical 

properties of EMG signals were calculated to represent 

original signal. These statistical properties (features) should 

possess the capability of class separability and can be 

computed from frequency or time domain. In time domain, 

features are evaluated with respect to amplitude of signal. 

However, in in frequency domain the same are calculated 

from power spectral density (PSD). Selected feature set, 

chosen for EMG classification, should have an ability of 

maximum class separability, minimum computational 

complexity, and high robust power. Apropos, 5 TD features 

have been investigated in this study i.e. mean absolute value 

(MAV), waveform length (WL), slope sign change (SSC), 

cardinality (CARD) and zero crossing (ZC). The scatter plot 

of all extracted features for 3 hand motions (HO, HC, and 

WF) for one subject from dataset-1 is depicted in figure 3. 

 

Another factor that affects the performance of ML based 

system is overfitting of designed system. System designed 

with larger feature set is prone to over-fit. An overfitted ML 

model fits too closely (exactly) to a specific dataset, but fails 

to predict unseen features on the new dataset. To prevent 

overfitting, Principle Component Analysis (PCA) has been 

used. PCA removes redundant features and maps from high 

dimensionality to low dimensionality preserving the 

variance. Figure 4 depicts a 3-dimensional scatter plot for all 

hand motions with reduced dimensionality. For visualization, 

the dimensionality of the feature set has been reduced by 

utilizing PCA and T-distributed Stochastic Neighbor 

Embedding (TSNE) algorithm. 

2.7 Classification 

Finalized feature set was then fed to LDA to classify 

iEMG signals of various classes. To evaluate performance of 

the classifier classification accuracy (CA) has been 

measured. For each dataset, windowing technique, and 

window size, a classifier was trained, validated, and tested 

for each subject. The data of each subject was divided in 

such a way that 70% of data was used to train the model, 

20% for validation and the remaining 10% was used to test 

the trained model. LDA was used from publicly available 

MATLAB toolbox "BioPatRec" for EMG signals [41]. The 

CA of testing results were measured and recorded for each 

subject. To assess effects of window size and windowing 

technique on performance of classification of iEMG signals, 

analysis of variance (ANOVA) test was used. Probability 

values below than 5% were considered significant for 

evaluation of the statistical tests. Furthermore, for multiple 

comparisons among the variables Tuckey's honest post-hoc 

test was also used. 
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Figure 5. SR vs. window sizes for disjoint and overlap windowing. Relationship between SR and length of disjoint segments for all 

datasets (Left). Relationship between SR and length of window size for overlap windowing (Right). 

 

3. Results 

The LDA classifier was trained and tested for both 

datasets, windowing techniques, against each window size. 

Classification accuracy (CA) and Stationarity Rate (SR) of 

each individual subject was recorded based on all 

motions/classes. By averaging CA of all subjects, in both 

datasets, mean classification accuracy (MCA) was 

calculated. Similarly, mean stationarity rate (MSR) was 

calcuated. The results are presented as MCA±STD and 

MSR±STD. 

3.1 Optimum window sizes 

To investigate optimum window sizes for both disjoint 

and overlap windowing, 19 different window sizes with 

varying lengths (50ms to 500ms) have been chosen for both 

windowing techniques. It should be noted that, as overlap 

windowing is characterized by a window size along with a 

step/overlap size, MCA and MSR of all 9 overlap size is 

averaged to get mean of MCA (MMCA) and mean of MSR 

(MMSR) for any given window size for fair comparison. 

Figure 5 depicts the relationship between MSR and 

increasing length of window size for both windowing 

techniques on all datasets. It can be observed that MSR 

increases with an increment in window size from 50ms to 

500ms. Similarly, figure 6 depicts the relationship between 

MCA and window sizes. 

 

For disjoint windowing technique, the highest MSR of 

90.96%, 94.51% and 87.07% resulted against window size of 

150ms, 250ms and 175ms for dataset-1, dataset-2 and 

dataset-3, respectively. Two-way ANOVA showed that for 

all datasets, using disjoint window technique, no statistical 

difference among MSR of all window sizes exist (P-values > 

0.05). With respect to CA, for datasets 1, the lowest and 

highest MCA were recorded at window size of length of 

50ms and 475ms with MCA of 83.62%±4.6 and 92.5%±6.16, 

respectively. The MCA significantly increased from 

83.62%±4.6 to 91.03±3.1, as the window size is changed 

from 50ms to 200ms. Afterwards, increment in window size 

from 200ms to 500ms does not increase MCA significantly 

(only an increment of 1.47%). For dataset-2, the highest and 

lowest MCA of 96.35%±3.3 and 99.17%±1.52 were recorded 

at window size of 50ms and 275ms, respectively. MCA 

significantly increased by increasing window size from 50ms 

to 275ms and afterwards no significant change occurs in the 

MCA of dataset 2. For dataset-3, the lowest and highest 

MCA were observed at window size of 50ms and 400ms 

with MCA of 73.36% and 91.34%, respectively. The MCA 

significantly increased from 73.36%±13.2 to 87.02%±8.9 by 

changing window size from 50ms to 250ms, however, no 

significant increment in MCA has been observed by 

increasing window size afterwards. 
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Figure 6. CA vs. window sizes for disjoint and overlap windowing. Relationship between CA and length of disjoint segments for all 

datasets (Left). Relationship between CA and length of window size for overlap windowing (Right). 

 

 

For overlap windowing technique, the MSR gradually 

increased with an increment in window size for all datasets. 

The highest MSR of 91.87%, 94.20% and 91.39% resulted 

from window size of 250ms, 150ms and 150ms for dataset-1, 

dataset-2 and dataset-3, respectively. However for all 

datasets a slight decrease in MSR has been observed after 

increasing window size from 275ms, 250ms and 225ms for 

dataset-1, dataset-2 and dataset-3, respectively. The MSR of 

window size of 250ms for dataset-1 is significantly different 

from MSR of all investigated window sizes except 125ms, 

225ms and 250ms (P-values > 0.05). Similarly, the MSR of 

150ms for dataset-2 is significantly different from MSR of 

all investigated window sizes except 50ms, 100ms, 125ms, 

200ms and 225ms (P-values > 0.05). For dataset-3, the MSR 

of 150ms is statistically different from MSR of all 

investigated window sizes except 75ms and 100ms (P-values 

> 0.05). In regards with CA, for dataset-1, the lowest and 

highest MMCAs were observed at window size of 50ms and 

450ms with MMCA of 83.77%±0.55 and 91.82%±1.04, 

respectively. Varying the length of window size from 50ms 

to 275ms changes MMCA significantly, beyond 275ms there 

is no significant change in MMCA. Two-way ANOVA 

revealed that MMCA of window size 450ms, highest 

observed MMCA in dataset-1, is significantly different from 

MMCAs of window sizes of 50ms to 275ms (P-values < 

0.05). For dataset 2, the minimum and maximum MMCAs 

were observed at window size of 50ms and 225ms with 

MMCAs of 96.55±0.32 and 99.64±0.33, respectively. The 

MMCA for dataset-2 significantly increased with an 

increment in window size from 50ms to 225ms, and 

afterwards no further increase in accuracy is observed. For 

dataset-3, the lowest and highest MCA were observed at 

window size of 50ms and 400ms with MCA of 73.36% and 

91.34%, respectively. The MCA significantly increased from 

73.57%±12.2 to 83.06%±9.1 by changing window size from 

50ms to 325ms, however, no significant increment in MCA 

has been observed by increasing window size afterwards. 
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Figure 7. MSR vs. Overlap size for overlap windowing technique against all datasets. The graph shows relationship between MSR and 

length of overlap size for all datasets. An increase in length of overlap size results in a decrease in MSR for all datasets. 

 

 

3.2 Optimum overlap size for overlap windowing 

The results of MSR and MCA with respect to overlap size, 

for overlap windowing, are summarized in figure 7 and 8, 

respectively. Both MSR and MCA depicted an inversely 

proportional relationship with overlap size. The maximum 

MSR of 90.16%, 93.36% and 92.28% were yielded from 

overlap size of 10% for dataset-1, dataset-2, and dataset-3, 

respectively. The MSR of overlap size of 10% was 

significantly different from MSR of overlap sizes of 50% and 

onwards, 60% and onwards and 40% and onwards, for 

dataset-1, dataset-2, and dataset-3, respectively (P-values < 

0.05). No significant difference in MSR of overlap sizes is 

observed except those which are mentioned explicitly for all 

datasets (P-values > 0.05). 

 

The maximum MCA of 90.2%, 99.3% and 78.92% were 

yielded from overlap size of 10% for dataset-1, dataset-2, 

and dataset-3, respectively. The MCA of overlap size of 10% 

was significantly different from MCA of overlap sizes of 

50% and onwards, for dataset-1. However, no significant 

differnce in MCA of all overlap sizes existed for dataset-2 

and dataset-3 (P-values > 0.05). 

 

Combinedly, on all datasets, MSR of overlap size of 10% 

outperformed all investigated overlap sizes (P-values < 0.05) 

but no significant difference with MSR of overlap size of 

20% existed (P-value > 0.05). Similarly, on all datasets 

combinedly, the MCA of overlap size of 10% was 

significantly higher and different from MCA of all overlap 

sizes (P-value < 0.05) except 20% and 30% (P-values > 

0.05). 

 

3.3 Disjoint vs. overlap windowing 

With respect to MSR, on all investigated window and 

overlap sizes, it was observed that overlap windowing has 

higher MSR compared to disjoint technique. Figure 9 depicts 

the comparative bar graphs for both windowing techniques, it 

can be observed that, on each individual window size overlap 

windowing has better CA results compared to the disjoint 

windowing technique. Statistically, overlap windowing (on 

all overlap sizes) outperforms disjoint windwoing technique 

in terms of MSR for both dataset-1 and dataset-3 (P-values < 

0.05). However, for dataset-2, the MSR of overlap 

windowing is significantly superior than disjoint windowing 

at overlap sizes of 10% to 40% (P-values < 0.05) and no 

significant difference was observed at overlap sizes of 50% 

and onwards (P-values > 0.05). 

 

Regarding MCA, in dataset-1, overlap window 

outperformed disjoint window corresponding to overlap sizes 

of 10% (P-value = 0.0125) and 20% (P-value = 0.0201). 

However, no statistically significant difference in MCAs of 

disjoint and overlap windwoing corresponding to overlap 

size of 30% to 90% was observed (P-values > 0.05). In 

dataset-2, the MCA of overlap windows outperformed their 

corresponding disjoint windows with overlap sizes of 10% to 

50% (P-values < 0.05). However, no significant difference in 
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MCA of both schemes exists with overlap size of 60% to 

90% (P-values > 0.05). For dataset-3, the MCA of overlap 

windows outperformed their corresponding disjoint windows 

with overlap sizes of 10% to 40% (P-values < 0.05) and no 

significant difference in MCA of both schemes observed 

with overlap size of 50% to 90% (P-values > 0.05). 

 

 
Figure 8. CA vs. Overlap size for overlap windowing technique against all datasets. The graph shows relationship between CA and length 

of overlap size for all datasets. An increase in length of overlap size results in a decrease in CA for all datasets. 

 

 

The results of the both techniques were also analyzed 

statistically by combining all datasets to draw the conclusive 

remarks about performance of the both techniques in regards 

with both MSR and MCA. The two-way ANOVA showed 

that the overlap windowing technique outperformed disjoint 

windowing on investigated overlap sizes (P-value < 0.05). 

Whereas, in regards with MCA the performance of overlap 

windowing corresponding to overlap size of 10% (P-value = 

0.0019), 20% (P-value = 0.0047), 30% (P-value = 0.0350) 

and 40% (P-value = 0.0133) is significantly different from 

MCA of disjoint windowing technique. Whereas, for all 

datasets, there is no statistically significant difference in 

performance of disjoint and overlap windowing technique 

with overlap size of 50% to 90% (P-values > 0.05). 

4. Discussion 

The The aim of the conducted study was to identify and 

investigate best possible windowing configuration for an 

iEMG-based analysis, diagnosis, and detection system with 

respect to stationarity rate and classification accuracy. For 

the said purpose, the data was preprocessed to eliminate 

unwanted noise from the recorded signals. From figure 2, it 

is evident that, the applied digital filters denoised the signals 

significantly. Both windowing techniques, disjoint and 

overlap, along with varying window sizes were investigated 

on three independently recorded datasets of iEMG signals. 

The effect of varying overlap size in overlap windowing 

technique on stationarity and performance of the system has 

also been studied and investigated. For offline analysis of 

EMG signals and to design a system that can classify EMG 

signals, length of window size should also be in accordance 

with restriction of delay time in real-time operation. The 

system designed for offline analysis can be deployed in a 

device for real-time operations.  

 

For disjoint windowing technique, on all datasets 

combindely, the MSR increased significantly from 87.08% to  

89.96% by changing window size from 50ms to 250ms and 

decreased significantly afterwards. The MCA increased 

significantly with by increasing window size for all datasets. 

Two-way ANOVA revealed that, the MCA increased 

significantly from 89.27% to 94.83% when length of window 

size is varied from 50ms to 200ms (P-values < 0.05). No 

significant difference in MCA was observed afterwards (P-

values > 0.05). For overlap windowing technique, on all 

datasets combindely, the MSR increased significantly from 

87.93% to 92.41% by changing window size from 50ms to 

225ms and decreased significantly afterwards. Statistical 

analysis showed that MMCA significantly increased from 

90.16% to 94.56% when length of window size is varied 

from 50ms to 225ms for all iEMG datasets. In MMCA of 
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window size of 225ms and onwards, no statistically 

significant difference was observed (P-values > 0.05). 

 

 
Figure 9. Comparison of MCA for overlap and disjoint windowing techniques for all datasets on all 19 different window sizes. It can be 

observed that on each individual window size, the overlap windowing technique outperforms disjoint windowing technique in terms of 

MCA. 

 

The results suggest that optimum window sizes range 

from 200ms to 300ms and 225ms to 300ms for disjoint and 

overlap window techniques, respectively, with respect to 

both stationarity rate and performance of the designed system 

while acknowledging real-time restriction of length of 

segment size. The deduced results are in accordance with 

principles of operation of real-time control systems. As 

described in [41], for a real-time control system, used in a 

rehabilitative and assistive robotic devices, window size 

should be less 300ms. Nevertheless, the proposed optimum 

window sizes for both disjoint and overlap techniques are 

slightly lower (3-6%) from sEMG based control systems. 

Further studies can be conducted to investigate how this 

small difference in window size impacts the real-time 

performance of EMG based applications. 

 

The effect of overlap size on MSR and MCA has also 

been investigated for overlap windowing technique. It is 

observed that both MSR and MCA are inversely correlated 

with length of the overlap size. The results revealed that for 

all datasets (individually and combined), MSR and MCA 

decreas when overlap size is increased from 10% to 90%. 

For all datasets (individually and combined) maximum MSR 

and MCA resulted at overlap size of 10% of any investigated 

window size. Combinedly, on all datasets, MSR of overlap 

size of 10% outperformed all investigated overlap sizes (P-

values < 0.05), but, no significant difference with MSR of 

overlap size of 20% existed (P-value > 0.05). Similarly, on 

all datasets combinedly, the MCA of overlap size of 10% 

was significantly higher and different from MCA of all 

overlap sizes (P-value < 0.05) except 20% and 30% (P-value 

> 0.05). 

 

In comparison between overlap and disjoint windowing 

schemes with respect to MSR and MCA, it was observed that 

overlap window has better results. The results of the both 

techniques were also analyzed statistically by combining all 

datasets to draw the conclusive remarks about performance 

of the both techniques in regards with both MSR and MCA. 

The two-way ANOVA showed that the overlap windowing 

technique outperformed disjoint windowing on investigated 

overlap sizes (P-value < 0.05). Whereas, in regards with 

MCA the performance of overlap windowing corresponding 

to overlap size of 10% (P-value = 0.0019), 20% (P-value = 

0.0047), 30% (P-value = 0.0350) and 40% (P-value = 

0.0133) is significantly different from MCA of disjoint 

windowing technique. Whereas, for all datasets, there is no 

statistically significant difference in performance of disjoint 

and overlap windowing technique with overlap size of 50% 

to 90% (P-value > 0.05). The deduced results are in 

accordance with results of aforementioned studies, 

suggesting that for an iEMG based detection and diagnosis 

system the overlap windowing technique yields better 

results. For simiplicity and less computational requirements 

only LDA was used, however, more classifiers can be used to 

investigate optimum windowing configurations. As the study 

was conducted offline, in future, the presented results should 

be tested on a real-time iEMG based control system for 
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validation. Also, inclusion of more subjects in investigation 

can also yield more robust results. 

 

5. Conclusion 

The study investigated and presented best possible 

windowing configurations for an iEMG-based diagnosis, 

detection, and control system based on stationarity rate and 

performance of the system. Three independently recorded 

datasets (healthy and abnormal) of iEMG signals were used 

to investigate effects of windowing type, window size and 

overlap size on the stationarity rate and performance of an 

iEMG-based analysis system. It has been observed that the 

MSR and MCA increase with an increment in window size 

but an increment in length of overlap size decreases both 

MSR and MCA. Presented results also showed that, the 

overlap windowing has very consistent and superior results 

as compared to disjoint windowing technique when length of 

window size is varied. The deduced results can be used to 

select optimum windowing configurations for any iEMG-

based diagnostic, detection, and control system. 
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