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using validation data. 2-stage calibration

simplified for dichotomous outcomes
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Frank de Vriesb,j, Kari Furua

In epidemiology one typically wants to estimate the risk of an outcome associated with an exposure

after adjusting for confounders. Sometimes outcome and exposure and maybe some confounders are

available in a large data set, whereas some important confounders are only available in a validation

data set that is typically a subset of the main data set. A generally applicable method in this situation

is the two stage calibration (TSC) method. We present a simplified easy-to-implement version of the

TSC for the case where the validation data is a subset of the main data. We compared the simplified

version to the standard TSC version for incidence rate ratios, odds-ratios, relative risks, and hazard

ratios using simulated data and the simplified version performed better than our implementation

of the standard version. The simplified version was also tested on real data and performed well.
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1. Introduction

The CARING (CAncer Risk and INsulin analoGues) project [1] aimed to evaluate the risk of cancer associated with

the use of human insulins and insulin analogues. Drug use data and cancer data were available for a large number

of individuals, mainly from nationwide registers, whereas data on many possible confounders were available in

subsamples (validation data), including participants in health surveys. In this case it is possible to use a calibration

method applying the information on confounders in the subsample to the entire study population, but the number

of generally applicable, robust, easy-to-implement methods of high quality has been limited. Several methods for

dealing with unmeasured confounding in this setting have been described in the literature, but most of them require

simplifications (e.g. a limited number of independent dichotomous confounders [2, 3]) and/or educated guesses (e.g.

probability distributions assigned to bias parameters [3, 4]), or rely on assumptions that are not always fulfilled

(e.g. surrogacy in the case of propensity score calibration (PSC)). The PSC method proposed by Stürmer et al in

2005 [5] allows for multiple confounders that may be correlated and follow any distribution (continuous, categorical,

dichotomous). The propensity score (PS) of an individual is it’s probability for being exposed, computed by logistic

regression from the individual’s covariates. PSC assumes that the outcome is a linear function of the gold standard

PS (based on all of the covariates that are available in the validation data set) and the exposure, and that the

error prone PS (based on the subset of the covariates that are available in the full data set) is independent of the

outcome given the gold standard PS and the exposure (surrogacy) [5, appendix 2]. At least one of the confounders

must be available in the full data set, and the validation data set must be representative of the full data set. PSC

does not use outcome information from the validation data set.

The 2-stage calibration (TSC) method proposed by Lin and Chen [6, 7] in 2014 only relies on the assumption

that the validation data is representative for the full data. The TSC method is more generally applicable and more

robust than the PSC method, but more cumbersome to implement since two parameters (λ and ν — see equation 3)

must be computed. In situations where λ ≈ ν, the loss by replacing the ratio λ/ν by 1 will be modest, and since

estimation of these parameters can then be omitted, implementation of an approximate calibration method becomes

straightforward. The assumption that λ ≈ ν does not hold for continuous outcomes, but the results here indicate

that it often holds for survival and dichotomous outcomes. This simplified TSC method is referred to as the TSCS

method below.

The objective of this paper was to compare the performance of the TSCS method with the performance of the

standard TSC method in different settings with dichotomous outcome and dichotomous exposure using simulated

data, and to assess the performance of the TSCS method on real data. We present results for incidence rate ratios,

odds-ratios, relative risks, and hazard ratios.

2. Simplified and standard 2-stage calibration

2.1. The standard 2-stage calibration estimator

Lin and Chen [6] present the TSC method in a logistic regression setting, using propensity scores based on incomplete

and complete confounder information, respectively, as explanatory variables. They also indicate that the method

can be extended to other situations (e.g. survival analyses and relative risk estimates), and can be used to adjust

for confounders directly (not via propensity scores). We apply it to adjust four types of effect estimates for missing

confounders directly: incidence rate ratios, hazard rate ratios, odds-ratios, and relative risks. Assume that we have

a full data set where the variables C1, . . . , Cp (referred to as ”measured”) are available, and that the additional

variables U1, . . . , Uq (”unmeasured”) are available in a subset of the full data set (validation data set). Using the
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variables directly (not propensity scores) as explanatory variables, consider the survival models

hβ,C,U (t) = h(t;βT + β1C1 + . . .+ βpCp + βp+1U1 + . . .+ βp+qUq) (1)

hγ,C(t) = h(t; γT + γ1C1 + . . .+ γpCp) (2)

where t is time to outcome/censoring and T is exposure (0 or 1). For instance we could have the proportional

hazards model h(t; η) = h0(t) exp(η). Here, model 1 is the ”true” model yielding ubiased estimates (assuming that

all relevant variables are included), whereas model 2 yields biased estimates. Let β̄ and γ̄ be the estimates we would

have obtained by fitting the two models to the full data set. Since the variables U1, . . . , Uq are only available in the

validation data set we can not obtain the estimate β̄, but, according to the standard TCS method [6], a calibrated

unbiased estimate ˜̄β′ can be calculated from the formula

˜̄β′ = β̂ − λ

ν
(γ̂ − γ̄) (3)

where β̂ and γ̂ are the estimates of β and γ obtained by fitting models 1 and 2 respectively, to the validation data

set. Further, λ is the covariance between β̂ and (γ̂ − γ̄), and ν is the variance of (γ̂ − γ̄). The variance of ˜̄β′ is given

by

var( ˜̄β′) = var(β̂)− λ2

ν
. (4)

Equation 3 and 4 also hold if the survival models models 1 and 2 are replaced by generalized linear models.

2.2. The simplified 2-stage calibration estimator

Equation 3 is a special case of
˜̄β′Θ = β̂ −Θ(γ̂ − γ̄)

which is unbiased for all finite values of Θ (cf. Section 3 in [7]). The variance of ˜̄β′Θ is var( ˜̄β′Θ) = var(β̂) + Θ2ν − 2Θλ

which is a quadratic function of Θ, with a minimum at Θ = λ/ν. Since the curve is flat near the minimum, the

increase in variance caused by the assumption that Θ = 1 is small if λ/ν is close to 1. On the other hand, estimating

λ and ν adds uncertainty to equations 3 and 4, so there is a gain in precision by not estimating them.

In the simplified version of the TSC method it is assumed that λ = ν, and equation 3 simplifies to

˜̄β = β̂ − γ̂ + γ̄. (5)

The variance of ˜̄β is given by (see Appendix A for details)

var( ˜̄β) = var(β̂)− var(γ̂) + var(γ̄). (6)

Equation 6 is only valid if λ = ν, but the error is small if λ ≈ ν. We have checked the validity of this approximation

for dichotomous outcomes by simulations.

3. Method evaluation using simulated data

3.1. Estimation of λ and ν

To compare the performance of ˜̄β′ and ˜̄β, a total of 150 000 full data sets of censored survival data with N = 128 000,

32 000, or 8000 were simulated (50 000 data sets for each N). 1500 parameter sets were randomly generated according

Statist. Med. 2019, 00 1–19 Copyright c© 2019 John Wiley & Sons, Ltd. www.sim.org 3
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to Table 1, and for each parameter set 100 full data sets with at least one exposed individual with outcome were

generated according to the description in Sections 3.3-3.5. For each full data set, 5 validation data sets were

generated, containing random selections of respectively 1%, 5%, 10%, 20%, and 40% of the individuals in the full

data set (the probability of being selected, though, depended on the exposure and outcome status through the

parameters PT,vd and PD,vd in Table 1). The 100 data sets generated from the same parameter set are referred to

as a group. For each validation data set size, only the groups where all of the 100 validation data sets had at least

one exposed individuals with outcome were used.

For each full data set, β̄ and γ̄ were obtained from models 1 and 2 or their glm-equivalents (since this was simulated

data we actually had access to the ”unmeasured” covariates in the full data sets), and from each validation data

set, β̂ and γ̂ were obtained, as well as the calibrated estimates ˜̄β′ and ˜̄β. All simulations and analyses were done in

R [8]. To compute ˜̄β′, estimates of ν and λ in equation 3 are needed. We were not able to implement the method

described in [6] in R, and used the following approach: For each group of 100 full data sets that were simulated

with identical parameters, and the respective validation data sets, ν was estimated as the empirical variance of the

100 differences γ̂ − γ̄. Correspondingly, λ was estimated as the empirical covariance between β̂ and γ̂ − γ̄. That is,

for each group j of 100 data sets with identical parameters, νj,%vd
and λj,%vd

were estimated for %vd = 1, 5, 10,

20, 40, as

νj,%vd
=

1

99

100∑
i=1

(γ̂i,j,%vd
− γ̄i,j − µ1,j,%vd

)2

λj,%vd
=

1

99

100∑
i=1

(γ̂i,j,%vd
− γ̄i,j − µ1,j,%vd

)(β̂i,j,%vd
− µ2,j,%vd

)

where

µ1,j,%vd
=

1

100

100∑
i=1

(γ̂i,j,%vd
− γ̄i,j,%vd

) and µ2,j,%vd
=

1

100

100∑
i=1

β̂i,j,%vd
.

Four type of effect estimates were obtained by fitting four different models to the simulated data - two time

dependent and two time independent: incidence rate ratios (Poisson regression with time as offset); hazard rate

ratios (Cox regression); odds-ratios (logistic regression); and relative risks (log-binomial regression).

3.2. Performance of the simplified TSC

To check the assumption that λ = ν and/or the validity of the above approach to estimate λ and ν, boxplots of

the 1500 estimates of λ/ν were generated for each of the five validation data set sizes. Figure 1 a) shows the result

for incidence rate ratios. The median ratio was very close to 1, independently of %vd, but its variance increased

with increasing %vd (Figure 1a). (The variances of λ and ν, however, both decreased with increasing %vd; data not

shown). The numbers at the top of the panels indicate how many groups of 100 the estimates are based on (groups

where at least one exposed individual had the outcome in all validation data sets).

To check the presicion and accuracy of ˜̄β′ and ˜̄β, boxplots of the differences ˜̄β′ − β̄ and ˜̄β − β̄ were generated,

where β̄ is the fully adjusted estimate from the full data set (Figure 1b). The bias of both ˜̄β′ and ˜̄β was on average

small, but ˜̄β′ was more precise, in particular for large %vd’s.

The performance of the variance estimates in equations 4 and 6 was assessed by boxplots of the estimates

themselves, and by comparing the variance estimates with the empirical variance of ˜̄β′ and ˜̄β in the groups with

identical parameters, i.e. with

s′2j,%vd
=

1

99

100∑
i=1

( ˜̄β′i,j,%vd
− µ′j,%vd

)2 and s2
j,%vd

=
1

99

100∑
i=1

( ˜̄βi,j,%vd
− µj,%vd

)2 (7)
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where j = 1, . . . , 1500 is group number,

µ′j,%vd
=

1

100

100∑
i=1

˜̄β′i,j,%vd
and µj,%vd

=
1

100

100∑
i=1

˜̄βi,j,%vd
.

The variance of ˜̄β′, as estimated by equation 4, was in many cases < 0, in particular for small validation data

sets (Figure 1c). The variances of ˜̄β, as estimated by equation 6, was > 0 in all cases with %vd ≥ 10, and in all

cases with %vd = 5 and N > 8000. The distribution of v̂ar( ˜̄β) increased with increasing %vd (Figure 1c). This is

because the average number of exposed individuals with outcome in the full dataset decreases with increasing %vd

due to the demand that at least one exposed individual in all validation data sets in a group of 100 should have

the outcome. The distribution of v̂ar( ˜̄β′) gradually approached that of v̂ar( ˜̄β) as %vd increased, getting quite close

for %vd = 40. (Figure 1c).

Leaving out the negative variance estimates, v̂ar( ˜̄β) was on average slightly smaller than the empirical

variance of ˜̄β in particular for small validation data sets and small N . For %vd ≥ 10 the bias was small. For

%vd = 10 the median ratio v̂ar( ˜̄β′)/s2 was 0.90, 0.93, and 0.94 for N = 8000, 32 000 and 128 000, respectively

(Figure 1d). In the leftmost column of Figure 1, the variance estimates were multiplied by the ad-hoc factor

k = exp({1− log2(N/1000)/13}/%vd), which resulted in practically unbiased variance estimates except in the

extreme case of N = 8000 and %vd = 1. The median ratio for %vd = 10 was now 0.97, 0.99, and 0.98 for N = 8000,

32 000 and 128 000, respectively.

Results corresponding to the last row of Figure 1 for relative risks, odds-ratios, and hazard-ratios are shown in

Supplementary Figure 1, and the TSCS-method seemed to perform best in the odds-ratio setting in the sense that

the underestimation of the variance for small validation data sets was smaller for odds-ratios than for the other

effect estimates.

As an alternative to estimating λ and ν from groups of 100 data sets, we also tried a bootstrap approach

where λ and ν were estimated for each data set separately by generating 100 bootstrap replicas of the data set.

The details are given in the Supplementary material, and results from the bootstrap approach are presented in

Supplementary Figure 2. The bootstrap approach yielded similar results as the ”groups-of-100-approach”, and

could be an alternative to the method described in the appendix of [6] for applying the standard TSC method to

a given data set. The bootstrap approach also yielded negative variance estimates, and they most often occured in

data sets where λ̂ was large, which makes sense since var( ˜̄β′) ≈ var(β̂)− λ if λ ≈ ν in equation 4. λ̂ was strongly

negatively correlated with the logarithm of the number of exposed cases. Whether negative variance estimates

would occur if λ and ν were estimated using the methods in the appendix of [6], we do not know.

A third way to estimate λ and ν is via the dfbeta-function in R. In general this approach yielded λ ≈ ν, but the

estimates of λ and ν were larger than those obtained by the bootstrap, resulting in more negative variance estimates

when plugged into equation 4. We don’t present results from the dfbeta-method, but the method is implemented in

an R-script provided in the Supplementary material for applying the TCS and TSCS mehods. A simulated example

data set is also available as Supplementary material.

3.3. Data generation, step 1. Simulation of p measured and q unmeasured covariates

Simulations with 2 ≤ p+ q ≤ 4 covariates were performed, of which p ≥ 1 were measured and q ≥ 1 were

unmeasured. Measured and unmeasured covariates are denoted by C1, . . . , Cp and U1, . . . , Uq, respectively. When

it is irrelevant which covariates are measured and which are not, the notation Z1, . . . , Zp+q is used. The covariates

were generated as follows: First the mvrnorm function in R was used to create an N x (p+ q) matrix with variables

Statist. Med. 2019, 00 1–19 Copyright c© 2019 John Wiley & Sons, Ltd. www.sim.org 5
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Z ′1, . . . , Z
′
p+q from a multinormal distribution with mean 0.5 and covariance matrix equal to a sub-matrix of

ΣHS = 0.152 ×



1 ρ1,2 = .440 ρ1,3 = .533 ρ1,4 = .201 ρ1,5 = −.005 ρ1,6 = .069 ρ1,7 = .245

1 ρ2,3 = .355 ρ2,4 = .207 ρ2,5 = .094 ρ2,6 = .114 ρ2,7 = .410

1 ρ3,4 = .303 ρ3,5 = .211 ρ3,6 = .011 ρ3,7 = .273

1 ρ4,5 = .045 ρ4.6 = −.254 ρ4,7 = .382

1 ρ5,6 = −.058 ρ5,7 = .141

1 ρ6,7 = −.426

1


where the ρi,j ’s are correlations measured in real data from Norwegian health surveys (subscripts i and j

represents from 1 to 7: age, total cholesterol, systolic blood pressure, BMI, resting heart rate, HDL cholesterol,

and log(triglycerides)). In the simulations, each of the p+ q simulated covariates were randomly assigned the role

of one of the seven health survey variables.

The rank function was then applied on the columns of the matrix generated by mvrnorm to create variables

uniformly distributed on [0,1] as Zj = rank(Z ′j)/N , where Z ′j , j = 1, . . . , p+ q are the Gaussian distributed variables,

and N is the sample size. The uniform distribution was chosen to obtain more individuals with low or high exposure

and/or outcome probabilities than a Gaussian distribution would yield.

After generation of the covariates, they were assigned the role of measured or unmeasured, ”positive” or

”negative”, and factorized according to Table 1 (the relevant parameters are p, p−, q−, is.factor, and levels).

See also Supplementary Figure 3 for a definition of positive and negative confounding.

3.4. Data generation, step 2: Simulation of exposure T

The association between covariates and exposure probability was simulated as exponential or logistic. First, the

exposure probability was calculated for each individual as

P (Ti = 1) = exp {log(α0) + log(αC1)C1,i + · · ·+ log(αCp)Cp,i + log(αU1)U1,i + · · ·+ log(αUq)Uq,i} (8)

in the exponential case, or, in the logistic case, as

P (Ti = 1) = α0 f(αC1, C1,i)× · · · × f(αCp, Cp,i)× f(αU1, U1,i)× · · · × f(αUq, Uq,i) (9)

where

f(α,Z) =
{

1 + αe10(Z−0.5)
}{

1 + e10(Z−0.5)
}−1

.

Here, α0 is the base exposure risk for an individual i with Zji = 0 ∀ j, and αj , j > 0 is the relative risk for

exposure associated with Zji = 1 as compared to Zji = 0. Zji, i = 1, . . . , N are for each j, j = 1, . . . , p+ q, uniformly

distributed on [0,1].

The base risk α0 was chosen so that a mean exposure risk ᾱ ∈ {.01, .02, .04, .08, .16} was obtained. This was

achieved by first generating exposure probabilities with α0 = .01 and then multiplying the obtained individual

exposure probabilities P (Ti = 1) by ᾱ/ 1
N

∑N
i=1 P (Ti = 1). If the resulting set of α’s yielded exposure probabilities

P (Ti = 1) > 1 for an individual i , α0 was adjusted so that P (Ti = 1) ≤ 1 ∀ i. Finally, each individual i was assigned

a random number Ri,T between 0 and 1, and if Ri,T < P (Ti = 1) , individual i was considered exposed.

3.5. Data generation, step 3: Simulation of time to outcome D

Time t (years) to outcome for individual i was simulated as exponentially distributed with f(t) = ηe−ηt, where

η = exp {ξ0,D − log(ξT )Ti − log(ξC1)C1,i − . . .− log(ξCp)Cp,i − log(ξU1)U1,i − . . .− log(ξUq)Uq,i} (10)

6 www.sim.org Copyright c© 2019 John Wiley & Sons, Ltd. Statist. Med. 2019, 00 1–19

Prepared using simauth.cls
This article is protected by copyright. All rights reserved.



V. Hjellvik et al. Adjusting for unmeasured confounding using validation data

Statistics

in Medicine
where ξ0,D determines the baseline hazard, which was chosen so that a randomly determined mean outcome risk ξ̄

was (approximately) obtained. This was achieved by setting

ξ0,D = 1.5 +N−1
N∑
i=1

{log(ξT ) + log(ξ1)Z1,i + . . .+ log(ξp+q)Zp+q,i} − log(ξ̄).

Similarly, time to censoring tS,i was simulated independently of Z1, . . . , Zp+q, as exponentially distributed with

parameter

η = exp(ξ0,S).

Follow-up time was set to 5 years. If tD,i < min(tS,i, 5), individual i was considered as having the outcome at time

tD,i, otherwise as censored at time min(tS,i, 5). With ξ0,D = 4 and all of the other ξ’s of equation 10 being equal to

one, the probability of surviving 5 years was about 90%, and ξ0,S was chosen in the range from 5 to 6, corresponding

to censoring probabilities of about 3% and 1%, respectively, at low outcome probabilities.

4. Method evaluation using real data

4.1. Motivation

Although the simulated data sets represent a wide range of different scenarios, real data may have properties

that were not taken into account in the simulations, e.g. regarding the functional form of the dependencies

between covariates and exposure/outcome. For example, the simulated exposure probability increased exponentially

or logistically with increasing values of the covariates, and the relationship between each covariate and

exposure/outcome was simulated independently of the correlations between the covariates. Also, the validation data

set is not always a random sample of the full data set in the real world. To check the robustness of the simplified

TSC method on real data, including situations where the validation data are not representative of the full data

in all respects, the methods were applied to a data set containing information from the Norwegian Prescription

Database (NorPD), the Cancer Registry of Norway, Statistics Norway, and Norwegian health surveys conducted in

the period 1975-2003.

4.2. Data

The study population consisted of health survey participants from three different health surveys: The counties

study in 1975-1988 (N ≈ 43 000), the 40 year programme in 1985-1999 (N ≈ 371 000), and the CONOR study in

1994-2003 (N ≈ 106 000). The numbers refer to individuals alive and 40-70 years old in 2004. The health survey

data were obtained from the Norwegian Institute of Public Health, and data on exposure and outcome for the

participants were obtained by linkage to the NorPD, the Cancer Registry, and Statistics Norway.

The NorPD [9] contains data on all drugs dispensed from pharmacies to Norwegian Citizens since 1/1-

2004, including date of dispensing and type of drug according to the Anatomical Therapeutic Chemical (ATC)

classification system [10]. The Cancer Registry of Norway was established in 1951, and contains data on all cancer

diagnoses for all Norwegian Citizens. From Statistics Norway we have obtained data on marital status and gross

income from a nationwide census in 2001, as well as date of death. The data were linked using the encrypted

personal identification number that all Norwegian citizens are given at birth or immigration.

Eight combinations of outcome and exposure were tested. The outcome was i) death or ii) incident cancer (any

cancer type), and the exposure was i) prevalent use of oral antidiabetics (ATC group A10B) in 2004 or ii) prevalent

use of insulins (A10A) in 2004 or iii) incident use of oral antidiabetics after 2004 or iv) incident use of insulins

Statist. Med. 2019, 00 1–19 Copyright c© 2019 John Wiley & Sons, Ltd. www.sim.org 7
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after 2004. Follow-up was from 1/1-2005 to 1/1-2011. Prevalent drug users were treated as exposed from 1/1-2005.

Incident drug users were treated as unexposed until the first prescription of an exposure drug. The analyses were

performed separately for men and women.

The following covariates were included: Age (birth year), year of health survey participation, BMI,

log(triglycerides), systolic blood pressure, smoking, marital status in 2001, and gross income in 2001. The first

five were continuous variables. Smoking was categorical with 5 levels: never-smoker, ex-smoker with < 5000 or

≥ 5000 pack-years, or current smoker with < 5000 or ≥ 5000 pack-years (number of pack-years was computed

as number of years smoked times number of cigarettes per day divided by 20). Marital status was dichotomous

(married/cohabitating or not). Income was categorical with 6 levels: 0, 1-100, 101-200, 201-300, 301-400, > 400

thousand NOK per year.

Since the purpose of this exercise was to test the method on real data rather than to estimate the risk or cancer

or death associated with use of antidiabetic drugs, the motivation behind the choice of covariates was to have both

continuous and categorical variables represented, with various degree of confounding potential. For the same reason,

a detailed description of the data is not given.

To reduce the relative importance of age as a confounder, only individuals aged 40-70 years in 2004 were included.

Individuals with missing values on any covariate were excluded. When the outcome was cancer, individuals with

a cancer diagnosis before 2005 were excluded. When the exposure was incident drug use, individuals who were

prescribed the relevant drug before 2005 were excluded. The exact number of individuals in the full data set for

a given combination of exposure and outcome depended on the number of baseline exclusions (cf Table 2). Before

the exclusions the full data set included 248 415 men and 271 726 women.

4.3. Methods

For each combination of exposure, outcome, and sex, 500 validation data sets each consisting of a 10% random

sample of the full data set was constructed. Confidence intervals of the corrected estimates were calculated as

follows:

1. Draw nV individuals without replacement from the full data set 500 times, thus creating m = 500 validation

data sets.

2. For i = 1, . . . ,m,

• compute β̂∗i and γ̂∗i from validation data set i.

• compute ˜̄β∗i = β̂∗i − γ̂∗i + γ̄.

• compute var( ˜̄β∗i ) = var(β̂∗i )− var(γ̂∗i ) + var(γ̄).

3. Estimate ˜̄β by the median of the ˜̄β∗i ’s

4. Estimate v̂ar( ˜̄β) by the median of the var( ˜̄β∗i )’s.

5. Estimate the 95% confidence interval of ˜̄β by ˜̄β ± 1.96

√
v̂ar( ˜̄β)

Age is a strong confounder for the association between drug use and cancer/death. To test the effect of non-

representative validation data sets with respect to age, some validation data sets were drawn from i) the youngest

half of the full data, ii) the oldest half of the full data, and iii) the median age (54 years) ± 2 years (narrow age

range).

First, a ’gold standard’ β̄ estimate was obtained from the full data set using a model including all of the covariates.

Then, one or more of the covariates were taken to be unmeasured, i.e. only available in the validation data. The

error-prone γ̄ was estimated based on the remaining covariates, and β̂ and γ̂ calculated from the validation data

set were used to compute the corrected ˜̄β according to equation 5. The corrected ˜̄β should be close to β̄ if the

calibrations worked well.
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4.4. Results

Figure 2 shows the results of the method applied to real data with prevalent insulin use in 2004 as exposure and

death as outcome. Those who used insulin in 2004 were twice as likely to die before 2011 as those who did not

use insulin after adjusting for all of the covariates mentioned above (exp(β̄) = exp(0.66) = 1.93). This is unlikely

to be caused by insulin itself, but rather a consequence of insulin users having diabetes and other comorbidities,

i.e. insulin use is a proxy of diabetes. Thus, the ’gold standard’ estimate here is biased. However, the bias in the

’error prone’ estimates from the full data set (triangles) increases when more covariates are left out, whereas the

corrected estimates (crosses) are quite close to the original ’gold standard’ estimate (bullet). That is also true when

none of the covariates are adjusted for, although the uncertainty in ˜̄β is larger than in β̄. The confidence intervals

based on equation 6 (method 2 above) are quite close to the gold standard interval, whereas those computed by

method 1 are somewhat wider.

Summary statistics for all of the 16 combinations of exposure, outcome and sex are given in Table 2 (row 11

corresponds to Figure 2). The performance of the TSCS method when age is adjusted for and the validation data

set is age-restricted is summarized in Table 3. The validation data sets drawn from the oldest half of the full data

still yield good calibrated estimates, whereas the young and the narrow age group validation data sets tend to yield

over-calibrated estimates. This is probably because both exposure and outcome are more common in the oldest

population.

A graphical representation of the results of Table 3 is given in Figure 3 together with corresponding results when

no covariates are adjusted for in γ̄, and when age, BMI, triglycerides and smoking are adjusted for (the NONE-row

and the A,B,T,P-row, respectively, in Figure 2). When no covariates are adjusted for, the simplified TSC method

performs well when the validation data are representative for the full data, otherwise it tends to under-calibrate (top

panel of Figure 3). When age, BMI, triglycerides, and smoking are adjusted for, the method tends to over-calibrate

when the validation data set has a young or narrow age range and the outcome is death ( ˜̄β − β̄ < 0, bottom panel of

Figure 3). When the outcome is cancer, there is very little residual confounding left (compared to the gold standard

estimate). Still, ˜̄β is closer to β̄ than is γ̄ in all of the eight exposure/sex combinations when the validation data is

not age restricted.

The interquartile range is in general smallest for the validation data sets with old people, which is logical since

both outcome and exposure are more prevalent in this group.

5. Method application: drug use and lung cancer

In the CARING project, an active-comparator analysis was performed, comparing users of insulin glargin to users

of human insulin. Several additional confounders were adjusted for [1], and no increased risk associated with use of

insulin glargin or detemir was found. Therefore we do not go further along that path here. In 2016, Potteg̊ard et al

[11] published a systematic screening approach for identifying associations between prescribed drugs and cancer risk,

using nationwide Danish health registries. At the second ATC-level the strongest associations were found between

ATC code R03 (drugs for obtructive airway diseases) and various subtypes of lung cancer after adjusting for age,

sex, education and morbidity (Charlson Comorbidity Index (CCI)) (Table 3 in [11]). Clearly, these odds-ratios are

confounded by smoking since smokers tend to use R03-drugs and to have lung cancer more often than non-smokers,

but there is no nationwide register with data on smoking status for the entire population. However, the Norwegian

health surveys include data on smoking habits on a subsample of the population, and we were able to approximately

replicate the Danish study on Norwegian data with additional adjustments for smoking using the TSCS method

with the health surveys as validation data. That is, we did a nested case-control study using prescription and cancer

registry data from January 1, 2004 and 1953, respectively, through 2014. Cases were individuals with an incident
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lung cancer diagnosed between January 1, 2009 and December 31, 2014, at an age of 18-85 years, and with no cancer

diagnoses (except non-melanoma skin cancer) before the incident lung cancer diagnosis. The index date was defined

as the 15th in the month of diagnosis (the exact day of diagnosis was not available). Lung cancer was defined as

ICD-10 C33-34 (we could not distinguish between C33 and C34 in the data), and the subtypes were defined by

histology codes as given in Appendix B. For each case, 100 random controls, matched on birth year and sex, were

selected from all Norwegian citizens that were cancer free at the case’s index date. Exposure was the number of

prescription fills for R03-drugs from January 1, 2004 to one year before index date. Odds-ratios for the outcomes

associated with exposure was estimated by comparing individuals with 8 fills or more with individulas with 0-1 fills.

Odds-ratio estimates from the full data were adjusted for education (5 levels) and comorbidity (CCI based on data

from the Norwegian Patient Registry from 2008 (individual data is not available before 2008 for this register)). The

CCI was computed using ICD-10 codes from Table 1 in [13] and weights from [12]. The odds-ratios from the full

data set were calibrated by using smoking data (pack-years as described in Section 4.2) from the health surveys.

The odds-ratio from the full Norwegian data set was significantly higher then the corresponding odds-ratio from

the Danish data for three of the five lung cancer subtypes (Table 4). The reduction in the risk estimates achieved by

calibration ranged from 41% and 61% (a reduction in OR from 2 to 1, from 3 to 2, and from 4 to 3 corresponds to

a risk reduction of 100%, 50% and 33.3%, respectively), but all of the calibrated odds-ratios were still significantly

larger than 1. Most of the effect can probably be explained by residual confounding. The smoking data are mainly

from the period 1985-2000, and some of those who reported current smoking in the health surveys probably quitted

smoking before 2009. On the other hand, for those who continued smoking after the health survey participation,

the number of pack-years at index date was higher than the number at the survey date (the latter is adjusted for in

Table 4). However, assuming that those who reported current smoking in the health surveys continued smoking until

2009, adjusting for number of pack-years per 2009 had hardly no effect on the estimates. Neither had additional

adjustments for other potential confounders (BMI, triglycerides, total cholesterol, physical activity and year of

health survey participation).

Whereas Potteg̊ard et al used 10 controls per case, we used 100. This was because the odds-ratios were rather

dependent on the selection of controls with 10 controls per case. For example, the odds-ratios for squamous cell

carcinoma (line 2 in Table 4) varied from 3.22 to 3.49 for 10 different random selections of 10 controls per case.

The controls used for Table 4 were not matched to cases on health survey participation. Doing such matching only

changed the calibrated odds-ratios in the five c-lines in Table 4 with -0.03, -0.02, 0.00, -0.02 and 0 from top to

bottom, but for the ”Other” and ”Adenocarcinoma” categories there were not enough controls participating in the

health survey for some of the youngest health survey participating cancer cases.

6. Discussion

In this study, a simplified version of the 2-stage calibration method presented by Lin and Chen [6] in 2014 has

been suggested for regression models with dichotomous outcomes. The simplified version (TSCS) is very easy to

apply, and it performed better than our implementation of the standard method (TSC) on simulated data. It also

performed well on real data. The TSCS method assumes that λ = ν, but if λ ≈ ν the error in assuming that they

are equal is small. We have estimated λ and ν for dichotomous outcomes by generating groups of 100 data set with

identical parameters, and by bootstrapping individual data sets. Both approaches gave estimates of λ/ν close to 1.

The error caused by violation of the assumption that λ = ν is illustrated in Supplementary Figure 4.

The (simplified) TSC method assume that the associations between exposure, outcome, and confounders are the

same in the validation data as in the full data, but the validation data need not necessarily be representative of

the full data with respect to the distribution of exposure, outcome, and confounders. This was illustrated on a real
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data set by letting the validation data have an older, younger, or narrower age distribution than the full data. In

the case where no confounders were available in the full data, the TSCS method undercorrected, but if age was

available in the full data, the method performed fairly well if the validation data consisted of people from the older

half of the full data. When the validation data had a young or narrow age distribution, the TSCS method tended

to overcorrect.

For a continous outcome, the assumption that λ = ν does not hold. See Supplementary Figure 5 for an example.

Neither does the assumption hold in the ”errors-in-variables” situation where the ”unmeasured” confounders

are not completely missing in the full data, but are measured with less precision than in the validation data

set (Supplementary Figure 6). Still, the TSCS yielded more presice estimates than the TSC in our simulations

(Supplementary Figure 6 f), and the variance estimates of the two methods performed similarly (Supplementary

Figure 6 g and h). In some of our simulated data sets the validation set cases were oversampled and in this situation

the β̂ may be biased when using the same cohort estimating technique. It is interesting to note that the calibration

technique still worked well. This is perhaps a reflection of the γ̂ also having a similar bias compared to γ̄ and the

correction term then appear to compensate also for the bias.

Strengths and limitations. The TSCS method can handle complex confounder scenarios (many correlated

continuous or categorical unmeasured confounders), and it is easy to apply. In the current settings with dichotomous

outcomes, the TSCS estimate was precise and accurate, actually more precise than our implementation of the

standard TSC estimate since estimating λ and ν in the latter adds uncertainty. However, the assumption that

λ = ν doesn’t hold with a continuous outcome variable, or in the ”errors-in-variables” situation.

In summary, the TSCS method appears to be a precise and accurate easy-to-use calibration method for regression

models with a dichotomous outcome where the unmeasured covariates are completely missing in the full data set.
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Appendix A. Variance of the simplified TSC estimator.

In the standard TCS method [6], the variance of the corrected estimate is calculated from the formula

var( ˜̄β) = var(β̂)− λ2/ν.

Setting λ = ν, this simplifies to
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var( ˜̄β) = var(β̂)− ν

= var(β̂)− var(γ̂ − γ̄)

= var(β̂)− {var(γ̂) + var(γ̄)− 2cov(γ̂, γ̄)} .

(A1)

If the validation data set is not a subset of the full data set, the covariance term in equation A1 is zero, but normally

this is not the case. Let the full data set consist of N independent observations {X1, . . . , Xn, Xn+1, . . . , XN} where

{X1, . . . , Xn} is the validation data set. Here, Xi = {Di, Ti, C1,i, ..., Cp,i} is a vector of exposure, outcome, and

measured confounders for individual i. Clearly, γ̄ is a function of {X1, . . . , XN}. Now, assume that γ̄ = γ̄w where

γ̄w is a weighted average of two estimates from two subsets of the data set:

γ̄w = f(X1, . . . , Xn, Xn+1, . . . , XN ) =
w1f(X1, . . . , Xn) + w2f(Xn+1, . . . , XN )

w1 + w2

.
=
w1γ̂ + w2γ̆

w1 + w2
, (A2)

where f(Xn+1, . . . , XN )
.
= γ̆ is the estimate corresponding to γ̂ based on the observations that are not in the

validation data set and f(X1, . . . , Xn) = γ̂. Then, if γ̄ = γ̄w, the covariance term of equation A1 is

cov(γ̂, γ̄) = cov

(
γ̂,
w1γ̂ + w2γ̆

w1 + w2

)
=

w1

w1 + w2
var(γ̂) +

w2

w1 + w2
cov(γ̂, γ̆)

where cov(γ̂, γ̆) = 0 since the X’s are independent. With the weights

w1 = var(γ̂)−1 .
= σ̂−2 and w2 = var(γ̆)−1 .

= σ̆−2

we have

cov(γ̂, γ̄) =
1

w1 + w2

and

var(γ̄) = var

{
σ̆2

σ̂2 + σ̆2
γ̂ +

σ̂2

σ̂2 + σ̆2
γ̆

}
=

σ̆4

(σ̂2 + σ̆2)2
σ̂2 +

σ̂4

(σ̂2 + σ̆2)2
σ̆2 =

σ̂2σ̆2

σ̂2 + σ̆2
=

1

w1 + w2
.

Thus,

cov(γ̂, γ̄) = var(γ̄)

and equation A1 simplifies to

var( ˜̄β) = var(β̂)− var(γ̂) + var(γ̄).

To check the assumption that γ̄ = γ̄w we estimated γ̂ and γ̆ from each of 77 500 data sets with N = 128 000 and

plugged the estimates into equation A2. For w1 and w2 we used the inverse of the squared standard errors of the

estimates. The resulting estimates γ̄w were very close to γ̄ when the probability of being selected to the validation

data set was independent of either exposure or outcome (see Supplementary Figure 7). When the probability for

being selected to the validation data set was doubled for those with an outcome (the diseased) and halved for the

exposed, or vise versa, γ̄w − γ̄ ≈ 0.2 for %vd = 40. When the selection probability was doubled or halved for both

exposed and diseased, γ̄w − γ̄ ≈ −0.2. For smaller validation data sets the difference γ̄w − γ̄ decreased proportionally

with %vd (≈ 0.1 for %vd = 20 and 0.05 for %vd = 10, etc.

Appendix B. Definition of lung cancer subtypes

Definition of subtypes of lung cancer (ICD-10 C33-34) by histology codes:
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Lung cancer subtype Histology codes

Adenocarcinoma 81403 82303 82503 82523 82603 83103 83233 84803 85003

Squamous cell carcinoma 80703 80713 80833

Small cell carcinoma 80413 80443

Other (non-small cell) 80463

Carcinoid 82403 82463 82493

Large cell carcinoma 80123

Other All remaining codes
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Tables

Table 1. Parameters used in the simulations. For each 100th simulated data set the parameters in the first column
were randomly assigned values among those in the second column, with probabilities indicated in the third column.
“Uniform” means that each value is equally probable. All parameters were simulated independent of each other.

parameter(s) value(s) probability remark

p+ q 2, 3, 4 uniform number of covariates
p 1,..., p+q-1 uniform no of measured covariates
ξT 0.5, 1, 1.5, 3 uniform see equation 10

αC1, αU1,ξC1,ξU1 1, 2, 4 uniform see equations 8 and 10
ξCj , j > 1 kj × ξC1, kj ∈ [0, 0.1, . . . , 1.0] uniform a)

p 0, ..., p 0.6, 0.4/p, ..., 0.4/p b)
q 0, ..., q 0.6, 0.4/q, ..., 0.4/q b)

ᾱ, ξ̄ (N = 8000) 0.04, 0.08, 0.16 uniform c)
ᾱ, ξ̄ (N = 32 000) 0.02, 0.04, 0.08, 0.16 uniform c)
ᾱ, ξ̄ (N = 128 000) 0.01, 0.02, 0.04, 0.08, 0.16 uniform c)

ξ0,S 5 ≤ β0,S ≤ 6 uniform d)
PD,vd, PT,vd 0.5, 1, 2 0.25, 0.5, 0.25 e)

is.factor FALSE, TRUE 0.8, 0.2 f)
levels 0,2,3,4,5,6 0.5, 0.1, 0.1, 0.1, 0.1, 0.1 g)

covariance matrix ΣHS h)
functional form exponential

a) If p > 1 then ηMj , j = 2 . . . , p were generated as follows: p− 1 numbers v1, . . . , vp−1 were drawn with replacement from the set

[0, 0.1, 0.2, . . . , 1.0], and sorted in decrasing order, resulting in factors v(1) ≥, . . . ,≥ v(p−1). Then ηM2 and, if p = 3, ηM3, were calculated

as ηM2 = v(1)ηM1 and ηM3 = v(2)ηM1. The parameters ηUj , βMj , βUj , j > 1 were generated equivalently.

b) p and q denote the number of ’negative’ measured and unmeasured confounders, respectively, i.e. the number of covariates that were

simulated to reduce the outcome risk (βj < 1). The probablilty of having zero negative measured confounders was 0.6, and the probability of

having k negative measured confounders, 1 ≤ k ≤ p was 0.4/p. Same for unmeasured negative confounders. If, for example, q = 4 and q = 2,

then βU1 = 1/β′U1 and βU2 = 1/β′U2 where β′U1 and β′U2 are the β’s generated as under remark c).

c) ᾱ and ξ̄ denote mean probabilites of exposure and outcome, respectively, averaged over all individuals in the generated data set. These

parameters determined the base risks parameters α0 and ξ0,D in equations 8, 9 and 10

d) β0,S determines the probability of being censored. β0,S = 5 and β0,S = 6 imply censoring probabilities of about 3% and 1% respectively at

low outcome probabilities.

e) PD,vd denotes the probability of being selected for the validation data set for an individual with the outcome compared to one without.

Equivalently, PT,vd denotes the probability of being selected for an exposed individual compared to a non-exposed individual. For an

exposed individual with the outcome, the probability is PD,vdPT,vd times the probability for an non-exposed individual without the outcome.

Restrictions: If η̄ = 0.01 and PT,vd = 0.5 or η̄ = 0.32 and PT,vd = 2, PT,vd was changed to 1. If β̄ = 0.01 and PD,vd = 0.5 or β̄ = 0.32 and

PD,vd = 2, PD,vd was changed to 1.

f) The probability that at least one of the covariates is a categorical variable is 0.2.

g) If is.factor = TRUE, then the probability for each covariate of being continuous is 0.5, and of being a categorical variable with k categories,

k = 2, . . . , 6, is 0.1.

h) ΣHS is defined in section Section 3.3.
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Table 2. Summary characteristics of data from Norwegian health surveys, restricted to participants aged 40-70
years in 2004. N =Number of subjects, %T =percentage exposed, %D =percentage with outcome, NT&D =number
of exposed with outcome, β̄ =gold standard estimate (adjusted for age, BMI, log(triglycerides), smoking, marital

status, income, systolic blood pressure, year of survey).

No. Outcome Exposure Users Sex N %T %D NT&D β̄

1 Cancer Insulin New Men 230 843 0.80 3.80 52 -0.11
2 Cancer Insulin New Women 250 296 0.50 3.61 31 0.05
3 Cancer Insulin Prev Men 233 936 1.32 3.82 156 0.04
4 Cancer Insulin Prev Women 252 552 0.89 3.62 115 0.15
5 Cancer Oral AD New Men 227 864 3.53 3.78 198 -0.19
6 Cancer Oral AD New Women 248 294 2.31 3.60 132 -0.06
7 Cancer Oral AD Prev Men 233 936 2.60 3.82 329 0.02
8 Cancer Oral AD Prev Women 252 552 1.69 3.62 205 0.02
9 Death Insulin New Men 238 360 0.88 2.47 146 1.00

10 Death Insulin New Women 264 176 0.55 1.63 85 1.43
11 Death Insulin Prev Men 241 600 1.34 2.55 258 0.66
12 Death Insulin Prev Women 266 596 0.91 1.68 160 0.86
13 Death Oral AD New Men 235 243 3.62 2.45 172 -0.10
14 Death Oral AD New Women 262 029 2.37 1.63 106 0.14
15 Death Oral AD Prev Men 241 600 2.63 2.55 391 0.31
16 Death Oral AD Prev Women 266 596 1.71 1.68 197 0.35
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Table 3. Errors in crude (γ̄) and corrected ( ˜̄β) estimates for the data sets in Table 2. In each line, ˜̄β is the median
of 500 estimates from 500 validation data sets randomly selected from the (age-restricted) full data set. The crude

estimates are corrected for age only.

Validation data age distribution: Full Young Old Narrow

No. Outcome Exposure Users Sex γ̄ − β̄ ˜̄β − β̄
1 Cancer Insulin New Men 0.07 0.001 -0.011 -0.009 -0.013
2 Cancer Insulin New Women 0.09 0.002 0.008 -0.020 -0.042
3 Cancer Insulin Prev Men 0.03 0.002 -0.023 0.001 -0.022
4 Cancer Insulin Prev Women 0.07 0.005 0.035 -0.033 0.008
5 Cancer Oral AD New Men 0.04 0.002 -0.022 -0.011 -0.033
6 Cancer Oral AD New Women 0.08 -0.003 -0.013 -0.012 -0.027
7 Cancer Oral AD Prev Men 0.05 0.004 -0.055 0.006 -0.051
8 Cancer Oral AD Prev Women 0.10 0.004 0.008 -0.022 -0.037
9 Death Insulin New Men 0.26 0.006 -0.107 0.024 -0.045

10 Death Insulin New Women 0.20 0.007 -0.106 0.011 -0.146
11 Death Insulin Prev Men 0.31 0.005 -0.044 0.016 -0.023
12 Death Insulin Prev Women 0.31 0.003 -0.007 0.006 -0.036
13 Death Oral AD New Men 0.15 0.000 -0.166 0.028 -0.067
14 Death Oral AD New Women 0.16 0.001 -0.122 0.007 -0.103
15 Death Oral AD Prev Men 0.30 0.000 -0.157 0.027 -0.049
16 Death Oral AD Prev Women 0.30 0.006 -0.074 0.019 -0.107
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Table 4. Odds-ratios for five types of lung cancer associated with use of drugs for obstructive airway diseases (ATC-
code R03). Adjusted for education and comorbidity in the full population (nationwide registers) and calibrated with

smoking data from health surveys.

Exposed: Unexposed: Risk
Lung cancer type Cases/odds Cases/odds OR (95% CI) note red.

1824/ 0.254 5947/ 0.081 2.61 (2.45-2.78) a)
Squamous cell carcinoma 710/0.0294 1589/0.0074 3.35 (3.06-3.68) b)

156/0.0283 377/0.0067 2.12 (1.92-2.34) c) 52%

147/ 0.231 563/ 0.084 2.43 (1.96-3.00) a)
Carcinoid 56/0.0169 261/0.0084 1.91 (1.41-2.58) b)

10/0.0132 62/0.0088 1.54 (1.12-2.12) c) 41%

680/ 0.213 2843/ 0.087 2.08 (1.89-2.29) a)
Other (non-small cell) 225/0.0228 750/0.0083 2.37 (2.02-2.76) b)

30/0.0129 166/0.0068 1.54 (1.30-1.83) c) 61%

618/ 0.209 2685/ 0.087 2.03 (1.83-2.24) a)
Other 726/0.0304 1455/0.0073 3.53 (3.21-3.87) b)

134/0.0268 340/0.0072 2.29 (2.07-2.54) c) 49%

2100/ 0.176 11087/ 0.091 1.63 (1.55-1.72) a)
Adenocarcinoma 955/0.0205 3652/0.0085 2.15 (2.00-2.32) b)

229/0.0193 928/0.0075 1.51 (1.40-1.64) c) 56%

a) Numbers copied/computed from Table 3 in [11]. Odds-ratios are computed from nationwide Danish registries, adjusted for education and

comorbidity. Number of cases and odds are given for the exposed and the unexposed.

b) Odds-ratios computed from nationwide Norwegian registries, adjusted for education and comorbidity.

c) Odds-ratios from b) calibrated by applying smoking information (pack-years) from Norwegian health surveys. The number of cases and the

odds are for the health survey population only.

Last column: Risk reduction is defined as (1-(1-ORc)/(1-ORb))*100, where ORb and ORc are the odds-ratios in rows b) and c).
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Figure captions

Figure 1. Comparisons of the simplified and the standard TSC method based on simulated full data sets with N = 8000, 32 000, and 128 000

observations. Five validation data sets were generated for each full data set, as random samples of 1%, 5%, 10%, 20%, and 40%, respectively,

of the full data set. For each N , 500 groups of 100 full data sets with identical parameters were simulated. For each validation data set size

only groups where all validation data sets had at least one exposed individual who experienced the outcome were included. The number of

included groups are given at the top of each panel in column a). Each boxplot shows the median, the lower and upper quartiles, and the 5%

and 95% quantiles of the relevant variables. Column a) The ratio λ/ν in equation 3. Each of the λ’s and ν’s was calculated from a group

of 100 data sets with identical parameters (cf. Table 1). Column b) The distribution of the differences between ˜̄β′ and β̄ (white boxes) and

between ˜̄β and β̄ (grey boxes). Column c) The distribution of the estimates v̂ar( ˜̄β′) (white boxes) and v̂ar( ˜̄β) (grey boxes), as calculated from

equation 4 and equation 6, respectively. Column d) The distribution of the ratios v̂ar( ˜̄β′)/s2 (white boxes) v̂ar( ˜̄β)/s2 (grey boxes), where s2 is

the empirical variance of the 100 estimates of ˜̄β′ and ˜̄β with identical parameters, given by equation 7. Only validation data sets with positive

variance estimates are included. Column e) The distribution of the ratio k × v̂ar( ˜̄β)/s2, where k = exp({1− log2(0.001N)/13}/%vd) and s2 is

the empirical variance of the 100 estimates of ˜̄β with identical parameters, given by equation 7. Only validation data sets with positive variance

estimates are included.

Figure 2. Results from application to real data. Exposure is insulin use in 2004, and outcome is death. Black bullet (top): ’Gold standard’

estimate β̄ from the full data set adjusted for all of the covariates, i.e. A=age, B=BMI, T=log(triglycerides), P=packyears (smoking), M=marital

status, I=income, S=systolic blood pressure, Y=year of survey. Triangles: Error prone estimates γ̄ from the full data set, with only the covariates

indicated to the left adjusted for. Crosses: Corrected estimates ˜̄β from equation 5, with all covariates available in the validation data set. Each

cross represent the median of 500 randomly sampled 10% validation data sets. 95% confidence intervals are given for all estimates. For the

corrected estimates they are computed from the 2.5% and 97.5% quantiles of the 500 variance estimates from equation 6. See Section 4.3 for

details. For the gold standard and crude estimates they are computed from the standard errors of the effect estimates. The dotted and dashed

vertical lines indicate the gold standard estimate with 95% confidence interval.

Figure 3. Results from application to real data. The middle panel is a graphical representation of Table 3. The lines in Table 3 are in the

figure ordered after increasing γ̄, and the numbers on the x-axis corresponds to the No.-column in Table 3. For each combination of exposure,

outcome, and sex, ˜̄β was computed from 500 randomly sampled 10% validation data sets. The upper panel shows γ̄ − β̄ and ˜̄β − β̄ when no

covariates are adjusted for in the crude estimates, and in the lower panel Age, BMI, smoking (packyears) and log(triglycerides) are adjusted

for. Circles and black lines indicate the median and the interquartile range of the 500 differences ˜̄β − β̄, respectively.
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