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Introduction 

Ever since Le Bars and colleagues detailed in 1979 that ‘’the activity of convergent 

dorsal horn neurons could be powerfully inhibited by noxious stimuli applied to 

various parts of the body’’ (21), diffuse noxious inhibitory controls (DNIC) have 

provided basic research a proxy measure of the functionality of a unique descending 

inhibitory pathway. This pain inhibits pain-like phenomenon was originally described 

in anaesthetised rodents, where it is possible to quantify functional DNIC as a 

decrease in the peripherally-evoked activity of spinal convergent neurons following 

application of a conditioning stimulus (CS) (2, 21). Interestingly, such naturally 

occurring analgesia upon conditioning is also observed in conscious humans (13, 22, 

33). Conditioned pain modulation (CPM) is now used to describe the human 

counterpart of DNIC (35), and CPM paradigms are purported to assess the efficacy of 

DNIC as a surrogate measure of a descending inhibitory system (9).  

Since the translational value of DNIC to CPM may be gauged by the predictive 

quality of human CPM processing, it is unsurprising that a focus on measuring the 

expression status of conditioning-activated descending inhibitory controls in behaving 

animals is coming to the fore (11, 12, 32, 37). An increasing number of human and 

animal DNIC and CPM studies (Fig. 1) highlights the timely need for consideration of 

what the appropriate terminology is when describing this effect. In recognition of the 
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fact that only DNIC-like behaviours can so far be measured in wakeful animals, and 

that it is not appropriate to use CPM to refer to a reduction in pain-related behaviours 

in pre-clinical research since animal responses are non-verbal, we recommend that the 

experimental quantification of descending modulatory pathway activation upon 

conditioning in wakeful animals be referred to as descending control of nociception 

(DCN).  

Ensuring that the correct mechanism is cited when considering DNIC versus DCN 

versus CPM system execution in rodent and human studies is vital. While DNIC 

expression is maintained under rodent anaesthetic, CPM is measured in wakeful 

subjects and is thus representative of a complex cognitive input-influenced process. 

Mechanistically both are activated upon conditioning, but the unconscious processing 

of neuronal inhibition evidenced during DNIC cannot be assessed during CPM 

testing, and even though functional CPM likely involves activation of the DNIC 

pathway it also encompasses a higher cortical centre top-down modulatory circuitry 

that is influenced by personal attributes. In that vein, when measuring the inhibitory 

effect of conditioning in behaving animals, it is not only the expression status of the 

DNIC pathway that is being recorded. Rather now, a DCN effect must also represent 

a mechanism that encompasses attention to the potentially most damaging insult.  

The DCN terminology would allow researchers to acknowledge a clear distinction 

regarding the subject’s conscious state, where measurement of a functional DNIC 

response in anaesthetised versus wakeful animals evidently portrays execution of 

distinct top-down modulatory processes, while also accounting for potential 

variability in modulatory direction. In addition, an appropriately separate definition 

would more accurately enable preclinical and clinical DNIC, DCN and CPM 

comparators in back and forward translational studies. 
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Key considerations: The unconscious versus conscious state  

When mechanistically interrogated in anaesthetised animals, DNIC expression, 

explicitly referring to the inhibition of wide dynamic range (WDR) neurons upon 

conditioning, represents the activation of a supra-spinal brainstem nucleus that 

projects directly to the dorsal horn of the spinal cord (1, 2). In behaving, conscious 

animals DNIC terminology is applied when quantifying changes in resting 

nociceptive responses to evoked stimuli (i.e. Randall-Selitto pressure stimulus, von 

Frey filaments, Hargreaves heat withdrawal threshold) upon injection of an irritant 

(i.e. capsaicin, formalin) to a distant body region (11, 12, 32, 37) despite the fact that 

direct spinal neuronal recordings are not made.  

DNIC are abolished in rats following spinalisation (14) or cervical block with 

lidocaine (6), and a lesion to the dorsolateral funiculus (DLF) ipsilateral to an 

electrophysiologically recorded WDR neuron was previously shown to abolish DNIC 

expression (34). This suggests that the descending fibres responsible for functional 

DNIC expression likely travel via the ipsilateral DLF. It is noteworthy that, in 

wakeful animals, a DLF lesion (including a bilateral lesion) did not abolish 

hypoalgesia triggered by formalin (CS) injection, suggesting that additional tracts are 

involved in DNIC expression in behaving rats. Pertinently this highlights the 

complexity of defining a functional DNIC circuit in wakeful animals where the 

involvement of other parallel descending tracts is likely (7, 26).  

Since it is measured in wakeful humans, CPM represents a complex process whereby 

cognitive inputs influence top-down sensory processing, including the expression 

status of inhibitory controls. Unlike DNIC as measured in anaesthetised animals, 

ACCEPTED

8 8Copyright � by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited.            2021



5 

 

‘conscious’ CPM can evoke pain-inhibitory or faciliatory effects, depending on the 

context (10, 16, 20, 24, 27, 36). This contextual (cues prone) aspect of CPM likely 

represents the involvement of at least two opposite neuronal systems. It also suggests 

that inhibition is a dominant component of unconscious processing that may involve, 

for example, counterirritation. On that, counterirritation was another term coined to 

describe a pain inhibits pain-like phenomenon, however its mechanistic meaning is 

less precise since it is not limited to the activation and function of descending 

inhibitory controls (8, 15, 18). Overwhelmingly, the heterogeneous nature of CPM 

outputs in the healthy population (10, 16, 20, 23) points to the complexity of the CPM 

system as compared to the direct functionality of DNIC when quantifying their 

expression statuses upon conditioning. Having a direct physiological measure of the 

functionality of an endogenous descending brain to spinal cord pain inhibitory 

pathway that is independent of an individual’s subjective judgment would be the 

optimal way to truly denote what is, and who possesses, a ‘net CPM’ effect.  

 

DNIC, DCN and CPM comparators 

How comparable are the DNIC, DCN and CPM phenomena and why is it not 

appropriate to refer to their functionality interchangeably? Clearly, mechanistically 

speaking, measurement of a functional DNIC response in anaesthetised versus 

wakeful animals portrays execution of distinct descending processes where distraction 

from the sensation evoked by a test stimulus upon conditioning is predicted to be 

elicited as a minimum. In turn, those descending processes activated in behaving 

animals will not mirror those associated with a final net CPM effect when 

ACCEPTED

8 8Copyright � by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited.            2021



6 

 

acknowledging that wakeful animals do not quantifiably experience human emotions 

relating to, for example, the monday blues or divorce.  

In humans cervical spinal cord transection (33) or medullary retro-olive lesions 

(Wallenberg’s syndrome) diminishes CPM expression (13). It is noteworthy that the 

potential origin of DNIC to pontine nuclei (5, 34) corresponds exactly to the 

Wallenberg’s syndrome-related lesions (4). Human CPM studies pinpoint upper 

brainstem (19) and cortical (3, 25) brain regions as impacting individual differences in 

terms of a pain-inhibiting response to a CPM paradigm, where modulatory roles are 

proposed. Due to the low spatial resolution of fMRI, assigning direct discreet pontine 

nuclei to CPM expression is so far not possible. Therefore, the precise definition of 

CPM ‘effector’ brainstem structures remains to be elucidated. Ideally, they will be 

defined in animal models such that physiological and pharmacological studies from 

rodents may be forward translated to humans.  

Many studies have successfully studied the underlying functionality of CPM and 

DNIC paradigms in experimental conditions. Noradrenergic mechanisms explain the 

beneficial use of monoaminergic manipulation in analgesic therapies in terms of CPM 

functionality (29, 31, 36) in a manner that back translates (1, 2) and DNIC and CPM 

deficiencies are evident in varied chronicities (17, 22, 34). 

CPM measurements are made in awake humans with the explicit understanding that 

conscious processing of top-down sensory modulation will impact the final 

expression status of descending control pathways (that very likely include DNIC). 

DCN terminology would allow a clear delineation regarding the mechanistic 

foundation of the effect observed, even when acknowledging that the full circuitry 

remains equivocal. A role for opioidergic transmisison in the anterior cingulate cortex 
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(ACC) in the modulation of DCN expression was recently shown in an animal 

behavioural model (28). ACC-mediated modulation of DNIC-pathway functionality 

potentially occurs via a relay in the periaqueductal grey (PAG), as suggested by 

earlier human functional studies (19), but animal lesion experiments do not support a 

crucial role for the PAG in DNIC expression (22). However this does not discredit a 

potential modulatory role in conscious animals, for example upon measurement of 

DCN. Confirmation of supra-pontine regulation of DCN (i.e. ACC, PAG) in 

conscious animals requires further investigation. Do CPM and/or DCN expression 

reflect DNIC pathway functionality and/or a strong (negative or positive) cognitive 

experience? DCN modulation by forebrain mechanisms is likely (30) and, even when 

recorded in anaesthetised rodents, the functional expression of DNIC is influenced by 

subcortical brain regions associated with emotional processing (32). 

Thanks to precise genetically encoded tools (i.e. defined discreet neuronal population-

targeted optogenetics), the anatomical and physiological definition of the DNIC origin 

nucleus is likely to soon be resolved. With this in mind, inhibitory/facilitatory control 

of the DNIC origin nucleus in behaving wakeful animals is on the immediate research 

horizon. Therefore, a precise terminology that accurately reflects animal behavioural 

responses upon its eventual manipulation is imperative.  

 

Concluding 

We propose that a distinction between DNIC and CPM should be made in animal 

studies based on the subject’s conscious state (where, interestingly, the conscious 

state appears to be a source of variability in rodent studies as with human CPM 

studies). The fact that DNIC are expressed in anaesthetised, unconscious animals 
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highlights its autonomous circuitry. DNIC expression may be modulated in wakeful 

states by cortical influences, and as such resembles CPM. Using common, precise 

definitions for DNIC, CPM and DCN phenomena avoids confusion regarding that fact 

that CPM and DCN may involve DNIC mechanisms, but not the other way around. 
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FIGURE LEGEND 

Figure 1. The number of DNIC (diffuse noxious inhibitory control) animal, DNIC 

human, CPM (conditioned pain modulation) animal and CPM human publications 

according to the timelines indicated. Based on a pragmatic PubMed search (timeline 

results by year) performed November 2020. 
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