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Auto-Generated Summaries for Stochastic Radio
Channel Models

Ayush Bharti, Ramoni Adeogun, Troels Pedersen

Department of Electronic Systems, Aalborg University, Denmark

e-mail: {ayb, ra, troels}@es.aau.dk

Abstract—Recently, a calibration method has been proposed
for estimating the parameters of stochastic radio channel models
using summaries of channel impulse response measurements
without multipath extraction. In this paper, we attempt to
automatically generate summaries using an autoencoder for
calibration of channel models. This approach avoids the need
for explicitly designing informative summaries about the model
parameters, which can be tedious. We test the method by
calibrating the stochastic polarized propagation graph model on
simulated as well as measured data. The autoencoder is found to
generate summaries that give reasonably accurate results while
calibrating the considered model.

Index Terms—radio channel modeling, autoencoder, approxi-
mate Bayesian computation, propagation graph, parameter esti-
mation, machine learning.

I. INTRODUCTION

Stochastic radio channel models are widely used for simu-

lating the channel in order to design and test communication

and localization systems. To ensure that such models yield

accurate simulations, they must be calibrated. Most often, this

is done by estimating the model parameters from measurement

data. Unfortunately, the likelihood function for stochastic

channel models are usually intractable. Thus, calibrating them

from new measurements becomes challenging. Hence, it is

standard practice to employ high-resolution path extraction

algorithms to estimate the delays, gains, etc. of the multipath

components. These estimates are further used to estimate the

parameters of the channel model. This methodology has been

followed to calibrate channel models from the early days of

Turin [1] and Saleh-Valenzuela [2] to the more recent ones

[3]–[5]. However, implementing such complicated algorithms

is not trivial and requires a number of heuristic choices to be

made. Such choices affect the accuracy of the results, and the

overall performance of the estimator is difficult to assess.
Recently, calibration methods which circumvent the need

for resolving the multipath components have been introduced

[6]–[10]. In [6], [7], a method of moments approach is used

for calibration. However, these methods rely on analytical

expressions for the moments which may not be available for

more complicated stochastic models. More general calibration

methods based on summary statistics of the channel measure-

ments have been proposed for the Saleh-Valenzuela model in

[8], [9] and for the propagation graph model [11] in [10].

The methods proposed in [8], [10] are based on approximate

Bayesian computation (ABC), which is a likelihood-free infer-

ence framework that relies on simulations from the model to

infer on the model parameters [12]. ABC involves comparing

summary statistics of the simulated and the measured data

in some distance metric. The parameter samples that yield

simulated summaries “close” to the measured summaries are

accepted. These accepted parameters form a sample from the

approximate posterior distribution. Thus, such methods rely

on handcrafted summaries of the measurement data which

should be informative about the parameters of the stochastic

channel models. However, designing such summaries is a time-

consuming process which is not always straightforward for

most models.

In this paper, we attempt to automatically generate the

summaries by using an autoencoder [13]. An autoencoder is

a combination of two neural networks; one encodes the input

data-set into a low-dimensional set of features, and the other

decodes those features in order to replicate the input data.

We use the encoded feature vector as summary statistics to

calibrate the polarized propagation graph model [11], [14]

using the ABC algorithm [10]. This approach circumvents

the need for manual design of summaries which can be a

time-consuming process. We test the method by calibrating the

stochastic polarized propagation graph model [11], [14] and

comparing to previously obtained results for the algorithm [10]

with handcrafted summaries. We find that the method requires

much less effort than handcrafted summaries, while obtaining

a comparable performance.

II. ABC USING AUTOENCODER

We aim to fit a stochastic radio channel model, M(θ), to a

set of measurement data, x ∈ Rn. This amounts to estimating

the p−dimensional parameter vector, θ from the data. The

ABC method in [10] allows us to do so provided simulations

can be obtained from M(θ). The ABC method relies on

summarizing x into a low-dimensional vector of summaries,

s = E(x), informative about θ. In [8], [10], we relied on

handcrafted summaries. Here, we circumvent designing the

summarizing function, or encoder, E(·) ourselves by using an

autoencoder to automatically learn this function.

A. Generating Summaries using Autoencoder

As in Fig. 1, a typical autoencoder comprises of two

neural networks — an encoder E and a decoder D, and an

intermediate layer often referred to as the latent space. The

encoder converts high-dimensional input variables into low-

dimensional latent variables, s = E(x) ∈ Rq; q � n. The
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Fig. 1. Illustration of a deep autoencoder with 2 hidden layers in both the
encoder and decoder.

decoder D reconstructs the input from the latent variables.

The goal is to obtain functions E and D such that the output,

x̂, is close to the input in some metric, i.e.,

x̂ = D(E(x)) ≈ x. (1)

For the considered autoencoder architecture in Fig. 1, the

encoding function reads

s = E(x) = η2(W2(η1(W1x+ b1) + b2)), (2)

where ηi,Wi and bi denote the activation function, the

weights, and the biases of the ith hidden layer of the encoder,

respectively. The decoding function, D, is defined analogous

to (2). The weights and biases are obtained by minimizing a

reconstruction loss defined as the mean squared error between

x and x̂. Standard packages for performing such optimization

exist in languages such as MATLAB, R and Python.

B. Approximate Bayesian Computation method

The summarizing function E obtained by the autoencoder

is now used in the ABC algorithm proposed in [10] to

approximate the posterior distribution, p(θ|sobs), where sobs
is the summary vector of the measurements. The algorithm is

stated in Alg. 2 and illustrated in Fig. 2. Here, we give an

overview of the ABC algorithm; see [10] for further details.

The ABC method proceeds by sampling θ1, . . . ,θM inde-

pendently from the prior distribution p(θ), and simulating the

corresponding summaries s1, . . . , sM using the model and the

summarizing function. The Euclidean distance between the

simulated and the observed statistics, ‖si − sobs‖, are then

computed. Note that the summaries are normalized using their

mean absolute deviation before computing the distance. The

first Mε parameter samples that correspond to the smallest

distance are accepted, along with their corresponding summary

vectors. This results in an acceptance ratio of ε = Mε/M .

The accepted samples are then adjusted using local-linear

regression [15] to improve the posterior approximation. Given

the accepted set {(si,θi)}Mε
i=1, the ith accepted parameter

sample is adjusted as

θ̃i = θi − (si − sobs)
T
β̂, i = 1, . . . ,Mε, (3)

where β̂ is solution to the optimization problem

argmin
α,β

Mε∑
i=1

[
θi −α− (si − sobs)

T
β
]2

Kε (‖si − sobs‖) .
(4)
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Fig. 2. Block diagram of the data flow in the proposed PMC-ABC algorithm
with regression adjustment.

Algorithm 1 Regression adjustment

Input: Parameter values (θ1, . . . ,θM ) and corresponding simulated
summaries (s1, . . . , sM ), observed statistics sobs, number of accepted
samples Mε,

Accept (θ∗
1, . . . ,θ

∗
Mε

) ∼ {θi}Mi=1 with the smallest ‖si − sobs‖
Solve optimisation problem (4) with

{
θ∗j
}Mε

j=1
and corresponding{

s∗j
}Mε

j=1
to get β̂

Adjust accepted samples
{
θ∗
j

}Mε

j=1
using (3) to get

{
θ̃j

}Mε

j=1

Output: Samples (θ̃1, . . . , θ̃Mε) from approximate posterior

Here, Kε(·) is the Epanechnikov kernel. The ABC method

of [10] then draws a new set of M parameter samples from

(θ̃1, . . . , θ̃Mε) in a sequential Monte Carlo fashion [16]. These

new samples form the prior distribution for the next iteration of

the algorithm, where they are used to generate simulated data

from the model again and perform regression adjustment. The

idea is to iteratively converge towards the posterior distribution

by sampling the parameter space efficiently. In iteration t, the

parameter samples of the lth parameter are drawn from the

density kernel

ϕ
(t)
l (·) =

Mε∑
j=1

w
(t−1)
l,j K

(
·|θ̃(t−1)

l,j ;σ2
l,(t−1)

)
, (5)

l = 1, . . . , p, where w
(t−1)
l,j and σ2

l,(t−1) are the importance

sampling weight and the variance associated with θ̃
(t−1)
l,j ,

respectively. Note that the univariate Gaussian kernel, K, is

truncated to be in the prior range. The adjusted parameter

samples after Niter iterations are then taken as samples from

the approximate posterior distribution.

III. CALIBRATION OF STOCHASTIC CHANNEL MODELS

We apply the calibration method to calibrate the stochastic

polarized propagation graph model (SPPGM) [11] in which the

channel is represented as a propagation graph [17] with the

transmitters, the receivers, and the scatterers as vertices. Edges

in the graph are defined randomly depending on the probability

of visibility, Pvis. An edge transfer function accounting for

depolarization effects, attenuation, delay and phase shifts is

defined for each edge. To calculate the edge transfer functions,



Algorithm 2 ABC method [10]

Input: Prior p(θ), model M(θ), observed summaries sobs, Mε, M ,
Niter

Initialization: t = 1,

for i = 1 to M do
Sample θ

(1)
i ∼ p(θ)

Simulate M
(1)
i ∼ M(θ

(1)
i ) and compute s

(1)
i = E(x(1)

i )
end for
Perform regression adjustment by applying Algorithm 1 on{(

s
(1)
i ,θ

(1)
i

)}M

i=1
to obtain

{
θ̃
(1)

j

}Mε

j=1
Set

w
(1)
l,j = 1/Mε, and σ2

l,(1) = 2V̂ar

({
θ̃
(1)
l,j

}Mε

j=1

)
,

j = 1, . . . ,Mε, l = 1, . . . , p

for t = 2 to Niter do

for i = 1, . . . ,M do

for l = 1, . . . , p do
Sample θ∗l,i ∼

{
θ̃
(t−1)
l,j

}Mε

j=1
with probabilities w

(t−1)
l,j

Generate θ
(t)
l,i ∼ K (·|θ∗l,i;σ2

l,(t−1)

)
end for
Simulate M

(t)
i ∼ M

(
θ
(t)
i

)
and compute s

(t)
i = E

(
x
(t)
i

)
end for
Perform regression adjustment by applying Algorithm 1 on{(
s
(t)
i ,θ

(t)
i

)}M

i=1
to obtain

{
θ̃
(t)

j

}Mε

j=1
Set

w
(t)
l,j ∝

p
(
θ̃
(t)
l,j

)
ϕ

(t)
l (θ̃

(t)
l,j )

, and σ2
l,(t) = 2V̂ar

({
θ̃
(t)
l,j

}Mε

j=1

)
,

j = 1, . . . ,Mε, l = 1, . . . , p

end for
Output: Samples

(
θ̃
(T )

1 , . . . , θ̃
(T )

Mε

)
from the approximate posterior

the SPPGM only requires three parameters viz: reflection

coefficient g, number of scatterers Ns and the polarization

ratio γ. The edge transfer functions are then used in a simple

expression to compute the channel transfer function, Hk.

Detailed description of the model and channel generation

procedure can be found in [11].

We consider data from a linear, time-invariant radio channel,

measured using a vector network analyzer (VNA) in the

bandwidth B. The transfer function Hk is measured at K
equidistant frequency points resulting in a frequency separa-

tion of Δf = B/(K − 1). The measured signal at each

frequency point, Yk, can be modeled as

Yk = Hk +Nk, k = 0, 1, · · · ,K − 1, (6)

where Nk denotes the measurement noise. The noise sam-

ples at each k are assumed independent and identically dis-

tributed (iid) as a circular complex Gaussian with variance

σ2
N . Discrete-frequency, continuous-time inverse Fourier trans-

forming (Y0, . . . , YK−1) gives the measured signal in time-

domain

y(t) =
1

K

K−1∑
k=0

Yk exp(j2πkΔft), (7)

which is periodic with period tmax = 1/Δf . Typically K is

in order of hundreds or even thousands, and so we intend to

summarize the high-dimensional measured signal into its first

J temporal moments, defined as

mj =

∫ tmax

0

tj |y(t)|2, j = 0, 1, 2, . . . , (J − 1). (8)

The temporal moments are computed instantaneously per

realization of y(t). For the dual polarized channel from the

SPPGM, this computation is performed for each of the four

polarizations. Thus, the ith realization yields a 4J dimen-

sional vector m(i). Consequently, a measurement with L
independent polarimetric measurements yields an L × 4J
matrix of temporal moments Mobs = [m(1), . . . ,m(L)]�.
Including the noise variance as a parameter, calibration of

the SPPGM therefore requires estimating the parameter vector

θ = [g,Ns, Pvis, γ, σ
2
N ]�.

A. Implementation and Training of the Autoencoder

We consider the first three temporal moments, J = 3, and

L = 625 realizations. The training data is obtained from

the SPPGM with 4000 parameter vectors generated uniformly

over the prior ranges in Tab. I. For each parameter vector, θi,

we compute the temporal moments using (8) and convert the

625 × 12 matrix Mi into an input vector, xi ∈ R7500. To be

consistent with [10], we set the number of summaries q = 10.

We adopt Python’s popular machine learning libraries,

Keras and Tensorflow, to design and implement the autoen-

coder. We use the Rectified Linear Unit activation function at

the hidden layers of both the encoder and decoder due to its

non-vanishing gradient property. A linear activation function

is used at the output layer of the decoder. Based on our initial

experiments, we observe that a network with two hidden layers

in the encoder and decoder yields reasonably informative

summaries. We adopt a mini-batch gradient descent procedure

in which the training data is partitioned into equal batches of

size 32. The training is performed using the Root Mean Square

Propagation (RMSProp) algorithm with learning rate = 0.1 as

optimizer.

B. Evaluation of summaries

We now use the trained encoder to test whether the auto-

generated summary vector s is informative about the parame-

ters of the SPPGM. We do that by varying one parameter at

a time while setting others to a fixed value, and computing

s. If the summaries have a functional relationship with the

parameters, then they are deemed informative. Each parameter

is varied in its prior range, and the other parameters are

fixed to true values given in Tab. I. The resulting plot for

q = 10 summaries is shown in Fig. 3. We see that the

summaries are responsive to changes in each of the parameters,
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Fig. 3. Auto-generated statistics versus the parameters of the SPPGM. Each
plot is generated by varying one parameter while others are kept fixed to the
true values in Tab. I.

albeit more for some than others. The generated summaries

are informative enough to be able to calibrate the SPPGM.

However, this visual test gives only a picture of how well the

summaries work separately. To evaluate how informative the

joint summaries are about the parameters, we apply these in

the ABC algorithm.

C. Application to simulated data

We apply Alg. 2 to calibrate the SPPGM from simulated

data. We set the parameter vector to a true value and generate

polarized channel measurements from the SPPGM which we

then summarize using the encoder to get the summaries. We

take an average over 200 realizations of such summaries to get

sobs in order to remove any bias in the estimate arising due

to Monte Carlo approximation. The prior distributions were

kept same as in [10] and are given in Tab. I, along with the

approximate minimum mean squared error (MMSE) estimates.

The approximate posterior distributions are shown in Fig. 4.

We observe that the marginal posteriors are concentrated

around the true values, and that the algorithm seems to work.

0 0.2 0.4 0.6 0.8 1
Reflection coefficient, g

0

1

2

10 20 30 40 50
No. of scatterers, Ns

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1
Probability of visibility, Pvis

0

2

4

0 0.2 0.4 0.6 0.8 1
Polarization ratio, 

0

10

20

0.5 1 1.5 2

Noise variance, N
2 10-9

0

5 109

Approx. posterior
MMSE estimate
True value

Fig. 4. Kernel density estimates of the approximate marginal posteriors for
simulated data after Niter = 10 iteration. Settings: L = 625, J = 3,M =
2000,Mε = 100, B = 4 GHz,K = 801,Δf = 5 MHz, tmax = 200 ns.

TABLE I
PARAMETER ESTIMATES FOR SIMULATED AND MEASURED DATA. THE

SAMPLE STANDARD DEVIATION OF THE APPROXIMATE POSTERIOR IS

REPORTED IN THE PARENTHESIS.

Parameter
θ

Prior range
p(θ)

True value / Estimate (standard deviation)

Simulated data Measured data

Refl. coeff. g [0,1] 0.65 / 0.54 (0.18) — / 0.71 (0.15)
No. of scat. Ns [5,50] 15 / 11 (3.08) — / 16 (5.48)

Prob. of vis. Pvis [0,1] 0.90 / 0.83 (0.13) — / 0.70 (0.14)
Pol. ratio γ [0,1] 0.10 / 0.11 (0.02) — / 0.14 (0.02)

Noise variance
σ2
N × 10−10 [2,20] 10.0 / 10.6 (1.07) — / 3.75 (0.51)

The width of the posteriors indicate how informative the

summaries are about each parameter. For example, the fact

that the posterior for g is the widest is due to its lack of

any distinct relationship with statistics in Fig. 3. Overall the

method seems to work reasonably well, considering that no

manual effort went into designing the specific summaries.

IV. APPLICATION TO MEASURED DATA

We now apply the method to calibrate the SPPGM using

millimetre-wave polarized channel measurements from [18].

The measurements were conducted using dual-polarized an-

tennas in a small conference room of dimensions 3×4×3 m3

in the frequency range 58 GHz to 62 GHz. A 5 × 5 virtual

planar array was used at both the transmitter and receiver with

5 mm inter-element spacing, resulting in L = 625 realizations

for each polarization.

The approximate marginal posteriors are given in Fig. 5

while the approximate MMSE estimates, obtained by averag-

ing the accepted samples after the last iteration, are reported in

Tab. I. The width of the posterior estimates are similar to what

we observed in simulation. The summaries therefore seem to

be useful for calibration even in case of measurements. The
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Fig. 6. Averaged power delay profile from the measurements versus that
obtained from the SPPGM after calibration. The parameter estimates are
reported in Tab. I.

averaged power delay profile (APDP) of the co- and cross-

polarized channel from the measurements is compared to that

from the SPPGM in Fig. 6. The estimated APDP seems to fit

the measurements well, thus validating the method.

V. CONCLUSIONS

The autoencoder is able to generate summaries that are

informative enough to calibrate the parameters of the polar-

ized propagation graph model. In this case, handcrafting of

summaries is not necessary for implementing the calibration

method of [10]. Avoiding the need for handcrafted sum-

maries enables even non-propagation experts to easily apply

the method. Even though the performance of the calibration

method is better when using the handcrafted summaries in

[10], we do get reasonably accurate results with fairly limited

effort of training the autoencoder. However, since the training

is done in an unsupervised manner, there is no guarantee that

the generated summaries will be informative enough about the

parameters to be able to estimate them. With auto-generated

summaries, we are one step closer to fully automated model

calibration.
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