Forces and overtopping on 2. generation wave dragon for Nissum Bredning
Hald, Tue; Frigaard, Peter Bak

Publication date:
2001

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: december 08, 2018
FORCES AND OVERTOPPING ON
2 GENERATION WAVE DRAGON FOR NISSUM BREDDNING

Phase 3 project, Danish Energy Agency

“Wave Dragon. Reconstruction of an existing model in scale 1:50 and sequential tests of changes to the model geometry and mass distribution parameters”

Project no: ENS-51191/ 00-0067

Tue Hald & Peter Frigaard

November 2001

Hydraulic & Coastal Engineering Laboratory
Aalborg University
1. INTRODUCTION

A floating model of the Wave Dragon (WD) was built in autumn 1998 by the Danish Maritime Institute in scale 1:50, see Sørensen and Friis-Madsen (1999) for reference. This model was subjected to a series of model tests and subsequent modifications at Aalborg University. This model is denoted the 1. generation model. Details concerning model tests and modifications are found in Kofod and Frigaard (1999), Frigaard et al. (1999), Martinelli and Frigaard (1999a) and Martinelli and Frigaard (1999b). Based on the previous findings the WD has been redesigned by Friis-Madsen and Armstrong Technology (2000) and subsequently tested at Aalborg University, see Hald and Lynggaard (2001a, 2001b).

The purpose of this report is to summarize forcing and overtopping on the redesigned WD model, in the following termed the 2. generation WD model. More details concerning the results can be found in Hald and Lynggaard (2001b). The results will establish a basis for the development of the 1:4.5 scale prototype planned for testing in Nissum Bredning, a sea inlet on the Danish West Coast. For comparison also results obtained using the 1. generation are referred in this report.

2. SCALING

All quantities describing the geometrical and hydraulic conditions are scaled to Nissum Bredning conditions. The Froude scaling law applies for scaling the data from model to prototype and accordingly all quantities are scaled as follows:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Scaling law</th>
<th>Scaling factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>λ_L</td>
<td>4.5</td>
</tr>
<tr>
<td>Time</td>
<td>$\lambda_T^{0.5}$</td>
<td>4.5^{0.5}</td>
</tr>
<tr>
<td>Discharge</td>
<td>$\lambda_L^{2.5}$</td>
<td>4.5^{2.5}</td>
</tr>
<tr>
<td>Volume, mass, forces</td>
<td>λ_V</td>
<td>4.5</td>
</tr>
<tr>
<td>Stiffness</td>
<td>λ_S</td>
<td>4.5^2</td>
</tr>
<tr>
<td>Mass moment of inertia</td>
<td>λ_M</td>
<td>4.5^5</td>
</tr>
</tbody>
</table>

3. MODEL CONFIGURATION

The structural configuration of the 2. generation WD is based on the geometry of the Wave Dragon prototype designed for Nissum by Armstrong Technology (2000). In Table I the different mass distribution parameters of the 2. generation model are shown and compared to the 1. generation model. The location of the centre of gravity is measured from the stern in surge, CL in sway and from the lower level of the turbine corridor.

<table>
<thead>
<tr>
<th>Model:</th>
<th>1. generation</th>
<th>2. generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale:</td>
<td>1:4.5</td>
<td>1:4.5</td>
</tr>
<tr>
<td>Mass: [t]</td>
<td>155</td>
<td>128</td>
</tr>
<tr>
<td>Centre of gravity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surge [m]</td>
<td>5.1</td>
<td>7.1</td>
</tr>
<tr>
<td>Sway [m]</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Heave [m]</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Mass moment of inertia:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yaw [kg m2]</td>
<td>5.85 10^6</td>
<td>9.16 10^6</td>
</tr>
<tr>
<td>Pitch [kg m2]</td>
<td>1.07 10^6</td>
<td>3.00 10^6</td>
</tr>
<tr>
<td>Roll [kg m2]</td>
<td>5.58 10^6</td>
<td></td>
</tr>
</tbody>
</table>
In Figure 1 the WD in the normal configuration is depicted and each of the force registration points can be seen. In the cables used to tension the two reflector arms forces are registered in the across cable A, the total mooring force was measured in one single line where the structure was anchored, and finally, three force components were measured in the junction between the right reflector and the shoulder. Movements were registered for three degrees of freedom (heave, pitch and surge). Finally, also the amount of overtopping water in the reservoir was registered.

![Diagram of Wave Dragon and force registration positions.](image)

Figure 1. Normal configuration of Wave Dragon and force registration positions.

The hydraulic behaviour of the WD is not only dependent of the structural geometry and mass distribution but depends also on the stiffness of tension cables linking the two reflector arms and the stiffness of the moorings. WD is intended moored to a single pile in front by a single cable, see Figure 1. This cable is split in two in proximity of the WD body and in the 1. generation model the mooring elasticity of the central cable was 70 kN/m and finally, from the stern two mooring lines are fixed to the sea bed. The two tension cables fix the reflector arms to the central mooring cable, both cables having an elasticity of 25 kN/m. For the 2. generation model these stiinesses have been kept. Both the tension cables and the mooring cable has been pretensioned to approximately 11 kN and 16.5 kN respectively.

4. FORCING

Waves were registered by two resistance type wave gauges placed on either side of the WD outside the reflector arms. The measured waves were not always coincident to the target values, thus registered forces, movements and overtopping were referred to measured waves.

Mooring forces were registered by a load cell designed and manufactured by Aalborg University whereas cable forces and forces in the junction were registered by a 3D load cell and a z-gauge designed and manufactured by Danish Maritime Institute. Two characteristic values were retrieved from the signals: the root mean square (rms) value F_{rms} for fatigue design and the average of the highest $1/250$ of the peak forces $F_{1/250}$ being a representative for the maximum peak force.

In the following only peak forces as function of wave height are shown.
4.1 MOORING FORCES

Figure 2 shows mooring force as a function of wave height.

Figure 2. Mooring force for Wave Dragon prototype, scale 1:4.5.
4.2. FORCES IN CABLES

Figure 3 and 4 show forces in cables A and O as function of wave height.

Figure 3. Force in across cable A for Wave Dragon prototype, scale 1:4.5.

Figure 4. Force in oblique cable O for Wave Dragon prototype, scale 1:4.5.
4.3 Forces on Shoulder Hinge

Figure 5 - 10 shows force components acting on shoulder hinge as function of wave height.

Figure 5. Shear force X on shoulder for Wave Dragon prototype, scale 1:4.5.

Figure 6. Shear force X on shoulder for Wave Dragon prototype, scale 1:4.5.
Figure 7. Axial force Y on shoulder for Wave Dragon prototype, scale 1:4.5.

Figure 8. Axial force Y on shoulder for Wave Dragon prototype, scale 1:4.5.
Figure 9. Vertical force Z on shoulder for Wave Dragon prototype, scale 1:4.5.

Figure 10. Vertical force Z on shoulder for Wave Dragon prototype, scale 1:4.5.
5. OVERTOPPING

According to the previous tests measured values of overtopping were non-dimensionalized and presented in the following form:

\[Q^* = 0.017 \exp(-48R^*) \]

(eq. 1)

where,

\[Q^* = \frac{q\sqrt{s_{op}/2\pi}}{\sqrt{gH_s^2L}} \]

\[R^* = \frac{R_c}{H_s} \frac{\sqrt{s_{op}}}{2\pi} \]

\[q = \text{discharge due overtopping} \]

\[H_s = \text{significant wave height} \]

\[L = \text{ramp width} = 86.6 \text{ m} \]

\[s_{op} = \text{wave steepness defined as } s_{op} = H_s/L_{op} \]

\[L_{op} = \text{deep water wave length defined as } L_{op} = \frac{g}{2\pi T_p^2} \]

\[T_p = \text{peak period} \]

\[R_c = \text{Mean value of crest freeboard relative to MWL} \]

Overtopping results obtained using the 2. generation model are shown in Figure 2 as well as the overtopping relation for the 1. generation model (eq. 1).

Also in Figure 8 a reevaluated overtopping relation is shown based on measurements obtained with the new doubly-curved overtopping ramp. The new overtopping equation is modified to:

\[Q^* = 0.025 \exp(-40R^*) \]

(eq. 2)

Figure 11. Dimensionless overtopping relation.
7. REFERENCES

Hald, T., Lynggaard, J., Ombygning af Wave Dragon (in Danish), Hydraulics & Coastal Engineering Laboratory, Aalborg University, DEA phase 3 report, project no: ENS-51191/00-0067, 2001a.

Hald, T., Lynggaard, J., Hydraulic model tests on modified Wave Dragon, Hydraulics & Coastal Engineering Laboratory, Aalborg University, DEA phase 3 report, project no: ENS-51191/00-0067, 2001b.

Appendix A

Cross sectional and plan view of Wave Dragon
ELEVATION AT CENTRELINE BULKHEAD

Plane view, Wave Dragon model scale 1:4.5 - measures in meters.