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Abstract—The dc component, which may be caused by differ-
ent factors in the grid voltage, is one of the disturbances that may
severely affect the performance of grid synchronization systems
and, therefore, grid-tied power converters. In the phase-locked
loop (PLL) and frequency-locked loop (FLL) based grid synchro-
nization systems, which this paper focuses on, some solutions to
deal with this challenge have been proposed in the literature. One
of the best available solutions is adding dc rejection/estimation
loop(s) to a standard PLL and FLL structure. This approach
provides an estimation of the dc component and at the same
time makes the PLL and FLL immune to disturbance effects of
the dc component. Despite their implementation simplicity, no
linear model for the grid synchronization systems with the dc
rejection/estimation capability has yet been presented. The main
aim of this paper is to fill this research gap. It will be shown that
developing such models facilitates the examination and even the
performance enhancement of the grid synchronization systems
under study.

Index Terms—DC component, frequency-locked loop (FLL),
linear time-invariant (LTI), linear time-periodic (LTP), phase-
locked loop (PLL), reduced-order generalized integrator (ROGI),
second-order generalized integrator (SOGI), single-phase sys-
tems, synchronization, three-phase systems.

I. INTRODUCTION

FREQUENCY-LOCKED loops (FLLs) [1], [2] and phase-
locked loops (PLLs) [3], [4] are two popular options

for the grid synchronization of power converters. From the
control point of view, they are both nonlinear feedback control
systems. However, they are implemented in different ways.

Generally speaking, designing PLLs is based on transferring
the grid voltage signal(s) into a synchronous reference frame
(SRF) and, therefore, it involves computing sine and cosine
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functions. Fig. 1(a) illustrates the block diagram of a standard
three-phase PLL, which is known as the conventional SRF-
PLL [5], [6]. In the conventional SRF-PLL, the three-phase
grid voltage signals are transferred into an SRF with the
rotating angle θ̂1, where θ̂1 is an estimation of the phase
angle of the fundamental-frequency positive-sequence (FFPS)
component of the grid voltage. Therefore, the signal vd in the
SRF-PLL provides an estimation of the amplitude of the FFPS
component, and the signal vq provides the error between the
actual and estimated phase angles. This error is regulated to
zero using a loop controller, which is a proportional-integral
(PI) regulator.

Because of the lack of multiple input signals, designing
single-phase PLLs is often more complicated than the three-
phase ones [7]. To deal with this difficulty, often a fictitious
signal with the same amplitude and 90◦ difference compared to
the fundamental component of the single-phase input signal is
created [4], [8], [9]. In the simplest possible case, this fictitious
signal is directly generated using the estimated amplitude and
phase angle by the single-phase PLL. The resulting PLL is
known as the synthesis circuit PLL [10], which is mathemati-
cally equivalent to the enhanced PLL (EPLL) structure in Fig.
2(a) [11]. Notice that the governing differential equations of
the EPLL may also be directly obtained using the gradient
descent method.

Designing FLLs is quite different from PLLs. The basic idea
in designing FLLs is using a band-pass filter (BPF) to extract
the grid voltage fundamental component and a frequency de-
tector to make this BPF frequency-adaptive. In three-phase ap-
plications, the reduced-order generalized integrator-based FLL
(ROGI-FLL) [see Fig. 3(a)] is a standard structure [2], [12]–
[15]. The ROGI-FLL includes a complex-coefficient BPF,1

which is realized by using a ROGI centered at the fundamental
frequency in a unity feedback loop, and a frequency detector to
adapt the center of the ROGI to frequency changes. In single-
phase applications, the second-order generalized integrator-
based FLL (SOGI-FLL) [see Fig. 4(a)] is a standard structure
[1], [17]. The SOGI-FLL provides an estimation of the grid
voltage fundamental component and its 90◦ phase-shifted
version by including a SOGI in a unity feedback loop. A

1A complex-coefficient filter, contrary to the real-coefficient one, has an
asymmetrical frequency-response around zero Hz [16].
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Fig. 1. (a) Conventional SRF-PLL. (b) Modified SRF-PLL (mSRF-PLL). kp, ki, kv , and k0 are the control parameters. va, vb, and vc denote the three-phase
grid voltage signals, and vα and vβ are the grid voltage signals in the αβ frame. v̂α,1 and v̂β,1 are estimations of the fundamental component of vα and
vβ , respectively. V̂α,0 and V̂β,0 are estimations of the dc component of the signals vα and vβ , respectively. V̂1, θ̂1, and ω̂ are estimations of the amplitude,
phase angle, and angular frequency of the grid voltage fundamental component, respectively. ωn is the nominal value of the grid angular frequency.
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Fig. 2. (a) Conventional EPLL. (b) Modified EPLL (mEPLL). v is the single-phase grid voltage signal, and v̂1 is an estimation of the fundamental component
of v. V̂0 is an estimation of the dc component of the signal v.
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Fig. 3. (a) Conventional ROGI-FLL. (b) Modified ROGI-FLL (mROGI-FLL). k0, k1, and λ are the control parameters.
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Fig. 4. (a) Conventional SOGI-FLL. (b) Modified SOGI-FLL (mSOGI-FLL). v̂′1 is 90◦ phase-shifted version of v̂1.
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frequency observer adapts the center frequency of the SOGI
to frequency changes.

The conventional SRF-PLL, EPLL, ROGI-FLL, and SOGI-
FLL are all highly sensitive to the presence of a dc component
in their input. Such a component, which may be caused
by different factors such as grid faults, signal conversion
process, and measurement devices among others, generates
fundamental-frequency oscillatory errors in the output of
the above grid synchronization systems and, therefore, may
contribute to the dc injection by grid-tied power converters
to the power grid [18], [19]. To deal with this challenge,
different approaches have been proposed in the literature. The
available methods can be divided into two major categories.
The first one includes those approaches that only reject the
dc component. Using delay signal cancellation operators [2],
[19]–[21], BPFs [2], [22]–[24], and notch filters [19] before
the input or inside the control loop of the conventional SRF-
PLL, EPLL, ROGI-FLL, and SOGI-FLL are examples of these
approaches. In the second category, which is the focus of
this paper, the available methods provide an estimation of the
dc component in addition to rejecting the disturbance effect
of this component on the grid synchronization system [1]–
[4]. Such methods, therefore, can be beneficial in applications
where monitoring and/or compensation of the dc component
is required [25], [26].

Adding the dc offset rejection/estimation capability to the
conventional SRF-PLL, EPLL, ROGI-FLL, and SOGI-FLL
can be carried out in several ways. The simplest possible
approach is perhaps including simple dc rejection/estimation
loop(s) in the above synchronization systems, which results in
the modified SRF-PLL (mSRF-PLL) [Fig. 1(b)], the modified
EPLL (mEPLL) [Fig. 2(b)], the modified ROGI-FLL (mROGI-
FLL) [Fig. 3(b)], and the modified SOGI-FLL (mSOGI-FLL)
[Fig. 4(b)]. This idea, which has been proposed by Karimi
Ghartemani et al. [18], can be mathematically formulated
using the gradient descent method.

Despite the implementation simplicity of the mSRF-PLL,
mEPLL, mROGI-FLL, and mSOGI-FLL, no linear model for
them has yet been derived. Without such a model, a thorough
analysis of these synchronization systems is not possible (at
least not easily). The main aim of this paper is to bridge
this research gap. To this end, this paper makes the following
contributions to the field.

• Through a step-by-step mathematical procedure, a lin-
ear time-periodic (LTP) model for the mROGI-FLL is
presented. Using this model, the open-loop harmonic
transfer function (HTF) of the mROGI-FLL is obtained,
the effects of the control parameters on its stability are
briefly discussed, and its stability region is determined.

• It is shown how using the derived LTP model, a linear
time-invariant (LTI) model for the mROGI-FLL can be
obtained.

• Using the obtained linear models and some numerical
results, the dynamic couplings between the amplitude
and phase/frequency variables of the mROGI-FLL is dis-
cussed, and a simple yet efficient solution for decoupling
these variables is proposed.
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Fig. 5. Frequency response of the input-output transfer functions of the
mROGI-FLL and the decoupled mROGI-FLL. Parameters: k0 = k1 = k2 =
100 rad/s and ω̂ = ωn = 2π50 rad/s.

• The relationship of the mROGI-FLL and mSRF-PLL is
briefly investigated.

• Finally, an LTP model for the mSOGI-FLL is pre-
sented, and the relationship between the mSOGI-FLL and
mEPLL is discussed.

II. MODIFIED ROGI-FLL (mROGI-FLL)

A. LTP Modeling

1) Assumptions: For obtaining the LTP model of the
mROGI-FLL, it is assumed that the three-phase grid voltage
of the mROGI-FLL contains only the FFPS component and
a dc component, as expressed in (1), in which V1 and θ1

are the amplitude and phase angle of the FFPS component,
respectively, and Va,0, Vb,0 and Vc,0 are the dc component in
three phases.

va(t) = V1 cos(θ1) + Va,0
vb(t) = V1 cos(θ1 − 2π/3) + Vb,0
va(t) = V1 cos(θ1 + 2π/3) + Vc,0

(1)

Transferring (1) to the αβ frame yields

vα(t) = V1 cos(θ1) + Vα,0
vβ(t) = V1 sin(θ1) + Vβ,0

(2)

where Vα,0 = 2
3 (Va,0 − 0.5Vb,0 − 0.5Vc,0) and Vβ,0 =

1√
3

(Vb,0 − Vc,0).
If we assume that ω̂ is a constant, the transfer function

between the input signals vα and vβ and the output signals
v̂α,1 and v̂β,1 in Fig. 3(b) can be obtained as

G(s) =
v̂α,1(s) + jv̂β,1(s)

vα(s) + jvβ(s)
=

k1s

s2 + (k0 + k1 − jω̂)s− jk0ω̂
.

(3)
The solid lines in Fig. 5 show the frequency response of
this transfer function. It is observed that it is a complex
band-pass/notch filter that passes the FFPS component and
blocks the dc component. It means that the output signals
v̂α,1 and v̂β,1 in the mROGI-FLL are estimations of the
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FFPS component of the input signals vα and vβ , respectively.
Therefore, by considering (2), the output signals v̂α,1 and v̂β,1
can be expressed as

v̂α,1(t) = V̂1 cos(θ̂1), v̂β,1(t) = V̂1 sin(θ̂1) (4)

where V̂1 and θ̂1 are estimations of V1 and θ1 in (2), respec-
tively. By following a similar procedure, it can be shown that
the output signals V̂α,0 and V̂β,0 in Fig. 3(b) are estimations
of the dc component of the input signals vα and vβ in (2).

The mROGI-FLL is also assumed to be working under
a quasi-locked condition, which is corresponding to V̂α,0 ≈
Vα,0, V̂β,0 ≈ Vβ,0, V̂1 ≈ V1, θ̂1 ≈ θ1, and ω̂ ≈ ω. All these
parameters are also defined as a nominal value (indicated by
the subscript n) plus a small perturbation (indicated by ∆), as
follows

V̂α,0 = Vn,0 + ∆V̂α,0, Vα,0 = Vn,0 + ∆Vα,0
V̂β,0 = Vn,0 + ∆V̂β,0, Vβ,0 = Vn,0 + ∆Vβ,0
V̂1 = Vn,1 + ∆V̂1, V1 = Vn,1 + ∆V1

θ̂1 = θn,1 + ∆θ̂1, θ1 = θn,1 + ∆θ1

ω̂ = ωn + ∆ω̂, ω = ωn + ∆ω.

(5)

Throughout this paper Vn,1 = 1 p.u., ωn = 2π50 rad/s, θn,1 =∫
ωndt = ωnt are considered.

2) Governing Nonlinear Differential Equations: From Fig.
3(b), the estimated dc components and the estimated angular
frequency, phase angle, and amplitude of the FFPS component
can be expressed as

V̂α,0 = k0

∫
(vα − v̂α,1 − V̂α,0)dt (6a)

V̂β,0 = k0

∫
(vβ − v̂β,1 − V̂β,0)dt (6b)

ω̂ = ωn + λ

∫
(vβ − V̂β,0)v̂α,1 − (vα − V̂α,0)v̂β,1

V̂ 2
1

dt (6c)

θ̂1 = tan−1

(
v̂β,1
v̂α,1

)
(6d)

V̂1 =
√
v̂2
α,1 + v̂2

β,1. (6e)

The time derivative of (6) is

dV̂α,0
dt

= k0(vα − v̂α,1 − V̂α,0) (7a)

dV̂β,0
dt

= k0(vβ − v̂β,1 − V̂β,0) (7b)

dω̂

dt
= λ

(vβ − V̂β,0)v̂α,1 − (vα − V̂α,0)v̂β,1

V̂ 2
1

(7c)

dθ̂1

dt
=
v̂α,1

dv̂β,1
dt − v̂β,1

dv̂α,1
dt

V̂ 2
1

(7d)

dV̂1

dt
=
v̂α,1

dv̂α,1
dt + v̂β,1

dv̂β,1
dt

V̂1

(7e)

where dv̂α,1
dt and dv̂β,1

dt , according to Fig. 3(b), are equal to

dv̂α,1
dt

= −ω̂v̂β,1 + k1(vα − v̂α,1 − V̂α,0) (8a)

dv̂β,1
dt

= +ω̂v̂α,1 + k1(vβ − v̂β,1 − V̂β,0). (8b)

Substituting (8) into (7d) and (7e) results in

dθ̂1

dt
=
ω̂[v̂2

α,1 + v̂2
β,1] + k1

V̂ 2
1
λ
dω̂
dt︷ ︸︸ ︷

[(vβ − V̂β,0)v̂α,1 − (vα − V̂α,0)v̂β,1]

V̂ 2
1

(9a)

dV̂1

dt
= k1

v̂α,1(vα − v̂α,1 − V̂α,0) + v̂β,1(vβ − v̂β,1 − V̂β,0)

V̂1

. (9b)

Equations (7a)-(7c) and (9) are a set of nonlinear differential
equations that describe the governing dynamics of the mROGI-
FLL. To obtain a linear model, these equations are linearized
in the next section.

3) Linearization: Substituting (2) and (4) into (7a)-(7c) and
(9) gives

dV̂α,0
dt

= k0

[
V1 cos(θ1) + Vα,0 − V̂1 cos(θ̂1)− V̂α,0

]
(10a)

dV̂β,0
dt

= k0

[
V1 sin(θ1) + Vβ,0 − V̂1 sin(θ̂1)− V̂β,0

]
(10b)

dω̂

dt
=

λ

V̂1

[
V1 sin(θ1 − θ̂1) + (Vβ,0 − V̂β,0) cos(θ̂1)

−(Vα,0 − V̂α,0) sin(θ̂1)
]

(10c)

dθ̂1

dt
= ω̂ +

k1

λ

dω̂

dt
(10d)

dV̂1

dt
= k1

[
V1 cos(θ1 − θ̂1)− V̂1 + (Vα,0 − V̂α,0) cos(θ̂1)

+(Vβ,0 − V̂β,0) sin(θ̂1)
]
. (10e)

Considering the definitions (5) and using trigonometric
identities, (10) can be approximated by (11) on the next page,
which is a set of LTP differential equations. Using (11), the
linear model of the mROGI-FLL, which is an LTP model, can
be obtained, as shown in Fig. 6.

B. Stability Analysis

1) Harmonic Transfer Function (HTF): The obtained linear
model for the mROGI-FLL, as mentioned before, has an LTP
nature. It implies that there are dynamic couplings among
different frequency components and, therefore, the concept
of transfer function will be elusive. To take into account
these couplings, the HTF method needs to be adopted for the
stability analysis [27]–[29]. Mathematically speaking, the HTF
is the translation of an LTP system to an LTI system with an
infinite dimension. In this way, the theory of multivariable
LTI feedback control can be applied for the analysis. In what
follows, the open-loop HTF of the mROGI-FLL is obtained.

Considering the fact that L [cos(ωnt)E(t)] = 1
2E(s +

jωn) + 1
2E(s− jωn) and L [sin(ωnt)E(t)] = j

2E(s+ jωn)−
j
2E(s − jωn), where L denotes the Laplace transform and
E(s) = L[E(t)], the output signals ∆V̂α,0, ∆V̂β,0, ∆θ̂1, and
∆V̂1 in Fig. 6 can be expressed in the Laplace domain as (12).

By defining H(s) =
s+

ωz︷︸︸︷
λ/k1
s2 , G(s) = 1

s , sm = s + jmωn
(m ∈ Z), and k0 = rk1, and substituting s by sm in (12), it can
be rewritten as (13). In the matrix form, (13) is corresponding
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d∆V̂α,0
dt

= k0

[
(Vn,1 + ∆V1) cos(θn,1 + ∆θ1)− (Vn,1 + ∆V̂1) cos(θn,1 + ∆θ̂1) + ∆Vα,0 −∆V̂α,0

]

= k0

Vn,1 cos(θn,1)

≈0︷ ︸︸ ︷{
cos(∆θ1)− cos(∆θ̂1)

}
−Vn,1 sin(θn,1)

≈∆θ1−∆θ̂1︷ ︸︸ ︷{
sin(∆θ1)− sin(∆θ̂1)

}
+ ∆Vα,0 −∆V̂α,0

+ cos(θn,1)

≈∆V1−∆V̂1︷ ︸︸ ︷{
∆V1 cos(∆θ1)−∆V̂1 cos(∆θ̂1)

}
− sin(θn,1)

≈0︷ ︸︸ ︷{
∆V1 sin(∆θ1)−∆V̂1 sin(∆θ̂1)

}
≈ k0

[
(∆V1 −∆V̂1) cos(θn,1)− Vn,1(∆θ1 −∆θ̂1) sin(θn,1) + ∆Vα,0 −∆V̂α,0

]
(11a)

d∆V̂β,0
dt

= k0

[
(Vn,1 + ∆V1) sin(θn,1 + ∆θ1)− (Vn,1 + ∆V̂1) sin(θn,1 + ∆θ̂1) + ∆Vβ,0 −∆V̂β,0

]

= k0

Vn,1 sin(θn,1)

≈0︷ ︸︸ ︷{
cos(∆θ1)− cos(∆θ̂1)

}
+Vn,1 cos(θn,1)

≈∆θ1−∆θ̂1︷ ︸︸ ︷{
sin(∆θ1)− sin(∆θ̂1)

}
+∆Vβ,0 −∆V̂β,0

+ sin(θn,1)

≈∆V1−∆V̂1︷ ︸︸ ︷{
∆V1 cos(∆θ1)−∆V̂1 cos(∆θ̂1)

}
+ cos(θn,1)

≈0︷ ︸︸ ︷{
∆V1 sin(∆θ1)−∆V̂1 sin(∆θ̂1)

}
≈ k0

[
(∆V1 −∆V̂1) sin(θn,1) + Vn,1(∆θ1 −∆θ̂1) cos(θn,1) + ∆Vβ,0 −∆V̂β,0

]
(11b)

d∆ω̂

dt
=

≈ λ
Vn,1

(
1− ∆V̂1

Vn,1

)︷ ︸︸ ︷
λ

Vn,1 + ∆V̂1

(Vn,1 + ∆V1)

≈∆θ1−∆θ̂1︷ ︸︸ ︷
sin(∆θ1 −∆θ̂1) +(∆Vβ,0 −∆V̂β,0) cos(θn,1 + ∆θ̂1)

−(∆Vα,0 −∆V̂α,0) sin(θn,1 + ∆θ̂1)



≈ λ

Vn,1

(
1− ∆V̂1

Vn,1

)Vn,1(∆θ1 −∆θ̂1) +

≈(∆Vβ,0−∆V̂β,0)︷ ︸︸ ︷
(∆Vβ,0 −∆V̂β,0) cos(∆θ̂1) cos(θn,1)−

≈0︷ ︸︸ ︷
(∆Vβ,0 −∆V̂β,0) sin(∆θ̂1) sin(θn,1)

−

≈(∆Vα,0−∆V̂α,0)︷ ︸︸ ︷
(∆Vα,0 −∆V̂α,0) cos(∆θ̂1) sin(θn,1)−

≈0︷ ︸︸ ︷
(∆Vα,0 −∆V̂α,0) sin(∆θ̂1) cos(θn,1)


≈ λ

Vn,1

[
Vn,1(∆θ1 −∆θ̂1) + (∆Vβ,0 −∆V̂β,0) cos(θn,1)− (∆Vα,0 −∆V̂α,0) sin(θn,1)

]
(11c)

d∆θ̂1

dt
= ∆ω̂ +

k1

λ

d∆ω̂

dt
(11d)

d∆V̂1

dt
= k1


≈∆V1−∆V̂1︷ ︸︸ ︷

(Vn,1 + ∆V1) cos(∆θ1 −∆θ̂1)− (Vn,1 + ∆V̂1) +(∆Vα,0 −∆V̂α,0) cos(θn,1 + ∆θ̂1)

+(∆Vβ,0 −∆V̂β,0) sin(θn,1 + ∆θ̂1)


≈ k1

[
(∆V1 −∆V̂1) + (∆Vα,0 −∆V̂α,0) cos(θn,1) + (∆Vβ,0 −∆V̂β,0) sin(θn,1)

]
(11e)
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Fig. 6. LTP model of the mROGI-FLL. It will be proved later that this LTP model is also valid for the mSRF-PLL. The only point is that the control
parameters in this model need to be replaced by those of the mSRF-PLL. To be more exact, the gain k1 in the upper and lower control loops of this model
needs to be replaced by kv and kp, respectively, and the gain λ needs to be replaced by ki.

to (14) at the bottom of the next page, which is the open-loop
HTF of the mROGI-FLL. Fig. 7(a) shows the block diagram
representation of (14).

Notice that (14) has an infinite dimension. Therefore, its
truncated version needs to be considered for the analysis.

2) Stability Region: The mROGI-FLL stability can be
analyzed using the generalized Nyquist stability criterion for
the LTP systems [27]. According to this criterion, the LTP
feedback control system in Fig. 7(a) is stable if the point
−1/k1 is encircled Np times in an anticlockwise direction
by the eigenloci2 of GHT F (s) for s belonging to the counter
shown in Fig. 7(b), where Np is the number of open-loop
poles of GHT F (s) in the right-half plane.

Fig. 8 shows the LTP Nyquist plots of the HTF GHT F (s)
for different set of control parameters. According to the

2The eigenloci of GHT F (s) are the closed curves generated by the
eigenvalues of GHT F (s) in the complex plane.

generalized Nyquist stability criterion, the stability range of
the control gain k1 in each plot is as follows.

• Fig. 8(a): −∞ < − 1
k1

< −5.655e − 4 or 0 < k1 <
1768.3.

• Fig. 8(b): −∞ < − 1
k1

< −2.0631e − 3 or 0 < k1 <
484.7.

• Fig. 8(c): −∞ < − 1
k1

< −9.948e − 4 or 0 < k1 <
1005.2.

• Fig. 8(d): −∞ < − 1
k1

< −3.2988e − 3 or 0 < k1 <
303.1.

The above observations indicate that increasing the ratio
r = k0/k1 and/or ωz = λ/k1 reduces the stability range of
the control gain k1. This fact can be better visualized in Fig.
9, which shows the stability regions of the mROGI-FLL for
two different values of r (r = 0.5 in the left plot and r = 1 in
the right plot). A noticeable reduction in the stability region of
the mROGI-FLL by increasing the ratio r is observed. Notice
that r = 0, which is corresponding to k0 = 0 and, therefore,

∆V̂α,0(s) ≈ k0

2s

[
jVn,1∆θe1(s− jωn) + ∆V e1 (s− jωn) + 2∆V eα,0(s)− jVn,1∆θe1(s+ jωn) + ∆V e1 (s+ jωn)

]
(12a)

∆V̂β,0(s) ≈ k0

2s

[
Vn,1∆θe1(s− jωn)− j∆V e1 (s− jωn) + 2∆V eβ,0(s) + Vn,1∆θe1(s+ jωn) + j∆V e1 (s+ jωn)

]
(12b)

∆θ̂1(s) ≈ k1s+ λ

2Vn,1s2

[
j∆V eα,0(s− jωn) + ∆V eβ,0(s− jωn) + 2Vn,1∆θe1(s)− j∆V eα,0(s+ jωn) + ∆V eβ,0(s+ jωn)

]
(12c)

∆V̂1(s) ≈ k1

2s

[
∆V eα,0(s− jωn)− j∆V eβ,0(s− jωn) + 2∆V e1 (s) + ∆V eα,0(s+ jωn) + j∆V eβ,0(s+ jωn)

]
. (12d)

∆V̂α,0(sm) ≈ rk1G(sm)

2

[
jVn,1∆θe1(sm−1) + ∆V e1 (sm−1) + 2∆V eα,0(sm)− jVn,1∆θe1(sm+1) + ∆V e1 (sm+1)

]
(13a)

∆V̂β,0(sm) ≈ rk1G(sm)

2

[
Vn,1∆θe1(sm−1)− j∆V e1 (sm−1) + 2∆V eβ,0(sm) + Vn,1∆θe1(sm+1) + j∆V e1 (sm+1)

]
(13b)

∆θ̂1(sm) ≈ k1H(sm)

2Vn,1

[
j∆V eα,0(sm−1) + ∆V eβ,0(sm−1) + 2Vn,1∆θe1(sm)− j∆V eα,0(sm+1) + ∆V eβ,0(sm+1)

]
(13c)

∆V̂1(sm) ≈ k1G(sm)

2

[
∆V eα,0(sm−1)− j∆V eβ,0(sm−1) + 2∆V e1 (sm) + ∆V eα,0(sm+1) + j∆V eβ,0(sm+1)

]
. (13d)
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removing the dc rejection/estimation loop of the mROGI-FLL,
makes the region of its stability of infinite size. It is reasonable
because, without its dc rejection/estimation loop, the mROGI-
FLL turns to a simple ROGI-FLL, which is unconditionally
stable from the small-signal point of view.

C. LTI modeling

Based on the LTP model in Fig. 6, an LTI model may also
be obtained for the mROGI-FLL, which further facilitates its
analysis. Obtaining such a model requires to assume that the
perturbation terms ∆Vα,0 and ∆Vβ,0 in the LTP model of the
mROGI-FLL are equal to zero. It implies that the resulting LTI
model will not be able to predict any transient in the mROGI-
FLL output caused by the change of dc component in its input.
In what follows, the procedure for obtaining the LTI model of
the mROGI-FLL from its LTP model is explained.

By considering ∆Vα,0 = 0 and ∆Vβ,0 = 0 in Fig. 6,
the signals U1, U2, ∆V̂α,0, and ∆V̂β,0 in this figure can be

expressed in the time domain as

U1(t) = − cos(θn,1)∆V̂α,0(t)− sin(θn,1)∆V̂β,0(t)

U2(t) =
sin(θn,1)
Vn,1

∆V̂α,0(t)− cos(θn,1)
Vn,1

∆V̂β,0(t)
(15)

∆V̂α,0(t) = L(t) ∗ {cos(θn,1)∆V e1 (t)− Vn,1 sin(θn,1)∆θe1(t)}
∆V̂β,0(t) = L(t) ∗ {sin(θn,1)∆V e1 (t) + Vn,1 cos(θn,1)∆θe1(t)}

(16)
where L(t) is the inverse Laplace of L(s) = k0

s+k0
and ∗

denotes the convolution product.

Taking the Laplace transform of (15) and (16) results in

U1(s) = −1

2

[
∆V̂α,0(s− jωn) + ∆V̂α,0(s+ jωn)

+j∆V̂β,0(s+ jωn)− j∆V̂β,0(s− jωn)
]

(17a)

U2(s) = − 1

2Vn,1

[
j∆V̂α,0(s− jωn)− j∆V̂α,0(s+ jωn)

+∆V̂β,0(s− jωn) + ∆V̂β,0(s+ jωn)
]

(17b)



...
∆V̂α,0(s−1)

∆V̂β,0(s−1)

∆θ̂1(s−1)

∆V̂1(s−1)

∆V̂α,0(s0)

∆V̂β,0(s0)

∆θ̂1(s0)

∆V̂1(s0)

∆V̂α,0(s+1)

∆V̂β,0(s+1)

∆θ̂1(s+1)

∆V̂1(s+1)
...


︸ ︷︷ ︸

Y

= k1



. . .
...

...
...

...
...

...
· · · rG(s−1) 0 0 0 0 0
· · · 0 rG(s−1) 0 0 0 0

· · · 0 0 H(s−1) 0 − jH(s−1)
2Vn,1

H(s−1)
2Vn,1

· · · 0 0 0 G(s−1) G(s−1)
2

jG(s−1)
2

· · · 0 0
jVn,1rG(s0)

2
rG(s0)

2 rG(s0) 0

· · · 0 0
Vn,1rG(s0)

2 − jrG(s0)
2 0 rG(s0)

· · · jH(s0)
2Vn,1

H(s0)
2Vn,1

0 0 0 0

· · · G(s0)
2 − jG(s0)

2 0 0 0 0
· · · 0 0 0 0 0 0
· · · 0 0 0 0 0 0

· · · 0 0 0 0 jH(s+1)
2Vn,1

H(s+1)
2Vn,1

· · · 0 0 0 0 G(s+1)
2 − jG(s+1)

2

. . .
...

...
...

...
...

...

...
...

...
...

...
... . . .

− jVn,1rG(s−1)
2

rG(s−1)
2 0 0 0 0 · · ·

Vn,1rG(s−1)
2

jrG(s−1)
2 0 0 0 0 · · ·

0 0 0 0 0 0 · · ·
0 0 0 0 0 0 · · ·
0 0 0 0 − jVn,1rG(s0)

2
rG(s0)

2 · · ·
0 0 0 0

Vn,1rG(s0)
2

jrG(s0)
2 · · ·

H(s0) 0 − jH(s0)
2Vn,1

H(s0)
2Vn,1

0 0 · · ·
0 G(s0) G(s0)

2
jG(s0)

2 0 0 · · ·
jVn,1rG(s+1)

2
rG(s+1)

2 rG(s+1) 0 0 0 · · ·
Vn,1rG(s+1)

2 − jrG(s+1)
2 0 rG(s+1) 0 0 · · ·

0 0 0 0 H(s+1) 0 · · ·
0 0 0 0 0 G(s+1) · · ·
...

...
...

...
...

...
. . .





...
∆V eα,0(s−1)
∆V eβ,0(s−1)

∆θe1(s−1)
∆V e1 (s−1)
∆V eα,0(s0)
∆V eβ,0(s0)

∆θe1(s0)
∆V e1 (s0)

∆V eα,0(s+1)
∆V eβ,0(s+1)

∆θe1(s+1)
∆V e1 (s+1)

...


︸ ︷︷ ︸

E

(14)
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Fig. 7. (a) LTP feedback control system described by the open-loop HTF in
(14). (b) LTP Nyquist counter.

∆V̂α,0(s)=
L(s)

2
[∆V e1 (s− jωn) + ∆V e1 (s+ jωn)

+jVn,1∆θe1(s− jωn)− jVn,1∆θe1(s+ jωn)] (18a)

∆V̂β,0(s)=
L(s)

2
[j∆V e1 (s+ jωn)− j∆V e1 (s− jωn)

+Vn,1∆θe1(s+ jωn) + Vn,1∆θe1(s− jωn)] . (18b)

Using (18) and considering the transfer function L(s) = k0

s+k0
,

(17) can be rewritten as[
U1(s)
U2(s)

]
= −1

2

[
L(s− jωn) + L(s+ jωn)

j
Vn,1
{L(s− jωn)− L(s+ jωn)}

−jVn,1 {L(s− jωn)− L(s+ jωn)}
L(s− jωn) + L(s+ jωn)

] [
∆V e1 (s)
∆θe1(s)

]
=

−k0

(s+ k0)
2

+ ω2
n

[
(s+ k0) Vn,1ωn
−ωn/Vn,1 (s+ k0)

] [
∆V e1 (s)
∆θe1(s)

]
(19)

Based on (19) and the LTP model in Fig. 6, the LTI model
of the mROGI-FLL can be obtained as shown in Fig. 10. The
LTI model in Fig. 10 is a two-input-two-output (TITO) control
system. Therefore, using this model for the analysis and tuning
will be more straightforward than the LTP one. This fact is
demonstrated in what follows.

Consider a unity-feedback TITO control system as in Fig.
11, where its open-loop transfer matrix is as expressed below:[

Y1(s)
Y2(s)

]
=

[
p11(s) p12(s)
p21(s) p22(s)

]
︸ ︷︷ ︸

P (s)

[
E1(s)
E2(s)

]
.

The characteristic polynomial of the above TITO control
system is as (20), where det[P (s)] and tr[P (s)] denote the
determinant and trace of P (s), respectively [30].

1 +

det[P (s)]︷ ︸︸ ︷
p11(s)p22(s)− p12(s)p21(s) +

tr[P (s)]︷ ︸︸ ︷
p11(s) + p22(s) = 0 (20)

The LTI model of the mROGI-FLL, as mentioned before,
is also a unity-feedback TITO control system (see Fig. 10).
Therefore, its characteristic polynomial can be obtained in a
similar manner, as expressed below:

s5 + 2(k0 + k1)s4 + (k2
0 + 2k0k1 + k2

1 + ω2
n + λ)s3

+(2k1ω
2
n + k0λ+ k1λ)s2 + (k2

1 + λ)ω2
ns+ k1λω

2
n = 0. (21)

Selecting the control parameters and analyzing the stability of
the mROGI-FLL are quite straightforward by examining the
roots of its characteristic polynomial, which are its closed-
loop poles. For instance, to ensure the mROGI-FLL stability,
its closed-loop poles should be in the left-half plane, which

can be simply determined by examining the roots of (21). The
following example better illustrates this fact.

For the sake of study, let us consider a case that the ratios
k0/k1 = r and λ/k1 = ωz are fixed at r = 1 and ωz = 200.
Fig. 12 shows the location of the roots of (21) in the complex
s-plane when k1 changes in the range of 0 < k1 < 310.
It is observed that the closed-loop poles of the mROGI-FLL
enter the right half-plane and, therefore, make it unstable when
k1 > 303.1. We have studied the same case before in Fig. 8(d)
by applying the generalized Nyquist stability criterion to the
open-loop HTF of the mROGI-FLL. It is observed that the
results of both studies are completely consistent.

D. Model Verification

Here, to evaluate the accuracy of the LTP and LTI models
of the mROGI-FLL, some numerical tests are performed. In
these tests, as shown in Fig. 13, the α- and β-axis input
signals of the mROGI-FLL are generated by considering some
small perturbations in the grid voltage parameters. The same
perturbations are used as the input signals of the LTP and LTI
models of the mROGI-FLL. The results of the mROGI-FLL
are then compared with those predicted by its LTP and LTI
models.

In this evaluation, the mROGI-FLL and its LTP and LTI
models are discretized with a sampling frequency of 10 kHz.
The nominal values of the grid voltage parameters are ωn =
2π50 rad/s, θn,1 =

∫
ωndt, Vn,1 = 1 p.u., and Vn,0 = 0

p.u. The selected control parameters are k0 = k1 = 100 and
λ = 5000.

Three numerical tests are considered.
• In Test 1, a 10◦ phase step change happens
• In Test 2, a 0.2 p.u. dc component is suddenly added to

the α-axis input.
• In Test 3, a 0.2 p.u. symmetrical voltage sag happens.

Fig. 14 shows the results of these tests. It is observed in
these results that the LTP model can accurately predict the
transient behavior of the mROGI-FLL in all of its output
signals regardless of whether the transient state is caused by a
change in the dc component or a parameter of the fundamental
component. The LTI model, however, can only predict the
transient states in the output phase angle, frequency, and
amplitude of the mROGI-FLL if these transients are caused by
a change in a parameter of the input fundamental component.

To further investigate, it can be interesting to see how
accurate the LTP model is in predicting the stability border
of the mROGI-FLL. To this end, the points corresponding to
ωz = 100, 200, 300, 400, and 500 on the stability border of the
mSOGI-FLL in Fig. 9(b) are considered as the case study (see
Table I). These points, which are indicated by k1max in Table
I, are the maximum values of k1 for ensuring the mROGI-FLL
stability according to its LTP model. Some digital simulations
with different sampling frequencies are conducted to evaluate
the accuracy of these theoretical predictions. The obtained
results are summarized in Table I. It is observed that there are
some small differences between the theoretically predicted and
numerically determined k1max when the sampling frequency
is 10 kHz. These small differences, however, are considerably

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on September 02,2020 at 08:54:07 UTC from IEEE Xplore.  Restrictions apply. 



0885-8993 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2020.3018584, IEEE
Transactions on Power Electronics

-5.655e-4

1

Stability range
0 k< <1768.3

(a)

-2.0631e-3

1

Stability range
0 k< < 484.7

Real Axis

(b)

-9.948e-4

1

Stability range
0 k< <1005.2

(c)

-3.2988e-3

1

Stability range
0 k< < 303.1

(d)
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Fig. 9. Stability region of the mROGI-FLL. (a) r = 0.5. (b) r = 1.

reduced by increasing the sampling frequency. These results
were expected as the LTP model and, therefore, its stability-
related predictions are based on a continuous-time mROGI-
FLL, while the numerical studies and their outcomes are based

on a discretized mROGI-FLL. Notice that by increasing the
sampling frequency, a discrete system becomes more close to
its continuous counterpart.

In addition to the above-mentioned aspects, it should be em-
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Fig. 10. LTI model of the mROGI-FLL. It will be proved later that this LTI
model is also valid for the mSRF-PLL. The only point here is that the control
parameters in this model need to be replaced by those of the mSRF-PLL. To
be more exact, the control gain k1 in the upper and lower control loops needs
to be replaced by kv and kp, respectively, and the control gain λ needs to be
replaced by ki.
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Fig. 12. Changing the location of the closed-loop poles of the mROGI-FLL
when k1 varies in the range of 0 < k1 < 310.

phasized here that the LTP and LTI models of the mROGI-FLL
are small-signal models at the end of the day. It means that
their accuracy tends to decrease by increasing the magnitude
of input disturbances. Another important point is that the LTP
model only considers the presence of the fundamental and dc
components in the input of the mROGI-FLL. It means that
this model is not able to predict transient and/or steady-state
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Fig. 13. Schematic diagram of the procedure for the model verification of
the mROGI-FLL.

TABLE I
THEORETICALLY PREDICTED AND NUMERICALLY DETERMINED k1max

FOR DIFFERENT VALUES OF ωz

r ωz

k1max

LTP model
Digital simulation

fs = 10 kHz fs = 30 kHz fs = 50 kHz
1 100 527.7 555 536 532
1 200 303.1 312 305 304
1 300 232.9 237 234 233
1 400 198 201 199 198
1 500 176.2 179 177 176

effects caused by other frequency components (for example,
harmonics, interharmonics, and grid voltage imbalance) in the
input of the mROGI-FLL. The LTI model of the mROGI-FLL
has also the same limitation.

E. Relationship with mSRF-PLL

The conventional SRF-PLL in Fig. 1(a) has been proven
to be mathematically equivalent to the conventional ROGI-
FLL in Fig. 3(a) if their control parameters have the following
relationship: kp = kv = k1 and ki = λ [2]. On the other hand,
according to discussions in [31], it is immediate to conclude
that the conventional SRF-PLL may also be represented as Fig.
15. Therefore, the conventional ROGI-FLL in Fig. 3(a) is also
mathematically equivalent to Fig. 15. Considering this fact,
one may conclude that the mSRF-PLL in Fig. 1(b) is mathe-
matically equivalent to the mROGI-FLL in Fig. 3(b) as they
are realized by adding the same dc rejection/estimation loops
to the basic structures that are mathematically equivalent.

The above conclusion can be verified mathematically by
obtaining governing nonlinear differential equations of the
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Fig. 14. mROGI-FLL model verification. (a) Test 1: 10◦ phase angle jump. (b) Test 2: adding 0.2 p.u. dc component to the α-axis input. (c) Test 3: 0.2 p.u.
voltage sag.
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mSRF-PLL and comparing them with those of the mROGI-
FLL, which are expressed in (7a)-(7c) and (9), or numerically
through some comparative simulation studies. The numerical
way is selected here. To this end, some large-signal tests
(0.75 p.u. voltage sag and 10 Hz frequency jump tests) are
conducted. The results of these tests in Fig. 16 confirm that the
mROGI-FLL and mSRF-PLL are mathematically equivalent.
Notice that the very small differences between some results
are because of discretization errors.

From the equivalence of the mROGI-FLL and mSRF-PLL,
it can be concluded that the LTP and LTI models of the
mROGI-FLL, which are shown in Fig. 6 and 10, respectively,
and all the discussions conducted before based on them are
also valid for the mSRF-PLL.

F. Decoupled mROGI-FLL

The LTI model of the mROGI-FLL in Fig. 10 indicates that
the amplitude and phase/frequency variables of the mROGI-
FLL are dynamically coupled.3 This fact may also be clearly
seen in Fig. 16(a), where a severe voltage sag has caused
large spurious transients in the output phase and frequency.
The coupling level between the output phase and amplitude
of the mROGI-FLL depends on the parameter k0, which is
the control gain of its dc estimation/rejection loop. Reducing
the value of k0 makes the coupling weaker at the cost of
slower transient behavior in estimating the dc component.
The complete decoupling, from the small-signal point of view,
requires k0 = 0, which is not an option here as it corresponds
to deactivate the dc offset rejection/estimation loop of the
mROGI-FLL. Therefore, an alternative way needs to be found.

Decoupling the amplitude and phase estimation loops of the
mROGI-FLL can be carried out in a mathematical or intuitive
way. For the sake of brevity, the intuitive way is presented
here. A quick look at the solid lines in Fig. 5 shows that the
frequency response of the transfer function between the αβ
input signals (vα and vβ) and the extracted FFPS component
(i.e., v̂α,1 and v̂β,1) in the mROGI-FLL is asymmetrical around
the fundamental frequency (50 Hz). That is the reason why
there is a coupling between the amplitude and phase estimation
loops of the mROGI-FLL. In order to decouple these loops, the
aforementioned asymmetry in the frequency response needs
to be removed. To this end, an additional ROGI centered at

3In fact, as the LTP model of the mROGI-FLL in Fig. 6 shows, all
parameters (i.e., both the dc and fundamental parameters) in the mROGI-
FLL are coupled to each other. However, for the sake of brevity, only the
dynamic coupling between the fundamental phase/frequency and amplitude
variables is discussed and addressed here.
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Fig. 16. Performance comparison of the mROGI-FLL and mSRF-PLL. (a) 0.75 p.u. voltage sag. (b) 10 Hz frequency jump. The disturbances, especially
the frequency jump, are exaggeratedly large to prove that the mROGI-FLL and mSRF-PLL, not only from the small-signal point of view, but also from the
large-signal point of view are mathematically equivalent. The control parameters are: k1 = k0 = kv = kp = 100 and λ = ki = 5000.

twice the fundamental grid frequency can be added to the
mROGI-FLL, as shown in Fig. 17. The resulting structure is
called the decoupled mROGI-FLL because, as dashed lines in
Fig. 5 shows, it has a symmetrical frequency response around
the fundamental grid frequency and, consequently, a highly
decoupled phase/amplitude estimation dynamics. To support
this fact, a comparison between the mROGI-FLL and the
decoupled mROGI-FLL under the same voltage sag test as in
Fig. 16(a) is carried out. The results of this test in Fig. 18 show
that the spurious transients in the output phase and frequency
of the decoupled mROGI-FLL are negligible compared to
those in the mROGI-FLL. It confirms that the amplitude
and phase/frequency estimation dynamics of the decoupled
mROGI-FLL are highly decoupled. It is worth mentioning here
that decoupling the phase/frequency and amplitude estimation
loops of the mSRF-PLL may also be carried out in a similar
manner.

III. MODIFIED SOGI-FLL (mSOGI-FLL)

A. LTP Modeling

1) Assumptions: For the LTP modeling of the mSOGI-FLL
in Fig. 4(b), it is assumed that its single-phase input contains
a fundamental component and a dc component, as expressed
in (22), in which V1 and θ1 are the amplitude and phase angle
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Fig. 17. Decoupled mROGI-FLL. The control parameter k2 should be
selected equal to k0.

of the fundamental component, respectively, and V0 denotes
the dc component.

v(t) = V1 cos(θ1) + V0 (22)

If we assume that the estimated frequency ω̂ in Fig. 4(b)
is a constant, the characteristic transfer functions between the
output signals v̂1 and v̂′1 and the input signal v can be obtained
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Fig. 18. A comparison between the mROGI-FLL and decoupled mROGI-FLL under 0.75 p.u. voltage sag. (a) Simulation results. (b) Experimental results.
Control parameters: k0 = k1 = k2 = 100 and λ = 5000. In the experimental result, which are obtained using the Chroma grid simulator 61845, dSPACE
1006 platform, and Tektronix digital oscilloscope DPO 2014B, the phase error signal cannot be shown as the actual phase angle is unknown.

as

v̂1(s) =

G1(s)︷ ︸︸ ︷
k1ω̂s

2

s3 + (k0 + k1ω̂)s2 + ω̂2s+ k0ω̂2
v(s) (23a)

v̂′1(s) =
k1ω̂

2s

s3 + (k0 + k1ω̂)s2 + ω̂2s+ k0ω̂2︸ ︷︷ ︸
G′1(s)

v(s). (23b)

Both these transfer functions have a zero at the origin.
It means that the output signals v̂1 and v̂′1 in the mSOGI-
FLL are free from any dc component in the steady state.
Besides, it can be shown that |G1(jω̂)|∠G1(jω̂) = 1∠0◦ and
|G′1(jω̂)|∠G′1(jω̂) = 1∠− 90◦. Considering these facts, the
output signals v̂1 and v̂′1 in the mSOGI-FLL structure can be

considered as an estimation of the fundamental component
of the input signal v and its 90◦ phase shifted version, as
expressed below:

v̂1(t)= V̂1 cos(θ̂1) (24a)

v̂′1(t)= V̂1 sin(θ̂1). (24b)

Notice that V̂1 and θ̂1 in (24) are the estimations of V1 and θ1

in (22), respectively.

It is also assumed that the mSOGI-FLL operates in a quasi-
locked state, which is corresponding to V̂1 ≈ V1, θ̂1 ≈ θ1,
ω̂ ≈ ω, and V̂0 ≈ V0. All these parameters are also defined as
(25), where ∆ and the subscript n denote a small perturbation
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Fig. 19. LTP model of the mSOGI-FLL. k′1 = k1ωn/2 and λ′ = λ/2. It will be proved later that this LTP model is valid for the mEPLL too. The only
point here is that the gain k′1 = k1ωn/2 in the upper and lower control loops needs to be replaced by kv/2 and kp/2, respectively, and gain λ′ = λ/2
needs to be replaced by ki/2.

and a nominal value, respectively.

V̂0 = Vn,0 + ∆V̂0, V0 = Vn,0 + ∆V0

V̂1 = Vn,1 + ∆V̂1, V1 = Vn,1 + ∆V1

θ̂1 = θn,1 + ∆θ̂1, θ1 = θn,1 + ∆θ1

ω̂ = ωn + ∆ω̂, ω = ωn + ∆ω.

(25)

2) Governing Nonlinear Differential Equations: From Fig.
4(b), the estimated parameters by the mSOGI-FLL can be
expressed as

V̂0= k0

∫
(v − v̂1 − V̂0)dt (26a)

ω̂= ωn − λ
∫

(v − v̂1 − V̂0)v̂′1

V̂ 2
1

dt (26b)

θ̂1= tan−1

(
v̂′1
v̂1

)
(26c)

V̂1=
√
v̂2

1 + v̂′21 . (26d)

Differentiating from (26) with respect to time results in

dV̂0

dt
= k0(v − v̂1 − V̂0) (27a)

dω̂

dt
= − λ

V̂ 2
1

(v − v̂1 − V̂0)v̂′1 (27b)

dθ̂1

dt
=
v̂1
dv̂′1
dt − v̂

′
1
dv̂1

dt

V̂ 2
1

(27c)

dV̂1

dt
=
v̂1
dv̂1

dt + v̂′1
dv̂′1
dt

V̂1

(27d)

in which the time derivatives dv̂1

dt and dv̂′1
dt , according to Fig.

4(b), are equal to

dv̂1

dt
= −ω̂v̂′1 + k1ω̂(v − v̂1 − V̂0) (28a)

dv̂′1
dt

= ω̂v̂1. (28b)

Considering (28), the equations (27c) and (27d) can be rewrit-
ten as

dθ̂1

dt
=
ω̂(v̂2

1 + v̂′21 )− k1ω̂

− V̂
2
1
λ
dω̂
dt︷ ︸︸ ︷

(v − v̂1 − V̂0)v̂′1

V̂ 2
1

(29a)

dV̂1

dt
= k1ω̂

(v − v̂1 − V̂0)v̂1

V̂1

. (29b)

Replacing the signals v, v̂1 and v̂′1 in (27a), (27b), and (29)
with (22), (24a), and (24b) yields the governing nonlinear
differential equations of the mSOGI-FLL as follows:

dV̂0

dt
= k0

[
V1 cos(θ1) + V0 − V̂1 cos(θ̂1)− V̂0

]
(30a)

dω̂

dt
= − λ

V̂1

[
V1 cos(θ1) + V0 − V̂1 cos(θ̂1)− V̂0

]
sin(θ̂1)

=
λ

2V̂1

[
V1 sin(θ1 − θ̂1)− V1 sin(θ1 + θ̂1)

+V̂1 sin(2θ̂1)− 2(V0 − V̂0) sin(θ̂1)
]

(30b)

dθ̂1

dt
= ω̂ +

k1ω̂

λ

dω̂

dt
(30c)

dV̂1

dt
= k1ω̂

[
V1 cos(θ1) + V0 − V̂1 cos(θ̂1)− V̂0

]
cos(θ̂1)

=
k1ω̂

2

[
V1 cos(θ1 − θ̂1) + V1 cos(θ1 + θ̂1)− V̂1

−V̂1 cos(2θ̂1) + 2(V0 − V̂0) cos(θ̂1)
]
. (30d)

3) Linearization: By replacing the actual and estimated
parameters in (30) by their nominal values plus a small
perturbation, as defined in (25), and linearizing the resulting
equations in a similar manner as done before in Section II-A3
[see (11)], we can obtain (31) at the top of the next page.
These equations are a set of LTP differential equations, which
describe the mSOGI-FLL dynamics. Using these equations,
the LTP model of the mSOGI-FLL can be obtained, as
shown in Fig. 19. Using this LTP model and by following
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d∆V̂0

dt
≈ k0

[
(∆V1 −∆V̂1) cos(θn,1)− Vn,1(∆θ1 −∆θ̂1) sin(θn,1) + ∆V0 −∆V̂0

]
(31a)

d∆ω̂

dt
≈ λ

2Vn,1

[
Vn,1 {1− cos(2θn,1)} (∆θ1 −∆θ̂1)− (∆V1 −∆V̂1) sin(2θn,1)− 2(∆V0 −∆V̂0) sin(θn,1)

]
(31b)

d∆θ̂1

dt
≈ ∆ω̂ +

k1ωn
λ

d∆ω̂

dt
(31c)

d∆V1

dt
≈ k1ωn

2

[
{1 + cos(2θn,1)} (∆V1 −∆V̂1)− Vn,1 sin(2θn,1)(∆θ1 −∆θ̂1) + 2(∆V0 −∆V̂0) cos(θn,1)

]
(31d)
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Fig. 20. mSOGI-FLL model verification in response to a 10◦ phase angle
jump.

a more or less similar manner as that explained before for the
mROGI-FLL, the mSOGI-FLL stability and dynamics can be
investigated.

B. Model Verification

By following a similar procedure as that described in
Section II-D, the accuracy of the LTP model of the mSOGI-
FLL is investigated. Here, two tests are considered. The first
one is a 10◦ phase jump test, and the second one is a step
change in the input dc component from zero to 0.1 p.u. Figs.
20 and 21, which are the results of these tests, confirm the
high accuracy of the derived LTP model.

C. Relationship with mEPLL

It has been discussed and proven in the literature [1],
[18], [32] that the EPLL and SOGI-FLL are mathematically
equivalent systems if the following relationship between their
control parameters is hold: kv = kp = k1ωn and ki = λ. It
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Fig. 21. mSOGI-FLL model verification in response to adding 0.1 p.u. dc
component to the grid voltage.

means that the mEPLL and mSOGI-FLL, which are realized
by adding a simple integrator to the EPLL and SOGI-FLL,
respectively, are also mathematically equivalent. Therefore, it
can be concluded that the mSOGI-FLL LTP model in Fig. 19
is also valid for the mEPLL. These facts can be verified using
numerical tests. To save space, the numerical results are not
shown here.

IV. CONCLUSIONS

Modeling and analysis of three-phase and single-phase
grid synchronization systems with the dc component rejec-
tion/estimation capability was the main objective of this paper.
The mROGI-FLL, mSRF-PLL, mSOGI-FLL, and mEPLL
were considered as case studies. The focus of the study was
first on the mROGI-FLL. Through a step-by-step mathematical
procedure, an LTP model for the mROGI-FLL was derived. It
was then shown how the open-loop HTF of the mROGI-FLL
can be obtained using its LTP model, and how by applying
the generalized Nyquist criterion, its stability can be analyzed.
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An LTI model, which is a special case of its LTP model,
was also presented for the mROGI-FLL. It was discussed that
this LTI model may facilitate the mROGI-FLL analysis at
the cost of the inability in predicting some dynamics of the
mROGI-FLL. It was also demonstrated that the mSRF-PLL is
mathematically equivalent to the mROGI-FLL. Based on this
equivalence, it was concluded that the LTP and LTI models of
the mROGI-FLL are valid for the mSRF-PLL. In addition, the
dynamic coupling between the phase/frequency and amplitude
estimation loops of the mROGI-FLL was discussed, and a
simple yet efficient approach to decouple these loops was
proposed.

For the case of the mSOGI-FLL, by following a similar
procedure as the case of mROGI-FLL, an LTP model was
derived, and its accuracy was confirmed using numerical tests.
It was also discussed that this model is valid for the mEPLL
as this PLL is mathematically equivalent to the mSOGI-FLL.

This paper makes a valuable contribution to the field of grid
synchronization and paves the way towards the LTP modeling
and analysis of more sophisticated synchronization systems as
the available works in this area are limited.
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