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Abstract 

Objective. The possibility of detecting movement-related cortical potentials (MRCPs) at the 

single trial level has been explored for closing the motor control loop with brain-computer 

interfaces (BCIs) for neurorehabilitation. A distinct feature of MRCPs is that the movement 

kinetic information is encoded in the brain potential prior to the onset of the movement which 

makes it possible to timely drive external devices to provide sensory feedback according to 

the efferent activity from the brain. The aim of this study was to compare methods for the 

detection (different spatial filters) and classification (features extracted from various 

domains) of MRCPs from continuous electroencephalography recordings from executed and 

imagined movements from healthy subjects (n=24) and attempted movements from stroke 

patients (n=6) to optimize the performance of MRCP-based BCIs for neurorehabilitation. 

Approach. The MRCPs from four cue-based tasks were detected with a template matching 

approach and a set of spatial filters, and classified with a linear support vector machine using 

the combination of temporal, spectral, time-scale, or entropy-based features. Main results. 

The best spatial filter (large Laplacian, LLSF) resulted in a true positive rate of 82±9%, 

78±12% and 72±9% (with detections occurring ~200 ms before the onset of the movement) 

for executed, imagined and attempted movements (stroke patients). The best feature 

combination (temporal and spectral) led to pairwise classification of 73±9%, 64±10% and 

80±12%. When the detection was combined with classification, 60±10%, 49±10% and 

58±10% of the movements were both correctly detected and classified for executed, imagined 

and attempted movements. A similar performance for detection and classification was 

obtained with optimized spatial filtering. Significance. A simple setup with a LLSF is useful 
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for detecting cued movements while the combination of features from the time and frequency 

domain can optimize the decoding of kinetic information from MRCPs; this may be used in 

neuromodulatory BCIs.   

 

Keywords: Movement-related cortical potentials, brain-computer interface, movement 

kinetics, EEG, signal processing.  

 

1. Introduction 

Brain-computer interfaces (BCIs) have been traditionally applied for communication and control purposes (1), 

but over the past years BCI technology has started to attract attention within the area of neurological 

rehabilitation after stroke (2,3). Recently, a neuromodulatory protocol was proposed where the cortical activation 

through cued motor imagination (MI) was paired with timely correlated somatosensory feedback from electrical 

stimulation of a peripheral nerve (4). The protocol increased the corticospinal excitability of the cortical 

projections of the target muscle through Hebbian-like plasticity. Induction of plasticity has been correlated with 

motor learning (5) which is the aim in the rehabilitation process for stroke patients. The protocol proposed by 

Mrachacz-Kersting et al. was implemented as a self-paced BCI by detecting MI of a specific movement and 

providing somatosensory feedback from electrical stimulation and passive movement from an ankle-foot orthosis 

(6,7). The control signal that was used in these studies is known as the movement-related cortical potential 

(MRCP). It is a slow brain potential that is present in the electroencephalogram (EEG) up to 2 s before the 

execution and imagination of cued and self-paced voluntary movements (8-11). Besides containing information 

about when a forthcoming movement is occurring, kinetic information is encoded in the MRCP such as the level 

of force and speed of the intended movement (11-13). The information about the level of force and speed of a 

forthcoming movement may be used as input to functional electrical stimulation which then can provide 

feedback associated to the specific efferent activity from the brain. By decoding kinetic information more 
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degrees of freedom can be obtained; this opens the possibility of practising different variations (task variability) 

of a movement type which has been shown to maximize the retention of acquired motor skills and the capability 

of generalizing relearned movements (14).  

The performance of the BCI has been shown to be correlated to the efficacy of the neuromodulatory protocol 

described above (6). Therefore, the best techniques for detecting MRCPs should be determined as well as the 

best methods for discriminating variations of specific movements to optimize the performance of BCIs for 

neurorehabilitation. It has been shown previously that MRCPs can be extracted from the continuous EEG using 

different methods for pre-processing of the signals and detection algorithms (15-20). These techniques include 

various types of spatial and temporal filters, data projections, blind source separation, and feature extraction for 

classification of movements versus an idle state. Moreover, the level of force and speed has been classified from 

MRCPs associated with executed and imagined movements for different parts of the body and different 

movement types, such as plantar- and dorsiflexion of the ankle joint (16,21-24), foot and finger tapping (25) and 

wrist extensions and rotations (26,27). For this classification, various features have been used, such as time-

domain features (16,25), band power and power spectral density (25,26,28), time-frequency and time-scale 

coefficients (21,22,27), and measures of complexity (24). The features from the various domains may contain 

different discriminative information thus a combination of these may improve the performance of the classifier. 

The feature extraction techniques are mainly evaluated in a limited number of healthy subjects which makes it 

difficult to translate the findings to the intended user groups; stroke patients. The inclusion of the intended users 

may promote the translation of BCI technology from the laboratory to the clinic. 

The aim of this study was to investigate the effect of different spatial filters on the detection performance of cue-

based MRCPs associated with different kinetic profiles in terms of true positive rate (TPR). The effect of 

different spatial filters on the TPR has been explored for self-paced MRCPs; however, it has been shown that 

cue-based and self-paced MRCPs differ in neural generators and signal morphology (29,30). Moreover, the 

effect of applying different spatial filters was evaluated for classification of movement kinetics of executed and 
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imagined movements from healthy subjects and attempted movements from stroke patients. Lastly, the optimal 

types of features to use for classification of movement kinetics were determined.  

2. Methods 

2.1. Subjects 

24 healthy subjects (7 women and 17 men: 27±4 years old) and six stroke patients with lower limb paresis 

participated in the study (see table 1 for the individual patient information). All procedures were approved by the 

local ethical committee (N-20100067 and N-20130081), and the participants gave their written informed consent 

before the experiment.  

Table 1: Patient specifications. 

Patient Diagnosis Affected site Gender Age Days since 

event 

1 Infarction Left Female 59 35 

2 Infarction Right Male 77 46 

3 Hemorrhage Right Male 54 58 

4 Infarction Right Male 51 62 

5 Infarction Right Female 58 46 

6 Infarction Left Male 38 36 

 

2.2. Experimental protocol 

Each subject was seated in a comfortable chair with their right (or affected for the patients) foot fixed to a 

custom made pedal. Force was recorded from a force transducer mounted to the pedal. At the beginning of the 

experiment, the maximum voluntary contraction (MVC) was determined followed by 4×50 repetitions of the 

following tasks of ankle dorsiflexion (see figure 1): i) 0.5 s to reach 20% MVC, ii) 0.5 s to reach 60% MVC, iii) 

3 s to reach 20% MVC and iv) 3 s to reach 60% MVC (16).  
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Figure 1: Top: Visual cue that was provided to the subject. A moving cursor (with force as input) indicated when the 

subjects should initiate the movement and how fast and what level of their MVC to reach.  Bottom: Force associated with a 

movement performed by a representative stroke subject. The same visual cue was presented for subjects performing motor 

imagination to assist them in timing the onset of the movement; however, no force was produced. 

See figure 2 for a grand average of the MRCPs associated with the four tasks. In the following, 0.5 s to reach the 

desired MVC will be referred to as ‘Fast’, and 3 s to reach the same will be referred to as ‘Slow’. The subjects 

were constrained to spend the given time to reach the desired level of MVC. To assist them in performing the 

movements correctly they were visually cued (figure 1) by a custom made program (Knud Larsen, SMI, Aalborg 



Comparison of spatial filters and features for the detection and classification of movement-related cortical potentials 

in healthy individuals and stroke patients 

 
 

 

University). Each movement was separated with 8-10 s and initiated by a digital trigger. The healthy subjects 

were divided into two sub-groups of 12. One group was asked to perform the tasks while the subjects in the other 

group imagined the movements. The patients were asked to attempt to perform the tasks. The tasks were 

randomized in blocks, and ~5 min practice was performed before each task to familiarize the subjects with the 

tasks. For the subjects performing imagined movements, they practiced motor execution first to recall the 

kinaesthetic of the movement before practicing the imaginary movements.         
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Figure 2: Grand average (across subjects) of the MRCP traces of the four tasks for ME (top), MI (middle) and attempted 

ME (bottom). The averaged MRCP traces are shown for 3-s epochs prior the onset of the movement or task (for motor 

imagination). Note the difference in the scaling of the y-axes. 

2.3. Signal acquisition 

2.3.1. EEG  

Continuous EEG was recorded from FP1, F3, Fz, F4, C3, Cz, C4, P3, Pz and P4 according to the International 

10-20 system (32 Channel Quick-Cap, Neuroscan and EEG Amplifiers, Numaps Express, Neuroscan). The 

signals were referenced to the right ear lobe, and ground was placed at nasion. The EEG was sampled with 500 

Hz and digitized with 32 bits accuracy. Electrooculography (EOG) was registered from FP1. The impedance of 

the electrodes was below 5 kΩ during the experiment. The digital trigger from the interface software was sent to 

the EEG amplifier for epoching the continuous EEG.  

2.3.2. Force and MVC  

The force was used as input to the program that cued the subjects, so they were provided with visual feedback on 

their performance (except for the sub-group that imagined the movements). Force was recorded with custom 

made software (Knud Larsen, SMI, Aalborg University) and sampled with 2000 Hz. The MVC was recorded at 

the beginning of the experiment. Three MVCs were performed with 60 s break in between each repetition. The 

highest value was used as the MVC. The onset of each executed movement for the healthy subjects and patients 

was determined from the force trace. It was identified when all values in a 200 ms window (with a 1-sample 

shift) exceeded the baseline; then the time point at the beginning of the 200 ms window was used. The baseline 

was defined as the mean value of the signal 2-4 s before the task onset provided by the visual cue. The 

movement onset was used to determine the detection latencies and to synchronize all epochs.       

2.4. Signal processing 

The EEG was band-pass filtered with a 2nd order Butterworth filter from 0.05-10 Hz in the forward and reverse 

direction for movement detection and for the extraction of temporal features. The remaining features were 
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extracted from data that were high-pass filtered with a cut-off frequency of 0.05 Hz. To correct for the poor 

spatial resolution of EEG, the data were spatially filtered. Four spatial filters were compared: Large Laplacian 

(LLSF), optimized spatial filter (OSF) (15), common average reference (CAR), and common spatial pattern 

(CSP).  

The CAR was calculated for Cz as described in (31). OSF is a data-driven approach that was used to find the 

filter weights to maximize the signal-to-noise ratio on the training data (15). CSP was used to maximize the 

distance between signal epochs and noise epochs and was implemented as in (32). Signal epochs were extracted 

from the movement/task onset and 2 s prior this point; noise epochs were extracted from 5-3 s prior the 

movement/task onset.   
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Figure 3: Averaged MRCP across tasks for a representative subject when using the different spatial filters. 

2.5. Movement detection 

The method for detecting movements was similar to the one proposed by Niazi et al (15) and Jochumsen et al 

(16). The analysis was performed offline on the continuous EEG recordings. Initially, the data were band-pass 

filtered and spatially filtered with one of the four filters (LLSF, OSF, CAR or CSP) to obtain a weighted linear 

combination of the EEG channels. The data set was randomly divided into four parts (four-fold cross-validation); 

three for training of the detector and one for testing the performance of the constructed detector. For the OSF and 

CSP, the filter coefficients were calculated on the training set. A template was extracted from the spatially 

filtered data of the training set by averaging all trials from the peak of maximum negativity and 2 s prior this 

point (see figure 3). From the training set, a receiver operating characteristics (ROC) curve was obtained to 

determine the detection threshold. The threshold was selected at the upward convex part of the ROC curve to 

obtain a trade-off between the number of false positive detections and the TPR. When two out of three 

consecutive windows exceeded the detection threshold, and EOG activity in FP1 was below the EOG threshold 

(125 µV), a detection was registered. The detector decision was based on the likelihood ratio (Neyman Pearson 

lemma) between the template and the weighted linear combination in a 2 s window with a 200 ms shift. The 

performance of the detector was quantified by the TPR, number of false positive detections per minute 

(FPs/min), and the detection latency. The detection latency was defined as the time of detection according to the 

movement onset (for motor execution - ME) or task onset (for MI).      

2.6. Feature extraction and selection 

All features were extracted from the point of detection to 2 s prior this point. 

2.6.1. Temporal features 

Six temporal features were extracted for the executed movements, as described previously (16): i) point of 

maximum negativity, ii) mean amplitude of the 2 s data window, iii+iv) slope and intersection of a linear 

regression of the data in the 2 s window, v+vi) slope and intersection of a linear regression of the data from the 
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point of detection and 0.5 s prior this point. For the imaginary movements, the same features were extracted 

except for the intersections of the two linear regressions. Also, the mean amplitude of the data from the point of 

detection and 0.5 s prior this point was extracted.  

2.6.2. Spectral features 

Five spectral features were extracted. Welch’s power spectral density estimate was calculated on each epoch 

using a Hamming window with 50% overlap of the segments. The average power was calculated in the 

following frequency ranges: i) 0-4 Hz, ii) 4-8 Hz, iii) 8-13 Hz, iv) 13-30 Hz and v) 30-100 Hz. These ranges 

correspond approximately to the delta, mu, alpha, beta and gamma frequency bands, respectively.   

2.6.3. Time-scale features 

The marginal distribution of the discrete wavelet transform (DWT) was calculated for 10 different mother 

wavelets (21). Daubechies 1-10 mother wavelets were used and for each mother wavelet, 10 levels of 

decomposition were calculated. The marginal distribution was calculated for each level of the decomposition and 

used as a feature.  

2.6.4. Entropy-based features 

Four types of entropy were calculated for each epoch and used as features: i) approximate entropy (ApEn) (33), 

ii) permutation entropy (PeEn) (34,35), iii) sample entropy (SaEn) (36) and iv) constrained sample entropy 

(CSEn) (37). The false-nearest neighbors’ algorithm was used to determine the optimal embedding dimension 

(m=2) (38). The tolerance for ApEn, PeEn and SaEn was 0.2 x standard deviation of the epoch, and the time lag 

was 1. For the constrained sample entropy, the tolerance was fixed at 0.2 x standard deviation of all “noise” 

epochs for the specific task (see section 2.4).   

2.6.5. Feature selection 

The combination of the features for each of the four feature types (temporal, spectral, time-scale and entropy) 

was used to classify the task pairs (fast 20% MVC vs fast 60% MVC, etc.). The best combination of features for 
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each feature type, leading to the highest classification accuracy across the task pairs, was selected. This was 

followed by an evaluation of classification accuracies for the combination of the optimized feature types. The 

classification accuracies were obtained using leave-one-out cross-validation and a support vector machine 

(SVM) with a linear kernel.    

2.7. Movement classification 

The classification was divided into two main categories: 2-class and 4-class problems. The 2-class classification 

accuracies were obtained using leave-one-out cross-validation. The classification accuracy for each task pair was 

calculated (Fast 20% MVC vs. Fast 60% MVC, Fast 20% MVC vs. Slow 20% MVC, etc.). The classification 

accuracies for the 4-class problem were found by extending the binary SVM to a multi-class SVM using the 

‘one-vs-one’ scheme. A classifier was constructed for each task pair and a test sample was tested by each one. It 

was labelled according to the class with most votes. The number of correctly classified samples was divided with 

the number of performed movements in the specific class to obtain the classification accuracy.   

2.8. System performance 

The system performance was calculated by combining the TPR with the classification accuracy. It is assumed 

that the two events are independent; therefore, the following formula is used: 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝐶𝐴(1,2) ∗ [𝑇𝑃𝑅(1) + 𝑇𝑃𝑅(2)]

2
 

CA(1,2) is the classification accuracy of the task pair, and TPR(1) and TPR(2) are the TPRs for task 1 and 2, 

respectively. Using the formula, the percentage of correctly detected and classified movements is obtained for 

the 2-class system. Also, the percentage of correctly detected and misclassified movements is reported; this is 

calculated by substituting CA(1,2) with its complement. The 4-class performance was calculated by multiplying 

the classification accuracy (or its complement) with the TPR for the specific task. 
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2.9. Statistics 

Statistical significance was assumed when the p-value < 0.05. For the analysis of variance (ANOVA) tests, 

significant test statistics were followed up with a post hoc analysis where Bonferroni’s correction was applied 

for multiple pair-wise comparisons. 

2.9.1. Detection 

A two-way multivariate ANOVA was performed to investigate the effect of the factors; ‘spatial filter’ and 

‘movement type’, on the dependent variables; averaged TPRs (across tasks), number of FPs/min and detection 

latency. ‘Spatial filter’ had four levels: LLSF, OSF, CAR and CSP, and ‘movement type’ had three levels: ME, 

MI and attempted ME. A three-way ANOVA was performed with the factors ‘spatial filter’, ‘movement type’ 

and ‘task’ to investigate the effect on the TPR for each task (Fast 20% MVC, Fast 60% MVC, Slow 20% MVC 

and Slow 60% MVC). 

2.9.2. Classification and system performance 

A three-way ANOVA was performed to investigate if the averaged classification accuracies (across task pairs) 

differed when using the different spatial filters and feature extraction techniques for the movement types. The 

factors were ‘movement type’, ‘spatial filter’ and ‘feature type’ with four levels: temporal, spectral, entropy and 

time-scale. Also, a two-way multivariate ANOVA was performed to test if the classification accuracies and 

system performance differed for the three movement types when the signals were processed with the different 

spatial filters. The factors were ‘movement type’ and ‘spatial filter’.  

3. Results 

The results are summarized in table 2, 3 and 4. 

3.1. Detection 

On average (across different tasks), the highest TPRs were obtained for LLSF (table 2), although for ME, OSF 

resulted in the greatest TPR. On average (across tasks) with the LLSF, 82±9%, 78±12% and 72±9% of the 

movements were correctly detected for ME, MI and attempted ME, respectively. When investigating the 
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averaged TPRs, no significant interaction was observed between spatial filters and movement types 

(F(6,119)=0.71;P=0.65). However, a significant effect of spatial filter (F(3,119)=5.03;P=0.003) was found where the 

LLSF outperformed CSP. For the movement types (F(2,119)=15.29;P=0.000001), all three types were different.  

For the number of FPs/min there was an interaction between the type of spatial filter and movement type 

(F(6,119)=3.78;P=0.002). The main effects of spatial filter (F(3,119)=4.95;P=0.003) and movement type 

(F(2,119)=10.87;P=0.00005) were significant where LLSF and OSF led to less FPs/min compared to CSP, and ME 

and MI were lower than attempted ME (see table 2). For the detection latencies, no significant interaction was 

observed between spatial filter and movement type (F(6,119)=1.52;P=0.18), but the main effects of spatial filter 

(F(2,119)= 5.06;P=0.003) and movement type (F(2,119)=19.11;P=0.007*10-8) were significant. The detection of 

movements occurred earlier with LLSF, OSF and CAR compared to CSP, and when ME or MI was performed 

compared to attempted movements. 

To investigate if the TPRs were different for the four tasks a three-way ANOVA was performed. No differences 

were found; the interaction of movement types, spatial filter and tasks was not significant (F(18,479)=0.45;P=0.98). 

In summary, the best detection performance was obtained with the LLSF, but it was not significantly different 

from OSF and CAR. 

Table 2: The TPR for movement detection of ME, MI and attempted ME is presented. The results are presented (mean ± 

standard deviation across subjects) for different spatial filters. 

Motor execution 

Healthy subjects 

LLSF [%] OSF [%] CAR [%] CSP [%] 

Task   

Fast 20% MVC 83±6 84±8 72±7 77±15 

Fast 60% MVC 87±10 86±11 76±9 80±14 

Slow 20% MVC  76±9 79±10 69±8 72±11 

Slow 60% MVC 81±8 82±9 74±14 81±14 

 

Mean across tasks 

 

82±9 

 

83±9 

 

78±14 

 

73±10 

     

FPs/min 1.1±0.7 1.1±0.7 1.5±0.9 2.6±0.8 

Detection latency [ms] -297±108 -244±125 -297±108 -269±139 

     

Motor imagery 

Healthy subjects 
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Task   

Fast 20% MVC 76±13 73±13 71±13 68±14 

Fast 60% MVC 78±9 72±13 71±12 68±16 

Slow 20% MVC  78±11 69±9 71±16 73±10 

Slow 60% MVC 79±13 69±11 74±17 75±13 

 

Mean across tasks 

 

78±12 

 

71±12 

 

72±15 

 

71±13 

     

FPs/min 1.1±0.4 1.3±0.7 1.3±0.5 1.5±0.7 

Detection latency [ms] -209±84 -232±133 -236±99 -169±115 

     

Attempted movements 

Stroke patients 

    

Task   

Fast 20% MVC 70±8 65±15 61±9 60±20 

Fast 60% MVC 73±8 73±10 65±5 62±15 

Slow 20% MVC  73±9 60±16 67±9 63±17 

Slow 60% MVC 74±11 72±10 72±11 56±18 

 

Mean across tasks 

 

72±9 

 

67±13 

 

66±8 

 

60±17 

     

FPs/min 1.7±0.1 2±0.3 1.8±0.3 2.3±0.3 

Detection latency [ms] -96±44 -59±113 -64±76 -28±120 

 Mean±SD Mean±SD Mean±SD Mean±SD 

 

3.2. Classification and system performance 

The classification accuracies for the optimal features for each feature type and the combination of features are 

presented in table 3. The difference in classification accuracies was tested for the different spatial filters, feature 

types and movement types. The interaction of the three factors was not significant (F(6,479)=1.41;P=0.12), but the 

effect of feature type (F(3,479)=107.24;P=0.07*10-50) and movement type (F(2,479)=28.85;P=0.02*10-10) was 

significant. The classification accuracies associated with the time-scale features were lower than the other three 

feature types, and those obtained for MI were lower than ME and attempted ME. No difference was found in the 

classification accuracies when using the different spatial filters.  

Table 3: The classification accuracies (CA) associated with the selected features are presented for ME, MI and attempted 

ME from stroke patients. The order of the features is the same as presented in the Methods section. Also, the classification 

accuracies are presented for the optimized feature combination. The results are presented for each of the spatial filtering 

techniques. ‘Temp’: Temporal, ‘Spec’: Spectral, ‘Ent’: Entropy and ‘Ti-Sc’: Time-Scale. 
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Large Laplacian spatial filter 

Feature Type Selected features 

 

CA across tasks [%] 

Mean±SD 

Optimal feature type 

combination 

CA across tasks [%] 

Mean±SD 

Temp [1-4,6] / [1-3,5] / [1-4,6] 73±5 / 62±3 / 80±6 ME: [Temp+Spec] 73±9 / 52±14 

Spec [1-3,5] / [1-4] / [2,3,5] 66±3 / 60±1 / 58±3 MI: [Temp+Spec] 64±10 / 37±13 

Ent [1,3,4] / [1,4] / [1,4] 61±4 / 58±3 / 58±4 Stroke: [Temp+Spec] 80±12 / 61±19 

Ti-Sc [db1]/ [db4]/ [db4] 52±3 / 52±2 / 51±1   

 ME/MI/Stroke ME/MI/Stroke  2-class / 4-class 

 

Optimized spatial filter 

Feature Type Selected features 

 

CA across tasks [%] 

Mean±SD 

Optimal feature type 

combination 

CA across tasks [%] 

Mean±SD 

Temp [1,3,4] / [1,3-5] / [1,3,5,6] 65±5 / 61±5 / 69±5 ME: [Temp+Spec+Ent] 75±14 / 51±19 

Spec [1,3-5] / [1,4,5] / [1,4,5] 71±4 / 71±6 / 71±6 MI: [Temp+Spec] 66±11 / 40±15 

Ent [3,4] / [1,2,4] / [1,4] 68±4 / 60±3 / 67±7 Stroke: [Temp+Spec+Ent] 77±14 / 57±20 

Ti-Sc [db6]/ [db7]/ [db6] 52±3 / 51±2 / 52±1   

 ME/MI/Stroke ME/MI/Stroke  2-class / 4-class 

 

Common average reference filter 

Feature Type Selected features 

 

CA across tasks [%] 

Mean±SD 

Optimal feature type 

combination 

CA across tasks [%] 

Mean±SD 

Temp [1,3,4,6] / [1-4] / [1-4] 65±4 / 61±4 / 72±6 ME: [Temp+Spec+Ent] 72±11 / 48±16 

Spec [1,2,4,5] / [1,2,4,5] / [1,2,4,5] 66±3 / 58±2 / 67±5 MI: [Temp+Spec+Ent] 64±9 / 39±14 

Ent [3,4] / [1,2,4] / [1,3,4] 63±5 / 60±2 / 66±5 Stroke: [Temp+Spec+Ent] 77±13 / 55±18 

Ti-Sc [db1]/ [db1]/ [db1] 52±2 / 51±3 / 53±1   

 ME/MI/Stroke ME/MI/Stroke  2-class / 4-class 

 

Common spatial pattern filter 

Feature Type Selected features 

 

CA across tasks [%] 

Mean±SD 

Optimal feature type 

combination 

CA across tasks [%] 

Mean±SD 

Temp [1,3,5,6] / [1,2] / [1-3,5,6] 57±2 / 58±2 / 62±3 ME: [Spec+Ent] 73±14 / 50±20 

Spec [1-5] / [1,3-5] / [1,3-5] 72±3 / 74±5 / 74±5 MI: [Temp+Spec] 67±10 / 42±15 

Ent [1,2,4] / [1,2,4] / [2-4] 68±2 / 63±1 / 71±5 Stroke: [Temp+Spec+Ent] 77±10 / 56±15 

Ti-Sc [db1]/ [db8]/ [db6] 52±3 / 51±2 / 52±1   

 ME/MI/Stroke ME/MI/Stroke  2-class / 4-class 

 

Next, it was tested with a multivariate ANOVA if the optimized classification accuracies differed when pre-

processing was performed with the different spatial filters for the three movement types. No significant 
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interaction was observed (F(6,239)=0.34;P=0.91). The effect of movement type was significant 

(F(2,239)=19.46;P=0.02*10-6), and it was found that different classification accuracies were obtained for each 

movement type with attempted ME being higher than ME and MI. For the system performance, when the TPR 

was combined with the classification accuracies, there was no significant interaction between the factors in the 

multivariate ANOVA (F(6,239)=0.89;P=0.50). The effect of movement types was significant 

(F(2,239)=18.33;P=0.04*10-6) where better performance was obtained for ME and attempted ME compared to MI. 

Table 4: Averaged system performance (across subjects and task pairs/tasks) for each spatial filter and movement type; 

this is reported for a 2-class and 4-class system. The percentage of correctly detected and classified movements is reported 

as well as the percentage of correctly detected and incorrectly classified movements. 

System performance 

Spatial filter: # of classes TPR*CA  /  TPR*(1-CA) 

ME – Healthy subjects 

TPR*CA  /  TPR*(1-CA) 

MI – Healthy subjects 

TPR*CA  /  TPR*(1-CA) 

ME – Stroke patients 

LLSF: 2-class 60±10 / 22±8 49±10 / 29±8 58±10 / 14±9 

OSF: 2-class 61±12 / 21±12 47±11 / 24±8 52±11 / 15±10 

CAR: 2-class 56±11 / 25±9 46±10 / 26±7 51±9 / 16±9 

CSP: 2-class 53±12 / 20±10 47±10 / 24±8 46±13 / 14±7 

    

    

LLSF: 4-class 42±13 / 39±12 28±11 / 49±13 44±15 / 28±14 

OSF: 4-class 42±15 / 40±16 29±12 / 42±12 38±15 / 29±15 

CAR: 4-class 37±14 / 41±14 28±11 / 44±13 36±12 / 30±12 

CSP: 4-class 36±15 / 36±15 30±13 / 41±13 34±12 / 27±11 

 Mean±SD Mean±SD Mean±SD 

 

4. Discussion 

In general, the highest TPRs and lowest number of FPs/min were obtained using a LLSF and OSF. The optimal 

features to use for classifying the movement kinetics were the combination of temporal and spectral features. 

The system performance for healthy subjects was not significantly different from the stroke patients. 

4.1. Detection 

The highest TPRs were obtained for the fast movements when the healthy subjects performed the movements; 

this is in agreement with previous findings (16). On the contrary, the TPRs for slow movements when 
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performing MI and attempted movements were similar or slightly larger than the TPRs for fast movements. This 

is a bit surprising since the fast movements have larger signal-to-noise ratios compared to the slow movements 

(see figure 2) (11). Also, it is surprising that the TPRs for the stroke patients were lower than MI for healthy 

subjects when comparing the grand averages of the two movement types in figure 2; the amplitudes of the 

MRCPs were larger for the attempted movements compared to MI. Some of the patients had difficulties in 

relaxing between the movements leading to more FPs/min; therefore the detection threshold was increased to 

avoid too many FPs/min.  The TPR (~80%), number of FPs/min (~1-3) and detection latencies of the detector 

are in the range of what has been reported previously for ME (15-17,19,20). The slight difference in detection 

latencies between cued and self-paced movements can be explained by the morphological difference between the 

signals (30). For MI, a higher TPR (~78%) was obtained compared to previous studies where 65-75% was 

obtained (6,7,15). Also, the performance of the stroke patients was better than previously reported (~60%) (15). 

The improved performance may be due to the fact that the healthy subjects and patients were visually cued (39).  

 

The TPRs when using LLSF and OSF were higher compared to CSP processed data. This is consistent with 

another study where the effect of spatial filtering with OSF, LLSF and CSP was compared for self-paced 

executed movements (15). The reason for the lower performance of CSP may be due to too little training data to 

calculate optimal filter coefficients; also, the performance of OSF may be optimized with more training data 

since these techniques are data-driven approaches. In the current study, the performance of using OSF and LLSF 

was not different, on the contrary to the findings in Niazi et al. (2011) where OSF was associated with greater 

TPRs. This can possibly be due to the differences in signal morphology for cue-based and self-paced movements 

as well as the fact that the movements were performed with different kinetic profiles, which also affect signal 

morphology (see figure 2) (11,30).         
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4.2. Feature extraction and classification 

It was found that the temporal features were the most discriminative, but the performance was slightly improved 

when information from the spectral domain and entropy-based features were incorporated. The combination of 

features from the time and frequency domain has previously been reported for discrimination of different levels 

of speed for imagined hand movements (26).  The performance of the classifiers for ME and MI was comparable 

to previous studies using temporal (~75%, ME), spectral (~65-70% for fast vs. slow MI) and entropy-based 

features (~60%, ME) (16,24,40). However, the performance obtained with the time-scale based features using 

various Daubechies mother wavelets was lower compared to the findings when using parameterized and 

optimized mother wavelets with more data available for feature extraction (~70-80%) (21-23,27). The 

classification accuracies obtained from the stroke patients were surprisingly higher than those obtained from the 

healthy subjects. It is indicated in figure 2 that the attempted movements may be more separable than at least MI. 

The difference between the classification accuracies of attempted movements and ME may be explained by the 

amount of information that was available for feature extraction (16). For attempted movements, data until 96±44 

ms before the movement onset were used for feature extraction compared to 297±108 ms for ME (see the 

separation between the average MRCPs around the movement onset in figure 2). The classification accuracies 

for the 2-class and 4-class problems were above the chance level reported with a confidence interval 

corresponding to a significance level of α=5% (41).         

In this study, subject independent features (and the combination of these) were used, but to optimize the 

performance subject-dependent features could be extracted. To avoid large dimensionalities of the feature 

vectors, different feature selection techniques could be used to select the optimal feature set for the specific 

subject. This approach requires more training of the system. 

4.3. Implications 

The findings indicate that a simple LLSF can be used for pre-processing the data to obtain a relatively high 

detection performance and that the classification of movement kinetics can be performed with subject 
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independent temporal and spectral features. The limited number of channels, simple pre-processing and subject 

independent features indicate that the system can be implemented online and potentially moved out of the 

laboratory. The performance of the detector is in the range of what has previously been reported for inducing 

plasticity (6). When detection is combined with classification, however, the performance needed to induce 

plastic changes is not known as well as the effect of providing incorrect feedback as a result of incorrect 

classification. With the current performance of the detector, stroke patients may use such a BCI system for 

rehabilitation, and it may be possible to extend the detector with classification of movement kinetic information, 

so more degrees of freedom are obtained. This can potentially be used to introduce task variability in the training 

and provide sensory feedback according to the efferent activity of the brain; however, the effect of this needs to 

be addressed.  

4.4. Limitations 

The analysis was performed offline; however, due the simplicity of the detector and classifier it is feasible to 

implement them in an online system. The classification accuracies may be more variable using an online system 

due to the variation in the detection latencies of the movements. This may reduce or increase the amount of 

discriminative information that can be used for classification. The detection threshold may be modified to tune 

the detection latency, so it will be reduced (~50-100 ms before the movement onset) which is needed to induce 

plasticity (4). Modifying the threshold in this way will reduce the number of FPs/min, but also the TPR will be 

reduced. The system performance of the 2-class systems is in the range to be used for asynchronous control 

purposes; however, the performance of the 4-class system is not in that range. To reach that level in 

performance, the number of classes may be reduced from four to three.  

5. Conclusion 

This study demonstrates that the best detection performance was obtained with LLSF and OSF across tasks and 

movement types. Also, it was found that the discrimination between movement kinetics can be optimized by 

combining features extracted from the time and frequency domain. Based on the performance of the stroke 
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patients, it is feasible to implement a multiclass MRCP-based BCI for stroke rehabilitation where movements 

can be detected and kinetic information decoded. 
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