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a b s t r a c t

In Europe, one of the most sustainable solutions to supply heat to buildings is district heating. It has good
acceptance in the Northern countries, a low-carbon footprint, and can easily integrate intermittent
renewable energy sources when coupled to the electrical grid. Even though district heating is seen as a
vital element for a sustainable future, it requires extensive planning and long-term investments. To
increase the understanding of the district heating network performance and the demand-side dynamics
of the connected buildings, several countries, including Denmark, have installed smart heat meters in
different cities. In that context, this paper presents several methodologies to analyze the datasets from
the smart heat meters installed in a small Danish town. The first method is concerning data curation to
remove the anomalies and missing data points. The second method analyses measured variables (heat
consumption, outdoor temperature, wind speed, and global radiation) to acquire new knowledge on the
building characteristics. These results were compared with the values given by the energy performance
certificates of a smaller sample of 41 households. Finally, to communicate and visualize the analysis
outputs in a user-friendly way, an interactive web interface tool has been created.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Denmark has very ambitious goals in terms of the sustainability
of its energy sector. In 2030, the share of renewable energy sources
(RES) shall be 55% in final energy usage, 100% in electricity use and
90% in the district heating (DH) sector [1]. The transition to a low-
carbon future is built on two pillars: lowering energy demand and
increasing intermittent RES usage, such as wind and solar power.

Buildings account for roughly 40% of all energy use in the Eu-
ropean Union [2] and have, therefore, a prominent role in this
transition towards sustainability. In addition to a general decrease
of their energy demand, buildings should be operated in a smart
way, i.e., modulate their energy demand according to the avail-
ability of local RES.

District Heating systems also play a vital role in shifting to a low
carbon society as they provide most of the energy used for space
heating and domestic hot water in Danish buildings (>60%). In
other countries like Iceland, Poland, Lithuania, Estonia, Sweden,
r Ltd. This is an open access articl
Finland, and Northern China, more than half of their building stock
is connected to the DH grid [3]. In addition, DH systems can inte-
grate a wide range of RES [4] and excess heat from local industrial
processes. However, this requires a change in the DH network's
operation by lowering supply and return temperatures and intel-
ligent control at the building/customer level with heat demand-
side management.

The digitalization of energy use in buildings brings new op-
portunities. However, smart technologies in residential buildings
are expected to be adopted by 27% of EU households by 2025 [5],
leaving 73% of building stock as conventional buildings equipped
solely with energy meters lacking IoT (Internet of Things) enabled
sensors and devices. Therefore, the lack of available technological
infrastructure is a significant barrier that will prevent a substantial
EU building stock share from being involved in the proactive and
integral part of the evolving energy system. Moreover, current
methods for assessing and optimizing building performance and
evaluating smart readiness are based on simplified calculations
[6,7]. Therefore, the difference between predicted and actual en-
ergy use of a building (the performance gap) can be up to a factor of
2.5 [8,9].

Currently, the real-time consumption data from DH smart heat
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
mailto:dle@build.aau.dk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.segy.2021.100035&domain=pdf
www.sciencedirect.com/science/journal/26669552
www.journals.elsevier.com/smart-energy
https://doi.org/10.1016/j.segy.2021.100035
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.segy.2021.100035


D. Leiria, H. Johra, A. Marszal-Pomianowska et al. Smart Energy 3 (2021) 100035
meters is primarily used for billing the customers. In Denmark, it
will be obligatory to collect dynamic heating data by using smart
meters for every building connected to the DH grid from 2027 [10].
Therefore, this paper aims to present how to exploit these energy
meters’ large potential and how they can deliver new information
on building connected to the DH grid: faulty operation of the
ventilation/infiltration system, poor performance of the building
envelope, etc. This information is crucial for CO2-saving actions in
energy-optimized buildings that smartly interact with the local DH
system and facilitate its green transition.

These data will also provide a better knowledge of the actual
building's energy use, which enables an accurate estimation and
planning of the demand-side management for heating grids. By
increasing the accuracy, it pushes forward the DH systems into the
4th Generation District Heating (4GDH). The 4GDH systems are the
new evolutionary step of the DH networks, where the fluid-supply
temperature is lowered (50e60 �C) to decrease the overall heat
losses, reduce the distribution pipe diameters, lower the fluid flow
rates and increase, consequently, the system's efficiency [11]. Even
though the 4GDH systems bring several advantages, the system's
implementation must be precise to assure the user's comfort. For
this reason, it is argued that smart energy data will benefit the
transition to the 4GDH systems because all data collected and its
analysis will provide a better understanding of the grid, allowing a
more reliable design and implementation of the 4GDH networks.

This paper's contributions are a methodology used to perform
the cleansing and preparation of the DH dataset to be used for
further analysis. Moreover, the treated dataset can be applied to
more precisely assess the building's transmission losses, the
ventilation and infiltration dependency on the energy consump-
tion, and the impact of the solar radiation has on the building to
decrease the heating demand. This study also proposes incorpo-
rating the methodology results to compare with the Energy Per-
formance Certificates (EPC) calculations to evaluate their similarity
and detect the key variables that might contribute to the energy
performance gap.

After reviewing the current publications about data analysis of
smart meters in DH systems in section 2, the current study's
methodology is detailed in section 3. Section 4 presents and dis-
cusses the results from the application of the methods developed in
this study. The article closes with conclusions and suggestions for
future work.

2. State of the art

In a recent follow-up study of heat load profiles using smart heat
data [12], Calikus et al. [13] presented an automated method to
analyze heat load profiles for non-residential buildings. Since the
latter have clear occupation schedules and heating management
systems, their heat demand profiles are easier to predict compared
to residential houses, in which occupants’ behavior and heating
practices are more diverse [14]. With the application of smart heat
meters in the residential sector, the recent research work has
focused on identifying typical customer segments according to heat
consumption [15e17]. Johra et al. [18] have shown that clustering of
buildings according to metered parameters, i.e., the temperature of
return water to DH network (Treturn) and the temperature differ-
ence (DT) between the supply and return fluid, can help to identify
buildings with efficient heating systems.

Gianniou et al. [19] presented a simple methodology with uni-
form and steady-state assumptions about the occupants in all
houses, i.e., heating practices, occupancy schedule, and single-zone
modeling of the building. The smart heat data are used to derive the
temperature setpoint and U-value of the building envelope. How-
ever, the number of occupants and their heating habits [14] and the
2

number and use of appliances [20,21] are different and dynamic.
Thus the proposed methodology needs to adjust for such dynamic
boundary conditions.

Recently, studies have also shown that real-time heat data could
facilitate the field of urban building energymodeling (UBEM) in the
calibration of archetype building energy models [22], for modeling
of demand-respond [23], and load forecasting [24]. The smart
electricity meter data have proven to provide great environmental,
social and economic benefits [25]. However, the research work on
smart heat data is still in its infancy, andwe have yet to discover the
knowledge gain captured in real-time heat data to speed up the
green transition of building stock and energy systems. Therefore,
there is a great need for research on identifying novel methodol-
ogies to convert the promising potential of smart meters to trans-
form conventional buildings into energy-optimized and smart
buildings.

3. Methodology

The dataset provided by the DH company Aalborg Forsyning
[26] consists of heat meter recordings from 1665 buildings (mostly
single-family dwellings) located in a small town in the North of
Jutland, Denmark. All the smart energy meters installed in the
buildings measure the cumulative energy and fluid usage, the
hourly-averaged supply and return fluid temperatures and the
instantaneous measurements of fluid flowrate, supply and return
temperatures. The devices also store the faults detected during
operation. The space heating and heating for domestic hot water
production are accounted together. The measurement time period
spans from the October 1, 2018 until the October 7, 2019. The
measurements are recorded every hour. Because of the scope of the
research project supporting the current study, only the single-
family residential buildings connected to the DH network were
studied.

3.1. Data pre-processing

In this study, the methodology to pre-process the DH dataset is
similar to the one described by Johra et al. [18]. This algorithm
performs the cleansing and treatment of the data for further
analysis. The flowchart in Fig. 1 details the different steps of the
data treatment.

The first part of the algorithm organizes the dataset, performs
resampling, and quantifies the number of anomalies detected by
the smart energy meters and the possible data outliers. The second
part of the algorithm determines the number of missing data points
in the DH dataset as well as the gap sizes of the consecutive missing
values for each building. Buildings with data gaps larger than nine
consecutive hours or buildings with more than 10% of data missing
are excluded from the rest of the analysis. Different imputation
techniques are then applied to generate the remaining missing data
points. In this case study, the most suitable imputation for cumu-
lative values was found to be linear interpolation. For instantaneous
values, it is the exponential weighted moving average with a
window-size of 8 data points before and after the missing value. In
the last part of the algorithm, a well-known statistical technique of
outlier detection is applied. It considers values higher or lower than
1.5 of the variable's interquartile range as an outlier. This technique
evaluates the maximum cumulative energy and fluid-volume
consumption parameters and the maximum mean calculated po-
wer to identify the non-residential buildings. The latter can then be
excluded from further analysis to fit the scope of the current study.
As an output of this pre-processing algorithm, when applied to the
dataset of 1665 buildings, only 969 buildings (58.2% of the original
dataset) fulfill all the requirements to be used for further analysis.



Fig. 1. Pre-processing algorithm.
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The weather data (outdoor temperature, wind speed and solar ra-
diation) from the local weather station is also integrated into the
dataset.

In addition, information extracted from the EPC of each building
is integrated into the dataset. This EPC reports the building energy
use and production from which an energy label is issued. Label A
represents the best energy performance, while the letter G is the
worst energy performance grade that can be obtained [27]. Because
EPC is only mandatory for buildings that are for sale or rent, EPC
information could not be extracted for all buildings of the case
study. For the available EPC reports, the extracted parameters are
the construction year, the year of major renovation (if any), the
heated surface area (m2), the total specific heat losses from the
opaque and glazed envelope (W/K), the solar exposure of the glazed
elements, the volumetric flow rates of natural and mechanical
ventilation for Winter and Summer seasons (litres/s.m2), the
description of the ventilation and the space heating systems, the
estimated energy usage (kWh/m2 year) and its associated energy
label. From the dataset of 969 buildings, a subset of 41 buildings
was selected as they present good quality EPC information.
3.2. District heating variables and coefficients

The recorded variables from the smart energymeters data are as
follows: the cumulative energy usage (Ecum), cumulative fluid use
(Vcum), the product between the cumulative water use and the
hourly-averaged supply and return temperatures (VcumTs and
VcumTr). From these measurements, other variables are calculated,
as described hereafter.
3.2.1. Hourly-averaged temperature and temperature difference
The hourly-averaged temperature recorded by the sensors is

calculated back from (1):

Tx ¼ VcumTx
Vcum

(1)

Where the variable Tx can be either the supply or the return fluid
temperature. With the estimated hourly-averaged temperatures,
the temperature difference is calculated as:

DT ¼ Ts � Tr (2)
3.2.2. Hourly energy usage and fluid volume use
The smart energy meters measure the building energy usage

and fluid use by summing it up with the previous measurements.
The current hourly values of energy usage and fluid flow are thus
obtained by subtracting the previous data point from the current
one:

Ei ¼ Ecum; i � Ecum; i�1 (3)

Vi ¼ Vcum;i � Vcum;i�1 (4)
3.2.3. Building thermal characteristics: heat transmittance,
ventilation/infiltration and solar gains

The heating demand of a building is calculated from the steady-
state energy balance between the heat losses through the envelope,
ventilation and infiltration, and the heat gains from solar radiation
and other internal loads (occupants, equipment, etc.):
4

Edemand ¼ Etrans þ Event � Esolar � Eint (5)

The sum of heat losses by transmission, ventilation and infil-
tration can be expressed as a function of the temperature difference
between the indoor and outdoor environments:

Etrans þ Event ¼
�
UAþ ncpr

�ðTint � ToutÞ (6)

Where the U-value is the overall thermal transmittance of the
building (W/m2 K), A is the overall envelope area (m2), n is the
volumetric flow rate of the ventilation and infiltration (m3/s), Cp is
the specific heat capacity of the air at a constant-pressure system (J/
kg K), and r is the air density (kg/m3). By using the values calculated
in equation (3), a correlation between heating demand and outdoor
temperature is deduced for each building. Fig. 2 shows a scatter
point plot from one of the buildings in the dataset where the
heating season points (Autumn, Winter and Spring) are marked in
red and the no-heating season (Summer) in blue.

However, one can see that there is no clear correlation between
energy consumption and outdoor temperature beyond the high
levels of heat demandedwhen the outdoor temperature is low. This
unclear relationship between the variables might be due to the low
resolution of the energy meter and the DHW energy share mixed
with the space heating needs. To tackle that, the hourly energy data
points were summed up for each day, and the outdoor conditions
were averaged over the same period of time. By using this meth-
odology, similar to the one used in [19], a more explicit relationship
between the outdoor temperature and the energy demand can be
observed (see Fig. 3).

The shape of the cloud of points in Fig. 3 is commonly called
“hockey-stick” by utility companies. It represents the piecewise
linear correlation between the heat demand and the outdoor
temperature during the heating season and the constant energy
values during the season without space heating needs and only
domestic hot water production.

The linear relationship y ¼ mxþ b between these two variables
during the heating season can be linked to the steady-state energy
balance of the building by combining equations (5) and (6):

Edemand¼EðToutÞ¼��
UAþncpr

�
Toutþ

�
UAþncpr

�
Tint�Esolar�Eint

(7)

Where them- (slope of the line) is the term�ðUAþncprÞ and the b-
is the term ðUA þ ncprÞTint � Esolar � Eint:

Heating season linear regression:

EðToutÞ ¼ mHeating � Tout þ EðTout ¼ 0Þ (8)

No heating season linear regression:

EðToutÞ ¼ E
�
Tout ¼ TNo Influence

�
(9)

As seen, the m- is a descriptive value of the building charac-
teristics, which is dependent on the ventilation/infiltration levels
and the transmission losses. The value TNo Influence is an outdoor
temperature threshold under which the heating demand is no
longer dependent on the outside temperatures. This may represent
the outside temperature when the heating system is turned off. In
order to quantify the parameters of (7), it is necessary to isolate the
outdoor factors. The outdoor cause that influences the solar gains is
solar radiation, and the infiltration/ventilation losses are mainly
dependent on the wind speed. Therefore, solar radiation and wind
speed are used as filtering conditions to isolate data points that are
more conditioned on one energy component than the others. In
order to reduce the impact of the internal gains and the potential



Fig. 2. Scatterplot between energy usage and outdoor temperature for a particular building.

Fig. 3. Scatterplot between energy usage and outdoor temperature of a particular building with daily aggregated values.
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natural ventilation from the opening of windows, the data points in
the time intervals 11:00e16:00 and 23:00e04:00 were selected, as
people are usually not at home or are sleeping. Fig. 4 presents the
distribution of different weather parameters. One can see that the
outdoor temperature and the wind speed have a quasi-normal
distribution with a mean value of 6.4 �C and 3.6 m/s, respectively.
In terms of solar radiation, the mean value is 103.5 W/m2, with
most of the values below 100 W/m2, which is expected for
Denmark.

The filtering conditions to be applied in each building of the
dataset were selected by taking into account the weather variable's
distributions (see Table 1).

The temperature/transmission component is isolated in the
dataset when considering zero solar radiation (night period) and
the wind velocity lower than 2 m/s. The same reasoning is followed
for the ventilation/infiltration factor, but considering the data
points where the wind speed is higher than 3 m/s. The solar gain
5

component is filtered when the radiation is higher than 30 W/m2

(daytime), and the wind velocity is lower than 2 m/s. The same
methodology of linear regression is then reapplied on these new
filtered subsets to obtain the parameters that are dependent on a
specific energy component for the heating season:

Transmission losses condition:

EðToutÞ ¼ m1ðUAÞ � Tout þ b1ðUAÞ (10)

Solar gains condition:

EðToutÞ ¼ m2ðUAÞ � Tout þ b2ðEsolarÞ (11)

Ventilation and infiltration losses condition:

EðToutÞ ¼ m3ðnÞ � Tout þ b3ðnÞ (12)

Equation (10) is the linear regression made from the data points



Fig. 4. Outdoor variables distribution.

Table 1
Subset filtering conditions.

Isolated energy component Solar radiation (Rd) [W/m2] Wind speed (vwind) [m/s]

Transmission losses (Outdoor temperature) 0 �2
Solar gains (Solar radiation) >30 �2
Ventilation and infiltration losses (Wind speed) 0 >3
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subset that is highly correlated with the outdoor temperature.
Therefore the value m1 is much more dependent on the constant
UA than the air rate from the ventilation/infiltration component. In
equation (11), b2 is much more correlated with the solar gains than
with the other energy parameters. In equation (12), by following
the same reasoning, the slope m3 characterizes the ventilation and
infiltration impact on the building's heating demand. It is still
important to highlight that these values are still influenced by the
outdoor temperature, the building's air change rate, indoor tem-
perature setpoint and internal gains. Regarding the values extrac-
ted from the equations, it is concluded that the higher the absolute
value ofm1, the higher the heat transmission losses will be through
the building's envelope. The b2 has the solar gain as negative term;
therefore, the lower this coefficient is, the higher the solar gains in
the building will be. This happens in buildings with large glazing
areas, low use of solar shading, or most glazing surfaces facing
south. The coefficient m3 is much more dependent on the energy
losses due to wind speed. For this value, the higher its absolute
value is, the higher the impact of wind on a building. This is seen in
buildings with high infiltration/ventilation rates due to their
ventilation system, or where the windows are opened frequently
with the heating system in operation or due to high air leakage.
6

3.3. Comparison of the district heating coefficients with the EPC
results

After extracting all DH variables from the dataset and calcu-
lating the linear regression coefficients, the derived building char-
acteristics are compared with the building information reported in
the EPC. These inputs are the information collected by the EPC
certifier during the assessment and are considered reference values
to evaluate the accuracy of the coefficients. The inputs are valuable
to the utility companies when analyzing the building heating data
because they are more detailed thanwhat is available in the Danish
building and housing register.

At this research stage, all EPC information is extracted manually
to be analyzed. Therefore, a subset of 41 buildings was used. Among
the subset, five buildings had significant renovations. All the
buildings have a similar heated surface area, with a mean and
standard deviation of 137.1 ± 32.1 m2. The main ventilation system
is natural ventilation. Few of them also havemechanical ventilation
systems installed. Apart from two cases with indirect connection,
the space heating system of the buildings is directly connected to
the thermal grid without any intermediate heat exchanger. The
domestic hot water is produced in a heat exchanger, often located



Table 2
Number of buildings with the same EPC label.

EPC label Number of buildings

A2010 2
B 16
C 8
D 10
E 3
F 1
G 1
Total 41
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in the utility room. Each building is assigned an energy label, which
represents its energy performance level. One can see in Table 2 the
number of buildings for each energy label.

The first variable that will be compared is the difference be-
tween the total measured energy usage by the smart meters and
the annual estimated energy by the EPCs (kWh/m2 year):

DE ¼ EEPC � EDH (13)

The EPC annual energy, EEPC , is the predicted household's energy
usage concerning space heating, DHW and the electricity con-
sumption by the buildings' installed systems. Because it is only
being studied single-family houses, the majority of the EEPC-value is
the sum between space heating and DHW, as it is in the smart
meter's measurements.

In equation (13), if the value DE is negative, then the EPC
underestimated the building's energy usage and vice-versa. If the
Fig. 5. Relationship between EPC energy predictio

7

EPCs are in good agreement with the smart meter recordings, it
might be argued that the former can be used by the utility com-
panies when designing the expansion of their network.

The main parameters that are extracted and calculated from the
linear regressions are m1, b2 and m3. The estimate of these values
can be compared against the input parameters from the EPC. For
the case of m1, its dependency is with the transmission losses of a
building. From the EPC, the value used to testm1 is the total specific
heat loss from the opaque and glazed elements on the building. The
parameter b2 quantifies the dependency of solar radiation on the
overall energy usage. Therefore the coefficient was compared with
the heat gain share from the heat balance of all windows in a
building. The heat gain share in the energy balance is dependent on
the window's area, orientation, inclination and total solar energy
transmittance (gw), which are all described in the EPC. The venti-
lation and infiltration losses (m3) are comparedwith the ventilation
heat transfer coefficient provided by the TABULAWebTool [28].
4. Results

4.1. Comparison between district heating smart meter results and
building EPCs

4.1.1. Smart energy meters measurements and EPC energy
predictions

In Fig. 5, one can see the relationship between the EPC estimated
energy consumption and the energy usage measured by the smart
energy meters. The data points in the red upper zone indicate an
n and the measured building's consumption.



Fig. 6. Relationship between EPC energy prediction and the measured building's consumption (Zoom).
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overestimation of the energy use by the EPC. Conversely, the green
zone's data points indicate an underestimation of the energy use by
the EPC.

Fig. 6 shows the same plot as in Fig. 5 but focuses on the lower
range of energy use.

The figure above shows a significant mismatch between the EPC
estimation and the actual heating need of many buildings
throughout all energy label categories. Building energy perfor-
mance from the EPC can thus be a problem if used by the DH utility
companies when planning the extension of their thermal grid.
Estimating the heat demand from the EPC of existing buildings
connected to the DH network could lead to a large oversizing of the
latter. Unfortunately, the size of the analyzed sample is too small to
make definite conclusions.

4.1.2. Smart energy meters measurements and EPC building
thermal characteristics

Regarding the building's thermal characteristics, a methodology
was developed to quantify the envelope and ventilation/infiltration
heat losses and heat gains from solar radiation. These characteris-
tics can be assessed in a more accurate manner than what is stated
in EPCs. It is thus possible to identify the main reason behind the
high energy demand of certain buildings. Building system faults
could thus be detected. A renovation scheme could also be sug-
gested to the households.

In Fig. 7, the correlation between the specific transmission heat
losses from the EPC and the m1 coefficient is presented.

The specific transmission losses from the EPC are the product
between the total area of the opaque and glazed envelope elements
8

and their thermal transmittance. There is a good correlation be-
tween the EPC values and the m1 coefficients obtained by linear
regression on the smart meter data. This implies that this meth-
odology is suitable to understand the building's transmission heat
losses from the smart energy meters. Hence, it can be used as an
indicator to the utility companies to identify the buildings where
their space heating usage is highly dependent on the envelope heat
losses.

Regarding the solar gains, the b2-coefficient was calculated. This
value is connected with the impact that solar radiation has on the
building's heat demand. And the lower this variable is, the higher
the solar gains are in a building. In Fig. 8, three of the EPC label
categories with more buildings in the subset are represented, with
each building's b2-coefficient and their associated overall solar
exposure.

In the plot, each point represents a building, and it is expected
that the buildings with more prominent south solar exposure have
lower b2 (green data points). However, this relation is not observed.
In label B, there are some buildings with low b2 coefficients
exposed mainly to the north. As for the label C and D buildings,
some south solar-exposed buildings have large b2-values. The
reason behind it might be that the building's linear regressions are
not adequate and that other unknowns significantly impact the
building's energy performance.

Concerning the ventilation and infiltration losses, they are
estimated by using the m3 coefficient. To evaluate this variable's
relevance, the correlation between the m3 value and the expected
heat transfer coefficient by ventilation in the buildings was esti-
mated. Moreover, the assessors have sometimes described the



Fig. 7. Correlation between EPC specific transmission losses and the m1-coefficient.
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condition of the building joints (construction joints, joints at win-
dows and door openings) to assess the building's leakage. Therefore
the condition of the building joints was also compared to the m3
coefficient (see Fig. 9).

In the scatterplot, one can observe a reasonably good correlation
betweenwhat are the expected losses and them3 values. Therefore
this method might be adequate to identify buildings with high
ventilation and infiltration losses. Another point worth mentioning
is regarding the building (Label A2010) with the lowest m3 coeffi-
cient (�2.19 kWh/�C). Even though it is newly built and with a good
EPC label, it presents high ventilation and infiltration losses. In the
EPC assessment, this is one of the few buildings with mechanical
ventilation, which might be the reason for high ventilation/infil-
tration losses and, therefore, a low m3 coefficient. This also shows
that the utility companies can also detect the households with large
heat demand due to ventilation and advice their customers to take
actions to reduce their consumption. Concerning the joints condi-
tion, buildings with low m3 coefficients are expected to be less air
tight. In the boxplot, a large portion of the building did not have a
description (Not defined). The “Reasonable” conditions have low
m3 values, which is expected. The description “Not good” is only
two buildings where its m3 should be much lower than it is.
Therefore, by observing the plot, the sample is too small to draw
meaningful conclusions regarding the buildings’ envelope
airtightness.

Even though this methodology is quite promising due to its
simplicity, it might not perform very well, in some cases, when
compared with the EPC values. Several reasons might explain the
poor performance of this method. The energy consumption
measured by the devices is for space heating and DHW production.
Therefore, it is hard to isolate the energy required only for space
heating, which depends on the outdoor conditions. Also, the
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method used in this study tried to evaluate the different energy
components on the building's heat balance by filtering the data
points that have adequate outdoor conditions to eliminate certain
terms of the heat balance. However, this filtering might not be
perfect or not minimize enough certain gain terms in the energy
balance. Additional unknowns might also have a significant impact
that cannot be captured by the energy meters, EPC or weather
station, e.g., people behavior, natural ventilation through windows
openings, internal gains. Furthermore, in the filtering conditions,
another problem that might cause the methodology not to work
correctly is the studied location's meteorological characteristics.
This study was performed in Aalborg, which is known for being a
windy city with low sun exposure; therefore, the data points will
not be equally distributed, creating unrealistic linear regressions
without any physical meaning, as seen in Fig. 10.

Because there are not that many daylight hours during the
heating season in Aalborg, it might be the main reason for the b2
coefficient to contradict the EPC results. So, this coefficientmight be
more accurate for countries where the daylight hours are much
higher than Denmark. The methodology accuracy was also tested
when compared with the values from the EPCs. The EPCs are highly
dependent on the assessor's knowledge and inputs as well as the
building standard values provided in the national building stan-
dards. However, the standards and EPC inputsmay not be the actual
building's values, contradicting the calculated coefficients conse-
quently. Another reason worthy of mentioning is the small EPC
sample size (only 41 buildings).

4.2. Interactive web-based interface for data visualization - shiny

The methodology presented above is of great interest for
households, urban planners, municipalities and utility companies



Fig. 8. Relation between EPC overall solar exposure and the b2 coefficient.

Fig. 9. Correlation between EPC specific ventilation loss and the m3 coefficient. Relation between the building's joints condition and the m3 coefficient.
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managing energy distribution grids like district heating networks.
However, sharing so much information with building professionals
in a concise yet meaningful and flexible way can be challenging.
Given this, it was chosen to bundle all the data analysis results of
this study into a web-based interactive map. Maps are intuitive
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tools to rapidly grasp an overview of the state and characteristics of
a given cluster of buildings or an entire city.

The “Shiny” package [29] is a free library for the R programming
environment that enables the simple development of web-based
graphical interfaces to display data plots and navigable satellite



Fig. 10. Filtered data points distribution.
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maps with super-imposed graphics, symbols, and data points
(bubble maps). A dedicated data visualization interface has thus
been created with the “Shiny” package to present the processed
smart energy meter data to a larger audience.

In Fig. 11, one can see an overview of the web-based interface.
The user can navigate on the map and display overlaying colored
points (corresponding to a color scale) for the following building
characteristics: district heating fluid supply temperature, the
temperature difference between supply and return fluid of district
heating, yearly volume of fluid passing through the substation of
the building, yearly heating demand per m2, clustering categories,
amount of erroneous data from the smart meter, and amount of
missing data from the smart meter. The user can filter the visible
building data points on the map by selecting the filtering range
corresponding to the aforementioned parameters.
Fig. 11. Overview of the graphical user interface to visualize this study's processed
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It is also possible to include all the other building characteristics
calculated during the data processing or extracted from the na-
tional building register. However, for clarity, these have not been
included here.

In the interface, the user can select a specific point on the map
and display a summary of the building characteristics (yearly
values) together with the address, year of construction and energy
label. The user can also open the data time series of the selected
case and browse through it by selecting a specific period of time.
Furthermore, display correlation plots between different mea-
surement parameters in a selected building pop-up window.

Finally, a parallel plot (see Fig. 12) can be generated to give an
overview of all analysis results and building parameters of the
different households. Each line passing through the different
parameter columns is a unique building case. The user can narrow
data: district heating temperature difference to buildings in a specific region.



Fig. 12. Parallel plot of the building characteristics for some of the buildings in the case study.
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down each parameter's range to identify and compare the other
characteristics of the remaining building cases. The parameter and
characteristic columns can be manually swapped around by the
user.

5. Discussion

The systematic implementation of smart meters in the district
heating network opened up for the utilities to learn more about
their customers. The potential of this action is significant and
should be beneficial for both the production and demand-side (i.e.,
utilities and customers). The digitalization of the demand side is
also foreseen as the key component of the district heating transi-
tion towards 4th generation systems (i.e., 4GDH).

The presented methodology shows how utilities can identify
customers with high energy use and determine the reasons for
their performance. DH utilities can thus provide their customers
with tailored-suited energy-efficiency actions, thereby lowering
the network energy demand more efficiently, allowing a successful
transition towards 4GDH.

Another pillar of the 4GDH concept is the high share of fluctu-
ating renewable energy sources (e.g., wind and sun) on the pro-
duction side. The methodology provides utilities with knowledge
onwhich users are expected to use more or less heating depending
on weather conditions like wind speed and solar radiation.
Commonly the energy use at the demand side is correlated only
with the outdoor temperature. Neither solar radiation nor wind
conditions are taken into considerationwhen sizing the production
mix. With a higher share of intermitted RES in 4GDH, the knowl-
edge on the expected energy use must be better foreseen.

The expansion of hourly data from smart heat meters delivers
great potential to learn more about buildings. In Figs. 11 and 12, one
can see the easiness of identifying the building characteristics, the
data outliers, and the corresponding clients. For example, a district
heating company can map the clients with a high percentage of
missing data or erroneous data from their smart meters and send a
technician to verify and repair the latter. The utilities would also be
very interested in identifying clients with a very low fluid-
temperature difference because they lessen the district heating
system's energy efficiency.
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6. Conclusion

In this study, a simple methodology was used to treat and
analyze the data recorded by smart energy meters installed in 1665
buildings connected to a district heating network. Regarding the
different variables measured by the devices, all of them can be used
to evaluate the building's energy performance concerning the
different building characteristics, systems and user's behavior. To
evaluate the validity of the methodology, its results were compared
with the information from energy performance certificates of a
smaller sample (41 buildings).

The methodology developed in this study aimed to assess several
household characteristics from the smart meter data analysis: the
actual heating season in the building and the influence of the out-
door temperature, wind speed, and solar radiation on the energy
usage. When compared to EPC information (considered as refer-
ence), the simple linear regression method gives positive results for
the outdoor temperature and wind speed influence. However, it is
not conclusive for the sensibility of solar radiation. For the Danish
case, the outdoor temperature and the wind speed influence can be
assessed by the utility companies to understand the source of sig-
nificant heat losses in the buildings connected to the grid. Even in
the present research, it was seen that a highly efficient building had
significant ventilation and infiltration losses, and therefore a large
performance gap, most likely due to their ventilation system oper-
ation. To assess the solar gain, it is expected that the methodology
might work in countries with more considerable daylight hours.

In the paper, it was also compared the smart energy meters
measurements with the EPC estimations. The small sample used
shows that the difference between energy estimations and mea-
surements increases for buildings labeled as low-energy efficient.
In terms of District Heating systems, the EPC inputs, even though
used to test the accuracy of the linear regression method, cannot be
used as guidelines for design and planning the creation or expan-
sion of the DH networks.

In this study, a simple data visualization interface created with
the “Shiny” package (R) is presented as a starting point for creating
a real tool that can be used for the utility and consulting companies
to analyze the energy meter data and detect possible problems
occurring at their customers.
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In the present paper, several parameters increased the uncer-
tainty associated with this simple methodology. It is required to
adjust this methodology with more DH data points, more buildings
with EPC information, and higher resolution DH data with indoor
measurements that will clarify which values are more accurate, the
linear regression coefficients or the EPC inputs. As suggestions for
further work, it is idealized to use other linear regression algo-
rithms that are less susceptible to the different outdoor conditions
distribution and outliers and apply grey-box models with system
identification techniques.
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