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Abstract—This paper proposes attention enabled multi-

agent deep reinforcement learning (MADRL) framework 

for active distribution network decentralized Volt-VAR 

control. Using the unsupervised clustering, the whole 

distribution system can be decomposed into several sub-

networks according to the voltage and reactive power 

sensitivity relationships. Then, the distributed control 

problem of each sub-network is modeled as Markov games 

and solved by the improved MADRL algorithm, where each 

sub-network is modeled as an adaptive agent. An attention 

mechanism is developed to help each agent focus on specific 

information that is mostly related to the reward. All agents 

are centrally trained offline to learn the optimal 

coordinated Volt-VAR control strategy and executed in a 

decentralized manner to make online decisions with only 

local information. Compared with other distributed control 

approaches, the proposed method can effectively deal with 

uncertainties, achieve fast decision makings, and 

significantly reduce the communication requirements. 

Comparison results with model-based and other data-

driven methods on IEEE 33-bus and 123-bus systems 

demonstrate the benefits of the proposed approach.  
Index Terms—Voltage regulation, network partition, multi-

agent deep reinforcement learning, distribution network, PV 

inverters, distribution system optimization. 

I.  INTRODUCTION 

The utilization of renewable energy is of great significance 

to alleviate the current energy and environmental concerns [1]-

[2]. However, due to the uncertainties and volatility of 

renewable energy, its higher-level integration brings numerous 

technical challenges to the active distribution network (ADN) 

operations. Among them, the overvoltage issues due to the 

reverse power flow caused by the increased penetration of 

renewable energy are of particular attention.  

Various approaches have been proposed for ADN voltage 

regulation. From the perspective of the control framework, they 
can be divided into three main categories: centralized, 
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distributed autonomous, and distributed coordination control. 

The centralized control applies optimization algorithms to solve 

a centralized voltage regulation problem based on the operation 

information of the whole system [13]. This is challenging since 

the optimal power flow (OPF) is a non-convex optimization 

problem. To this end, heuristic methods [3], approximated 

approaches [4], non-linear optimization [5], and 

convexification methods [6] have been developed. To further 

address the uncertainties of renewable energy generations, 
stochastic programming (SP)-based approaches are developed 

[7]. However, the SP-based ones have a heavy computational 

burden as many scenarios need to be considered. Also, SP 

requires the accurate distribution of random variables, which 

may not be possible in practice. Different from SP, robust 

optimization (RO) methods deal with the uncertainty by 

constructing an uncertainty set and obtain the solutions under 

the worst scenarios [8-10]. As a result, the outcomes are 

typically conservative. Model predictive control [11-12] is 

another way of addressing voltage regulation but has 

difficulties for large-scale systems. Centralized control needs a 

central controller based on global information that is 
challenging given today’s limited communication capability in 

distribution systems. The communication delay can degrade the 

control performance. It also has disadvantages such as privacy 

concerns and vulnerability to cyber and physical attacks. 

The distributed autonomous control strategies make 

decisions for voltage regulation based on local observations 

[14-15]. They are easy to implement but has the problem of 

finding the global optimal solution due to the lack of 

cooperation between various control subjects. By contrast, the 

distributed cooperative control can achieve the coordination 

between different units with limited communication links [16]. 
Among them, the partition-based distributed coordination 

control is attractive in recent years [10], [17-19]. The main idea 

is to apply a clustering algorithm to partition the whole network 

into several sub-networks according to the predefined electrical 

distance. Then the optimization methods are applied to achieve 

distributed voltage regulation of each cluster. These methods 

[10], [17-19] need to pre-determine an optimal solution to deal 
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with the uncertainties of photovoltaic (PV) outputs and load 

demand. However, the PV outputs can significantly fluctuate 

when radiation changes fast. According to [20], the PV output 

may vary by 15% of its rated power in less than one minute. 

Under this condition, more frequent operations of multiple 
devices are needed to provide flexible responses to system 

uncertainties. However, they need to resolve the optimization 

problem when a new situation is encountered, leading to high 

computational burdens. Additionally, these methods are model-

based and require accurate parameters of the ADN, which is 

difficult to get [21-22].  

To mitigate the model quality issue, machine learning (ML)-

based voltage regulation methods for ADN are developed. ML 

methods can extract knowledge from historical data to deal with 

system uncertainties. The extracted knowledge has 

generalizability to new situations without resolving the problem 

[23-24]. Among them, deep reinforcement learning (DRL) can 
learn optimal control strategies from data and is suitable for the 

control and optimization problems [25], [26]. The relationships 

between the states and actions are learned by continuous 

interactions with the environment, thus reducing the 

dependence on the knowledge of system parameters. These 

DRL algorithms are still based on the centralized control 

framework and thus subject to the aforementioned issues. To 

this end, various ML-based decentralized control approaches 

have been proposed [27-30]. A Q-learning based multi-agent 

control method is proposed for reactive power dispatch in [27]. 

[28] develops a multi-agent Q-learning based decentralized 
control approach for the coordinated regulation of multiple 

energy storage systems. While in [29], a deep Q-network based 

multi-agent control framework for the optimization of AND is 

proposed. Nevertheless, Q-learning algorithms require the 

discretization of state and action variables. However, most 

practical power system applications have continuous multi-

dimensional state and action space. The naïve discretization of 

multiple continuous variables may lead to the curse of 

dimensionality issues. To this end, a multi-agent autonomous 

voltage control framework based on a multi-agent deep 

deterministic policy gradient (MADDPG) algorithm is 

developed for the voltage regulation of transmission systems 
[30]. It is worth noting that the DDPG algorithm is difficult to 

stabilize in complicated applications and sensitive to the 

settings of hyper-parameters. As the complexity of the 

environment grows exponentially with the number of agents, it 

is challenging for the MADDPG algorithm to learn a good 

policy. To address that, this paper develops an attention-

enabled MADRL algorithm that adopts centralized training and 

decentralized execution framework for Volt-VAR control 

considering the reactive power capability of static var 

compensation (SVC) and PV inverters. The contributions are:  

• The proposed approach can achieve cooperative control of 
multiple control devices using only local measurement 

information without a central controller. This is developed 

based on a novel framework, namely the centralized training, 

and decentralized execution, where all agents are trained in a 

centralized manner to learn the coordination control strategy 

and are executed in a distributed manner to provide near-

optimal decisions based on the latest local information. This 

significantly reduces the communication requirements and 

avoids the negative impacts on control performance caused by 

the time delay. Note that most existing distributed control 

methods still need some communications, which is not the case 

for our proposed method. This is one of the most important 

contributions and it distinguishes with existing methods. 

• The attention model is integrated with the MADRL method 
to help each agent attend to the specific information that is 

mostly related to its reward. This allows maintaining the control 

performance when the number of agents changes. This 

distinguishes it from the MADRL algorithm in [30] as it suffers 

from performance degradation with many agents.  

• Compared with other optimization methods, the proposed 

method can also achieve fast decision makings and effectively 

deal with violent voltage fluctuations caused by the rapid PV 

generation. This is because the strategy learned by the DRL 

method during training can be generalized to new situations 

without resolving the optimization problem. Furthermore, since 

only local information is needed, the decision making is rather 
fast. By contrast, to deal with uncertainties, robust optimization 

or stochastic optimization methods need to pre-determine a 

solution, which cannot effectively cope with the violent voltage 

fluctuations caused by the rapid PV generation changes. 

The rest of the paper is organized as follows. In section II, 

the problem formulation is presented. Section III describes the 

proposed method. In section IV, the simulation results are 

illustrated in detail. Finally, Section V concludes this paper. 

II.  PROBLEM FORMULATION 

Consider an ADN with N+1 buses, whose lines and buses 

are denoted as L and N, respectively. For i  N , define 
iv  as 

the voltage magnitude, and 
i ip jq+  as the injected complex 

power. The injected active power can be divided into the PV 

generation 
g

ip  and load demand 
l

ip , i.e., : g l

i i ip p p= − . The 

injected reactive power is : g s l

i i i iq q q q= + − , where 
g

iq , 
s

iq , 

and 
l

iq represent the reactive power of PV inverter, SVC, and 

load demand, respectively. Stacking the load demand and 

generations into vectors, we get , , ,l l g g
p q p q an

s
q . Note that 

OLTCs and capacitor banks may also exist in distribution 

feeders, but they typically react in a slow timescale. 

Furthermore, they are usually scheduled offline due to their 

limited allowable number of daily switches. This makes it 

difficult for them to address violent voltage fluctuations caused 

by the rapid changes in PV generations. The SVCs and PV 

inverters can provide high-speed reactive power support, 

especially in distribution networks with a high level of PV 

penetrations. This paper aims to achieve fast voltage control by 
using SVCs and PV inverters in the scenario of high penetration 

of DERs. Let 
i  denote the parent bus of the non-root bus i. 

( , )i i L  represents the line between the two nodes, which has 

impedance 
i ir jx+ . Let ( ) ( )i iP t jQ t+  the complex power that 

flows from node 
i  to node i. Then, the DistFlow equations to 

model the power flows of the ADN for all buses i  N  at t are 

given as follows [31]: 

2 2( ) ( )
( ) ( ) ( ( ) )

( )
i i

i i
i j i i

j

P t Q t
p t P t P t r

v t

+
= − −

X

                  (1a) 
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2 2( ) ( )
( ) ( ) ( ( ) )

( )
i i

i i
i j i i

j

P t Q t
q t Q t Q t x

v t

+
= − −

X

               (1b) 

2 2
2 2 ( ) ( )

( ) ( ) 2( ( ) ( )) ( )
( )i

i

i i
i i i i i i i

P t Q t
v t v t r P t x Q t r x

v t




+
= − + + +

      (1c) 

where 
iX  represents the set of the children nodes. The task aims 

to minimize the voltage deviation utilizing the reactive power 

of SVCs and PV inverters. The voltage regulation problem can 

be described as follows: 

  
0 1

,

minmize || ( )  ||t v−
s g

q q

v 1                             (2) 

                     subject to    (1a)-(1c) 

( )t v v v                                      (3) 

( ) ,      s s s

i i i sq q t q i    N                               (4) 

2 2| ( ) | ( ) ( ( )) ,      g g

i i i gq t s p t i −   N          (5) 

where (2) is the objective function and it aims to minimize the 

sum of the voltage deviation of each node; 
s

q and 
g

q are 

control variables; (3) is the voltage constraint for each node, 

where v  and v  are the lower and upper limits; (4) describes 

the reactive power range of SVC, where 
s

iq  and 
s

iq  are its 

lower and upper limits; 
sN denotes the set of nodes connected 

with SVCs; From (5), the reactive power of the PV inverter at  

node i depends on the active power of  PV at time t, where 
is  

denotes the rated apparent power of PV connected to node i; 

gN denotes the set of nodes connected with PVs. 

    Existing centralized volt-var control methods suffer from 

heavy computational burden [32] and are susceptible to the 

single point of failure [33]. They also lead to a communication 

bottleneck since the centralized controller must collect 

information from the whole system [19]. To this end, this paper 

proposes a distributed attention based multi-agent twin delayed 

deep deterministic policy gradient (MATD3) algorithm to deal 

with them. 

III.  PROPOSED DISTRIBUTED MATD3 VOLT-VAR CONTROL 

The proposed distributed control method contains three 

main components, namely i) network partition via the clustering 

algorithm; ii) formulation of the decomposed sub-networks as 

Markov games and iii) voltage control optimization via the 

proposed attention-based MATD3 algorithm.  

A.  Network Partition  

The objective of clustering in this paper is to partition the 

ADN into several sub-networks to identify the voltage control 

areas. Via the network partition, the centralized optimization 

problem is divided into several small problems, such that the 

communication requirements and negative impacts on control 

performance caused by the communication delay are reduced 
and the robustness to cyber and physical attacks is improved.  

Spectral clustering, an unsupervised learning method 

derived from spectral graph theory, is used to search for the 

optimal partition results of ADN in this paper. Since this paper 

aims to reduce voltage deviation utilizing reactive power of 

multi resources, the voltage-reactive power sensitivity matrix is 

used to represent the electrical distance. The affinity matrix is 

derived based on the sensitivity matrix via 
2

, , 2
1, 1

|| ||
exp( )

2

N
i j

i j j i

i j

x x
w w

= =

− −
= =                          (6) 

where ,i jw  is the component of the similarity matrix W; ix  

represents the ith row of the sensitivity matrix;  is the 

coefficient that controls the width of the neighborhood. The 

diagonal degree matrix D can be obtained by 

1

n

i ij

j

d w
=

=  , where 

id  denotes the ith diagonal element of D. After that, the 

Laplacian matrix L is calculated via = −L D W . The clustering 

problem can be transferred to a graph partition problem and the 

objective function is as follows [34]: 

            ,

1 2

1 ,

1
( , ,..., )

2 ( )
i i

k
m n

Ncut k

i m A n A i

w

vol=  

=  F A A A
A

                   (7) 

where k is the total number of clusters; 
iA  denotes the ith group 

of the clustering results; 
iA  is the complement set of 

iA ; 

( )ivol A  represents the weighted sum of all edges in 
iA . The 

objective of (7) is to maximize the internal similarity of 

subgraphs. According to [34], the optimization of (7) can be 

reformulated as: 
1/2 1/2arg min ( )

            . .  

T

T

tr

s t

− −

=

F D LD F

F F I

                      (8) 

The optimal partition results can be obtained by 

constructing a space using the eigenvectors corresponding to 

the first 
1k eigenvalues of the matrix 1/2 1/2− −

D LD , and clustering 

the eigenvectors in the space by the K-means algorithm. 

Remark: The key factor that affects the partition result of 

the distribution system is the network reconfiguration. The 
topology of the network changes after reconfiguration, leading 

to the change of the voltage-reactive power sensitivity matrix 

as well as the partition result. However, the topology changes 

typically yield local impacts on voltage-reactive power 

sensitivity. Thus, only the local sensitivity indices 

corresponding to the topology changes need to be updated, 

which can be done quickly. 

B.  Formulation of Markov Games 

After network partition, the whole network is divided into 

serval sub-regions. Then, the decentralized voltage regulation 

of multi sub-networks is formulated as Markov Games (MGs), 

a multi-agent extension of the Markov decision process. In the 

MGs, each sub-network is modeled as an adaptive agent. At 

each time-step, each agent observes the regional system state 

js , including the active and reactive power of loads, and the 

active power generation of PVs. Based on the observed 

information, each agent makes decisions ja to schedule the 

reactive power of SVCs and PV inverters. After all agents’ 

actions are executed, each agent obtains a reward, which 

represents the total voltage deviation of the whole system. Then, 

the system transfers to the next state. MGs provide a 

mathematical representation for modeling the distributed 
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decision-making process. The key components for an MG 

include state set S , action set A , and reward function R . 

They are described as follows: 

• S : s S  contains the states for all agents. For agent j, 

the state j s s  is the local observation of sub-network j, 

including ( , , )l l g

i i ip q p , where i is the index of the node in sub-

network j.   

• A : a A contains the actions for all agents. For agent j, 

the action 
j a a  includes ( , )g s

i i  . The control variables in (2) 

can be derived as: 
2 2( ) ( ) ,   -1 1g g g g

i i i i iq s p = −                      (9) 

,   -1 1s s s s

i i i iq q =                            (10) 

•R : r  R  is the immediate reward the agents obtain after 

the action a  is executed. In this context, all agents share the 

same reward: 
0 1|| ( )  || +r t v = − −v 1 , where 

0|| ( )  ||t v−v 1  

represents the total voltage deviation of all nodes in the DN;   

is the penalty term when voltage constraint (3) is not satisfied.  

At each time step, agent j makes a decision ja  based on the 

local observation js in the sub-network j. When all agents 

complete actions, they obtain a shared reward r , and then the 
system transfers to the next state. This is an MG and the aim of 

each agent is to learn a policy, which maps its local observation 

js  to action ja  so as to maximize the discounted cumulative 

reward from the current time-step onward, ( )
T

k t

k t

r k −

=

 , where 

[0,1]   is the discount factor that balances the importance 

between the future and immediate reward. 

Remark: some distribution systems may not have SVCs, 

DSTATCOM, or fixed/switched capacitor. For a high 
penetration of PV integration system, SVC may not be 

necessary if the PV reactive power capability is properly 

utilized. The proposed method is general enough to address that.   

 
Fig. 1. The architecture of the proposed attention-based MADRL method. 

C.  Attention Based MATD3 Algorithm for Voltage Control 

The proposed attention-based MATD3 algorithm is 

developed to solve the formulated MGs. MATD3 is one of the 

MADRL algorithms. To enhance its scalability when dealing 

with more sub-regions, we improve the original MATD3 

algorithm using the attention model. Each sub-network is 

modeled as a twin delayed deep deterministic policy gradient 

(TD3) agent, which is composed of the actor and critic networks. 

The actor maps the local observation js  to action ja and is the 

policy function. The critic maps the global information ( , )s a  to 

a scalar, which is a judgment of action ja  considering the 

impact on other agents. The coordinated control strategy is 

achieved by adopting a centralized training framework, among 

which the actor and critic functions of each agent are trained 

against each other iteratively until the critic provides better 

judgment and the actor can make decisions with reduced 

voltage deviation. To further enhance the capability of MATD3 

in dealing with many agents, the attention mechanism is 
developed. It allows each agent to focus on the specific 

information that is mostly related to the reward. The 

architecture of the proposed method is shown in Fig. 1 and the 

details are elaborated below. 

1) Attention-Critic Functions  

       For agent j, the critic function ( )jQ   takes the global state 

s  and actions of all agents a  as inputs and outputs the action 

value of the agent j. To address the uncertainties of ADN, a deep 
neural network (DNN) is advocated to approximate the critic 

functions as follows: 

, ,1( , ) ( , ) [... ( , )]j j j l jQ g g g= =s a s a s a                   (11) 

 
, 1( * ),    2,3,...,c c

j i i i ig i l −= + =W o b               (12) 

where ( )jg   represents the parameterized critic function of 

agent j approximated by DNN; 
,j ig  represents the function 

map of the ith layer NN; c

iW and c

ib represent the weight 

matrix and bias vector of the ith layer, respectively;   

represents the activation function; 1i−o is the output of the (i-

1)th layer. The critic function of agent j is parameterized by the 

parameters of DNN 
1 1{ , ,..., , }jc c c c c

l l= W b W bQ .  

For MADRL, the complexity of the problem increases 
exponentially with the number of agents. Therefore, it is 

challenging for the agents to learn good policies when the 

population is large. To this end, the attention mechanism based 

critic is developed in this paper. The input of critic function 

( , )s a  is replaced with ( , )j j jf s a  and je , where ( )jf   

represents the embedding function of agent j, and je is the 

output processed by the attention, representing the weighted 
sum of other agents’ value [35]:  

ReLU( ( , ))j i i i i i i

i j i j

e u f 
 

=  =    T s a          (13) 

where ReLU represents the activation function; T is the linear 

transformation matrix; 
i  represents the attention weight 

obtained by comparing the similarity between embedding of 

agent i, ( , )i i if s a  and that of agent j, ( , )j j jf s a  using the query-

key system [35]: 

exp(( ( , )) ( , ))T T

i i i i k q j j jf f  s a W W s a                    (14) 

where 
kW and 

qW are the transformation matrices. The 

calculated similarity value between two embeddings is then 

passed to a softmax to obtain the attention weight 
i

t . The 

parameters of the attention model { , , }a

k q= W W TQ give rise to 
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a weighted sum of contributions from all other agents for agent 

j. The parameters of attention-critic jQ
Q include the parameters 

of critic function jc
Q and those of attention model aQ , which 

are optimized by minimizing the following loss [36]: 
2( ) ( ( ( , ), ) )jQ

j j j j jL Q f e y= −s aQ                       (15) 

( )( ( , ), ) |
j j jj j j j j py r Q f e  =

 = +
a s

s a                 (16) 

where y is the target. The critic function is optimized by 

minimizing the “distance” between ( )jQ   and the target. 

However, the training process may be unstable since the critic 

being updated is also used for calculating the target y. To solve 

this problem, the target functions ( )jQ   and 
jp  are introduced. 

A pair of critics 
,1 ,2( , )j jQ Q  is used for the calculation of target 

y to address the overestimation problem caused by the function 

approximation error in actor-critic based methods. Then, (16) is 

rewritten as [37]: 
                     

, ( )
1,2

min ( ( , ), ) |
j j j

j

t j n j j j j p
n

y r Q f e  =
=

  = +
a s

s a         (17) 

where
, ( )j nQ   represents the nth target critic of agent j.  

2) Actor Functions 

The actor is the policy function that aims at maximizing the 

output of the critic by making the decision ja  under the state 

js . DNN is advocated to deal with the nonlinearity when 

solving the OPF problem, yielding: 

, ,1( ) [... ( )]j j j j l j jp p p= =a s s                        (18) 

, 1( * ),    2,3,...,a a

j i i i ip i l −= + =W o b                 (19) 

where ( )jp   represents the parameterized policy function of 

agent j approximated by DNN; 
,j ip  represents the function map 

of the ith layer NN; a

iW and a

ib represent the weight matrix and 

bias vector of the ith layer NN, respectively;   is the 

activation function; 1i−o is the output of the (i-1)th layer NN. 

Then, the policy function of agent j is parameterized by 

1 1{ , ,..., , }j a a a a

l l


= W b W bQ . They are optimized via the policy 

gradient [35]: 

, ~ ( )( ) [ ( | ) ( ( , ), ) | ]j

j jt t j j j jS A D j j j j j j j j pJ E p Q f e 



= =  
a a s

a s s a
Q Q

Q (20) 

3) Replay Buffer Mechanism 

Since DNN is utilized to fit the actor and critic functions, the 

input data for training should be independent and identically 

distributed. However, the data are highly correlated for the DRL 

algorithm. To this end, the replay buffer is utilized, where each 

agent employs memory to store the transitions ( , , , )j j jr s a s . 

The mini-batch experiences are sampled at each time step to 

calculate the gradient and optimize the parameters of networks. 
This mechanism helps break the correlation between data and 

improves the stability of the training process. 

D.  Centralized Training and Decentralized Implementation  

The implementation of the proposed approach can be 

divided into two main steps: centralized training for the 

formulation of coordinated strategies and decentralized 

execution for voltage regulation with only local information. 

They are explained below. 

1) Centralized Training   

In the MGs with M agents, the parameter set to be optimized 

is  1 ,..., M=Q Q Q . For agent j, the parameter set is denoted as

 , , ,j j j jQ Q

j

  
=Q Q Q Q Q , where j

Q and j
Q are parameters 

of actor and target actor network of agent j; jQ
Q  and jQ

Q are 

parameters of attention-critic and target attention-critic network. 

The training process of the proposed approach is shown in 

Algorithm Ⅰ.   

The parameters of NN start to update when the replay buffer 

is full. At each time-step, each agent samples a mini-batch of 

experiences ( , , , ) ,  1, 2,...,j j j kr k B =s a s  from its memory. Each 

actor NN takes the local state js  as input, and adjust its 

parameters to output an action that maximizes the action value. 

The gradient is calculated according to 

( )

1

1
( ) ( | ) ( ( , ), ) |j

j j j j j j

B

j j j j j j j j p

k

J p Q f e
B

 



=

=

 =   a a s
a s s a

Q Q
Q

(21) 

Then, the parameters of actor network are updated through 

( )j j j

j
J

  

 + 
Q

Q Q Q                             (22) 

where 
  is the learning rate for actor function. Each critic NN 

takes the global state as input, which includes the states and 

actions of all agents, and predicts an action value to minimize 

the following loss: 

2

,

1

1
( ) ( ( ( , ), ) ) ,  1, 2j

B
Q

j n j j j j

k

L Q f e y n
B =

= − = s aQ       (23) 

Algorithm Ⅰ Training Process of the Proposed Algorithm 

Algorithm Training the proposed algorithm 

Input: the node active and reactive power in the DN, the PV 

output, and the reward. 

Output: DNN’s parameters Q  

1: Randomly initialize parameters of critic networks jQ
Q  and 

actor network j
Q  for each agent j  

2: Initialize target networks ,j j j jQ Q   
 Q Q Q Q  for each agent 

j 
3: for episode =1, 2, …, H  

       receive initial observation 
js  for each agent j 

       for t=1, 2, …T  

4:        choose action according to ( )j j jp=a s  for each 

         agent j 

execute actions 
1( ,..., )M=a a a and obtain reward r   

and new observation j
s for each agent j 

5:         store transition ( , , , )j j jr s a s  in the replay buffer 

            for agent j = 1,…, M  

7:             sample a random mini-batch B of transitions from 

replay buffer 

8:               calculate target y according to (17)  

9:               update critic networks according to (23) and (24) 

                  if t mod d  

                      update actor network according to (21) and (22) 

10:                 update target networks according to (25)  
                  end if  

             end for 

11:    end for 

12:  end for 
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The parameters are updated according to  

( )j j j

Q j

Q Q Q

Q L + 
Q

Q Q Q                       (24) 

where 
Q  is the learning rate for the critic function. Then, the 

parameters of target networks are optimized by slowly tracking 

the online ones: 

      (1 ) , (1 )j j j j j jQ Q Q   
   

   
 + −  + −Q Q Q Q Q Q             (25) 

where  <<1 is the soft update coefficient.  

During the training process, the critic of each agent requires 

information from other agents. This can be achieved since the 
training of DRL is implemented offline. The centralized critics 

that are augmented with information about other agents’ 

policies during training help identify coordinated strategies. 

The explicitly modeling of other agents’ decision-making 

process allows each agent to provide decisions with better 

robustness to system dynamics based on local information only. 

This differentiates the existing works and allows us to deal with 

scalability issues in the presence of large-scale systems. 

 
Fig. 2. The workflow of the decentralized execution. 

2) Decentralized Execution 

    When the training process is completed, the parameters of 
DNN are fixed and only the actor network of each agent is kept 

for real-time voltage regulation. The workflow of decentralized 

execution is shown in Fig. 2. Each agent is in charge of a sub-

network. Since the actors only need local information, the 

proposed approach can be executed in a decentralized manner. 

The real-time reactive power control scheme of the proposed 

approach is shown in Algorithm Ⅱ. 

Algorithm Ⅱ Real-time Reactive Power Control of the 

Proposed Approach 

Algorithm Real-time reactive power control 

Input: the node active and reactive power in the DN, the PV 

output. 

Output: reactive power schedules a . 

1: Read the parameters of actor network of each agent j
Q  

2: For time step t=1, 2, …T  

3:        for agent j = 1, …, M  

4:           obtain the local observation js  

5:           calculate action 
ja  according to ( )j j jp=a s  

6:         end for  

7:       concatenate actions of all agents 
1( ,..., )M=a a a  

8: end for     

 

IV.  NUMERICAL RESULTS 

In this section, simulation results are provided to evaluate 

the performance of the proposed approach on IEEE 33-bus and 

123-bus systems, whose parameters can be found in [38]. The 

network partition results are first illustrated followed by the 

control performance comparison results with other methods.  

A. Simulation Setup 

To simulate more realistic scenarios, real-world PV data are 

used, i.e., one-year PV generation data of Xiaojin, a county in 

the Sichuan province of China. These data are divided into a 

training set and a test set, which contain 300- and 10-days’ data, 

respectively. The sampling frequency of the data is one hour. 
Note that the strategy learned by the proposed approach can be 

easily extended to scenarios with different sampling times in 

practice. The parameters of the control devices are shown in 

Table Ⅰ. The maximum voltage deviation is set to 5% . For the 

proposed method, each sub-region is modeled as an agent, 

which is composed of actor and critic networks. All the 

networks have two shallow layers, the number of neurons of  

Table Ⅰ Parameters of Control Devices for 33-bus System 

Type Capacity Location 

SVC 0.3MVar 5, 10, 30 

PV 0.8MW/0.8MVA 15, 18, 22, 24, 27, 33 

Table Ⅱ Parameter Settings of the Proposed Method 

Parameters Values 

Batch size for updating NN 32 

Replay buffer size 48000 

Discount factor 0 

Soft update coefficient 0.001 

Policy update frequency  2 

Target policy smoothing coefficient 0.2 

Learning rate for actor network 0.001 

Learning rate for critic network 0.002 

which are 100 and 100, respectively. The hyper-parameters are 

shown in Table Ⅱ. The power flow is carried out using Matlab 

and the training of the proposed method is implemented in 

Python with TensorFlow. A workstation with an NVIDIA 

GeForce 1080Ti GPU and an Intel Xeon E5-2630 CPU is used 

for the simulation. 

TABLE Ⅲ  

Voltage Deviation of Various Methods on 33-Bus System 

Cluster number 3 4 5 6 

Ave. vol. dev. of 

MADDPG [30] 

0.13% 0.13% 0.14% 0.17% 

Ave. vol. dev. of 

proposed method 

0.13% 0.13% 0.13% 0.13% 

B. Sensitivity of Volt-VAR Control with Network Partition 

 
Fig. 3. The evolution of the reward during the training procedure. 

The spectral clustering algorithm is applied to partition the 

ADN into several sub-regions. After that, the proposed 

approach is trained for 25000 epochs on the training data to 

learn the coordinated control strategy for voltage regulation. 

Each epoch corresponds to a day, which is randomly selected 

from the training set at the beginning of each epoch. The 
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convergence curve of the cumulative reward is plotted in Fig. 3. 

It can be observed that the proposed approach could not make 

balanced decisions at the beginning of the training procedure 

and therefore achieves low reward. With the training process 

going on, the reward increases significantly and finally 
converges around -0.96 with small fluctuations. This illustrates 

that the proposed method can learn the coordinated control 

strategy from training data.  

After training, the average voltage deviations on test data 

for MADDPG [30] and the proposed approach under different 

partition results are obtained and shown in Table Ⅲ. The 

MADDPG method employs the centralized training and 

decentralized execution framework and models each sub-

network as a DDPG agent. The network structure and hyper-

parameter settings are the same as our proposed method. It is 

worth noting that the MADDPG method was applied to the 

transmission network in [30] and we customize it for the 
voltage regulation of the distribution system for a fair 

comparison. It can be observed from the table that the control 

performance of the MADDPG method decreases when the 

number of sub-regions is gradually increased. This is because 

the complexity of the environment increases with the growing 

number of agents. This makes it difficult for the MADDPG 

method to search for a good policy. However, the proposed 

method can maintain control performance with an increased 

number of agents thanks to the developed attention model. The 

latter helps each agent attend to specific information that is 

mostly related to the reward. The partition results may be 
different according to the actual requirement of operators and 

our proposed method can easily adapt to them. 

In the subsequent tests, we select the number of sub-

networks as 6 in the 33-bus system for illustrations. The 

clustering result is shown in Fig. 4.  

 
Fig. 4. The partition results of the IEEE 33-bus system. 

C. Comparison Results with Other Alternatives 

To demonstrate the benefits of the proposed method, 

comparative tests are carried out against various existing 

methods. They include 1) the no control method; 2) the TD3-

D method, where each sub-network is controlled by a TD3 

agent based on the local observation. The TD3 agents are 

trained separately and sequentially to minimize the voltage 

deviation of their sub-network. Note that there is no information 

exchange between TD3 agents during the training process; 3) 

the stochastic programming-based (SP) approach, where all 
the sub-networks are optimized separately, and the objective of 

each sub-network is to minimize the voltage deviation based on 

local information. 300 scenarios are randomly generated to 

represent the uncertainty and scenarios reduction is used to 

obtain 20 representative scenarios [7]; 4) the model-based 

centralized control method, where load demand and PV 

generation are assumed to be known beforehand and the 

commercial SOCP solver MOSEK is applied to solve 

deterministic cases based on the global information. Its results 

with the perfect model are considered as benchmarks. 

     The average, maximum rise, and maximum drop of voltage 

deviations, as well as the computing times for all methods, are 

shown in Table Ⅳ. It can be observed that when reactive power 
compensation is not applied, the voltage will exceed the upper  

TABLE Ⅳ Voltage Deviation of Various Methods  

Method Average Max  

rise  

Max  

drop 

Com. 

type 

No control 1.46% 5.22% 7.11% - 

TD3-D 0.77% 3.88% 2.03% D 

MADDPG [30] 0.17% 1.32% 1.25% D 

SP [7]  0.13% 1.69% 1.24% C 

Proposed 0.13% 0.73% 1.25% D 

Centralized 0.08% 0.55% 1.25% C 

and lower limits. The TD3-D, MADDPG, and the proposed 

approach can ensure the voltage to be within the limited ranges. 

Note that these three methods all make decisions based on local 

information. However, the MADDPG method achieves better 

performance due to the coordinated control strategies learned 

during the training process. The proposed approach further 

enhances the control performance thanks to the use of the 

attention mechanism. The proposed method achieves similar 

performance with that obtained by the SP method, which adopts 
the centralized control framework and informs decisions based 

on global information. To evaluate the control accuracy of the 

proposed method, the average optimization error is defined: 

=| | 100%
pro cen

cen ori

V V
ERR

V V

 − 


 − 

                        (26) 

where ERR represents the average deviation of the proposed 

approach to the global optimal solution; 
cenV , 

proV and 
oriV  

represent the average voltage deviations of the centralized 

approach, the proposed approach, and the original value on test 

data, respectively. The ERR is 3.6% for the proposed approach 

and this means that it can reach 96.4% optimality based on local 
information. However, it assumes that the uncertain variables 

to be known beforehand, which is impossible to obtain in 

practice. Also, this method depends on complete two-way 

communication links. The infrastructure for this type of control 

framework is rarely available in ADNs. Note that the proposed 

approach is based on the decentralized control framework, 

where each sub-region is controlled using only local 

information without the communications between agents. Thus 

the communication requirements are reduced and the privacy 

concerns are mitigated.  

To further demonstrate the capability of the proposed method 

in dealing with fluctuations of PV and load outputs, a sunny day 
is selected as a case study. The PV output and load demand for 

a sunny day are shown in Fig. 5 and Fig. 6, respectively. The 

voltage profile of each node obtained by various control 

strategies is shown in Fig. 7 when t=1:00 PM. It can be 

observed that the voltages at nodes 17-18 go beyond the upper 

voltage limit when there is no reactive compensation. With the 

TD3-D method, the voltages can be adjusted to a limited range. 

However, due to the lack of coordination of multi-devices, the 

capability of the voltage regulation devices is not fully utilized. 

Since the MADDPG method and the proposed approach 

explicitly model the decision-making process of other agents 
via centralized training, the agents can exhibit cooperative 
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behaviors with only local information. The proposed approach 

further enhances the control performance of MADDPG via the 

attention model. The voltage profile of the proposed approach 

is very close to that of the SP and centralized method, 

demonstrating the effectiveness of the proposed method.  
 

 
Fig. 5. PV outputs for the selected sunny day. 

 
Fig. 6. Load demand for the selected sunny day. 

 
Fig. 7. Voltages of each node before and after control when t=1:00 PM. 

D. Robustness to Large Stochasticity 

More simulations are carried out to demonstrate the 

advantage of the proposed approach for real-time controls. The 

PV output profile is shown in Fig. 8. Due to the cloud dynamics, 

the PV output changes fast within 1 minute, i.e., its output rises 

from 0.33 MW at t=1s, reaches 0.65 MW at t=30s, and then 

returns to 0.33 MW in 30 seconds. The voltage profiles of node 
18 under various control strategies are shown in Fig. 9. Since 

the SP method suffers from a heavy computational burden, it 

provides a predetermined control solution to deal with the rapid 

PV output variation during the short period. The TD3-D, 

MADDPG, and the proposed methods are DRL based 

approaches, the strategy learned by which can generalize to new 

situations and inform decisions in milliseconds according to the 

latest observation. In this test, they provide decisions at each 

second. The centralized method ignores the communication 

delay and provides a theoretical limit for the problem (an ideal 

condition that could not be achieved in practice). It can be 

observed from Fig. 8 that node 18 suffers from an overvoltage 

problem if no controls of SVC and PV inverter are applied, 

namely the original method. With the SP method, the problem 
can be suppressed. However, since the control decisions 

provided by this approach are predetermined and cannot react 

dynamically to the fast-changing PV outputs, it has much larger 

voltage fluctuations than those of the TD3-D, MADDPG, and 

the proposed method. By contrast, the TD3-D, MADDPG, and 

the proposed approach can make decisions based on the latest 

states of the ADN, and thus can achieve a better response to the 

dynamic changes of the PV outputs. The proposed approach 

outperforms TD3-D and MADDPG due to the coordinated 

control strategy learned during the training process and the 

utilization of the attention model.  

TABLE Ⅴ Control Devices in 123-bus System 

Type Capacity Location 

SVC 0.3MVar 9, 35, 54,62,68,105 
PV 0.8MW/0.84MVA 5,12,27,50,65,76,81,83,100, 

114,118 

 

TABLE Ⅵ Control Performance on IEEE 123-bus System 

Cluster number 6 7 8 

Ave. vol. dev. of 

MADDPG [30] 

0.60% 0.63% 0.80% 

Ave. vol. dev. of  

proposed method 

0.45% 0.45% 0.46% 

 

 
Fig. 8. PV outputs with large variations. 

 
Fig. 9. Voltage change of node 18 with different control strategies when the 

PV outputs have large fluctuations. 

E. Scalability to IEEE 123-bus System 

To assess the scalability of the proposed method to a larger-

scale system, tests are carried out on the IEEE 123-bus system 

[38]. The parameter settings of the control devices are shown in 

Table Ⅴ, including the capacities and locations of SVCs and 

PVs. The average voltage deviations on test data achieved by 
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the MADDPG and the proposed approach under different 

network partition results are listed in Table Ⅵ. The parameter 

settings of the proposed control method are the same as those 

for the IEEE 33-bus system. The MADDPG method suffers 

from performance degradation when the number of sub-regions  
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Fig. 10. The partition results of the IEEE 123-bus system. 

increases. This is not the case for the proposed method. The 

conclusion is consistent with that in the 33-bus system. The 

number of sub-regions is set as 8 in this paper. The partition 

result is shown in Fig. 10.  

TABLE Ⅶ Voltage Deviations for IEEE 123-bus System 

Method Average Max 

rise  

Max 

drop 

Com. 

type 

No control 1.74% 6.21% 4.33% - 

TD3-D 2.94% 1.91% 8.65% C 

MADDPG [30] 0.80% 2.40% 3.01% D 

SP [7] 0.42% 1.40% 3.31% C 

Proposed 0.46% 2.08% 2.79% D 

Centralized 0.32% 1.11% 2.90% C 

 The voltage deviations obtained from different approaches 

are shown in Table Ⅶ. It can be found that if there is no control, 

the maximum voltage rise will be 6.21%. It is very interesting 

to find that the TD3-D method has serious voltage control 
issues for the 123-bus system and fails to find a good voltage 

regulation strategy based on local information. With the 

increased size of the system and the problem complexity, the 

negative impacts of not coordinating with different sub-

networks have been shown here. Both the MADDPG method 

and the proposed approach are implemented with centralized 
training and distributed execution. With the MADDPG method, 

voltages can be adjusted to a limited range. However, as 

compared to the proposed approach, the MADDPG method has 

a larger voltage fluctuation due to the immense growth of the 

complexity of the environment by the increased number of 

agents. The proposed approach can achieve better results with 

the attention mechanism. 

V.  CONCLUSIONS  

This paper proposes a distributed coordination control for 
distribution system Volt-VAR control considering PV inverters 
and SVCs. The spectral clustering algorithm allows us to 
partition the large distribution system into several sub-networks 
from the voltage control perspective. Then, the control of each 
sub-network is formulated as the MGs and solved by the 
attention-based MATD3 algorithm. The proposed method is 
centralized training distributed implementation and can be 
easily used for real-time voltage regulation. Compared with 
centralized control, the proposed approach mitigates the issues, 
such as the communication bottleneck and privacy concerns. 
Compared with other distributed control methods, only local 
information is needed without communications between agents. 
The proposed method can adapt to the flexible network partition 
requirements of the operator than the typical MADRL 
algorithm. Comparative results with several other existing 
model-based and data-driven methods demonstrate that the 
proposed method can achieve 96.4% optimality based on local 
information while considering the uncertainty. However, the 
model-based could not achieve satisfactory outcomes in the 
presence of rapid variations of PV outputs. The future works 
include the development of a new control method that can 
coordinate the smart inverters and utility-owned equipment, 
which is a two-timescale control problem. We will also propose 
a meta-learning based MADRL algorithm to deal with topology 
changes in the distribution networks.
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