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A B S T R A C T

This paper develops a general probabilistic framework for resilience modeling and analysis of offshore wind
farm (OWF), and illustrates how such a framework may be implemented within the modeling techniques and
tools commonly applied in the industry. Based on this framework the significance of prevailing uncertainties
and the effects of different decision alternatives relevant in the context of asset integrity management (AIM)
are studied and discussed. In the framework, OWFs are modeled as system-of-systems by a hierarchical model
where the life-cycle performances of each system, as well as the dependencies between these systems, are
represented probabilistically. The quantification of resilience is undertaken based on a scenario-based modeling
of life cycle benefits and costs in which resilience failure is defined as the exhaustion of the economic capacity
accumulated by the system over time. Moreover, this paper introduces resilience-informed decision-making
for OWF in the context of AIM. The proposed framework is applied to the OWFs populated with NREL
5MW offshore wind turbines (OWTs). Events of typhoon-induced waves and winds are considered as the two
random environmental load processes affecting the OWF’s dynamic responses and for which their resilience
performances are carried out. Finally, the resilience performances of the OWFs are studied and discussed for
a range of decision alternatives relevant to AIM.
1. Introduction

Wind energy has emerged as a promising alternative energy source
to fill the world’s energy supply and demand gap. A major driver for
wind energy use is the development of sustainable technologies to
address some of the key issues associated with traditional fossil fuels,
such as global warming, political uncertainty, and market volatility [1–
5]. As is stated by the Global Wind Energy Council (GWEC), 2020 was
the best year in history for the global offshore wind industry with 6.5
GW of incremental installed capacity and it is also forecasted that by
2030, the globally incremental installed offshore wind capacity will
exceed 205 GW [6].

A great deal of research has been conducted concerning risk anal-
ysis and management for offshore wind energy. To support the asset
integrity management (AIM) of offshore wind farms (OWFs), the input
requirements (e.g. failure rates, failure costs, average repair time) are
analyzed through the operational data [7–11], and probabilistic models
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of OWF performances are built by researchers to support decision
analysis based on these inputs [12–14]. Different with onshore wind
farms, OWFs are subject to met-ocean conditions leading to substantial
uncertainties in their performances. Methods to estimate extreme met-
ocean conditions and the associated loads are proposed to minimize the
uncertainties of extreme loads [15–17]. Some of the extreme conditions
like hurricanes in the USA and typhoons in Asia have big differences
from the conditions in Europe, leading to the failures of wind turbines
designed for European conditions observed in these regions in the
past years [18]. Therefore, studies on methods and frameworks for
quantifying the risk of OWFs exposed to hurricanes or typhoons have
been conducted over the past few years [19–21]. The components of
OWTs are vulnerable to the harsh met-ocean conditions and OWFs are
far away from the shore, which makes maintenance difficult and expen-
sive. Therefore, different O&M strategies for OWFs to reduce the direct
and indirect economic losses are proposed by researchers [22–25]. To
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quantify the economic performance of the OWF projects, the levelized
cost of energy (LCoE) which aims to quantify the net present value of
the cost to produce a unit of energy and the operating expenses (OPEX)
are the common metrics for supporting the wind farm decisions [26].
From the perspective of AIM, the performance characteristics of wind
turbines and wind farms not only depend on their physical properties,
which are the usual subjects for engineering, but also on the perfor-
mance of the management system and capacity of the economic system,
which represent the ability of the system to provide reliable services
efficiently, and sustain and recover from possible disturbances in the
long term. These implies that it is crucial to adopt a performance
indicator that could represent the relationship between the overall
system performance and the performance of different subsystems, for
which resilience that represents the ability of systems to sustain and
recover from disturbance may be applied to support AIM.

Since Pimm [27] and Holling [28] introduced the fundamental ideas
and insights on ecological systems resilience, significant research efforts
have been devoted to the topics of the resilience of other systems [29,
30]. With respect to infrastructure systems, the studies on resilience
mainly focus on the formulation of resilience assessment framework
especially on the definition and quantification of resilience. Bruneau
et al. [31] proposed a conceptual framework for the study of resilience
of infrastructures. This framework was divided into four dimensions:
technical, organizational, social, and economic (TOSE), related to phys-
ical systems, the capacity of organizations, the negative consequences
associated with the loss of critical services of communities and govern-
ments and the capacity to reduce economic losses respectively. Each
dimension is measured by four indicators (4R’s): robustness, rapidity,
resourcefulness and redundancy. Zhou et al. [32] developed a frame-
work for quantifying how aggregation of microgrids could provide
significant contribution to resilience services from system-level. To
facilitate the quantification of resilience, Roege et al. [33] identified
a energy resilience matrix which provided a structured and compre-
hensive framework of metrics relevant to energy system resilience.
Moslehi et al. [34] utilized a three-dimensional loss matrix to support
the quantification of resilience and evaluate the cost-effective resilience
enhancement strategies. Faber et al. [35,36] proposed a new approach
for the modeling of resilience from a more comprehensive perspective,
which accounted for in principle all possible disturbance events during
the service life of the system instead of only one event in a given
disturbance scenario. Apart from the definition and quantification, the
other studies on resilience mainly focus on the modeling of system re-
covery process and resilience enhancement method. Ouyang et al. [37]
divided the recovery process of infrastructure systems into three phases,
namely the disaster prevention phase, the damage propagation phase
and the recovery phase, and proposed the corresponding resilience
enhancement strategies for each phase. Sharma et al. [38] developed a
mathematical model for system recovery, by which the recovery cost is
optimized. In Ref. [39], a multi-phase performance curve was applied
to model the multi-energy system response and a service-based optimal
energy flow model was proposed to minimize the consequences.

These existing research on resilience modeling and quantification
generally focused on presenting the general idea, while the application
of resilience informed AIM of OWF are not well illustrated. The fol-
lowing issues, which necessitate to be highlighted for AIM of OWF, are
overlooked in the existing studies: (i) there are dependencies between
system functionality and asset integrity management; (ii) the capaci-
ties/abilities supporting the system recovery (e.g., economic capacities,
management abilities), which are critical to the resilience performance
of the system, actually change overtime; and (iii) the framework that
can be directly implemented with the modeling techniques and tools
commonly applied in the industry is missing. The present paper devel-
ops a general probabilistic framework for OWF system representation
and resilience analysis aiming for the practical implementation in the
offshore wind industry. The main contributions of the present paper are
2

summarized as follows:
(1) A hierarchical system-of-systems model is first proposed to
represent the life-cycle performance of the OWF systems, in which four
systems (i.e., infrastructure system, economic system, environmental
system, and management system) are explicitly expressed aiming to
describe the dependencies between system functionality and AIM.

(2) Resilience quantification and analysis framework is developed
theoretically for OWF systems as the function of the performance of
the hierarchical system-of-systems. The quantification of resilience is
realized over time taking the joint actions of the four systems as the
basis.

(3) It is illustrated how the proposed framework may be imple-
mented with the modeling techniques and tools commonly applied in
the industry, through the development of a comprehensive case study
on the OWFs populated with NREL 5MW OWTs subject to met-ocean
conditions.

This paper is organized as follows. In Section 2, a hierarchical
system-of-systems model is developed to represent the life-cycle perfor-
mance of the OWF system. On the basis of Section 2, Section 3 outlines
an analytical framework for OWF resilience modeling and analysis,
and further presents resilience-informed decision making for OWFs
following the proposed framework. In Section 4, the application of
the proposed framework to the OWFs subject to met-ocean conditions
is illustrated together with the investigations on the definition of the
decision alternatives relevant to AIM from the perspective of resilience.

2. System-of-systems representation for OWF systems

An OWF system is a typical case of hierarchical interrelated systems,
i.e. a system-of-systems, where all relevant physical processes, environ-
mental systems, geo-hazard systems, engineered objects and facilities,
organizational processes, human activities as well as all decision alter-
natives envisaged for designing and managing the OWFs are logically
interrelated. To provide decision support for AIM of OWF systems, it is
crucial to establish the system representation in terms of these logically
interrelated systems at various levels of detail or scale in time and
space. A hierarchical model composed of the infrastructure system,
economic system, environmental system, and management system is
established to facilitate system modeling as well as decision analysis in
the present paper, see Fig. 1. The main purpose of Fig. 1 is to provide an
illustration of how OWF subsystems are hierarchically interconnected
at different levels and to support the definition of the system boundary.
This model is a generalized one that can be adjusted depending on
the decision problems. Therefore, in the following subsections, the
illustrations of the four systems shown in Fig. 1 are provided to define
the system boundary and explain how systems are interrelated from a
broad point of view. Then, in order to further explain the modeling of
each system and how the model supports decision-making, the detailed
modeling of each subsystems including the physical formulas and how
can they be achieved are illustrated in Section 4 combined with the
case study. For convenience, let WT𝑖 (𝑖 = 1, 2,… , 𝑛) represents the 𝑖𝑡ℎ

wind turbine, where 𝑛 is the number of OWTs of the considered OWF;
WT𝑖𝑗 represents the 𝑗𝑡ℎcomponent (subsystem) of the 𝑖𝑡ℎ wind turbine
(

𝑖 = 1, 2,… , 𝑛; 𝑗 = 1, 2,… , 𝑛𝑐
)

, where 𝑛𝑐 is the number of considered
components (subsystems) of each OWT.

2.1. Management system

In the management system, the decision-makers and stakeholders
mainly consider how to manage the OWF system efficiently, ensure
sufficient power generation, maximize benefits and improve resilience
and sustainability performances. In addition, AIM decisions must com-
ply with codes and standards defined by higher-level systems such
as the social system and the regulatory system. These requirements
will however not be addressed in detail in this paper. At the highest
level in the hierarchical model, the performances of the management

system will affect other systems by the consequences associated with
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Fig. 1. Illustration of interdependent OWF systems by a hierarchical model.
AIM decisions. For instance, the design decisions on the layout may
affect the energy production of the OWF; different O&M strategies
may lead to different failure consequences. The decision alternatives in
the management system may be divided into two categories: decision
alternatives for design (e.g. layout of OWFs, types of equipment) and
decision alternatives for operation management (e.g., O&M strategies).
Let 𝐚 =

{

𝐚1, 𝐚2, 𝐚3,… , 𝐚𝑛d
}

be a vector containing all relevant decision
alternatives from the management system that may be applied for
AIM, which includes but not limited to: (1) number of wind turbines
(WTs) (represented by 𝐚𝟏); (2) reliability level (represented by 𝐚𝟐);
(3) O&M strategies (represented by 𝐚𝟑); (4) WT location (represented
by 𝐚𝟒); (5) OWF layout (represented by 𝐚𝟓). The relationship between
the management system and other systems will be introduced in the
following sections.

2.2. Environmental system

In this paper, the environmental system not only refers to the
natural environment, but also includes the operational environment
in a broader sense. This section describes the environmental system
in terms of three components (or sub-systems): hazards, operational
loads and wind characteristics. Hazards and operational loads are the
two main causes of OWT components/systems failures, while wind
characteristics determine the energy production of OWT.

2.2.1. Hazards
OWFs are prone to several natural hazards such as earthquakes,

extreme winds and extreme waves. In general these hazards may all
individually lead to serious events such as tower collapse and broken
blades [40,41]. There are two levels of dependencies between different
types of potential (natural) hazards at the location of OWF which is
assumed to be comprised by 𝑛 WTs: The first level is the dependency
3

between different types of hazards. For example, the typhoon induced
extreme winds and extreme waves may be interrelated [16,19–21]. The
second level is the dependency due to geographical proximity of two or
more wind turbines. For example, there is a spatial correlation between
the extreme wind speeds at different wind turbine locations. Let 𝐇𝑖
be a vector containing the indicators of all relevant hazards, including
the extreme winds, extreme waves, earthquakes, etc., at the location of
WT𝑖, which depends on the location and the layout of OWFs and time
𝑡. Therefore, 𝐇𝑖 may be expressed as the function of 𝐚𝟒 and 𝐚𝟓, and
time 𝑡. More details about how to model different hazards and how to
assess the performance of OWTs under multiple hazards can be found
in [42–46].

2.2.2. Operational loads
In addition to failures due to extreme loads, operational loads may

also cause failures of the components/systems. For example, fatigue
loads caused by the actions of waves and wind would cause fatigue
damage and even further lead to fatigue failures of offshore wind
turbines [47,48]; corrosion can be regarded as another operational
exposure or load that causes strength degradation, and the joint ef-
fect of corrosion phenomena and fatigue loads is also an significant
issue which needs to be considered when analyzing the life-cycle
cost [49]. There are also two levels of dependencies between the oper-
ational loads: (1) dependencies between different types of operational
loads [16,50], and (2) dependencies due to the geographical proximity
of wind turbines [51,52]. Let 𝐋𝑖 be a vector containing all relevant
operational loads, including the fatigue loads, corrosion, etc., at the
location of WT𝑖 acting on WT𝑖. Similarly as 𝐇𝑖, 𝐋𝑖 may also be expressed
as the function of 𝐚𝟒, 𝐚𝟓 and 𝑡.

2.2.3. Operational wind characteristics
The characteristics of the wind acting on wind turbines is not

only relevant for the assessment of possible evolving damages and
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Fig. 2. System representation of OWF infrastructure system.
failures, but also comprise the source of energy. The operational wind
characteristic at the location of the wind farm may significantly affect
the profitability of the wind farm. For power generation of OWFs,
the wind direction and wind speed are the two most important wind
characteristics [53]. Normally, the wind rose divided into 8 or 12
direction sectors is used to represent the probabilistic characteristics
of wind direction and wind speed, in which the wind direction is
considered as a random variable characterized by the probability of
occurrence for each of the sectors of the wind direction and the two-
parameter Weibull probability distribution may be adopted to represent
the wind speed [54–56]. Recently improved probabilistic models for
the wind speed are proposed in [57,58]. The probabilistic model of
the wind direction and wind speed at the location of WT𝑖 are denoted
by 𝐰𝑑𝑖 and 𝐰𝑠𝑖 respectively (𝑖 = 1, 2,… , 𝑛), and represented by a vector
𝐖𝑖. 𝐖𝑖 also depends on the location and the layout of OWFs which
represented by 𝐚𝟒 and 𝐚𝟓 and also time 𝑡 [53,59].

2.3. Infrastructure system

The infrastructure system of an OWF system consists of different
interdependent subsystems, each of which also consists of interrelated
subsystems and components. This results in the fact that the perfor-
mance of the OWF infrastructure system highly depends on the joint
performances of all these subsystems and components. Therefore, the
modeling of OWF infrastructure systems may be modeled as a three-
level system, see Fig. 2. The first level is the OWF infrastructure
system, where each wind turbine may be considered as a node that
generates electricity and then is transformed by the transmission sys-
tem. The second level is the wind turbine system, where different
subsystems (e.g., energy-receiving system, energy-producing system)
interact with each other to ensure that wind turbines operate according
to intentions. The third level is the wind turbine subsystem, where
each subsystem provides some kind of functionality with the joint
work of its constituents. For example, the energy-producing system
is composed of main bearing, main shaft, generator, gearbox etc.;
these components work together (interact) to produce electricity. The
parameters included in the vector 𝐱𝑖𝑗 represent the physical properties
of each component WT𝑖𝑗 , relevant to their condition states subject to
natural hazards and operational loads and the realizations of their
performances (e.g., tower diameter and thickness, material yield stress,
rotor diameter). Correspondingly, the vector 𝐗𝑖 represents the physical
properties of WT𝑖, which can be expressed as the function of 𝐚𝟒.
The performances of OWF infrastructure system not only depend on
the characteristics of the system itself, but is also influenced by the
environmental systems and the management systems. For example, the
hazards and operational loads of environmental system may cause fail-
ures of components and even the whole system, while the maintenance
strategies (𝐚 ) may affect the times to recovery of these components or
4

𝟑

systems. It is assumed that WT𝑖 may attain two discrete states (failure
or operation), represented by 𝑠𝑖 = 1 and 𝑠𝑖 = 0 respectively. The above
outline shows that 𝑠𝑖 is a function of 𝐚, 𝐗𝑖 (𝐚, 𝑡), 𝐇𝑖 (𝐚, 𝑡), and 𝐋𝑖 (𝐚, 𝑡).

2.4. Economic system

The performance of the economic system is influenced by the joint
performances of the previously described three systems, see Fig. 1. The
infrastructure system harvests wind energy to generate power which
is then transported to shore and finally converted into income. The
energy production of WT𝑖 may be calculated by its power performance
(included in 𝐗𝑖) and the historical wind conditions 𝐖𝑖. But wind
turbines cannot be available all the time, and if they fail to operate i.d.
(𝑠𝑖 = 1), the downtime is associated with an energy production loss and
associated loss of income. The length of the downtime of WT𝑖 highly
depends on the component state 𝑠𝑖, and the decisions on O&M strategies
(𝐚𝟑). In addition to power generation, some economic variables also
have a direct influence on the economic behavior of OWFs, such
as the selling price of energy and the interest rate. Of course, the
economic system not only includes earnings, but also the corresponding
expenses. There are some fixed expenditures such as costs of project
development and wind turbine supply and installation. In addition to
this, there are many expenses that are subject to uncertainty, such as
O&M costs, which are influenced by the components state 𝑠𝑖 and the
decisions on O&M strategies. For OWFs, the O&M costs are much higher
compared to onshore ones due to the harsh environmental conditions
leading to higher failure rates and longer repair time. Section 3.2 holds
further details associated with the modeling of maintenance cost and
downtime.

3. Resilience analysis and decision support framework for OWF
systems

This section starts with an introduction to the resilience modeling
and quantification method. Later, illustrations are provided of the
modeling approaches for OWF system failures and the associated con-
sequences, to facilitate resilience analysis. Finally, Section 3.3 explains
how the proposed resilience modeling approach can be applied to
support decision-making for OWF systems in the context of AIM.

3.1. Resilience modeling and quantification

This paper aims to develop the probabilistic resilience model for
the AIM of OWF systems. The idea is illustrated in Fig. 3. There are
two different realizations of the evolution of benefit generation (per
unit time), economic reserve as the function of benefit generation (per
unit time), and the accumulated economic capacity: one realization
without resilience failure and one with resilience failure. For illus-
tration purposes, the evolution of benefit generation shown in Fig. 3
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Fig. 3. Illustration of resilience model in terms of the evolution of benefit generation and the corresponding evolution of accumulated reserves with time, together with the time
varying demands caused by disturbances.
Source: Adapted from Faber et al. [35].
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is assumed to be constant over time in case that the whole farm is
under normal operation state, only WT failures caused by disturbance
events will decrease the benefit generation during the recovery period.
However, in reality, the benefit generation fluctuates with the time-
varying parameters such as wind speed and energy selling price under
normal operation state. As illustrated in Fig. 3, the benefit generation
can be expressed as:

𝑏(𝐘, 𝐚, 𝜏) = 𝑒𝑝(𝐘, 𝐚, 𝜏) × 𝑝E (1)

where 𝑃E is the selling price of energy; 𝑒𝑝(𝐘, 𝐚, 𝜏) is the power pro-
duction function of the wind farm which is the function of time 𝜏;
𝐘 is a vector contains all the random variables which are introduced
in Section 2, including 𝐗𝑖, 𝐇𝑖, 𝐋𝑖, 𝐖𝑖, etc.; 𝐚 is a vector contains all
ecision alternatives from the management system.

The economic capacity with respect to resilience 𝑅𝑟(𝑡) is obtained by
ccumulating a fixed percentage of the benefit 𝜒 ⋅𝑏(𝐘, 𝐚, 𝜏) as economic
eserve over time to meet the economic demand due to system failures.
s illustrated in Fig. 3, the economic capacity concerning resilience at

ime 𝑡 may be expressed as the accumulation of the evolution of the
eserves:

𝑟(𝐘, 𝐚, 𝑡, 𝜒) = 𝑅0
𝑟 + ∫

𝑡

0

𝜒𝑏(𝐘, 𝐚, 𝜏)
(1 + 𝑟)𝜏

𝑑𝜏 (2)

where 𝑅0
r represents the startup economic capacity which depends on

the decision on this value (e.g. some percentage of the total benefit
5

generated in the whole service life); 𝜒 represents the saving percentage;
𝑟 is known as the interest rate determined by the financial strategy.
It is important to note that 𝜒 here represented by a separate variable
is to illustrate how the economic capacity is acquired, but 𝜒 is also
a decision alternative which is represented by a. When a disturbance
event causes system damage or failure, the system economic capacity
will be reduced by the cost for system recovery, which is defined as the
economic demand.

It is assumed that 𝐭F(𝐘, 𝐚) represents the time domain when dis-
urbance events happened during the OWF service life. The economic
emand at time 𝑡 may be expressed as:

r (𝐘, 𝐚, 𝑡) =
∑

𝜏∈{𝐭𝐅∩(0,𝑡)}

𝐶(𝐘, 𝐚, 𝜏)
(1 + 𝑟)𝜏

(3)

where 𝐶(𝐘, 𝐚, 𝜏) represents the cost for recovery after the failure event
at time 𝜏; 𝐭𝐅 ∩ (0, 𝑡) represents the time domain when disturbance events
appened within the time period (0, 𝑡).

System resilience failure is then defined as the exhaustion of the
system economic capacity (see Fig. 3(b)). The event of resilience failure
at time t is defined by the following limit state function:

𝑔RF(𝐘, 𝐚, 𝜒, 𝑡) = 𝑅r (𝐘, 𝐚, 𝑡, 𝜒) − 𝑆r (𝐘, 𝐚, 𝑡) (4)

For a given time period (𝑡1, 𝑡2)(e.g., one year), the probability of re-
silience failure happened within the time period can be calculated by
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Fig. 4. Generic framework for decision analysis of systems [36].
Fig. 5. Illustration of the two-phase scenario based failure propagation model.
the following equation:
𝑃RF(𝐚, 𝜒, (𝑡1, 𝑡2)) =

𝑃
{

{min{𝑔RF(𝐘(𝜏), 𝐚, 𝜏)|𝜏 ∈ (0, 𝑡1)} > 0}

∩ {min{𝑔RF(𝐘(𝜏), 𝐚, 𝜏)|𝜏 ∈ (𝑡1, 𝑡2)} < 0}
}

(5)

3.2. Modeling of failures and consequences

The modeling of failure events and the failure consequences are
crucial for resilience analysis. The system modeling approach suggested
by the JCSS [60] is utilized to model the scenarios of failure events
and the corresponding consequences, see Fig. 4. In the following two
sections, the modeling of system failures and failure consequences are
introduced respectively.

3.2.1. Modeling of system failures
The failure of a system may be modeled as a two-phase phe-

nomenon: the initiation phase and the propagation phase, see Fig. 5.
In the initiation phase, a disturbance event causes damages or failures
of some constituents. Following these events in the initiation phase, the
demands of the constituents of the system are redistributed until both
internal and external demands are in equilibrium with the capacity of
the system or until the system totally fails. This process may occur
in a sequence of failures and subsequent redistribution — denoted as
cascading failure scenarios. The modeling methods of the two phases
of failures will be introduced in the following two parts respectively.
6

Initial phase of system failure. The modeling methods of the initial phase
are divided into two groups: The first group is the modeling methods for
structural components (e.g., blades, foundation, tower) and some me-
chanical components (e.g., shaft, gearbox) [22]. For these components,
limit state functions (LSFs) can be formulated to model different failure
modes (e.g., local or global buckling failure of towers, fatigue failure
of blades or details in substructure, foundation failure by sliding [61]).
LSFs of WT𝑖𝑗 are denoted by a vector 𝐅𝑖𝑗 = (𝐹 1

𝑖𝑗
, 𝐹 2

𝑖𝑗
,… , 𝐹 𝑛𝑖𝑗

𝑖𝑗
), where

𝑛𝑖𝑗 is the number of LSFs of WT𝑖𝑗 . For each component, if any LSF
𝐹 𝑘
𝑖𝑗

(

𝑘 = 1, 2,… , 𝑛𝑖𝑗
)

is less than zero, there are some failure events.
Generally, each 𝐅𝑖𝑗 is the function of 𝐱𝑖𝑗 (𝐚, 𝑡), 𝐇𝑖 (𝐚, 𝑡), 𝐋𝑖 (𝐚, 𝑡). More
details about the identification of important failure modes of these
components and the stochastic modeling of the uncertain parameters
can be found from [61,62]. The second group is the modeling methods
for electrical components and some mechanical components. Damage
states in these components are rather difficult to detect by means of
inspections, and the failures generally occur suddenly without any
precursor. Classical reliability analysis methods can be used to model
these components [9,63]. The variation of the failure rate with time
may be expressed by the bathtub curve, see Fig. 6. Usually, the power
law process (PLP) is used in the reliability analysis of these compo-
nents [63]. The failure rates of the three phases in the bathtub curve
may be described by the intensity function 𝜆(𝑡):

𝜆(𝑡) =
𝛽
𝜃

( 𝑡
𝜃

)𝛽−1
(6)

where 𝛽 is a shape parameter describing the change of intensity func-
tion; 𝜃 is a scale parameter and 𝜃 > 0 for 𝑡 ≥ 0. Three phases in Fig. 6
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Fig. 6. Bathtub curve of a OWT component [22].
Fig. 7. Illustration of the interdependence and joint performance of all sub-systems/components of OWT.
correspond to 𝛽 < 1, 𝛽 = 1, 𝛽 > 1 respectively. When 𝛽 = 1, Eq. (6)be-
comes a constant and the process is a homogeneous Poisson process
(HPP). Thus 𝜃 becomes the mean time between failures (MTBF), which
can be estimated from databases on operational performance [9,63].

Propagation phase of system failure. To model system failures in the
propagation phase, it is important to identify the different failure modes
of the wind turbine system and their inter-dependencies. There are
different methods such as Fault Tree Analysis (FTA) and Failure Mode
and Effect Analysis (FMEA) [45,64] that can be applied to identify
the failure modes of OWT systems. But recently, according to [65],
the Monte Carlo simulation combined with bid data techniques are
applied to identify the scenarios which contribute to system failures and
the corresponding consequences from a more quantitative perspective.
Based on the failure mode analysis, the dependencies between different
components can be modeled. Fig. 7 illustrates the interdependence and
joint performance of some of the components/sub-systems of OWTs.
From Fig. 7 it is seen that the performance of structural components
of the OWTs (e.g., blades and towers) may be adversely affected by
malfunctions and failures of the pitch system and the yaw system.
The conditional failure probabilities of components and sub-systems
of OWT’s can in principle be obtained through databases with oper-
ational failures, however only if relevant data are available, otherwise
probabilistic mechanics analyses are more adequate.

3.2.2. Modeling of failure consequences
The consequences following failures of constituents, sub-systems

and systems are differentiated into two principal categories, namely
7

direct and indirect (or follow-up) consequences, see Fig. 4. Direct
consequences are most often associated with individual constituent
failure whereas indirect consequences are associated with loss of system
functionalities and services caused by individual failures as well as com-
binations of constituent failures. For OWF systems, direct consequences
may be associated with the economic cost arising during the period
of wind farm recovery (i.e., the economic demand). Fig. 8 shows the
possible sources of recovery cost, from which it is seen that the recovery
cost after a failure event may be calculated by:

𝐶 = 𝐶w + 𝐶trans + 𝐶material (7)

where 𝐶w is the total labour cost, which generally depends on the
time spent during the maintenance phase, the testing phase and the
choice of maintenance team [9]; 𝐶trans is the transportation cost, which
depends on the type of the failed constituents and the choice of the
transportation [22]; 𝐶material is the cost for materials and/or equipment,
which depends on the type of the failed constituents. If a failure event
occurs, the failed turbine does not produce power during the downtime,
the consequences of which may be considered to be indirect. Fig. 8
illustrates the possible sources of uncertainties that may affect the
downtime (mean time to recover (MTTR)), and indicates that there
are three main phases of recovery: preparation phase, maintenance
phase, and testing phase. From Fig. 8 it is seen that except for the
performance of the OWF itself, the decisions of the management system
and the environmental conditions in general also significantly influence
the downtime. The downtime after a failure event may be calculated by:

𝑇 = 𝑇 + 𝑇 + 𝑇 (8)
pre rep test



Applied Energy 322 (2022) 119429M. Liu et al.

w
f
t
t
t
d
𝑇
t
a
s
F
d
t
t
f
t
p

s
c
c
T
a
f
t
m
m
t

Fig. 8. Illustration of possible sources of downtime and economic demands during the period of recovery [22].
Fig. 9. Illustration of the functionality recovery of an OWF system over time after one disturbance.
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here 𝑇pre is the duration of the preparation phase, including the time
or ordering the repair parts, briefing the technicians and preparing
he helicopter/boat for the transport; for OWFs, the waiting time for
he transportation will be longer due to potentially bad weather condi-
ions; 𝑇rep is the duration of the maintenance phase, which strongly
epends on the number of and the types of the failed components;
test represents the duration of the testing phase; for example, if the
ower collapses, it will take several months to test the wind turbine
fter completing the installation of a new tower. The indirect con-
equences also depend on the functionality recovery of the systems.
ig. 9 illustrates the functionality recovery of OWF systems after a
isturbance. The functionality of the system remains the same until
he end of the preparation phase, then the functionality recovers after
he maintenance work has been carried out. Sometimes the system’s
unctionality is not fully recovered during the repair phase because
here are components that require a long test time. After the testing
hase, the OWF systems will finally recover to the original state.

It is thus a central and critical issue to be able to identify the
cenarios relevant and significant with respect to the generation of
onsequences. To efficiently identify the individual scenarios, joint
onsideration of their probabilities and consequences is necessary.
he assessment of their probabilities typically necessitates probabilistic
nalysis of unions of intersections of failure events—with due account
or dependencies between these. Moreover, it should be highlighted
hat in practical engineering applications some of the possible scenarios
ay be irrelevant or physically impossible and must be excluded in the
odeling, where Monte Carlo Simulation may be utilized as basis for
8

he identification as suggested in [65]. f
3.3. Resilience-informed decision-making for OWF systems in the context of
AIM

As illustrated in Section 3.1, the probability of resilience failure
𝑃RF is the function of decision alternative 𝐚, see Eq. (5). Therefore, re-
silience modeling facilitates the decision-making for OWF by assessing
𝑃RF for all possible decision alternatives. The formulation of decision
problems depends to a large extent on the preferences of decision-
makers. Different decision makers or stakeholders will have differ-
ent preferences with respect to decision alternatives. In this section,
resilience-informed decision-making regarding two different aspects
will be illustrated. If the maximum acceptable probability of resilience
failure is the only constraint, the acceptable decision alternatives can
be identified by comparing 𝑃RF of all decision alternatives with the
maximum acceptable 𝑃𝐴

RF:

Identify 𝐚

s.t. 𝑃RF(𝑎) ≤ 𝑃𝐴
RF, (9)

Fig. 10 illustrates the difference between two different choices of 𝜒 (the
ercentage of benefit (income) saving that is accumulated as system
conomic capacity to support the cost of system recovery) in conducting
ecision alternative identification, where 𝜒2 > 𝜒1. It is observed that
he decision maker may adjust the range of acceptable decisions by
hoosing different 𝜒 . If a lower value of 𝜒 is chosen, a smaller range
f acceptable decisions is obtained. Conversely, if a larger value of

is chosen, a larger acceptable decision interval will be obtained.
his indicates that from the perspective of the decision maker, an
ppropriately high proportion of economic reserve may increase the

lexibility of decision-making. Of course, an excessively high value of 𝜒
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s also undesirable, but the optimization of 𝜒 is beyond the scope of this
aper. However, in many cases, resilience is not the only requirement.
he decision-making process is also constrained by other factors. In the
ollowing, the identification of acceptable decision alternatives under
he 𝑃RF and LCoE constraints will be illustrated. For OWF owners, LCoE
s a main competitive indicator, which is a measure of the average net
resent cost of electricity generation for a generating plant during its
ifetime [26]. The LCoE for a wind farm can be calculated by [66]:

𝐶𝑜𝐸 = 𝐶𝐴𝑃𝐸𝑋 × 𝐶𝑅𝐹 + 𝑂𝑃𝐸𝑋
𝐴𝐸𝑃potential − 𝐴𝐸𝑃Loss

(10)

here CAPEX is the initial Capital Expenditure; CRF is Capital Re-
overy Factor; OPEX is the average yearly Operational Expenditure;
𝐸𝑃potential is the average potential Annual Energy Production (AEP)
f the wind farm in Watt hour (Wh); 𝐴𝐸𝑃Loss is the average lost AEP
f the wind farm due to unavailability of wind turbines or electrical
nfrastructure in Watt hour (Wh). Fig. 11 shows the principal illustra-
ion of the identification of acceptable decisions constrained by 𝑃RF
nd LCoE . As shown in Fig. 11, the acceptable decision alternatives
an be identified by assessing 𝑃RF and LCoE for all possible decision
lternatives and comparing with the maximum acceptable probability
f resilience failure 𝑃A

RF and the maximum acceptable 𝐿𝐶𝑜𝐸𝐴:

dentify 𝐚
s.t. 𝑃RF(𝑎) ≤ 𝑃𝐴

RF,

𝐿𝐶𝑜𝐸(𝑎) ≤ 𝐿𝐶𝑜𝐸A, (11)

Decisions that may be made to reduce the 𝑃RF of an OWF will
ot necessarily reduce LCoE, see Fig. 11. For example, the decisions
hat require high initial capital expenditure (e.g., more expensive wind
urbines) and maintenance cost (e.g., larger maintenance team) may
educe the LCoE. This means that the impact on LCoE needs to be
onsidered when making resilience decisions.

. Case study

In this section, the proposed resilience framework is applied and
he relationships of resilience with different decision alternatives are
nvestigated. Following Section 2, a brief introduction of the system-
f-systems representation for the example OWF is given in Section 4.1.
hen, based on the proposed resilience analysis and decision support
ramework outlined in Section 3, the modeling of system failures and
ailure consequence of the utilized examples are illustrated in Sec-
ion 4.2. Finally, the sensitivity analysis of the example OWFs resilience
9

ubject to different decision alternatives is shown in Section 4.3. t
.1. System-of-systems representation

.1.1. Management system
To investigate the impact of different decisions on the resilience of

WFs, four categories of decision alternatives are considered, which
ay be expressed as:

=
{

𝐚1, 𝐚2, 𝐚3, 𝐚4
}

(12)

here

• 𝐚𝟏 = {𝑙𝑒𝑣𝑒𝑙1, 𝑙𝑒𝑣𝑒𝑙2, 𝑙𝑒𝑣𝑒𝑙3} represents the decisions on the level of
target design reliability of mechanical and electrical components,
thus the failure rates of the components of the three reliability
level are different, see Section 4.2.2;

• 𝐚𝟐 = {ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤} represents the decisions on the level of prepared-
ness, which represents the efficiency of the repair work (i.e., high
preparedness means shorter preparation and repair times), see
Section 4.2.4;

• 𝐚𝟑 = {5, 10, 15} represents the decisions on the number of WTs of
the OWF (three sizes of OWFs are considered in the present paper,
which contains 5,10,15 wind turbines respectively);

• 𝐚𝟒 = {0.02, 0.04,… , 0.3} represents the decisions on the percentage
𝜒 of the income generated by OWFs accumulated as economic
capacity.

.1.2. Environmental system
The considered OWFs are assumed to be located at Zhanjiang, a

oastal city in southeastern China, where typhoons comprise a major
azard to the OWFs. It is assumed that typhoon events occur only once
year at a random time in either July, August or September. OWTs

ffected by typhoons are loaded by at least two random environmental
rocesses: turbulent winds and irregular waves [20]. The 10-minutes
ub-height mean wind speed 𝑉ℎ𝑢𝑏 and the significant wave height 𝐻𝑆
re chosen as intensity measures of these two random environmental
rocesses. The probabilistic model of the annual extreme 𝑉ℎ𝑢𝑏 can be
ransformed from the annual extreme 10-minutes 10m-height mean
ind speed 𝑉10 by the near-neutral power-law wind profile model [67]:

(ℎ) = 𝑈𝐻 ( ℎ
𝐻

)𝛼 (13)

where 𝑈𝐻 is the reference wind speed at the reference height of H ; h
s the vertical height above the ground or the sea surface and 𝛼 is the
ellmann exponent which is determined by the atmospheric stability,

he mean wind speed and the surface roughness [68]; The American
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Table 1
Probabilistic model of 𝑉10.

City Distribution

Weibull Gumbel

𝛾 𝜂 𝛽 u 𝛼

Haikou 5.95 12.33 1.62 13.86 0.18
Zhanjiang 5.634 12.04 1.65 / /
Hongkong 5.86 12.54 1.57 13.86 0.18
Shenzhen 5.74 12.29 1.59 13.57 0.18
Guangzhou 5.73 11.70 1.59 13.19 0.18

Bureau of Shipping (ABS) [67] recommends to choose this parame-
ter as 0.11 when calculating wind profiles under extreme conditions
(e.g., the typhoon boundary layer). According to this model, 𝑉ℎ𝑢𝑏 can
be calculated as:

𝑉ℎ𝑢𝑏 = 𝑉10(
90
10

)0.11 (14)

he probabilistic model of 𝑉10 is taken from the model developed by
iao [42], see Table 1. The three-parameter Weibull distribution is cho-
en to model 𝑉10. The JONSWAP fetch limited growth relationship [16]
s used to estimate the 𝐻𝑆 conditioned on 𝑉10:

𝑠 =
0.0016𝐶𝑓𝑉102(

𝑔𝑓
𝑉102

)
0.5

𝑔
(15)

here f represents the fetch length and is assumed to be 300 km, 𝑔
s the acceleration of gravity and 𝐶𝑓 is a depth correction factor for
ater depth, which accounts for the biases when applied in shallow
ater [19]:

𝑓 = −0.000117𝑑2 + 0.0197𝑑 + 0.4 (16)

here 𝑑 is the water depth, here assumed equal to 20 m. The peak
pectral period (𝑇𝑝) is assumed given conditional on 𝐻𝑠 following the
onditions specified by IEC-61400-3 [69]:

𝑝 = 11.7

√

𝐻𝑠
𝑔

(17)

.1.3. Infrastructure system
The OWTs are assumed to be designed in accordance with the NREL

MW OWT, with a monopile foundation [70], as shown in Fig. 12. The
ain properties of the considered OWTs are shown in Table 2. The
esign lifetime of the OWTs is assumed to be 25 years. The different
WFs (with 5, 10, and 15 OWTs) are investigated with the objective
10
Table 2
Main physical properties of the considered wind turbine.

Parameter Value

Rating 5 MW
Rotor Orientation,Configuration Upwind,3 Blades
Rotor, Hub Diameter 126 m, 3 m
Hub Height 90 m
Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s
Mass of the rotor-nacelle assembly 350,000 kg
Tower diameter bottom, top 6387 m
Tower wall thickness bottom, top 3525 mm
Monopile diameter 6 m
Monopile wall thickness 60 mm

to assess the influence of the number of wind turbines on the OWF
resilience performance.

4.1.4. Economic system
The capacity of the economic system is established by accumulat-

ing the income (benefits) achieved by selling electricity. The energy
production of WT𝑖 within the kth month is assumed to be:

𝐸𝑃𝑖(𝑘) = 𝐸𝑃𝑁 (𝑘) ×
𝑇o(𝑘)
𝑇𝑘

(18)

where 𝐸𝑃𝑁 (𝑘) represents the energy production within the kth month
f WT𝑖 when no failures occur, see Table 3; 𝑇o(𝑘) represents the dura-
ion of normal operation in the kth month; 𝑇𝑘 represents the duration of
he kth month. Then the benefits earned by WT𝑖 within the kth month
an be calculated by:

𝑖(𝑗) =
𝐸𝑃𝑖(𝑘)𝑝E

(1 + 𝑟)[
𝑗
12 ]

(19)

where 𝑝E is the selling price of electricity, r is the interest rate,
which is taken from Table 3. In this example, the energy production
of each month listed in Table 3 is taken from the monitoring data
of a 5MW OWT provided by SEWPG, and the power generation for
those months without failure time is selected. For simplification, the
uncertainties of power generation of wind turbines and the wake effect
which could lead to the difference in the power generation of each
wind turbine are not considered in the present example. The demand
of the economic system is considered as the maintenance (repair) costs
incurred after failures in the present research. However, the economic
system established here is incompleted, only the energy loss and the
maintenance costs caused by failures of the wind turbines are inves-
tigated, without considering the initial investment of the OWFs, the
regular maintenance costs, etc.
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Table 3
Parameters related with the capacity model of economic system.

Month Energy production (unit:kWh)

Jan. 1584.464
Feb. 776.264
Mar. 1543.08
Apr. 901.04
May. 696.128
Jun. 659.28
Jul. 913.88
Aug. 609.92
Sept. 1019.296
Oct. 1286.4
Nov. 1035.824
Dec. 1035.824

Other parameter Value

Price of electricity 𝑝𝐸 (USD/kWh) 0.11
Interest rate 𝑟 0.05

Fig. 12. NREL 5MW OWT with a monopile foundation.

4.2. System failures and failure consequence modeling

4.2.1. Modeling of structural components failures
The main failure modes of the tower and blades are fatigue failures,

structural damages due to extreme winds and waves, etc., for which
the representation of failure events is provided in Section 3. Only the
structural failures caused by extreme winds and waves are considered
in the present paper. The simulations of structural dynamic responses
under the action of typhoons are carried out using FAST 8, an aero-
hydro-servo-elastic simulator developed by NREL [71]. In the present
paper, a database containing environmental loads and their corre-
sponding structural failure probabilities is created. 95 combinations of
11
(𝑉hub,𝐻s) are chosen, where the hub-height wind speed 𝑉ℎ𝑢𝑏 is assumed
to change from 5 m∕s − 100 m∕s and then the corresponding reliability
for these 95 environmental conditions are calculated. The probability of
structural components failures with the environmental condition within
each interval are calculated by the interpolation method. The estab-
lishment of the database may be implemented through the following 3
steps:

Step1: Generating a set of input files with different combination of the en-
vironmental conditions. The environmental loads are extreme wind and
wave loads caused by typhoons, which are assessed in Section 4.1.2.
In the present example, 95 input files related to different environment
loads (𝑉hub,𝐻s) are generated first, where the hub-height wind speed
𝑉ℎ𝑢𝑏 is assumed to change from 5 m∕s − 100 m∕s.

Step2: Running structural analysis and to assess the extreme response.
Based on the generated input files, the structural analysis is imple-
mented by running FAST. The turbulent wind (i.e., wind speed and
wind direction) time histories are evaluated using the software package
Turbsim [72]. Then FAST calculates the wind load on the blades using
the Blade Element Momentum. The JONSWAP spectrum is used to
model the wave spectrum and the inverse Fourier transform is applied
to generate a wave-height time history. Then this time series is con-
verted into structural loads by the FAST software package HydroDyn
using Morrison’s equation [73]. Based on the wave-height time his-
tory, the kinematics of individual water particles distributed along the
monopile are calculated using the second order wave model [73,74].
The maximum bending moment of the tower and the maximum blade
root flapwise moment can be identified from the output file where the
time series of structural responses (i.e., bending moment of the tower
and blade root flapwise moment) are recorded. More details for the
simulations can be found from [19,21,75].

Step3: Calculating the probability of failure and formulate the database
of probability of failures. The considered structural components are
the towers and blades since the monopile and transition pieces were
observed to always fail after the tower had reached a 100% probability
of failure [21]. The ultimate limit state failure is considered to analyze
the reliability of the structural components. For towers, local buckling
failure is considered; that is, the maximum moment of the tower
exceeds the cross-section bending capacity. Following Tarp-Johansen
and Sørensen [76], the bending capacity of the tower can be calculated
by:

𝑀cr =
1
6

(

1 − 0.84𝐷
𝑡
𝐹y

𝐸

)

(

𝐷3 − (𝐷 − 2𝑡)3
)

𝐹y (20)

where 𝐷 and 𝑡 are the diameter and thickness of the tower, which are
provided in Table 2; 𝐸 and 𝐹y are the Young’s modulus and the yield
strength for the steel, where the mean values are take from [70], and
the coefficient of variation (CoV) is taken from [21,76]. The limit state
function with consideration of uncertainties is expressed as:

𝐺𝑀cr
= 𝑀cr𝑋mat𝑋cr −𝑀dem

(

𝐻s, 𝑉ℎ𝑢𝑏
)

𝑋dyn𝑋sim𝑋str (21)

where 𝑀dem represents the maximum bending moment in each FAST
simulation.

Similarly, the loading considered for the limit state of the blades
is taken as the blade root flapwise moment capacity (𝑀cap) minus the
flapwise moment demand (𝑀dem) [21] :

𝐺bld = 𝑀cap𝑋mat𝑋cr −𝑀dem
(

𝐻s, 𝑉ℎ𝑢𝑏
)

𝑋dyn𝑋𝛿l𝑋str (22)

where the flapwise moment capacity 𝑀cap is assumed to be 25740
kNm based on the calculation result of NREL 5 MW OWT blades
designed by Resor [77]; 𝑀dem is the maximum flapwise moment in each
FAST simulation. More details on the mechanical characteristics and
performances of wind turbine blades may be found from [77].

Table 4 provides the probabilistic models of uncertainties related to
blade and tower failure modes, which stem form [21,76].
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Table 4
Uncertainty model for blade and tower failure modes.

Type Parameter Mean CoV Distribution Ref.

Model uncertainty

Structural dynamics (𝑋dyn) 1 0.05 Lognormal [21,76]
Simulation statistics (𝑋sim) 1 0.1 Normal [21,76]
Stress evaluation (𝑋str ) 1 0.03 Lognormal [21,76]
Blade model uncertainty (𝑋𝛿l) 1 0.05 Lognormal [21,76]
Critical load capacity (𝑋cr ) 1 0.10 Lognormal [21,76]
Material model uncertainty (𝑋mat ) 1 0.05 Lognormal [21,76]

Material Steel yield strength, Mpa (𝐹y) 240 0.05 Lognormal [21,70,76]
Steel Young’s modulus (E ) 2 × 105 0.25 Lognormal [21,70,76]
Table 5
Failure rates for different considered components (/turbine/year).

Component Failure_level 1 Failure_level 2 Failure_level 3

Gearbox 0.154 0.2772 0.4158
Hub 0.001 0.0018 0.0027
Generator 0.095 0.1710 0.2565
Circuit breaker 0.002 0.0036 0.0054
Pitch system 0.001 0.0018 0.0027
Yaw system 0.001 0.0018 0.0027
Controller 0.001 0.0018 0.0027
Transformer 0.001 0.0018 0.0027

4.2.2. Modeling of mechanical and electrical components failures
The performances of the considered components/subsystem listed

in Table 5 are described by a homogeneous Poisson process (HPP)
model [63], that is, the failure rate is constant with time. In Carroll [9],
the failures are classified as a minor repair, major repair or major
replacement according to the Reliawind categories [78], where the
failure with a total repair material cost of less than €1000 is considered
a minor repair, between €1000 and €10,000 a major repair and above
€10,000 a major replacement. In this example, for simplicity, the major
replacement associated with large losses and longer repair time is
considered as the failure case, given that the conditional probability
of resilience failure is assumed rather high for this classification. In
order to study the effect of different reliability levels on resilience,
three reliability levels are considered, see Table 5. The failure rates of
level 1 is taken from the failure rates of the wind turbine components
provided by Carroll [9], which are analyzed based on 350 offshore
wind turbines of which the nominal power is between 2 and 4MW.
This analysis defines a failure as a visit to a turbine, outside of a
scheduled operation, at which material is consumed, which means that
the considered failures could be various types of failures, such as fatigue
failure. The failure rates of level 2 and 3 are assumed to be 1.8 and 2.7
times of level 1.

4.2.3. Modeling of cascading failures
Fig. 13 shows the cascading failure scenarios considered in the

present example, including four major cascading failure scenarios:

• Blade strike. Many collapse cases of wind turbine tower are
caused by the event that blade tip hits the tower due to huge
deflection. If the blade fractures while the rotor revolves, it is
likely to hit the tower shell which also may lead to tower collapse
failure [79–81].

• Imbalance load. Another cause of OWT tower collapse failures,
often seen in the past, concerns the imbalance of force generated
by a blade failure [79].

• Cascading failure due to the failure of pitch and yaw systems.
The pitch system can be used to start and stop the turbine by
adjusting the angles of the blades in relation to the prevailing
wind. The yaw system which serves to turn the nacelle around
the tower axis can contribute to preventing the wind turbine from
extreme loads in extreme wind conditions by rotating the wind
turbine out of the wind. Therefore, these two systems play a vital
role in regulating aerodynamic loads; by adjusting the blade pitch
12
Table 6
Conditional failure probability of tower and blade (unit:/turbine/initial
failure event).

Initial failed component Blade Tower

Pitch system 0.1 0.05
Yaw system 0.1 0.05
Blade / 0.05

Table 7
Definition of the probabilistic model of 𝑇pre.

Distribution Preparedness level Mean (Unit: hour) CoV

Log-normal Low 336 0.2High 168

Fig. 13. Illustration of the cascading failure scenario considered in the present
example.

angle with changing wind speed and the nacelle yaw angle with
changing wind direction [15,82,83].

• Tower collapse. The collapse of OWT towers may lead to a total
loss of the OWT.

It should be mentioned that, the failure rates of the components
(i.e., electrical and mechanical components) listed in Table 5 already
include cascading failures. This is because the causes of failure are
not distinguished when the failure rate is counted here. Therefore,
in the present example, only the scenarios which may lead to the
cascading failures of blades and towers requires additional modeling.
Since there are not sufficient reported cases about cascading failures,
the probabilities of conditional failures are here simply given based on
engineering judgement, see Table 6.

4.2.4. Modeling of failure consequences
The failure consequences are modeled according to Section 3.2.2.

The maintenance costs associated with failure event can be calculated
according to Eq. (7), where 𝐶w is:

𝐶w = 𝑛w × 𝑐w × 𝑇rep (23)

where 𝑐w is the cost for hiring 1 technician; 𝐶material is calculated by:

𝐶material =
𝑛𝑐
∑

𝐶𝑖 (24)

𝑖=1
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Table 8
Repair time for different components (unit:hour), data is adapted from [9,22,86].

Distribution Component Mean (high preparedness) Mean (low preparedness) CoV

Log-normal

Gearbox 231 462

0.2

Hub 298 596
Blade 288 576
Generator 81 162
Circuit breaker 150 300
Pitch 25 50
Yaw 49 98
Controller 12 24
Transformer 1 2
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Table 9
Material cost for different components (taken and adopted from [9] and
[22]).

Component Cost (USD)

Gearbox 725360
Hub 299600
Generator 189220
Circuit breaker 44152
Pitch 44152
Yaw 40998
Controller 40998
Transformer 497740
Blade 851510

Table 10
Labour and transportation cost.

Description Cost (USD)

Labor cost/day (12 h)/technician 2027
Transportation cost/day 1399

where 𝑛c is the number of the failed components, 𝐶𝑖 is the material cost
for the 𝑖th failed component; 𝐶trans is calculated by:

𝐶trans = 𝑐trans × 𝑇rep (25)

where 𝑐trans is the cost for transportation per time unit. 𝑇rep is assumed
to be calculated by:

𝑇rep =
∑𝑛𝑐

𝑖=1 𝑇𝑖
12𝑛w

(26)

where 𝑛w is the number of technicians engaged in the repair work,
which is assumed to be 4, 6, 8 for wind farms with 5, 10, 15 wind
turbines; 12 represents that the technicians will work together for 12 h
per day; 𝑛c is the number of failed components; 𝑇𝑖 is the repair time
or the 𝑖th failed components, of which the probabilistic model can be
ound from Table 8. The strategy with respect to repair sequence is not
onsidered in this example, and all events of failed wind turbines are
ssumed to have the same value of 𝑇rep. The test period is considered
nly when the tower collapse happens, here 𝑇test is assumed to be 3
onths. The downtime can be calculated by Eq. (8), where the mean

alue of 𝑇pre is assumed to be 7 days (168 h) and 14 days (336 h)
or the high and low preparedness level respectively, see Table 7.
otice that the probabilistic model of 𝑇pre in the present paper is rather

imple, more details such as the modeling of the accessibility of the
ransportation to the wind turbine may be found from [84,85]. The
oV is assumed to be 0.2 according to the Refs. [9,22,86].

The parameters related with the cost model are adapted from [9],
ee Tables 9 and 10. In the event of tower collapse, it is assumed that
he maintenance cost is 7,331,983 (USD).

.3. Resilience quantification and sensitivity analysis for different decision
lternatives

Based on the proposed resilience analysis and decision support
13

ramework in Section 3, in this section, the quantification of resilience c
f the OWFs addressed in the example are introduced and then a sensi-
ivity analysis of the resilience performances of these is undertaken for
he four categories of decision alternatives introduced in Section 4.1.1.

.3.1. Resilience quantification
Monte Carlo (MC) simulations are applied to quantify the system

esilience. According to Section 4.1.2, the random samples of 𝑉10 are
enerated. To simplify, the representation of the spatial dependency
etween the 10 min mean values of the wind velocity 𝑉10 at the
ocations of the different wind turbine a correlation coefficient 𝜌I equal
o 0.8 is assumed. Based on this assumption the corresponding random
amples of 𝑉hub and 𝐻s are generated according to Eq. (13)–(17). As

next step, based on the probabilistic modeling and the reliability
nalysis presented in Section 4.2.1, the random samples of perfor-
ances (failures/no failures) of structural components are generated.
eanwhile, the random samples of performances (failures/no failures)

f mechanical and electrical components are generated according to the
odel introduced in Section 4.2.2. As outlined in Eq. (2), the economic

apacity at the 𝑗th (𝑗 = 1, 2,… , 𝑇 ) month is obtained by accumulating
fixed percentage 𝜒 of the benefits in the foregoing j-1 months:

r (𝑗) = 𝑅0 + 𝜒
𝑛
∑

𝑖=1

𝑗−1
∑

𝑘=1
𝐵𝑖(𝑘) (27)

here 𝑅0 is the starting value of the economic capacity at the beginning
f the service life, which in this example is assumed to be 5% of the
xpected value of the total service life benefits; 𝑛 is the number of
WTs; T is the lifetime, which is set equal to 300 (months) in this
xample; 𝐵𝑖(𝑘) is the benefits of WT𝑖 within the kth month calculated
y Eq. (19). The economic demand 𝑆r (𝑗) can be calculated follow-
ng Eq. (3) and Eq. (23)–(25). Finally, the probability of resilience
ailure 𝑃RF for different decision alternatives are calculated according
o Eq. (4)–(5).

.3.2. Sensitivity analysis for decision alternatives relevant to asset integrity
anagement

In this section, the sensitivities of probability of resilience failure
o the decision alternatives relevant to AIM as introduced in Sec-
ion 4.1.1 are analyzed and the corresponding results are illustrated
y Figs. 15–18, where Scenario 1–Scenario 6 represent the 6 reliability
nd preparedness decision scenarios, see Fig. 14. The failure rates and
epair time of the 6 scenarios can be found from Table 5, Table 7, and
able 8.

ensitivity analysis of 𝜒 . First of all, Fig. 15 shows the sensitivity of
RF to changes in the percentage 𝜒 . It appears intuitive coherent that
or increasing 𝜒 , 𝑃RF is reducing. In addition, it is observed that the
ensitivity of 𝑃RF to changes in 𝜒 is growing over time. Further insights
an be derived in support of decision-making, namely from Fig. 15 it
s observed that if 𝜒 is too small, 𝑃RF will be higher as time increases
e.g., when 𝜒 < 0.1 in sub-figure (a), and when 𝜒 < 0.12 in sub-figure
b)). This is caused by the effect of reserved benefits, i.e. the proportion
f annual incomes reserved for building economic capacity, is not
nough to support the maintenance costs. Therefore, the economic
apacity of the system decreases over time and is eventually exhausted.
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Fig. 14. Reliability and preparedness decision scenarios.

Fig. 15. Annual probability of resilience failure with the variation of the 𝜒 and time when 𝑛=10.
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Fig. 16. Comparison of annual probability of resilience failure of as the function of t with different reliability and preparedness level.
Fig. 17. Comparison of annual probability of resilience failure as the function of t with the variation of the pitch system and gearbox failure rates.
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n such a condition, the 𝑃RF at later years cannot be simulated. This is
ecause when conducting MC simulations for the life-cycle simulation,
ost of the samples are failed in the earlier years due to the high 𝑃RF,
hich leads to that there is no or less samples for the simulations in

he later years. This problem may be solved by constantly increasing
he number of MC simulations or some efficient sampling methods, but
n actual decision-making, such high probability of resilience failure is
lmost non-existent, thus this is chosen to be ignored in the present
ork. In contrast, if 𝜒 is large, 𝑃RF will decrease as a function of time

e.g., when 𝜒 ≥ 0.1 in sub-figure (a), and when 𝜒 ≥ 0.12 in sub-
igure (b)) due to the increase of accumulated economic capacity. This
mplies that it is important to find a reasonable interval for 𝜒 , for which
hese effects are adequately balanced. By comparing the six sub-figures
n Fig. 15 it is observed that the level of both the reliability and the
reparedness can affect the width of this interval.

ensitivity analysis of failure rates and repair time. Fig. 16 illustrates the
ensitivity of 𝑃RF to changes in the reliability and preparedness level
nder two different choices of 𝜒 . It can be observed by comparing sub-
igure (a) and (b) that the influence of reliability and preparedness
evel is less pronounced in sub-figure (a), which indicates that 𝑃RF
s sensitive to the reliability level and the preparedness level when

is high. This implies that it is not enough to improve resilience
y increasing the level of reliability and preparedness, but also by
mproving the economic capacity. To further investigate the sensitivity
f 𝑃RF to the failure rates of components, Scenario 4 is chosen as basis,
ssuming that the failure rate (𝜆) of the pitch system varies from 0.0003
o 0.003 and the failure rate (𝜆) of the gearbox varies from 0.12 to
.6, and the failure rates of other components remain constant. Fig. 17
hows the corresponding calculation results of 𝑃 with the variation
15

RF s
f component failure rates. It is observed from both sub-figure (a) and
b) that 𝑃RF is sensitive to the component failure rates, even for very
mall variations like the one in sub-figure (a). The effect on 𝑃RF is more
ronounced in sub-figure (b) due to the large variation in the failure
ate of the gearbox. This may imply that choosing the more reliable
earbox is more effective in improving system resilience.

ensitivity analysis of number of wind turbines. Finally, Fig. 18 compares
he annual 𝑃RF in year 5 for three OWFs composed of 5, 10, 15 OWTs,
espectively. It can be observed from Fig. 18 that when 𝑃RF is higher
han a certain value, 𝑃RF gradually increases as n increases. On the
ontrary, 𝑃RF gradually decreases as n increases. It is noted that these
alues are all close to 0.1 in the four sub-figures. When 𝑃RF is higher
han this value, it implies that the economic capacity is not sufficient. In
uch situations, the OWFs with less OWTs are more resilient, since they
re associated with smaller economic demands. When 𝑃RF is lower than
his value, the economic capacity is more adequate. In such situations,
WFs comprised of larger numbers of OWTs are more resilient, since

he economic reserve generated by each individual OWT may be shared
ith others. It can be observed from sub-figure (a) that when 𝑃RF is
qual to 0.01, the OWF with 15 OWTs requires about 21% of the annual
ncomes reserved for building economic capacity, while for the OWF
ith 10 OWTs and 5 OWT’s only about 22.5% and 26% are required

o achieve the same level of resilience performance. For the purpose
f resilience informed decision-making, if the decision alternatives
oncern OWF design alternatives (e.g., number of wind turbines in
his figure), and if the maximum acceptable 𝑃RF is lower than this
alue (0.1 in the present example), the OWF which has more OWTs
hould be chosen. The sensitivity analyses performed in the present

tudy are undertaken at only at principal levels. More studies in the
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Fig. 18. Comparison of annual probability of resilience failure as the function of 𝜒 with different number of OWTs.
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uture, considering specific decision problems and addressing also the
ffect of the different prevailing uncertainties on these, would still be
ery relevant.

. Conclusions

This paper develops a general probabilistic framework for resilience
odeling and analysis of offshore wind farm (OWF), and illustrates
ow such a framework may be implemented within the modeling
echniques and tools commonly applied in the industry. Based on the
ystem representation of OWFs, resilience is modeled and quantified
s a life-cycle performance, which accounts for not only the long-term
nvironmental conditions and physical performance of OWF systems,
ut also the performance/capacity of the management and economic
ystem which is related to the reorganization ability and the life-
ycle benefits. In this way, the proposed framework facilitates the
ptimization of decisions on AIM from a life-cycle perspective. Based
n the proposed framework, acceptable and optimal decisions may be
dentified by quantifying the life-cycle resilience performance of the
16

WFs under different AIM decision alternatives. f
The application illustrates the relationship between resilience per-
ormance and different decision alternatives. The key findings of the
ase study can be summarized as follows: (i) except for the reliability
evel which is normally chosen as a design alternative, the preparedness
evel, which represents the ability of the management system, is also a
ey factor affecting the resilience of OWFs; (ii) the effects of reliability
evel and preparedness level are not significant when the economic
apacity is low, which emphasizes the importance of the optimization
f the economic capacity (by optimizing 𝜒 in the present framework)
n the optimal decision-making of OWFs; (iii) when the economic
apacity is enough, OWFs comprised of larger numbers of OWTs are
ore resilient, while when the economic capacity is insufficient, OWFs

omprised of smaller numbers of OWT’s are more resilient. The LCoE
f the OWF with different decision alternatives is not calculated in
he present example, however, it should be noted that even though
he OWF with high reliability and preparedness levels may perform
etter in terms of resilience, these decisions may lead to higher initial
nvestment resulting in higher LCoE, as introduced in Section 3.3.

For illustration purposes, the application in the present paper still
ncludes simplifications with potentials for improvements. But the

ramework proposed in the present paper may have many applications
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for different aspects of integrity management. Further research may
be directed on the integration of deterioration and fatigue failure of
OWT components and explicit address of structural health monitoring
and inspections into the optimization of OWF resilience characteristics.
Further research should also aim to refine the modeling of the recovery
process, so that the repair costs and repair time may be estimated more
accurately. The study of the application also shows that the choice
concerning the allocation of economic resources represented by 𝜒 , is
crucial for resilience management. Further research should investigate
the trade-off between the economic reserve supporting the recovery
cost and the net benefit representing the competitiveness of an OWF
project.
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