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a b s t r a c t 

Privacy issues and communication cost are both major concerns in distributed optimization in networks. 

There is often a trade-off between them because the encryption methods used for privacy-preservation 

often require expensive communication overhead. To address these issues, we, in this paper, propose a 

quantization-based approach to achieve both communication efficient and privacy-preserving solutions 

in the context of distributed optimization. By deploying an adaptive differential quantization scheme, we 

allow each node in the network to achieve its optimum solution with a low communication cost while 

keeping its private data unrevealed. Additionally, the proposed approach is general and can be applied 

in various distributed optimization methods, such as the primal-dual method of multipliers (PDMM) and 

the alternating direction method of multipliers (ADMM). We consider two widely used adversary models, 

passive and eavesdropping, and investigate the properties of the proposed approach using different ap- 

plications and demonstrate its superior performance compared to existing privacy-preserving approaches 

in terms of both accuracy and communication cost. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

With the emergence of interconnected or networked systems, 

istributed optimization is widely used to process its massive 

mount of data. As the primary computation units in these dis- 

ributed networks are often personal devices, such as mobile 

hones and tablets [1,2] , the underlying networked data often 

arry sensitive personal information, thus are private in nature. 

urthermore, the available computational resources are also lim- 

ted by the hardware and energy consumption, e.g., in wireless 

acoustic) sensor networks [3–6] . As a consequence, novel dis- 

ributed optimization tools are required that are able to address 

he privacy concern in a way that is efficient in terms of commu- 

ication and computational resources. 

Existing approaches mostly address the above challenges only 

artially. To achieve computationally lightweight solutions, noise 

nsertion approaches, which add noise to obfuscate the private 

ata, are widely used in the literature. These methods can be 

roadly classified into three classes. The first one is the class of 

ifferentially private distributed optimization approaches [7–13] . 
∗ Corresponding author. 

E-mail addresses: qili@create.aau.dk (Q. Li), r.heusdens@mindef.nl , 

.heusdens@tudelft.nl (R. Heusdens), mgc@create.aau.dk (M.G. Christensen). 

t

o

c

p

ttps://doi.org/10.1016/j.sigpro.2022.108456 

165-1684/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article
he main idea is to guarantee that the posterior guess of the pri- 

ate data is only slightly better than the prior guess. The down- 

ide of these algorithms is that the algorithm accuracy is degraded, 

.e., they have an inherent trade-off between privacy and accuracy. 

he second class is that of secret-sharing based distributed opti- 

ization approaches [14,15] which deploy secret sharing to pre- 

ent privacy leakage, a technique used in secure multiparty com- 

utation [16,17] . Secret sharing works by splitting the private data 

nto a number of so-called shares and distributes them over the 

odes such that without a sufficient number of nodes cooperating 

he private data cannot be reconstructed. It, however, often suffers 

rom high communication costs as the distribution and collection 

f shares requires extra communication rounds. The third class is 

he class of subspace perturbation based distributed optimization 

pproaches [18–20] which, by inserting noise in a subspace deter- 

ined by the graph topology, alleviates the privacy-accuracy trade- 

ff without severely increasing the communication costs. 

When considering the communication cost, aside from the 

umber of times the communication channel is used, there is an- 

ther critical parameter, namely the communication bandwidth or 

he corresponding bit-rate. The communication bandwidth is often 

mitted in privacy related approaches by assuming infinite pre- 

ision. However, there is often a fundamental trade-off between 

rivacy and communication cost in noise insertion type methods. 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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he reason for this is that a higher privacy level usually requires 

 larger amount of noise insertion, which, in turn, increases the 

ntropy of the noise and thereby its bit-rate. 

A typical way to save the communication bandwidth is to apply 

uantization schemes. However, existing quantization based dis- 

ributed optimization schemes, e.g., [21–24] , mostly consider the 

ffects on the algorithm accuracy and convergence rate. The pri- 

acy primitive, however, is remained unexplored. In this paper, we 

im to rectify this by linking these important parameters together, 

uch that a communication efficient and privacy-preserving distri- 

ution optimization framework can be achieved. 

.1. Paper contributions 

To the best of our knowledge, this is the first approach which 

rovides information theoretical privacy guarantees for distributed 

ptimization with quantization. The main idea is to exploit an 

daptive differential quantization scheme in a particular way such 

hat the communication cost is reduced while the private data is 

ept unrevealed. The proposed approach has a number of attrac- 

ive properties: 

• The accuracy of the optimization result is not compromised by 

considering both privacy and quantization. 
• The overall communication cost is significantly reduced com- 

pared to existing privacy-preserving approaches including se- 

cret sharing, subspace perturbation, and differential privacy 

based approaches. 
• It is generally applicable to various distributed optimizers such 

as ADMM, PDMM and similar algorithms. 
• It provides privacy guarantees under two widely-considered ad- 

versary models, namely eavesdropping and passive adversary 

models. 

.2. Outlines and notation 

The remaining part of the paper is organized as follows. 

ection 2 reviews fundamentals of distributed optimization. 

ection 3 introduces important concepts about privacy and then 

tates the problem to be solved. Section 4 explains the reason 

hy there is always a trade-off between privacy and communica- 

ion bandwidth and Section 5 introduces the proposed approach 

o address it. Numerical results and comparisons with existing ap- 

roaches are demonstrated in Section 6 . Finally, the conclusion is 

iven in Section 7 . 

We use the following notation throughout this paper. Lowercase 

etters x denote scalars, lowercase boldface letters x denote vectors, 

ppercase boldface letters X denote matrices. x i and X i j denote the 

 th and (i, j) th entry of the vector x and the matrix X , respectively.

enote calligraphic letters X as sets and uppercase letters X de- 

ote random variables having realizations x . H(X ) and h (X ) denote 

he Shannon entropy and differential entropy of a random variable 

, respectively. 

. Fundamentals 

This section reviews necessary fundamentals for distributed op- 

imization. 

.1. Distributed optimization over networks 

We model a distributed network as a graph G = (N , E ) where

 = { 1 , 2 , . . . , n } denotes the set of n nodes and E ⊆ N × N de- 

otes the set of m edges. Moreover, let N i = { j | (i, j) ∈ E} de-

ote the set of neighboring nodes and d i = |N i | denote the degree

number of neighboring nodes) of node i . Many problems for ex- 

mple in statistical and machine learning fields can be formulated 
2 
s a distributed convex optimization problem with constraints over 

he network [25] : 

min 

x 

∑ 

i ∈N 
f i ( x i ) , 

s.t. ∀ (i, j) ∈ E : B i | j x i + B j| i x j = b i, j , 

(1) 

here x i ∈ R 

u denotes the optimization variable of node i , f i : 

 

u �→ R ∪ {∞} denotes the local objective function which is as- 

umed to be closed, convex and proper (CCP), and B i | j , B j| i , being 

dge-related matrices (weights), and b i, j ∈ R 

u denote the constraint 

mposed at edge (i, j) ∈ E . For simplicity, we will assume u = 1

scalar variables), B i | j = −B j| i = 1 if i > j and (i, j) ∈ E , and b i, j = 0 .

his corresponds to simple edge constraints of the form ∀ (i, j) ∈ 

 : x i = x j . The results, however, can straightforwardly be general- 

zed to arbitrary dimensions and arbitrary (linear) edge constraints. 

.2. Distributed optimizers 

To solve the problem in (1) in a decentralized manner where 

ach node is only allowed to exchange information with its neigh- 

oring nodes, a number of distributed, iterative optimizers have 

een proposed, including ADMM [25] and PDMM [26–28] . It 

as been shown using monotone operator theory and operator 

plitting techniques that ADMM and PDMM are closely related 

28] (see [29] for details on monotone operator theory). The up- 

ate equations at node i at iteration t = 0 , 1 , . . . can be generally

epresented as 

 

(t+1) 
i 

= arg min 

x i 

(
f i ( x i ) + 

∑ 

j∈N i z 
(t) 
i | j B i | j x i + 

cd i 
2 

x 2 
i 

)
, (2) 

 j ∈ N i : z 
(t+1) 
j| i = θz (t) 

j| i + (1 − θ ) 
(

z (t) 
i | j + 2 c B i | j x (t+1) 

i 

)
, (3) 

here c is a constant for controlling the convergence rate. Each 

dge e k = (i, j) ∈ E, k = 1 , 2 , . . . , m , is associated to two auxiliary

ariables z k = z i | j and z k + m 

= z j| i , one for each node i and j, re- 

pectively. Stacking all auxiliary variables together we have z ∈ 

 

2 m . θ ∈ [0 , 1) is a constant for controlling the averaging of the

onexpansive operators. For example, θ = 0 results in Peaceman- 

achford splitting (PDMM) while θ = 1 / 2 results in Douglas- 

achford splitting (ADMM). 

. Problem definition 

In this section we first introduce important concepts regarding 

rivacy-preservation and then define the problem to be solved and 

ts evaluation metrics. 

.1. Privacy concern 

In distributed optimization, sensitive personal information is of- 

en embedded in each node’s local objective function f i ( x i ) . The 

ain reason is that the local objective function contains node- 

pecific data as input and such data are often private in nature. As 

n example, consider a smart grid application. Assume each house- 

old/node in the network has its own power consumption data s i 
nd the goal is to compute the global average of the power con- 

umption data, i.e., n −1 
∑ 

i ∈N s i . In this context the local objective 

unction is given by f i ( x i ) = 

1 
2 ‖ x i − s i ‖ 2 2 

and the overall problem

etup can be formulated as follows: 

in 

x 

∑ 

i ∈N 

1 

2 

‖ x i − s i ‖ 

2 
2 , 

s.t. ∀ (i, j) ∈ E : x i = x j . 

(4) 

ote that the power consumption data s i of each household, con- 

ained in the local objective function f ( x ) , should be protected 
i i 
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Fig. 1. Passive adversary. 
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rom being revealed to others, as it can reveal information regard- 

ng the householders like their activities and even their health con- 

itions (e.g., whether they are disabled) [30] . Hence, information 

egarding the local objective function f i ( x i ) is considered to be 

ensitive and should be protected from being revealed in the pro- 

ess of solving the optimization problem. 

.2. Adversary model 

To analyze the privacy, we must specify an adversary model. 

he purpose of such a model is to quantify the system robustness 

n dealing with different security attacks. In this paper, we con- 

ider two types of adversary models: the passive and the eaves- 

ropping model. The passive (also called semi-honest or honest- 

ut-curious) adversary model is a classical model considered in 

istributed networks [31] . It works by a number of nodes collud- 

ng, referred to as corrupted nodes. The corrupted nodes are as- 

umed to follow the algorithm instructions (called the protocol) 

ut will share information together. We call an edge in the graph 

orrupted as long as there is one corrupted node at either end. 

ll messages transmitted along such an edge will be known to the 

orrupted nodes, thus also to the passive adversary. See Fig. 1 for 

 toy example. Hence, the passive adversary will collect all infor- 

ation from the corrupted nodes to infer private data of the other 

on-colluding nodes (referred to as honest nodes). 

The eavesdropping adversary is assumed to attack the system 

y listening to the messages transmitted along the communication 

hannels, i.e., edges. This model receives little attention as it can be 

ddressed by assuming all communication channels are securely 

ncrypted such that the transmitted messages cannot be eaves- 

ropped, e.g., secret sharing based approaches [14,15,32] . However, 

his assumption is particularly expensive to realize in distributed 

ptimization applications, as a large number of iterations is often 

equired before the algorithm converges. 

We assume that the considered two adversaries can cooperate, 

.e., they share information together with the aim of inferring the 

rivate data of the honest nodes. 

.3. Main requirements and related metrics 

Putting things together, we now state the main requirements 

hat communication efficient privacy-preserving distributed opti- 

ization should satisfy and introduce the related metrics. 

1. Output correctness : Each node i should obtain the optimal so- 

lution to (1) , denoted by x ∗
i 
, when the algorithm terminates. A 

typical way to quantify the output correctness is to adopt cer- 

tain distance metrics to calculate the difference between the es- 

timated output x (t) and the optimum output x ∗. In this paper 

we use the overall mean square error (MSE) to quantify it, i.e., ∥∥x (t) − x ∗
∥∥2 . 
3 
2. Communication cost : After the algorithm execution, the cost 

of all communications should be as low as possible. The com- 

munication cost is given by 2 mlT , where T is the total number 

of iterations, 2 m is the total amount of messages transmitted at 

each iteration ( d i per node and 

∑ 

i ∈N d i = 2 m in total), and l is

the number of bits needed to represent each message. 

3. Individual privacy : Each node’s private information, embed- 

ded in f i ( x i ) , should be protected under both eavesdrop- 

ping and passive adversaries throughout the algorithm. As we 

are focusing on noise insertion approaches, we will focus on 

information-theoretical metrics to quantify the privacy. In the 

context of distributed processing, two commonly used metrics 

are the so-called ε-differential privacy and mutual information 

[33] . In this paper we choose mutual information as the in- 

dividual privacy metric. The main reasons are as follows. (1) 

Mutual information has been proven effective in the context 

of privacy-preserving distributed processing [34] , and has been 

applied in various applications [35–40] . (2) It is closely related 

to ε-differential privacy (see [41] for more details), and is eas- 

ier to realize in practice [42–44] . (3) ε-differential privacy does 

not work if the private data is correlated [45] . 

. Trade-off in noise insertion approaches 

As mentioned in the introduction, existing computationally 

ightweight privacy-preserving methods mainly use the idea of 

oise insertion to achieve privacy. In this section, we aim to ex- 

lain why there is typically a trade-off between privacy and com- 

unication bandwidth in such approaches. To do so, we will first 

xplain a simple noise insertion scheme and then introduce how to 

ompute the communication bandwidth, i.e., bit-rate, after apply- 

ng quantization. Finally, we give an example to demonstrate this 

rade-off. 

.1. Additive noise insertion 

Assume a scenario where a number of people, each having 

is/her own private data, would like to participate in a project 

hich takes the private data of all these participants as input. Let s 

enote the private data held by you and you are reluctant to share 

our private data to others due to privacy concerns. The idea of 

oise insertion is to insert certain noise, denoted by r, to obfus- 

ate the private data and then share the obfuscated data, denoted 

y s r , to others. One of the most simple yet widely-used ways of 

oise insertion is to directly add the noise to the private data for 

rotecting it from being revealed to others. This is referred to as 

dditive noise insertion and can be expressed mathematically as 

 r = s + r. (5) 

ntuitively, a higher privacy level will be achieved if the obfuscated 

ata s r is less correlated with the private data s . We have the fol-

owing result. 

roposition 1. (Privacy guarantee for additive noise insertion) Let R 

nd S be continuous random variables with variance σ 2 
R , σ

2 
S < ∞ , de- 

oting the inserted noise and private data, respectively, and assume 

hat R and S are statistically independent. Let S r = S + R . Given an ar-

itrarily small δ > 0 , there exists β > 0 such that for σ 2 
R ≥ β

(S; S r ) ≤ δ, (6) 

here I(·; ·) denotes mutual information. In the case that the noise R 

s Gaussian distributed, we have 

= 

σ 2 
S 

2 

2 δ − 1 

. (7) 

roof. See [34 , Proposition 1]. �
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Fig. 2. Maximum number of bits for transmitting the obfuscated data S r in terms 

of the privacy level δ when setting σ 2 
S = 1 and � = 10 −5 . 
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Hence, the more noise is inserted, the higher privacy level can 

e obtained. However, we remark that more noise will inevitably 

ncrease the noise entropy and thus requires a higher bit-rate (i.e., 

ommunication bandwidth). In what follows we will explain this 

n more detail. 

.2. Quantization and bit-rate 

The main idea of quantization is to establish a mapping of 

he possibly continuous input data to a countable set of repro- 

uction values, which is referred to as a codebook. More specif- 

cally, a quantizer divides the input domain into so-called quan- 

ization cells (i.e., Voronoi regions) where all elements within 

 cell are represented by a unique reproduction or code value. 

et l denote the number of bits to represent the reproduction 

alues, 2 l in total. Although there exists many different quan- 

ization schemes, we will introduce a simple yet effective one, 

amely uniform quantization. In this quantizer, all quantization 

ells have the same size, except for the cells at the boundary of 

he domain in the case of fixed bit-rate quantization. For exam- 

le, a one-dimensional 2-bit uniform mid-rise quantizer with cell- 

idth � will divide the input range into four regions, each rep- 

esented by a unique code value. That is, the quantization cells 

re given by (−∞ , −�] , (−�, 0] , (0 , �] , (�, ∞ ) and represented by
3�
2 , −�

2 , 
�
2 , and 

3�
2 , respectively. Using a finite number of bits to 

uantize a continuous random variable will always introduce an 

rror, or distortion. Intuitively, the fewer bits are used, the more 

istortion will occur. To estimate the number of bits required for 

ransmitting a message, we determine the entropy since this gives 

 lower bound on the number of bits needed to represent the data. 

ith a uniform quantizer, the entropy of a quantized continuous 

andom variable X at sufficiently high rate can be approximated as 

46] : 

( ̂  X ) ≈ h (X ) − 1 

2 

log �2 , (8) 

here ˆ X is the discrete random variable after quantizing X , H( ̂  X ) is 

he Shannon entropy of ˆ X , and h (X ) is the differential entropy of X ,

ssuming it exists. Since the differential entropy of a random vari- 

ble with fixed variance σ 2 is upper bounded by 1 
2 log 

(
2 πeσ 2 

)
, 

e have 

( ̂  X ) ≤ 1 

2 

log 

(
2 πeσ 2 

X 

�2 

)
. (9) 

.3. Trade-off between privacy and bit-rate 

Putting things together, we now proceed to analyze the amount 

f bits required for transmitting the obfuscated data S r after con- 

idering quantization. By inspection of (7) , we can see that given 

 desired privacy level δ and assuming that the inserted noise R is 

aussian distributed, H( ̂  S r ) can be upper bounded by 

( ̂  S r ) ≤ 1 

2 

log 

(
2 πeσ 2 

S r 

�2 

)

(a) = 

1 

2 

log 

(
2 πe (σ 2 

S + σ 2 
R ) 

�2 

)

(b) = 

1 

2 

log 

(
2 πe (2 

2 δσ 2 
S ) 

(2 

2 δ − 1)�2 

)
, (10) 

here (a) holds as S and R are independent and (b) follows by 

etting σ 2 
R 

equal to β given by (7) . By inspection of (10) , we can

ee that the smaller the information leakage δ is, i.e., the higher 

he privacy level is, the higher the amount of bits for representing 

he quantized obfuscated data ˆ S r will be. Clearly there is a trade- 

ff between them. In Fig. 2 we give an example based on (10) to 

emonstrate this trade-off, where we set σ 2 = 1 and � = 10 −5 . 

S 

4 
. Proposed approach 

After having explained why there is a trade-off between pri- 

acy and communication cost in noise insertion approaches, we 

ow proceed to introduce the proposed approach for addressing 

t. The key idea is to adopt the adaptive differential quantization 

cheme of [47,48] to save communication cost without compro- 

ising both privacy and accuracy. More specifically, by quantiz- 

ng (the difference of) the auxiliary variable z , the communication 

ost can be significantly reduced. At the same time, the privacy of 

he proposed approach is guaranteed by making use of the initial 

unknown) value of the auxiliary variable z (0) which will serve as 

oise to protect the private data from being revealed to both pas- 

ive and eavesdropping adversaries. 

In what follows, we will introduce the proposed approach based 

n the concerned requirements mentioned in Section 3.3 , i.e., in- 

ividual privacy, output correctness and communication cost. We 

rst introduce how to save communication cost using adaptive dif- 

erential quantization and then explain what the effect of quantiza- 

ion is on the individual privacy using the above-mentioned noise 

nsertion idea. Finally, we summarize the proposed approach and 

nalyze the output correctness. 

.1. Communication efficiency through adaptive differential 

uantization 

The main idea of applying adaptive differential quantization is 

ased on the observation that for fixed point iterations the dif- 

erence of successive iterations will converge to zero, which im- 

lies that the entropy of the difference of successive iterations will 

ecrease to zero as the number of iteration increases. Motivated 

y this, the adaptive differential quantization scheme proposed in 

47,48] quantizes the difference of the auxiliary variable with an 

daptive cell-width decreasing with increasing iteration number. 

y doing so, low data-rate transmission between nodes can be 

chieved without compromising the accuracy of the algorithm. 

With the adaptive differential quantization scheme, the pro- 

ess of the proposed approach is given as follows. At initialization 

 = 0 , each node i ∈ N randomly initializes its auxiliary variables

 z (0) 
i | j } j∈N i , sends the corresponding z (0) 

i | j to each and every neigh- 

oring node j ∈ N i , and updates x (1) 
i 

and z (1) 
j| i as 

 

(1) 
i 

= arg min 

x i 

(
f i ( x i ) + 

∑ 

j∈N i z 
(0) 
i | j B i | j x i + 

cd i 
2 

x 2 
i 

)
, (11) 

 j ∈ N i : z 
(1) 
j| i = θz (0) 

j| i + (1 − θ ) 
(

z (0) 
i | j + 2 c B i | j x (1) 

i 

)
. (12) 
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et ˆ z denote the quantized version of z . At iteration t ≥ 1 , each 

ode does not transmit the unquantized z (t) 
j| i to node j directly, in- 

tead it first defines the difference variable v (t) as 

 

(t) � 

{
z (1) − z (0) , if t = 1 , 

z (t) − ˆ z 
(t−1) 

, if t > 1 . 
(13) 

et Q(·) denote the quantization operation. Applying quantization 

o the difference variable v (t) we have 

ˆ 
 

(t) = Q( v (t) ) = v (t) + n q, v (t) , (14) 

here n q, v (t) denotes the noise introduced by quantizing v (t) . After 

btaining ˆ v (t+1) 
, the quantized 

ˆ z 
(t+1) 

can be obtained by 

ˆ 
 

(t) = 

{
z (0) + ̂

 v (1) 
, if t = 1 , 

ˆ z 
(t−1) + ̂

 v (t) 
, if t > 1 . 

(15) 

ote that all { ̂ z 
(t) } t≥1 can be reconstructed when knowing z (0) and 

he quantized { ̂ v (t) } t≥1 as 

 t ≥ 1 : ̂  z 
(t) = z (0) + 

t ∑ 

τ=1 

ˆ v (τ ) 
. (16) 

fter constructing ˆ z 
(t) 

, each node can update the local variables 

 

(t+1) 
i 

and z (t+1) 
j| i using the quantized 

ˆ z 
(t) 
i | j and 

ˆ z 
(t) 
j| i from the previous 

teration, i.e., 

 

(t+1) 
i 

= arg min 

x i 

(
f i ( x i ) + 

∑ 

j∈N i ̂  z 
(t) 
i | j B i | j x i + 

cd i 
2 

x 2 
i 

)
, (17) 

 j ∈ N i : z 
(t+1) 
j| i = θ ˆ z 

(t) 
j| i + (1 − θ ) 

(
ˆ z 
(t) 
i | j + 2 c B i | j x (t+1) 

i 

)
. (18) 

Overall, we conclude that all messages that need to be trans- 

itted are the initialized z (0) and the quantized { ̂ v (t) } t≥1 . Because 

 ̂

 z 
(t) } t≥1 can be computed using z (0) and { ̂ v (t) } t≥1 , { x (t) } t≥1 can be

omputed using z (0) and { ̂ z 
(t) } t≥1 using (11) and (17) . 

.2. Privacy preservation based on additive noise insertion 

Having introduced how to reduce the communication band- 

idth, we now proceed to explain how to guarantee privacy in the 

ontext of adaptive differential privacy. Motivated by the idea of 

sing additive noise insertion to achieve privacy-preservation, in- 

tead of inserting extra noise we propose to make use of the aux- 

liary variable z as noise. Indeed, with the help of adaptive differ- 

ntial quantization, we only need the initialized z (0) 
i | j to serve as 

oise. More specifically, each nodes only needs to initialize its own 

uxiliary variables { z (0) 
i | j } j∈N i with distributions having large vari- 

nces depending on the desired privacy level (see Proposition 1 ). 

he details of privacy analysis are given as follows. 

Let ∂ f i (x ) denote the subdifferential of f i at x . By inspection of

17) , for t ≥ 1 the updates x (t) 
i 

satisfy 

 ∈ ∂ f i ( x 
(t+1) 
i 

) + 

∑ 

j∈N i 
B i | j ̂  z 

(t) 
i | j + cd i x 

(t+1) 
i 

. (19) 

e can see that the private data is only contained in ∂ f i ( x 
(t+1) 
i 

) .

s a consequence, the goal of the privacy analysis is to see what 

nformation regarding ∂ f i ( x 
(t+1) 
i 

) is revealed during the iterations. 

ote that for t = 0 we have 0 ∈ ∂ f i ( x 
(1) 
i 

) + 

∑ 

j∈N i B i | j z (0) 
i | j + cd i x 

(1) 
i 

. 

For simplicity, assume B i | j = 1 for all j ∈ N i . Denote N c and N h 

s the set of corrupted nodes and honest nodes, respectively. Let 

 i,c = N i ∩ N c and N i,h = N i ∩ N h denote the set of the corrupted

nd honest neighbors of the node i , respectively. In addition, we 

ssume a worse case scenario where each honest node has at least 
5 
ne corrupted neighboring node, i.e., N i,c � = ∅ . Combining (13) and 

14) we conclude that ˆ v (t) − n q, v (t) = z (t) − ˆ z 
(t−1) 

, so that (15) can 

e expressed as 

ˆ 
 

(t) = z (t) + n q, v (t) . (20) 

or node k ∈ N i,c , using (18) and (20) , we can express the left-hand

ide of (19) as 

f i ( x 
(t+1) 
i 

) + 

∑ 

j∈N i 
ˆ z 
(t) 
i | j + 

d i 
2(1 − θ ) 

(
ˆ z 
(t+1) 
k | i − n 

q, v (t+1) 
k | i 

− θ ˆ z 
(t) 
k | i − (1 − θ ) ̂ z 

(t) 
i | k 

)
. 

(21) 

o quantify the amount of information about the private data 

f i ( x 
(t+1) 
i 

) learned by the adversaries, we must first inspect what 

nformation is available to them. We first consider the passive ad- 

ersary. As the passive adversary can collect all the information 

vailable to the corrupted nodes, it has the following knowledge: 

x (t) 
i 

}
i ∈N c ,t≥1 ∪ 

{ 

z (0) 
i | j , ̂  v (t+1) 

i | j 
} 

(i, j) ∈E c ,t≥0 , 

here E c = { (i, j) ∈ E, (i, j) / ∈ N h × N h } denotes the set of cor-

upted edges. With the above knowledge, the passive ad- 

ersary is able to compute both 

∑ 

j∈N i,c ˆ z 
(t) 
i | j using (16) and 

d i 
2(1 −θ ) 

(
ˆ z 
(t+1) 
k | i − θ ˆ z 

(t) 
k | i − (1 − θ ) ̂ z 

(t) 
i | k 

)
in (21) . After deducing these 

nown terms, (21) reduces to 

f i ( x 
(t+1) 
i 

) + 

∑ 

j∈N i,h 
ˆ z 
(t) 
i | j −

{
d i 

2(1 − θ ) 
n 

q, v (t+1) 
k | i 

}
k ∈N i,c . (22) 

ext, we consider the eavesdropping adversary. As mentioned in 

ection 3.2 , the expense for securely encrypting the communica- 

ion channels is very high. In order to minimize this expense, we 

ropose to use secure channel encryption only once. More specifi- 

ally, no channel encryption is involved except for transmitting z (0) 

uring the initialization step. As a consequence, the eavesdropping 

dversary can listen to all transmitted messages after initialization, 

.e., 
 

ˆ v (t) 
i | j 

} 

(i, j) ∈E,t≥1 , 

ote that it does not have knowledge about z (0) 
i | j . Based on (16) , we

an, therefore, deduce 
∑ t 

τ=1 ̂  v (τ ) 
i | j from 

ˆ z 
(t) 
i | j in (22) as it is known to 

he eavesdropping adversary. Consequently, we conclude that all 

hat the passive and eavesdropping adversaries observe about the 

onest node i is given by 

f i ( x 
(t+1) 
i 

) + 

∑ 

j∈N i,h 
z (0) 

i | j −
{

d i 
2(1 − θ ) 

n 

q, v (t+1) 
k | i 

}
k ∈N i,c (23) 

here the last term { n 

q, v (t+1) 
k | i 

} j∈N i,c will converge to the all-zero 

ector as the iterations proceed. If node i has at least one hon- 

st neighbor, i.e., N i,h � = ∅ , the term 

∑ 

j∈N i,h z 
(0) 
i | j can be considered 

s noise. Hence, we can, by Proposition 1 , protect the private data 

f i ( x 
(t+1) 
i 

) from being revealed by making the variance of z (0) suf- 

ciently large at the initialization step. Therefore, arbitrarily small 

nformation leakage regarding ∂ f i ( x 
(t+1) 
i 

) can be achieved at every 

teration. 

.2.1. Privacy discussion 

Some remarks are in place here. We have concluded that arbi- 

rary privacy levels of the proposed approach can be achieved by 

ontrolling the variance of z (0) . As we are focusing in optimization 

lgorithms which will converge, one immediate question to ask is 

as the iterations proceed, will the variance of the auxiliary variable 

ecrease, thereby (partly) revealing the private information?” In the 
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ollowing we will show that this will not happen because the vari- 

nce of the auxiliary variables z (t) 
i | j is lower bounded, the bound 

eing dependent on z (0) . 

We first express (2) and (3) compactly as 

 

(t+1) = arg min 

x 

(
f ( x ) + ( z (t) ) � ( C x ) + 

c 

2 

‖ C x ‖ 

2 
2 

)
, (24) 

 

(t+1) = θz (t) + (1 − θ )( P z (t) + 2 c P C x (t+1) ) , (25) 

here C = [ B 

� 
+ , B 

� 
−] � ∈ R 

2 m ×n , and B + and B − are the matrices con-

aining only the positive and negative entries of B , respectively. 

 ∈ R 

2 m ×2 m denotes a permutation matrix which exchanges the 

rst m rows and last m rows of the matrix it operates on. Consider

wo successive z-updates: 

 

(t+2) = θz (t+1) + (1 − θ ) 
(
P z (t+1) + 2 c P C x (t+2) 

)
(26) 

= 

(
θ2 + (1 − θ ) 2 

)
z (t) + 2 θ (1 − θ ) P z (t) 

+ 2 c(1 − θ ) 
(
(1 − θ ) C x (t+1) + θP C x (t+1) + P C x (t+2) 

)
, (27) 

here we used that fact that P 2 = I 2 m 

with I 2 m 

the identity 

atrix in R 

2 m . Let � = ran ( C ) + ran ( P C ) so that �⊥ = ker ( C T ) ∩
er (( P C ) T ) . Since [ C P C ] ∈ R 

2 m ×2 n can be interpreted as an inci-

ence matrix of a new bipartite graph with 2 n nodes and 2 m edges

20] , we conclude that dim (�) ≤ 2 n − 1 , assuming m ≥ n . Therefor,
⊥ is non-empty as long as the number of edges is larger than or 

qual to the number of nodes in the network. To get more insight 

n the z-updates, we need the following lemma. 

emma 5.1. Let x ∈ � and y ∈ �⊥ . Then P x ∈ � and P y ∈ �⊥ . 

roof. Since � = ran ( C ) + ran ( P C ) , P x ∈ � . Moreover, ∀ x ∈ � :

 P y , x ) = ( y , P ∗x ) = ( y , P x ) = 0 and thus P y ∈ �⊥ . �

Let z (0) ∈ � and thus P z (0) ∈ � by Lemma 5.1 . By inspection 

f (26) and (27) , we conclude that z (t) ∈ � for all t . However, if

e initialize z (0) randomly, without restricting it to belong to � , 

t has been shown in [28] that only the component ��z (t) will 

onverge to a fixed point as t → ∞ , regardless of the initialization

 

(0) . As for ( I 2 m 

− ��) z (t) = z (t) 

�⊥ , the orthogonal projection of z (t) 

nto �⊥ , we have the following results. 

heorem 5.1. Given the iterates (24) and (25) . Then 

 

(t) 
�⊥ = 

1 

2 

(
z (0) 
�⊥ + P z (0) 

�⊥ 
)

+ 

1 

2 

(2 θ − 1) t 
(
z (0) 
�⊥ − P z (0) 

�⊥ 
)
. (28) 

roof. See Appendix A . �

emma 5.2. Let �� and ��⊥ = I 2 m 

− �� denote the projection 

nto � and �⊥ , respectively. Then 

�P = P ��, 

�⊥ P = P ��⊥ . 

roof. Let z = z � + z �⊥ , where z � = ��z and z �⊥ = ��⊥ z , the 

rojection of z onto � and �⊥ , respectively. Then P z � ∈ 

and P z �⊥ ∈ �⊥ by Lemma 5.1 , so that ��P z = ��P ( z � + 

 �⊥ ) = P z � = P ��z . The statement that ��⊥ P = P ��⊥ follows 

rivially. �

orollary 5.1. Given the iterates (24) and (25) . Let E 

(
Z 

(0) Z 

(0) T 
)

= 

2 I 2 m 

denote the covariance matrix of Z 

(0) . Then 

 

(
Z (t) 

�⊥ Z 
(t) T 

�⊥ 

)
= ��⊥ 

(
σ 2 

2 

(
( I 2 m 

+ P ) + | 2 θ − 1 | 2 t ( I 2 m 

− P ) 
))

. (29) 

roof. Since Z 

(0) is drawn at random, the result follows from (28) , 

emma 5.2 and the fact that ��⊥ �
T 

⊥ = ��⊥ . �
�

6 
By inspection of (29) we conclude that 

 

(
Z 

(t) 
�⊥ Z 

(t) T 

�⊥ 

)
= 

{
��⊥ σ 2 , if θ = 0 

1 
2 
( ��⊥ + P ��⊥ ) σ 2 , if θ = 0 . 5 

(30) 

 

(
Z 

(t) 
�⊥ Z 

(t) T 

�⊥ 

)
→ 

1 

2 

( ��⊥ + P ��⊥ ) σ 2 , if θ ∈ (0 , 1) , θ � = 0 . 5 . 

ence, the lower bound on E 

(
Z 

(t) 

�⊥ Z 

(t) T 

�⊥ 

)
is dependent on σ 2 . By 

ncreasing σ 2 we can achieve a higher variance, and thus the pri- 

acy level. 

In addition, the fact that z (t) depends on z (0) 

�⊥ will not pre- 

ent the optimization variable x (t) to converge to x ∗. Indeed, since 

 ��⊥ z (t) ) � C x (t) = 0 , we conclude, by inspection of (24) , that the 

utput correctness will not be affected by z (0) 

�⊥ . 
Similar results also hold for the case of quantization. By in- 

pecting (16) , we see that besides z (0) , the quantized variable ˆ v (t) 

ill have a non-zero component in �⊥ , i.e., ��⊥ ̂  v (t) � = 0 . The vari-

nce of this component, however, will eventually vanish as the it- 

rations proceed. 

Summarizing, we conclude that by simply letting each node i 

andomly initialize its { z (0) 
i | j } j∈N i with a distribution having suffi- 

iently large variance, the privacy of honest node i ∈ N h is pro- 

ected against both passive and eavesdropping adversaries as long 

s: 

1. There is at least one honest neighbor. That is, N i,h � = ∅ . 
2. The communication channels are securely encrypted in the ini- 

tialization phase when transmitting z (0) . 

Algorithm 1 shows the details of the proposed algorithm. 

.3. Output correctness analysis 

We now analyze the output correctness of the proposed ap- 

roach. In [4 8,4 9] it has been shown that if the sequence 

 n q, v (t) } t≥0 is finitely summable, then Douglas-Rachford splitting 

ill convergence to a fixed point x ∗ which is the solution to (1) . 

n addition, in [48] it was shown that if the worst case rate of 

ecrease of ‖ v (t) ‖ 2 is known, the same decrease in cell width 

an be implemented to maintain a fixed bit rate for the quantiza- 

ion, whilst simultaneously ensuring that the sequence ( n q, v (t) ) t∈ N 
s finitely summable. Although the same conclusion is not neces- 

arily true for PDMM or Peaceman-Rachford splitting, in practice it 

s observed that the same result holds. As an example, for a geo- 

etrically converging sequence with factor γ , we can choose the 

ell-width as �(t) = γ t �(0) . 

Ignoring overflow errors, we then have that | n q, v (t) | ≤ �(t) / 2 = 

t �(0) / 2 , so that 

∞ 

 

t=0 

| n q, v (t) | ≤ �(0) 

2 

∞ ∑ 

t=0 

γ t = 

�(0) 

2 

1 

1 − γ
< ∞ , 

or γ < 1 and we conclude that the output correctness require- 

ent is satisfied. Note that the geometric convergence factor γ can 

e computed in general when we have information about strong 

onotonicity and the Lipschitz constant of the objective function 

51] . 

. Numerical results 

In this section, we will present simulation results for the pro- 

osed approach and compare this with existing approaches. We 

imulated a geometric network with n = 30 nodes where every 

wo nodes are allowed to transmit messages if their distance is 

ithin a radius of 

√ 

2 log (n ) 
n , as this condition ensures that the cor- 

esponding graph is connected with high probability [52] . 
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Algorithm 1. Communication efficient privacy-preserving distributed optimization using adaptive differential quantization. This reference is cited in algoirhtm [50] . 
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.1. Performance of the proposed approach 

We use two applications to test the performance of the pro- 

osed approach and exemplify its use: distributed average consen- 

us and distributed least squares, as they have been intensively in- 

estigated in the literature [15,18,19,32,53–59] . The detailed prob- 

em formulation of distributed average consensus is already intro- 

uced in (4) . As for distributed least squares, assume each node 

as partial knowledge of a linear system (assuming overdeter- 

ined) including an input observation, denoted as Q i ∈ R 

p i ×u , p i > 

 , and a decision vector, denoted as y i ∈ R 

p i . Stacking the par-

ial knowledge together we denote Q = [ Q 

� 
1 , . . . , Q 

� 
n ] 

� ∈ R 

P n ×u and 

 = [ y � 
1 
, . . . , y � n ] 

� ∈ R 

P n , where P n = 

∑ 

i ∈N p i . The goal of privacy-

reserving distributed least squares is to allow each node to 

chieve the global optimum solution ∀ i ∈ N , x ∗
i 

= ( Q 

� Q ) −1 Q 

� y ∈
 

u , without revealing its private data, i.e., Q i , y i . With distributed 

ptimization this problem can be formulated as 

in 

x i 

∑ 

i ∈N 

1 

2 

‖ y i − Q i x i ‖ 

2 
2 

s.t. ∀ (i, j) ∈ E : x i = x j . 

(31) 

In all experiments, we randomly draw the private data, i.e., s i 
n the case of distributed average consensus and Q , y in the case 
i i 

7 
f distributed least squares, from a zero-mean Gaussian distribu- 

ion with unit variance. In addition, we set c = γ = 0 . 9 and each

ntry of the auxiliary variable z (0) is initialized with zero-mean 

aussian distributed noise having a variance σ 2 
z (0) = �(0) 2 , where 

(0) is the initial quantization cell-width. Moreover, for the pro- 

osed quantized approach, a one-bit (mid-rise) quantizer is used 

ith cell-width �(t) , which means that we only transmit the signs 

f the z i | j s which will be reconstructed at the receiver by ±�(t) / 2 .

In Fig. 3 we demonstrate experimental results to validate the 

onclusions drawn in Section 5.2.1 . Figure 3 (a) shows that, in 

he absence of quantization, the variance of z (t) 

�⊥ (we take the 

ean variance of all entries) in the case of θ = 0 (PDMM) and 

= 0 . 5 (ADMM) remains constant for all iterations. In addition, 

or θ = 0 . 2 , the variance decreases monotonically. Hence, for all 

∈ [0 , 1) , the variance is lower bounded where the bound de- 

ends on the initialization of z (0) . As for the quantized case where 

ˆ 
 

(t) = z (0) + 

∑ t 
τ=1 ̂  v (τ ) 

, from Fig. 3 (b) we can see that the variance 

rst increases as ��⊥ ̂  v (t) � = 0 and then converges as ˆ v (t) 
converges 

o zero. Similarly, the variance has a lower bound and it will be in- 

reased by increasing the initialization of z (0) . Overall, we conclude 

hat the covariance of the auxiliary variable has a lower bound 

nd it can be controlled by initialization. In what follows we will 

emonstrate the performance of the proposed approach in terms 
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Fig. 3. Variance of z (t) 
�⊥ and ˆ z 

(t) 
�⊥ using using the non-quantized (a) and the proposed quantized PDMM ( θ = 0 ) and generalized ADMM ( θ = 0 . 2 , 0 . 5 ) for distributed average 

consensus application. 

o

o

 

f the three requirements mentioned in Section 3.3 . Without loss 

f generality, for ADMM we use θ = 0 . 5 . 

1. Output correctness : From Fig. 4 we can see that applying 

the proposed adaptive differential quantization scheme to both 

PDMM (QPDMM) and ADMM (QADMM), the quantization noise 

n q, v (t) converges to zero and the optimization variable x (t) con- 

verges to the optimal x ∗. These results validate the claim stated 

in Section 5.3 : if the sequence { n q, v (t) } t> 0 is finitely summable, 

the output correctness will be guaranteed. In addition, we also 

demonstrate the convergence behavior of ˆ z 
(t) 

through both pro- 

jections into �� and ��⊥ . Clearly, we can see that the conver- 

gence behavior of ��⊥ ̂  z 
(t) 

does not prevent x from converging 

to its optimum solution. Hence, the output correctness is not 

affected. Overall, we conclude that the proposed approach sat- 

isfies the output correctness requirement, i.e., accuracy is not 
8 
compromised by considering both quantization and privacy. Ad- 

ditionally, it is generally applicable to both ADMM and PDMM. 

2. Communication cost : Fig. 5 demonstrates the total communi- 

cation cost (the amount of bits) of the proposed QADMM and 

QPDMM under three different privacy levels: σ 2 
z (0) = 10 0 , σ 2 

z (0) = 

10 2 , σ 2 
z (0) = 10 4 . Note that for the proposed approach we have 

l = 1 since a one-bit quantizer is used. We can see that the 

convergence rate of the proposed approach is invariant to the 

privacy level. 

3. Individual privacy : Fig. 6 shows the individual privacy of an 

arbitrary honest node over iterations using the proposed ap- 

proach under the condition that there is only one honest neigh- 

boring node when applied to the distributed average consensus 

problem. That is, the normalized mutual information measured 

based on (23) when N i,c = d i − 1 . We can see that the larger

σ 2 
z (0) is, the less individual privacy is revealed, i.e., the higher 

the privacy level is. Hence, the proposed approach is able to 
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Fig. 4. Convergence behavior (MSE) of different variables including x (t) − x ∗ , �� ˆ z 
(t) − ˆ z 

∗
, ��⊥ ̂ z 

(t) 
and n q, v (t) in terms of iteration numbers using the proposed quantized 

PDMM and ADMM algorithm (QPDMM and QADMM, respectively) for the distributed average consensus and distributed least-squares applications when setting σz (0) = 10 3 . 

Fig. 5. MSE in terms of communication cost (the amount of bits) of the proposed QADMM and QPDMM for three different noise levels σ 2 
z (0) of the auxiliary variables in 

distributed average consensus application. 
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guarantee individual privacy by controlling the variance of the 

initialized z (0) , i.e., σ 2 
z (0) . 

.2. Comparison with existing approaches 

We now compare the performance of the proposed QADMM 

ith existing privacy-preserving approaches including subspace 

erturbation (SP) based approach [20] , secret sharing (SS) based 

pproach [55] and differential privacy (DP) based approach [56] . 
9 
o ensure a fair comparison, we insert the same amount of noise 

n all these algorithms. More specifically, all inserted noise are 

aussian distributed with zero mean and variance 10 2 . Addition- 

lly, all algorithms are based on the ADMM optimizer. Note that 

one of the existing algorithms consider any quantization scheme 

ut assume infinite precision, in the experiments we use the de- 

ault MATLAB double precision floating-point format for simula- 

ions. That is, the number of bits to represent each massage is set 

o l = 64 . 



Q. Li, R. Heusdens and M.G. Christensen Signal Processing 194 (2022) 108456 

Fig. 6. Individual privacy (normalized mutual information (NMI)) of the proposed 

QPDMM in terms of iteration numbers for three different noise levels in distributed 

average consensus application. 

Fig. 7. Communication cost (bits) comparisons of the proposed QADMM algorithm 

and the existing subspace perturbation approach [20] , secret sharing approach 

[55] and differential privacy approach [56] under the same privacy level in dis- 

tributed average consensus application. 
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which completes the proof. �
In Fig. 7 , we demonstrate both the output correctness and com- 

unication cost performances of existing approaches and the pro- 

osed approach under the same amount of noise insertion. 

1. Communication cost : As expected, the proposed algorithm sig- 

nificantly reduces the communication cost compared to all ex- 

isting approaches. This is because the proposed algorithm re- 

quires only 1 bit for transmitting each message, while for the 

existing algorithms the cost is 64 bits as no quantization is con- 

sidered. 

2. Output correctness : We can see that all approaches output 

an accurate result except for the differential privacy based ap- 

proach, i.e., it suffers from a privacy-accuracy trade-off. Hence, 

the output correctness of the proposed approach is not com- 

promised by considering quantization and privacy. Overall, we 

conclude that, with the help of adaptive differential quantiza- 

tion, the proposed algorithm addresses the trade-off between 

privacy and communication cost, without sacrificing the accu- 

racy. 

A remark is in order here. Among all existing privacy-preserving 

pproaches, i.e., subspace perturbation, secret sharing and differen- 

ial privacy based approaches, the proposed approach is obtained 

y applying adaptive differential quantization to the subspace per- 

urbation based approaches such that the communication cost is 
10 
educed without sacrificing the individual privacy and output cor- 

ectness. For the other two types of approaches it would also 

e interesting to investigate how quantization affects their perfor- 

ances in terms of privacy and accuracy. 

. Conclusion 

In this paper, we proposed a novel yet general communica- 

ion efficient privacy-preserving distributed optimization approach 

sing adaptive differential quantization. By adopting an adaptive 

uantizer that dynamically decreases its cell-width for each itera- 

ion to reduce the communication cost and making use of additive 

oise insertion to achieve privacy-preservation, we are able to ad- 

ress the trade-off between privacy and communication cost with- 

ut compromising the algorithm accuracy. In addition, the pro- 

osed algorithm is able to protect privacy of any honest node 

gainst the passive adversary by requiring only one honest neigh- 

oring node. Moreover, the proposed method is computationally 

ery lightweight in its way of dealing with an eavesdropping ad- 

ersary as no secure encryption is needed, except for in the initial- 

zation step. Finally, numerical results were conducted, which con- 

rm the desirable properties of the proposed approach in terms of 

ccuracy, privacy and communication cost and show that the pro- 

osed approach has superior performance compared to the exist- 

ng privacy-preserving approaches. 
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ppendix A. Proof of Theorem 5.1 

roof. By inspection of (26) we conclude that 

 

(t) 
�⊥ = ( θ I 2 m 

+ (1 − θ ) P ) z 
(t−1) 
�⊥ 

= ( θ I 2 m 

+ (1 − θ ) P ) t z 
(0) 
�⊥ . 

et T = θ I 2 m 

+ (1 − θ ) P so that z (t) 

�⊥ = T t z (0) 

�⊥ . The eigenvalues of T 

re found by finding the roots of the characteristic polynomial 

p(λ) = det ( T − λI 2 m 

) 

= 

(
(θ − λ) 2 − (1 − θ ) 2 ) 

)
m = (λ − 1) m (λ − 2 θ + 1) m = 0 , 

nd we conclude that λ1 = 1 and λ2 = 2 θ − 1 , both hav- 

ng algebraic and geometric multiplicity m . The correspond- 

ng eigenvectors x i ∈ R 

2 m are found by solving ( T − λi I 2 m 

) x = 

 so that ( x 1 , . . . , x m 

) = ( I m 

I m 

) T corresponding to λ1 = 1 , and

 x m +1 , . . . , x 2 m 

) = ( I m 

−I m 

) T corresponding to λ1 = 2 θ − 1 . With

his, we can express T as 

 = 

1 

2 

(
I m 

I m 

I m 

−I m 

)(
I m 

(2 θ − 1) I m 

)(
I m 

I m 

I m 

−I m 

)
, 

nd we conclude that 

 

(t) 
�⊥ = T t z (0) 

�⊥ = 

1 

2 

(
I m 

I m 

I m 

−I m 

)(
I m 

(2 θ − 1) I m 

)
k 

(
I m 

I m 

I m 

−I m 

)
z (0) 
�⊥ 

= 

1 

2 

( I 2 m 

+ P ) z (0) 
�⊥ + 

1 

2 

(2 θ − 1) t ( I 2 m 

− P ) z (0) 
�⊥ , 
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