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Preface

Sea waves are the most important phenomenon to be considered in the design of coastal
and offshore structures.

Every sailor has noticed that, when wind is blowing, there are a lot of large and small
waves propagating in many directions. Such waves are called short-crested waves because
they do not have a long crest. Contrast to short-crested waves, we have long-crested
waves, i.e. large and small waves moving in one direction. Even though there are some
research efforts on short-crested waves and their effects on structures, long-crested waves
dominate today’s structure design. The book deals with long-crested waves. The contents
of the book is illustrated in the figure.

Wind data

Chapter 3: Wind—generated waves l—l— S;%g?furri

Wave data

Chapter 4: Extreme wave height analysis

Design wave

Standard spectrum

Energy spectrum

Chapter 5: Wave generation in laboratory

Wave paddle movement

‘Chcpters 1 & 2: Irregular wave cnalysisl

7
= % Z
4 wave \/ \/
: paddle /4
Y, 7,

There are two methods for irregular wave analysis, namely time-series analysis and spec-
tral analysis, which will be dealt with in Chapter 1 and Chapter 2 respectively.



It should be stressed that, even though all contents in the book are related to sea waves,
they have broader applications in practice. For example, the extreme theory has also been
applied to hydrology, wind mechanics, ice mechanics etc., not to mention the fact that
spectral analysis comes originally from optics and electronics.

The book intents to be a textbook for senior and graduate students who have interest in
coastal and offshore structures. The only pre-requirement for the book is the knowledge
of linear wave theory.

Michael Brorsen, Associate Professor at the Hydraulic and Coastal Engineering Labora-
tory, Aalborg University is gratefully acknowledged for the valuable comments.



Contents

1 Time series analysis I : Time-domain

1.1 Definition of individual wave : Zero-downcrossing . . . . . . . .. ... ..
1.2 Characteristic wave heights and periods . . . . . . .. .. .. ... ... ..
1.3 Distribution of individual wave heights . . . . . ... .. ... ... .. ..
1.4 Maximum wave height Hpee - - -« 0 o o o 0 000 0000 oo
1.5 Digtoibution of wave period : : s ww s 58 s 5 s 5w s 3 5 gw ¥ 5 o8 8 @
1560 Belbrermses ; « mm g5 pwmws « 35 9% 0 6 0 ;@@ s 5 W R 5w mE A B s @ ¥
1.7 EXercise . . . . o o e e e e e e e e e e e e e e
2 Time-series analysis II: Frequency-domain
2.1 Some basic concepts of linear wave theory . . . ... .. ... ... ... ..
2.2 Example of variance spectrum . . . . . . .. ..o
23 FOUBIEEBEHIER . v v o momm 2 2 2 mem s 2 8 nowd §3 RB F 8 RELIF BE S
94 Discretesional analyeis s v s s s s w5 6 9 mm £ 5 8 88 5 53 5T v 5 5w s
2.5 Characteristic wawve height and period« « « = w v v s & w0 0 a0 wo x v
26 References . . . . . . . ... e e
G DHBUEEE . o 2 vmd o htm G f o A A e Ef DA U EMES S
3 Wind-generated waves
3.1 Wave development and decay . . . . .. .. ... ...
3.2 SPM-method . . . . . . . . ..
35 Standard varEe SRk & s s 55 8 8 57 R R E LR E B ET R P R
B Beleromees o o o w5 2 5 cmow 5 & 5 Bwm 9 v 6w s W MW R R E BE § e
3.5 Exercise . . . . . . .. e e e e e e e
4 Extreme wave height analysis
4.1 Design level: Return period and encounter probability . . ... ......
4.2 General procedure . . . . ... oL o
4.3 Datasets . . . . . . . e e e
d4 Cantdidste distributions: = « ¢ s 5 584 55 5 5% V5 B @ 5 05 HAS L § 5 Y
4.5 Fitiing methods and procedure . . 5 & ¢ s 1w v v o o v w0 0 v w5 s o
4.6 Plotting position formulae . . . . . . .. .. ... oo oL
47 BUNoE Boodtess . ;. » w5 5 6 a6 8 56 56 53 s Fa 33 aEE 58 5
4.8 Design wave height: =7 . . . . . ... ... L L

10
13
13
14

15
15
1
20
22
26
27
28

29
29
30
37
40
40



Y Eoumnle ss s s s sum i 15 BB 4 F 53 SH T BTG H B EEFE BESF B 54

4.10 Sources of uncertainties and confidence interval . . . .. .. .. ... ... 56
4.11 Physical consideration of design wave height . . . . . ... ... ... ... 60
4 1Y WaVePErIod « : s 55,52 5 25 2 8 558 B.E 53 na i b E BE E 58 M i 5 B 61
413 Waterlevel = : ¢ 55 wm s s s mws v 05 mw 5 6 Www 5 8 BE 545 Wmasg 62
4.14 Multiparameter extreme analysis . . . . . . .. ... ... ... .. 63
4,15 References . . . . . . . . . . L e e 64
d.1b ERorelse ; su s s s 3 5@ 8 5 25 @ 8 £ 5 B £ F 8 B % 5 8 H.5 5 0P MG uE 65
Wave generation in laboratory 66
5.1 Principle of wave generator . . . . . . . . .. .. ... ... 66
b2 Bicsel tramster DODElIoNE & ¢ 5 » o5 4 6 6 09 55 5 858 5 8 dm B 8 6 b 3 5 67
B3 Examples o5 ¢ 535 9w 58 vmmsss 58 asmm 53 @@ 685885 70
54 References . . . . . . . . L e e e e i
5.0 Exercise . . . . ... e s



1 Time series analysis I : Time-domain

The recorded time series of the surface elevation of irregular waves can be studied
by either the time-domain or the frequency-domain analysis. These two analysis
methods will be described in the next two chapters, respectively.

1.1 Definition of individual wave : Zero-downcrossing

Individual wave is defined by two successive zero-downcrossing points, as recom-
mended by IAHR (1986), cf. Fig.1.

o zero—downcrossing point
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Fig.1. Individual waves defined by zero-downcrossing.

Fig.2 is an example of surface elevation recordings. The application of zero-downcrossing
gives 15 individual waves (N=15). In Table 1 the data are arranged according to
the descending order of wave height.

| 7)) (m) o zero—downcrossing point
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Fig.2. Application of zero-douncrossing.

Table 1. Ranked individual wave heights and corresponding periods in Fig.2.

rank ¢ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H (m) 5.5 4.8 4.2 3.9 3.8 3.4 2.9 2.8 2.7 2.3 2.2 1.9 1.8 1.1 0.23
T (s) 12.5 13.0 12.0 11.2 15.2 8.5 11.9 11.0 9.3 10.1 7.2 5.6 6.3 4.0 0.9
wave no.

in Fig.2 7 12 15 3 5 4 2 11 6 1 10 8 13 14 9




1.2 Characteristic wave heights and periods

Usually the surface elevation recording exemplified in Fig.2 contains more than 100
individual waves. Which wave should be chosen as the design wave 7

Maximum wave: Hpoz, TH,...

This is the wave which has the maximum wave height. In Table 1,

Hypow = 5.5 m Ty... =125s

Maximum wave is chosen as the design wave for structures which are very important
and very sensitive to wave load, e.g. vertical breakwaters. Note Hp,q, 1s a random
variable with the distribution depending on the number of individual waves.

Highest one-tenth wave: Hy/10, TH,,,,

Hi 10 is the average of the wave heights of the one-tenth highest waves. Ty, 5 is the
average of the wave periods associated with the one-tenth highest wave.

Significant wave: H, Ts ot Hyys, T,

Significant wave height is the average of the wave heights of the one-third highest
waves. Significant wave period is the average of the wave periods associated with
the one-third highest wave. In Table 1,

1 5 5
H, = % ZHZ = 444 m T. = é ZT%' = 12.8s 7 1s the rank no.
=1

3==1

Significant wave is most often used as the design wave. The reason might be that in
old days structures were designed based on visual observation of waves. Experiences
show that the wave height and period reported by visual observation correspond
approximately to significant wave. Therefore the choice of significant wave as design
wave can make use of the existing engineering experience.

Mean wave: H, T

H and T are the means of the heights and periods of all individual waves. In Table 1,

_ 1 15 . 1 15
H=—>H =29m T = =T = 925s
15 =1 15 =1

Root-mean-squre wave height H,s
In Table 1,

1 N 1 15
rms — T Y = == H? = 32
H v Z ; 5 ; : 3.20 m

=1

Wave height with exceedence probability of a%: Huy

For example Ho1%, Hi%, Hay etc.



1.3 Distribution of individual wave heights

Histogram of wave height

In stead of showing all individual wave heights, it is easier to use wave height his-
togram which tells the number of waves in various wave height intervals. Fig.3 is
the histogram of wave height corresponding to Table 1.

A Number of waves: n
9] Total number N=15
4 : AH=1 m
3 -
o 4
1 | H (m)

]
0 1 2 3 4 5 6

Fig.8. Histogram of wave height.

Non-dimensionalized histogram

In order to compare the distributions of wave height in different locations, the his-
togram of wave height is non-dimensionalized, cf. Fig.4.

probability density f=

H
N A=)
| H Rayleigh distribution
M)
ot
0.97 ] n : number of waves in interval
0.77 / o N : total number of waves N=15
0.58 s average wave height H=2.9m
0.39 ' R
0.19 = o
H

0 0.34 069 1.03 138 1.72 207

Fig.4. Non-dimensionalized histogram of wave height.

When A(H/H) approaches zero, the probability density becomes a continuous curve.
Experience and theory have shown that this curve is very close to the Rayleigh
distribution. Roughly speaking, we say that individual wave height follows the
Rayleigh distribution.



Rayleigh distribution

The Rayleigh probability density function is

Flm) = :ga: exp (wzxg) w:% (1)

The Rayleigh distribution function is
F{z) = Prob{X <2} = 1 — exp (—-Z—:cz) (2)

Relation between characteristic wave heights

If we adopt the Rayleigh distribution as an approximation to the distribution of
individual wave heights, then the characteristic wave heights H; /10, H1/3, Hrms and
H,.y can be expressed by H through the manipulation of the Rayleigh probability
density function.

H1/10 = 203_}?‘
H1/3 = 160F

H.,., = 113H (3)
Hyy, = 2.23H

Fig.5 illustrates how to obtain the relation between H, and H.

s : H
probability density f(f)

/ Rayleigh distribution

1/3 area

average of 1/3 area

Fig.5. Relation between H, and H.

The Rayleigh distribution function given by H, instead of H reads

P(H) = 1 — exp (—2 (g)z) (4)



Individual wave height distribution in shallow water

Only in relatively deep water, the Rayleigh distribution is a good approximation to
the distribution of individual wave heights. When wave breaking takes place due
to limited water depth, the individual wave height distribution will differ from the
Rayleigh distribution.

Stive, 1986, proposed the following empirical correction to the Rayleigh distribution
based on model tests but roughly checked against some prototype data

1 1
In100\? Hi X™%
s = e (22)' (122

121000 2 H, \"%
Ho19 = Hmo(n2 ) (1-%~ ho)

where & is the water depth, Hy% means the 1% exceedence value of the wave height
determined by zero downcrossing analysis, whereas the significant wave height H,,, is
determined from the spectrum. The correction formulae are very useful for checking
the wave height distribution in small scale physical model tests, cf. Fig.6.

(3)

Prob. of non—exceedence

4

99.9 T *

99.0 T

80.0

50.0 +

% Formulae by Stive 1986

Fig.6. Comparison of the expression by Stive, 1986, for shallow water wave
height distribution with model test results. Aalborg University Hy-
draulics Laboratory 1990 (from Burcharth 1993).

Klopmann et al. (1989) proposed a semi-empirical expression for the individual
wave height distribution. Researches have also been done by Thornton and Guza
(1983). Chapter 2 gives a more detailed discussion on the validity of the Rayleigh
distribution, based on energy spectrum width parameter.



1.4 Maximum wave height H,,,,

The basic nature of H,,, is that it cannot be calculated deterministically

Distribution of Hpex
The distribution function of X = H/H is the Rayleigh distribution

Fx(z) = Prob{X <z} =1 — exp (—%xﬂ (6)

If there are N individual waves in a storm!, the distribution function of
Xma.x = maw/H is

Fx...(z) = Prob{Xme <z} = ( Fx(z))"

= (1 — exp (—%$2> )N (7)

Note that F, . (z) can be interpreted as the probability of the non-occurrence of
the event ( X > z ) in any of NV independent trials. The probability density function

of Xpmss 18

SXmas(Z) = P

Cpnre(3) (e () W

The density function of X and the density function of X, are sketched in Fig.7.

probability density £
Xmax

i fx probability fensity
function of x

fxmax

fxmax probability density
function of Xmax

N number of waves

Fig. 7. Probability density function of X and Xpaz-

1A storm usually lasts some days. The significant wave height is varying during a storm.
However we are more interested in the maximum significant wave height in a short period of time.
In practice, N is often assumed to be 1000.

10



Mean, median and mode of H.x

Mean. median and mode are often used as the characteristic values of a random
variable. Their definitions are given in Fig.8

probability density f(x)

400
X median Mean Fmean = E{X] - / me(x)dX
—o0

50% area Median Zmedian = T

Fx(z)=0.5
Mode  Tmode = 4

fx(z)=maz

Xmode X mean

Fig. 8. Mean, median and mode of a random variable X

By putting eqs (7) and (8) into the definitions, we obtain

(Hmaa: mean =~ lnN 0 577 Hs
Y V8 In N
(Hmar mode \ﬂ

(10)
Furthermore, ( Hrnayz )y, defined as the maximum wave height with exceedence prob-
ability of u (cf. Fig. 9), is

(Hmaw)u ~

(11)

ObViOUS].y (Hmaw)mediaﬂ = (‘H

probability density f (Hmax)

H max

(Hmux)y.
Fig. 9. Definition of (Hmaz)u-

11



Monte-Carlo simulation of H,,,, distribution

The distribution of H,..» can also be studied by the Monte-Carlo simulation. Indi-
vidual wave heights follow the Rayleigh distribution

F(H) =1 — ewp(—Q (5)2) (12)

The storm duration corresponds to /N individual waves.

1) Generate randomly a data between 0 and 1. Let the non-exceedence
probability F(H) equal to that data. One individual wave height
H is obtained by (cf. Fig.10)

H = F'\(F(H)) = H, \/—111(1;1?(5)) (13)

2)  Repeat step 1) N times. Thus we obtain a sample belonging to the
distribution of eq (12) and the sample size is V.

3) Pick up Hpmqr from the sample.

4) Repeat steps 2) and 3), say, 10,000 times. Thus we get 10,000
values of H,qz-

5) Draw the probability density of Hqs.

\ F(H) Rayleigh distribution

1+

F: random number
between 0 and 1

|
|
|
K

-

Fig.10. Simulated wave height from the Rayleigh distribution.
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1.5 Distribution of wave period
It is sumnmarized as

e There is no generally accepted expression for the distribution of wave period.
e The distribution of wave period is narrower than that of wave height.

e In practice the joint distribution of wave height and wave period is of great
importance. Unfortunately, Until now there is no generally accepted expres-
sion for the joint distribution, even though there are some so-called scatter
diagrams based on wave recording. Such a diagram is valid only for the mea-
surement location. An example of scatter diagrams is given in Chapter 4,
section 12. The relation between H, and T is often simplified as T = aH, f ,
e.g. in Canadian Atlantic waters o = 4.43 and 8 = 0.5 (Neu 1982).

e The empirical relation Trmar & T1j10 = T3 = 1.2 T (Goda 1985).

1.6 References
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1.7
1)

Exercise

The application of the down-crossing method gives the following 21 indi-
vidual waves.

wave wave wave wave wave wave
number | height | period number | height | period
H (m) T (s) H (m) T (s)

1 0.54 4.2 11 1.03 6.1

2 2.05 8.0 12 1.95 8.0

3 4.52 6.9 13 1.97 7.6

4 2.68 11.9 14 1.62 7.0

5 3.20 T3 15 4.08 8.2

6 1.87 5.4 16 4.89 8.0

7 1.90 4.4 17 2.43 9.0

8 1.00 5.2 18 2.83 9.2

9 2.05 6.3 19 2.94 7.0

10 2.37 4.3 20 2.23 5.3

21 2.98 6.9

Calculate Hmaa;a Tm&xa Hl/lOa TI/IO) Hl/Sa T1/3: F: T: Hyms
Prove Hyy =223 H |

Explain the difference between Hy10 and Hiog-

Suppose individual waves follow the Rayleigh distribution. Calculate the
exceedence probability of Hy/0, Hs and H.

An important coastal structure is to be designed according to Hy.z. The
significant wave height of the design storm is Hy/3 = 10 m. The duration
of the storm corresponds to 1000 individual waves.

(1) Calculate (Hmax)meanp (Hmam)modea (Hma.:t:)median, (Hmam)G.OS

(2) Now suppose that the storm contains 500 individual waves. Calculate

(Hma:r)meanp (Hma,a:)modea (Hmaa:)mediana (Hma:c)O.US- Compafe with the
results of (1).

(3) Use Monte-Carlo simulation to determine (Hmez)mean, (Hmasz)mode,
(Hma.:r)med’iu.nn (Hmar)O.OS

14



2 Time-series analysis II: Frequency-domain

The concept of spectrum can be attributed to Newton, who discovered that sun-
light can be decomposed into a spectrum of colors from red to violet, based on the
principle that white light consists of numerous components of light of various colors
(wave length or wave frequency).

Energy spectrum means the energy distribution over frequency. Spectral analy-
sis is a technique of decomposing a complex physical phenomenon into individual
components with respect to frequency.

Spectral analysis of irregular waves is very important for structure design. For
example, in the oil-drilling platform design where wave force plays an important
role, it is of importance to design the structure in such a way that the natural
frequency of the structure is fairly far away from the frequency band where most
wave energy concentrates, so that resonance phenomenon and the resulted dynamic
amplification of force and deformation can be avoided.

2.1 Some basic concepts of linear wave theory

Surface elevation

The surface elevation of a linear wave is
niz,t) = —I-;icos(wt —kz +6) = a cos(wt — kz + 6) (1)

where H  wave height
a  amplitude, a = H/2
angular frequency, w = 27 /T
wave period.
wave number, k = 27 /L

wave length

SeE o T T

initial phase
We can also define the observation location to z = 0 and obtain

n(t) = a cos(wt + §) (2)

The relation between wave period and wave length (dispersion relationship) is

2
=92 tann (ﬁ) 3)

27 T

where h is water depth.

15



Wave energy

The average wave energy per unit area is

1 1
E = & H? = 5P 9 a®  (Joule/m? in SI unit) (4)

Variance of surface elevation of a linear wave

The variance of the surface elevation of a linear wave is

o2 = Var[p(t)] =E [ (n(t) — (1) )2] (E: Expectation)
=E [ 7°(t)]
=1 foT n?(t) dt (T: wave period)

Superposition of linear waves

Since the governing equation (Laplace equation) and boundary conditions are linear
in small amplitude wave theory, it is known from mathematics that small amplitude
waves are superposable. This means that the superposition of a number of linear
waves with different wave height and wave period will be

superposition wave 1 wave 2 e wave IV
velocity potential © = ©1 + P + + ©oN
surface elevation 7 = m + g + +4 N
particle velocity U U1 -+ Uz -+ + UN
dynamic pressure 2 = P1 + P2 + + PN

16



2.2 Example of variance spectrum

First we will make use of an example to demonstrate what a variance spectrum is.

Surface elevation of irregular wave

Fig.1 gives an example of an irregular wave surface elevation which is constructed by
adding 4 linear waves (component waves) of different wave height and wave period.
The superposed wave surface elevation is

- Zm(t) = Z a; COS(wit-l-(Si) (5)

=1 i=1

M (m)

2 4 wave 1
o LN £ % i t (s) H=3.6m a=1.8m
i e S T=14s f=0.07Hz

() (m)

2_[\ /\ /\ /\ /\ /\ /\ t (s) lv_v{a=\f5€:2?n a=2.6m
-1 \V VvV V V V V T=8s  f=0.125Hz

) (m)
2—/\/\/\/\/\/\/\/\] wave 3
t = .

S vanvarvasvanvas van vasv el Ul o L

) (m)
2 4 4
s BAAAAALAAAAAA L@ Hzam otz
o T=4s  f=0.25Hz

n{) (m)

_%:/\\/1\ A /\v/\v{} 5'0 t (s superposition

Fig.1. Simulation of irregular waves by superposition of linear waves.

17



Variance diagram

In stead of Fig.1, we can use a variance diagram, shown in Fig.2, to describe the
irregular wave.

Variance %oz (m?)

a : amplitude

I f (Hz)

Fig.2. Variance diagram.

In comparison with Fig.1, the variance diagram keeps the information on amplitude
(a;) and frequency (f;, hence T; and L;) of each component, while the information on
initial phase (§;) is lost. This information loss does not matter because the surface
elevation of irregular wave is a random process. We can simply assign a random

initial phase to each component.

Variance spectral density S,(f)

The variance diagram can be converted to variance spectrum, The spectral density
is defined as

1,2

Sa(f) = j}._f (m? s) (6)

where A f is the frequency band width?, cf. Fig.3.

1.2
=
2

(m?s)

S () =
a : amplitude
af : frequency band width

300
200

100

Fig.3. Stepped variance spectrum.

Iwe will see later that Af depends on signal recording duration. In the figure it is assumed
that Af=001Hz

18



In reality an irregular wave is composed of infinite number of linear waves with
different frequency. Fig.4 gives an example of stepped variance spectrum. When
Af approaches zero, the variance spectrum becomes a continuous curve.

2

a : amplitude
af : frequency band width

= f (Hz)

£f, f Fi

Fig.4. Conlinuous variance spectrum (wave energy spectrum,).

Variance spectrum is also called energy spectrum. But strictly speaking, the energy
spectral density should be defined as

S() = Hi () ()

Construction of time series from variance spectrum

We can also construct time series of surface elevation from variance spectrum. In
fig.4 the known variance spectral density S,(f) is divided into N parts by the fre-
quency band width Af. This means that the irregular wave is composed of IV linear
waves

N N
) = ;m(t) = z a; cos(wit + 6;) (8)

The variance of each linear wave is

Bl ) AF = 50:3 i=1,2,---,N (9)
Therefore the amplitude 1s

a; = /2 5,(f;) Af = 1,2, w00, ¥ (10)
The angular frequency is

w; = %r = 2rf § = 1,2, v, IV (11)

The initial phase §; is assigned a random number between 0 and 27. Hence by use
of eq (8) we can draw the time-series of the surface elevation of the irregular wave
which has the variance spectrum as shown in Fig.4.

19



2.3 Fourier series

Conversion of irregular surface elevation into variance spectrum is not as simple as
the above example, where the linear components of the irregular wave are pre-defined
(cf. Fig.1). We need to decompose the irregular wave into its linear components.
First let’s see how it can be done with a known continuous function z(t).

Fourier series

Fourier series is used to represent any arbitrary function?.

x(t)

=P —_—

To

Fig.5. Arbitrary periodic function of time.

29 27t 2w
z(t) = a9 + 22<G5COS (—Et) + b;sin (-—@—i))
TO Tg

1=1
= 2) (a;coswit + b;sinwst) (12)
=0

where a; and b; are Fourier coefficients given by

a; = %5 To 2(t) cosw;t dt
g = 0, 1,9, 2w, 00 (13)
b= & Ji®z(t) sinwt dt

Note ag = TLD o ¢(¢)dt and by = 0.

?Not all mathematicians agree that an arbitrary function can be represented by a Fourier series.
However, all agree that if z(¢) is a periodic function of time ¢, with period Ty then z(t) can be
expressed as a Fourier series. In our case z(t) is the surface elevation of irregular wave, which
is a random process. if Tp is large enough, we can assume that z(t) is a periodic function with
period Tp.

20



Physical interpretation

Now we say that the continuous function z(¢) is the surface elevation of irregular
wave 7(t), which can be expanded as a Fourier series.

n(t) = 2> (aicoswit + b;sinwit)

=0
a, by: Fourier coefficients
G = p/aj+b
b,
& = crctg-a-:-
oo
=5 QZ(ci cos §; cosw;t + c¢;siné; sinw;t)
=0

= EQci(cos 8; cosw;it + siné; sinwt)
=0

= > 2¢ cos(wit — &) (14)
=0

That is to say, any irregular wave surface elevation, expressed as a continues function,
is composed of infinite number of linear waves with

amplitude  2¢; = 2y/a? + b?

period T;=2Z =5
w; 3

i=0,1,---,00 (15)

{a;, b}, 1=0,1,2,---,00, are given in eq (13).

21



2.4 Discrete signal analysis

The measurement of surface elevation is carried out digitally. We do not have,
neither necessary, a continuous function of the surface elevation. In stead we have
a series of surface elevation measurement equally spaced in time, cf. Fig.6.

()

o Measured point

A
\/V\/
| —— |

Fig.6. Sampling of surface elevation at regular intervals.

If the sampling frequency is fs, then the time interval between two succeeding points
is A = 1/f,. Corresponding to the total number of sample points N, the sample
duration Ty = (N — 1)A. Thus we obtain a discrete time series of surface elevation

Mo, M1, S NN-1
The Fourier coefficients
(ao, bﬂ): (0,1’ bl): Ty (aN-la E’N—l)

can be obtained by Fast Fourier Transforms (FFT)®. That is to say, the irregular
wave surface elevation, expressed by digital time series, 1s composed of N linear

waves
N-1 N-1
it = Z n(t) = 2 21/a? + b} cos(wit + &) (16)
=0 =
amplitude 2¢/a? + b? !
angular frequenc w; = ¢ .
8 i Ty i=0,1,---,N—1 (17)
period T = i—’: =5h
frequency f:= Ti, = Tio )

3FFT is a computer algorithm for calculating DFT. It offers an enormous reduction in computer
processing time. For details of DFT and FFT, please refer to Newland (1975)
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Therefore we obtain the variance spectrum

frequency band width Af = fisn —fi = %—
0
l litude)? 2402
spectral density ~ S,(fi) = Q(Gmi}u e) = Q(GL—; o) (18)
An example of variance spectrum is shown in Fig.7.
S, (f)
1
' ' f (Hz)

fo | f; f%q foei  fues
Fig.7. Variance spectrum.

Nyquist frequency fryquist

Nyquist frequency fryguist is the maximum frequency which can be detected by the
Fourier analysis.

Fourier analysis decomposes N digital data into N linear components. The frequency
of each component is

i = T 0= 0y 1yowe g N~
£ T ? N-1 (19)
The nyquist frequency 1s
N-1 N-1
N-1 B, 1 f
; = R — 2 = 2 — = L2
fnqust f% TG (N — 1) A 2 A 9 (20)

where f, sample frequency
A time interval between two succeeding sample points, A = 1/ fs
N total number of sample
To sample duration, Ty = (N —-1) A
The concept of nyquist frequency means that the Fourier coefficients { a;, b; },
: =0,1,---,N — 1, contains two parts, the first half part (z = 0,1,---,N/2 -1

)
represents true components while the second half part (1 = N/2, N/2+1,--- ,N—1)
is the folding components (aliasing).
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Fig.8 gives an example on aliasing after the Fourier analysis of discrete time series
of a linear wave.

surface elevation (cm)

© digital sample points
4 -

24 -
o h\ ,/FQ—\ t::’ne (s) original discrete

2 time series
b \-&/ \

-

Sq(f)

aliagsing

H
| bl spectrum from

discrete time series

h
=
=z

‘T:"h

i f\ N time (s) time series of
g T T linear components
_2| by, ) L4 i given by spectrum

(Both linear components go through all sample points)

Fig.8. Aliasing after Fourier analysis.

The solution to aliasing is simple: let { a;, b; }, ¢t = N/2, N/2+1,---,N — 1, equal
to zero, cf. Fig.9. That is the reason why fryeuis: 18 also called cut-off frequency. In
doing so we are actually assuming that irregular wave contains no linear components
whose frequency is higher than fnyguist. This assumption can be assured by choosing
sufficiently high sample frequency fs, cf. eq (20).

12

= ok 2
Sy = af (m?s) a : gmplitude
af af : frequency band width
— N : total number of sample
P
7[‘
: | ] L o f (Hz)
1] f1 fi f_N__‘

Fig.9. Variance spectrum after cut-off (refer to Fig.7).
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Taper data window

Fourier analysis requires that n(¢) is a periodic function with period Tg, it may be
desirable to modify the recorded time series before Fourier analysis, so that the
signal looks like a periodic function. The modification is carried out with the help

of taper data window.

The widely-used cosine taper data window reads

L (1 — cos 102¢) 0<t<h
d(t) = 1.004 L<t<s (21)
1 107(t— 20 9T
5<1+COS—JTO—L°—1) Lty
'7?'(’[) recorded time series

T,
d(t) Ty T
':/_‘ 10 o
1.0
/ Y t
77(’()= ﬂ,(t) d(t) modified time series

Fig.10. Taper data window.



2.5 Characteristic wave height and period

The variance spectrum, illustrated in Fig.11, says nothing about how high the in-
dividual waves will be. Now We will see how to estimate the characteristic wave
height and period based on the variance spectrum.

Sy(f) (m2s)
1

f (Hz)

Fig.11. Variance spectrum.

n order moment m.,

m, 1s defined as

— /0 7 8(F) df (22)
The zero moment is

P fo S.(f) df (23)

which is actually the area under the curve, cf. Fig.11.

Spectrum width parameter and validity of the Rayleigh distribution

From the definition of m,, it can be seen that the higher the order of moment,
the more weight is put on the higher frequency portion of the spectrum. With the
same my, a wider spectrum gives larger values of the higher order moment (n > 2).
Longuet-Higgins has defined a spectrum width parameter

s (24)

£ = 1 —
molTg

It has been proven theoretically that

spectrum width parameter wave height distribution
€¢=0 narrow spectrum Rayleigh distribution
e=1 wide spectrum Normal distribution
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In reality € lies in the range of 0.4-0.5. It has been found that Rayleigh distribu-
tion is a very good approximation and furthermore conservative, as the Rayleigh
distribution gives slightly larger wave height for any given probability level.

Significant wave height H,,, and peak wave period T},

When wave height follows the Rayleigh distribution, i.e. € = 0 , the significant wave
height H,,,* can theoretically be expressed as

Hny = 4 g (25)

In reality where € = 0.4 —0.5, a good estimate of significant wave height from energy
spectrum is

o = FF yjmy (26)
Peak frequency is defined as (cf. Fig.11)
fp = f

Wave peak period (7, = 1/f,) is approximately equal to significant wave period
defined in time-domain analysis.

(27)

Sp(f)=maz

2.6 References
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Thoft-Christensen, Institute of Building Technology and Structural Engineer-
ing, Aalborg University, Denmark.

Goda, Y. , 1985. Random seas and design of marine structures. University of Tokyo
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4H,,, denotes significant wave height determined from spectrum while H; or Hy;3 is significant
wave height determined from time-domain analysis. They are equal to each other when wave height
follows the Rayleigh distribution.
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2.7
1)

4)

Exercise

An irregular wave is composed of 8 linear components with

wave no. 1 2 3 4 5 6 7 8
wave height H (m) | 5.0 |43 |38 36|33 ]28|22]03
wave period T (s) | 103 | 12 |94 |14 | 7 6.2 15 3.3

The recording length is 20 seconds. Draw the variance diagram and variance
spectrum of the irregular wave.

Convert the variance spectrum obtained in exercise 1) into time series of
surface elevation.

Make a computer program to simulate the surface elevation of an irregular
wave which is composed of 8 linear components. Wave height and period
of each component are given in exercise 1). Suppose the sample frequency
is 3 Hz and the recording length is 500 seconds.

(1) Determine H, and T by time-domain analysis.

(2) Compare the distribution of individual wave height with the Rayleigh
distribution.

(3) Calculate total number of linear components to be given by Fourier anal-
ysis N, frequency band width Af, and the nyquist frequency fryquist-

(4) Draw the variance spectrum of the irregular wave by FFT analysis. (only
for those who have interest.)

In reality where ¢ = 0.4 — 0.5, a good estimate of significant wave height
from energy spectrum is

ng = Dl A/ Mo

Try to find out the principle of getting this empirical relation.

28



3 Wind-generated waves

If a structure is to be built at the location where there is no direct wave measurement,
wave characteristics may be estimated by wind data.

Two simplified methods have been used to determine wave characteristics from a
known wind field. The one is called SPM-method (Shore Protection Manual, 1984),
which is the modification of Sverdrup-Munk-Bretschneider method (SMB-method).
SPM-method gives significant wave height (Hy,) and peak period (7;) in terms of
wind field *. The other is called spectrum-method, which gives variance spectrum in
terms of wind field. When required, a significant wave height and peak period can
be estimated from the spectrum and the results will be the same as SPM-method.

Besides these two simplified method, there are also numerical methods solving a
differential equation governing the growth of wave energy. This approach will not
be discussed in detail because the application of such models require specialized
expertise.

3.1 Wave development and decay

Wind waves grow as a result of a flux of energy from the air into the water. When
the wind velocity near the water surface exceeds a critical value of about 1 m/s, one
can observe water surface ripples of length 5-10 cm and height 1-2 cm.

The process of wave development is complex. First the wind-wave interaction trans-
fers wind energy to shorter waves. Then the wave-wave interaction transfers energy
in shorter waves to energy in longer waves, thus resulting in the growth of longer
waves.

Wind energy can be transferred to the waves only when the component of surface
wind in the direction of wave travel exceeds the speed of wave propagation. Waves
begin to decay when winds decrease in intensity or change in direction, or waves
propagate out of wind field.

Therefore a change in wave energy depends on the transformation of the wind’s
kinetic energy into the wave energy, the transformation of wave energy at one fre-
quency into wave energy at other frequencies, the dissipation of wave energy into
turbulence by friction, viscosity and breaking, the advection of wave energy into and
out of a region.

INotice that Hy,, is the significant wave height determined from variance spectrum. In Shore
Protection Manual (1984) the peak period is denoted Ty,.
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3.2 SPM-method

This method is presented in Shore Protection Manual (1984), edited by the US Army
Corps of Engineers, Coastal Engineering Research Center (CERC).

Involved parameters

1 Fetch (F in (m)): Fetch is the distance between the point of interest and
shoreline in the up-wind direction. Because the fetches surrounding the wind
direction will influence the wind generated waves, SPM (1984) recommends
to construct 9 radials from the point of interest at 3-degree intervals and to
extend these radials until they first intersect shorelines. The fetch is equal to
the average of the length of these 9 radials, i.e.

Wind from east

Point of interest

2  Wind stress factor (Us in (m/s)): Wind stress is most directly related to wave
growth. The accurate estimation of vertical profile of wind speed, and hence
wind stress, involves the air-sea temperature difference, sea surface roughness
and friction velocity. In SPM (1984), all these factors are accounted for by

using Uy
a. Elevation. If the given wind speed is not measured at the 10 meter elevation,
the wind speed must be adjusted accordingly by

10 1/7
Ue = U, (;) forz<20m (2)

where Uy and U, are wind speed at the elevation of 10 m and z m respectively.
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b. Location effects. If wind speeds is estimated by visual observations on ships,
they should be corrected by

U = 216 U (3)

where U, is the ship-reported wind speed in knots and U 1s the corrected wind
speed in knots.

If wind data over water is not available, but data from nearby land site are,
Fig.1 can be used to convert overland winds to overwater winds if they are
the result of the same pressure gradient and the only major difference is the
surface roughness

c. Stability correction. If the air-sea temperature difference (AT = Ty;,—Tsea)
is zero, the boundary layer is stable and wind speed correction is unnecessary.
If AT is negative, the boundary layer is unstable and wind speed is more effec-
tive in causing wave growth. If AT is positive, the boundary layer is unstable
and the wind speed is less effective. Fig.2 gives the wind speed amplification
factor (R,) due to air-sea temperature difference. In the absence of tempera-
ture information R, = 1.1 can be applied.

d. Duration-averaged wind speed. The wind speed is often observed and re-
ported as the maximum short-duration-averaged-speed. This should be con-
verted to the wind speed averaged in an appropriate duration by

4
L. 1.277 + 0.296tanh (O.Qiogm (—51)> forls < t < 3600s (4)
Ut=3600s 3
Uy
— 1.5334 — 0.15 log,o(t) for 3600s < ¢ < 36000s (5)
Ut=3600s

where U; 1s the average wind speed in ¢ seconds.

e. Wind-stress factor. The wind-stress factor is implemented in order to

account for the nonlinear relationship between wind stress and wind speed.
Us = 0.71 U™ (6)

where Ujg is the wind speed at the height of 10 m over mean water level,
modified according to location and air-sea temperature, and averaged over an
appropriate duration. It should be noted that the unit of U and Uy 1s m /s
because eq (6) has no unit-homogenity.

Wind duration (¢ in (s)) and water depth (A in (m)).
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i
1.5k
lkeRf=&9
U for U > 18.5 m/s (41.5 mph)
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Windspeeds are referenced
to 10~meter level ’
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Fig.1. Ratio of wind speed over water (U,) to wind speed over land (U,)
(scanned from SPM 1984).

Ry LO
[0%:]
0.8
Q7 1 RN =3 1 ] 1 1 :
=20 =15 =10 -5 0 L] 10 15 20
Air-sea temperature difference ('l‘a—TS) .

(Resio & Vincent, 1977b)

Fig.2. Amplification factor accounting for the effect of air-sea temperature difference
(scanned from SPM 1984).
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We may expresses the significant wave height and peak period in functional forms

Hmou Tp = f ( UAa F> t; h ) (7)

A dimensional analysis applied to eq (7) gives
9 Hmy 9T _ I gF gt gh (8)

Uﬁ_ Uy Ui by T Uﬁ

where g = 9.81 (m/s?) is the gravitational acceleration.

Fetch-limited case

It is the situation where the wind has blown constantly long enough for wave heights

at the end of the fetch to reach equilibrium.

1 Deep water (£ >1): The condition for deep water waves to be fetch-limited
is that the wind duration is longer than the minimum necessary duration %;n,
given by

" = 68.8 9
U ( U3 ) )

Significant wave height and peak period under fetch-limited condition are

A

i = 1/2
2 0m  — 0.0016 (%r)

A
- 1 (10)
Tr = 02857 ( 9@ )

Eq (10) shows, a larger fetch gives a larger wave height and longer wave period.
But there is a limit, the so-called fully arisen sea. This wave condition refers
to the case where the waves have reached an equilibrium state in which energy
input from the wind is exactly balanced by energy loss. The fully arisen sea
occurs when

gF
4

That is to say, eq (10) is valid up to Li_ = 23123. When 3—3— > 23123, waves
become fully-arisen, and the significant wave height and peak period are

> 23123 (11)

{ $5m — 00016 (23123 )'* = 0.243
g (12)

oL — 0.2857 (23123 )"° = 8.13¢
A
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2 Transitional or shallow water (% < 2):  Waves feel the effect of sea bottom.

Some part of wave energy dissipates due to bottom friction and percolation.
For the same wind speed and fetch, wave height will be smaller and wave
period shorter in comparison with deep water situation. SPM (1984) suggests
the following formulae

F) 1/2

=]

3/4 0.00565 (—r
ggzm" = 0.283 tanh (0.53 (%—?) ) tanh Ya =
4 % tanth (0.53 (%) )
A

e~ |
B

1/3
F
" N 0.0379 ()
92 - 7.54 tanh (0.833 (%—2) ) tanh £ Z A
A tanh (0.833 (52) )
A

, 7/3
g tmin — 537 ( g Tp )
UA UA

SPM (1984) calls the above formulae ’interim formulae’ because the modifi-
cation is ongoing in order to make the above formulae consistent with deep
water.

Duration-limited

It is the situation where the wind duration is shorter than the minimum necessary
duration.

There is no generally accepted formula. SPM (1984) suggests to make use of the
formulae for the fetch-limited situation. It proceeds as

1) Check out t < tpmin, i.e. duration limited
2) Replace tmin by t in eq (9) and calculate the fictional fetch F
3) Calculate H,,, and T, by eq (10) where the fetch is the fictional fetch.

34



Example

Given

Wanted

Solution

Application of SPM-method

Eight consecutive hourly observations of fastest mile wind speed Uy =
20 m/s are observed at an elevation z = 6 m, approximately 5 kilometers
inland from shore. The observation site is at an airport weather station.
The air-sea temperature difference is estimated to be —6°C.

Hom, and T, for the fetch 100 kilometers at a deep water location.

Tastest mile wind speed is the fastest wind speed, averaged over the
duration equal to the time needed for the fastest wind speed to travel 1
mile. 1 mile = 1609 m.

We proceed as follows
1. Elevation adjustment

oz 1/7
Uio = U, (—O> = Ty (*1-69) = ‘25 m/s

z

2. Location adjustment

From Fig.l it is found R, = 0.9, the wind speed is adjusted to
0.9%x21.5=194m/s.

3. Temperature adjustment

From Fig.2 it is found R, = 1.14, the wind speed is adjusted to
1.14 x 19.4=22.1 m/s.

4. Duration adjustment

The duration over which the fastest mile wind speed is averaged is actu-
ally the time needed for the fastest mile wind speed to travel one mile.

1609
i = ST = 72.8 5

i.e. the wind velocity of 22.1 m/sis the average velocity in 72.8 s, denoted
as Ui=72.5. It should be converted to the average wind velocity in one
hour, because in this example the fastest mile wind speed is given on
hourly basis.

Y=z — 1 977 + 0.296 tanh (0.91ogy, (535)) = 1.22

Usi=3600

Uizzeoo = Ui=728/1.22 = 18.1m/s

5. The wind stress factor is

Us = 0.71 (18.1)" = 25 m/s
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6. Type of wind wave

The given fastest wind speed indicates that wind is constant in 8 hours,
the minimum necessary wind duration is

2/3
tmin = 68.8 ( L5 (ﬁ) = 23688 s = 6.6 hours < 8 hours
Ui g

Therefore it is fetch-limited condition.
Because

g F

Eg— = 1568 < 23123

it is not fully arisen sea.

7. Hm, and T}, are given by
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3.3 Standard variance spectrum

FM spectriim

In 1964, W.J.Pierson and L.Moskowitz put forward, on the basis of a similarity
theory by S.A.Kitaigorodskii, some suggestions for deep water wave spectra for the
sea state referred to as fully arisen sea. This wave condition refers to the case where
the waves have reached an equilibrium state in which energy input from the wind
is exactly balanced by energy loss. The only variable is thus the wind velocity. It
is important to emphasize, that spectra of this type are only valid when the fetches
are large enough to reach this equilibrium.

Out of the three analytical expressions suggested by Pierson and Moskowitz, the
one below was found to give the best agreement with empirical wave data. This
spectrum is called PM spectrum.

Sif) = (;’ﬁ; f=¥ eap (—0-74(%) ) (13)

a = 0.0081
fo = Q(ZWUm.s)_l

Uigs : Wind speed, 19.5 m above mean water level

g : Gravitational acceleration

PM spectrum has been transformed to parameterized spectrum by H; = 4 \/mg and
T,=14T =141

5 57\
$i(f) = 1z Hfy f P eap (—1 (7) ) £
| S
PM
Hg=9 m
20 Tp=10 s
10
f (Hz)
0 | | P
0.0 0.1 0.2

Fig.8. Ezample of PM spectrum.
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JONSWAP spectrum

The Joint North Sea Wave Project (JONSWAP) was started in 1967 as a collabo-
ration among institutes in Germany, Holland, UK and USA. The objectives of the
project was originally partly to investigate the growth of waves under fetch-limited
condition, and partly to investigate wave transformation from sea to shallow water
area. Simultaneous measurements of waves and winds were taken at stations along a
line extending 160 km in a westerly direction from the 1sland of Sylt in the Germany
Bright.

During the processing of a large number of spectra corresponding to steady easterly
wind, the so-called JONSWAP spectrum was obtained

sl = af feap (Hé ( ; )_ ) (g () (15)

(2m)* 4\ fm
where
a = 0.076z7°22
g = gFPUS
359 2,’,——0.33
e —
10
g == 0,07 F<h
0.09 F> b
v : Peak enhancement coefficient
Uyp : Wind speed, 10 m above mean water level

The parameterized JONSWAP spectrum reads
2 4 pos o p 5 (%)
Sf) = @ HE f} £ o eop -7 (2 (16)

o ~ 0.0624
(

0.230 + 0.0336 v —

0.185 )
1.9 + ~

o = 007 f<F,
o~ 009 f>F,

~: Peak enhancement coefficient
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The JONSWAP spectrum is characterized by a parameter v, the so-called peak
enhancement parameter, which controls the sharpness of the spectral peak, cf. Fig.4.
In the North Sea the v value ranges from 1 to 7 with the mean value 3.3.

Sy (f) (m2s)

80 e He=5 m Tp=10s
Y=
s e JONSWAP
——— PM

40
20

f (Hz)
0 -

0.0 0.1 0.2

Fig.4. FEzample of JONSWAP spectrum.

Remarks on standard spectra

Actually wave spectra usually exhibit some deviations from these standard spectra.
Concerning the spectrum of swell, the available information is insufficient because
many swell records are contaminated by local wind waves. Ochi et al. (1976) pre-
sented a spectrum which has two peaks, one associated with swell and the other
with locally generated waves. One of the few reports on pure swell spectra indicates
that it can be approximately described by the JONSWAP spectrum with relatively
larger v value (Goda 1985). There are still other standard spectra, e.g. Bretsnei-
der (1959), Darbyshire (1952), Scott (1965), Mitsuyasu (1971, 1972) and the ISSC

spectrum.

Furthermore, the above mentioned spectra are one-dimensional and valid only for
deep water. With respect to shallow water wave spectrum and directional spectrum,

many researches are ongoing.
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3.5 Exercise

1) The wind speed measured at the elevation of 5 m is Us = 20 m/s. Calculate
Uis.5 to be used in the PM-spectrum.

2) Convert the fastest mile wind speed Uy = 29 m/s to twenty-five-minute
average wind speed Ui=2s min-

3) Calculate Hp, and T}, with

deep water situation, fetch 200 kilometers, wind speed at z = 5 m over
water surface is 20 m/s over 2 hours.
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4 Extreme wave height analysis

The design wave height is often represented by significant wave height. Significant
wave height is a random variable. It varies with respect to time and location.
If a structure is to be built in a location of sea where a long-term wave height
measurement /hindcast is available, the question an engineer must answer is: How
to determine the design wave height 7

Extreme wave height analysis gives the answer to that question, i.e. it is a method to
determine the design wave height, based on the importance of the structure (design
level) and the statistical analysis of a long-term wave height measurements/hindcast.

4.1 Design level: Return period and encounter probability

The design level is represented by return period or encounter probability.

Return period T

To define return period the following notations are used

S

Significant wave height, which is a random variable due to the statis-
tical vagrancy of nature.

Realization of X.
(z)  Cumulative distribution function of X, F(z) = Prob(X < z).
Number of years of observation of X.
Number of observations in a period of t.
Sample intensity, A = n/t.

>3 oy 8

Fig.1 illustrates the cumulative distribution function of X. The non-exceedence
probability of z is F'(z), or the exceedence probability of z is (1 — F(z)). In other
words with (1 — F'(z)) probability an observed significant wave height will be larger

than z.

i F(x)

B) [ =i s

= X

X ——— —

Fig.1. Cumulative distribution function of X.
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If the total number of observations is n, The number of observations where (X > z)
is

k=n(l - Flz)) =tX(1 — F(z)) (1)
The return period T of z is defined as
1
T =t (2)

=t (1 - F@)
i.e. on average z will be exceeded once in every 1" years. z is also called T-year
event.

Encounter probability p

Based on the fact that on average z will be exceeded once in every I’ years, the
exceedence probability of z in 1 year is 1/T". Therefore

non-exceedence probability of z in 1 year ~ Prob(X <z) = 1 — %

non-exceedence probability of z in 2 years Prob(X <z) = (1 — %)2
B
non-exceedence probability of z in L years Prob(X <z) = (1 — %)

and the encounter probability, i.e. the exceedence probability of z within a structure
lifetime of L years is

1 L
=1- 11— = 3
# ( T) ()
which in the case of larger T can be approximated

p=1— exp (—%) (4)

Design level

Traditionally the design level for design wave height was the wave height corre-
sponding to a certain return period 7. For example, if the design wave height
corresponding to a return period of 100 years is 10 m, the physical meaning is that
on average this 10 m design wave height will be exceeded once in every 100 years.

In the reliability based design of coastal structures it is better to use encounter
probability, i.e. the exceedence probability of the design wave height within the
structure lifetime. For example If the structure lifetime L is 25 years, the encounter
probability of the design wave height (10 meter) is

1L
p=1-(1-7) =2%

This means that this 10 m design wave height will be exceeded with 22% probability
within a structure lifetime of 25 years.
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4.2 General procedure

In practice engineers are often given a long-term significant wave height measure-
ment /hindcast and required to determine the design wave height corresponding to
a certain return period. The general procedure to perform the task is:

1) Choice of the extreme data set based on a long-term wave height mea-
surement/hindcast

2) Choice of several theoretical distributions as the candidates for the ex-
treme wave height distribution

3) Fitting of the extreme wave heights to the candidates by a fitting method.
If the least square fitting method is employed, a plotting position formula

must be used
4) Choice of the distribution based on the comparison of the fitting goodness

among the candidates

5) Calculation of the design wave height corresponding to a certain return
period

6) Determination of the confidence interval of the design wave height in
order to account for sample variability, measurement /hindcast error and
other uncertainties

If structure lifetime and encounter probability are given in stead of return period,
we can calculate the return period by eq (3) and proceed as above.

If the followings will be discussed the procedures one by one.

4.3 Data sets

The original wave data are typically obtained either from direct measurements or
from the hindcasts based on the meteorological information. Most of the measure-
ments/hindcasts cover a rather short span of time, say less than 10 years in the case
of direct measurements and less than 40 years in the case of hindcasts.

In practice three kinds of extreme data sets have been used.

Complete data set containing all the direct measurements of wave height
usually equally spaced in time.

Annual series data set  consisting of the largest wave height in each year of
measurements/hindcasts, cf. Fig.2.

Partial series data sets composed of the largest wave height in each individ-
ual storm exceeding a certain level (threshold). The
threshold is determined based on the structure loca-

tion and engineering experience, cf. Fig.2. It 1s also
called POT data set (Peak Over Threshold).
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C Annual series data
H X Partial series data
\ s

Threshold

years

Fig.2. lllustration of the establishment of annual series data set and partial series
data set.

The extreme data sets, established based on the original wave data, should fulfill
the following 3 conditions:

Independence There must be no correlation between extreme data. The annual
series data set and the partial series data set meet the indepen-
dence requirement because the extreme data are from different
storms.

Homogeneity The extreme data must belong to the same statistical population,
e.g. all extreme data are from wind-generated waves.

Stationary =~ There must be stationary long-term climatology. Studies of wave
data for the North Sea from the last 20 years give evidence of
non-stationarity as they indicate a trend in the means. Average
variations exist from decades to decades or even longer period of
time. However, until more progress is available in investigating
long-term climatological variations, the assumption of stationary
statistics might be considered realistic for engineering purpose,
because the long-term climatological variation is generally very
weak.

The complete data set cannot fulfill the required independence between data. Goda
(1979) found correlation coefficients of 0.3 — 0.5 for significant wave heights (mea-
surement duration is 20 minutes and time interval between two succeeding measure-
ments is 24 hours). Moreover, what is interesting in the case of design waves is the
wave height corresponding to a very high non-exceedence probability, i.e. the very
upper tail of the distribution. If the chosen distribution is not the true one, the very
upper tail value will be distorted severely because in the fitting process the chosen
distribution will be adjusted to the vast population of the data. For these reasons
the complete data set is seldom used.

Most engineers prefer the partial series data set over the annual series data set
simply because the former usually gives larger design wave height and hence, more
conservatively designed structures.
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4.4 Candidate distributions

Generally the exponential distribution, the Weibull distribution, the Gumbel (FT-
1) distribution, the Frechet distribution and the Log-normal distribution are the
theoretical distributions which fit the extreme wave data well.

I—B)

Exponential F = Fx(z) = P(X <z) = 1—¢ ("

Weibull F = Fx(s) = P(X<z) = 1-¢ (%%

Gumbel F = Fx(z) = P(X<z)= e* (7)

Frechet F' = Fx(z) = P(X <z) = e (&) (8)

Log-normal F = Fyx(z) = P(X <z)= © (-ln(m)A—_B) (9)
where X A characteristic wave height, which could be the sig-

nificant wave height H; or the one-tenth wave height
H Loor the maximum wave height H,,.., depending
on the extreme data set.

Realization of X.

%

.3 Non-exceedence probability of z (cumulative fre-
quency).

A, B, k Distribution parameters 109 be fitted. In the log-
normal distribution A and B are the standard devia-
tion and the mean of X respectively.

¢ Standard normal distribution function.

No theoretical justification is available as to which distribution is to be used. The
author have tried to fit 7 sets of partial series data to all these distributions. These
data sets are real data representing deep and shallow water sea states from Bilbao
in Spain, Sines in Portugal, the North Sea, Tripoli in Libya, Pozzallo and Follonica,
in Italy and Western Harbour in Hong Kong. The results show that the Weibull and
the Gumbel distributions provide the closest fits. Therefore the following discussion
1s exemplified with these two distributions.
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4.5 Fitting methods and procedure

Four generally applied methods of fitting the extreme data set to the chosen dis-
tributions are the maximum likelihood method, the method of moment, the least
square method and the visual graphical method. The most commonly used methods
are the maximum likelihood method and the least square method.

Least square method

Egs (6) and (7) can be rewritten as
X =AY+ B (10)

where Y is the reduced variate defined according to the distribution function

B

Y = (—in(l—F))* Weibull distribution (11)
Y = —In(-InF)  Gumbel distribution (12)
The fitting procedure is summarized as the follows:
1)  Rearrange the measured/hindcast extreme data (total number n) in
the descending order, (z;), ¢=1,2,---,n (X;=max).

2) Assign a non-exceedence probability F; to each z; by an appropriate
plotting position formula (cf. next section), thus obtaining a set of
data pairs, (F;, z;), t=1,2,---,n.

3) Calculate the corresponding y value by eq (11) or eq (12), thus ob-
taining a new set of data pairs, (y;, 2:), 2 =1,2,---,n.

4)  Determine the regression coefficients of eq (10) by

_ Cov(Y, X)
~ Var(Y)

In the case of the Weibull distribution various k values are predefined and A and B
are fitted accordingly. The final values of the three parameters are chosen based on
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the fitting goodness.
Maximum likelihood method

The 2-parameter Weibull distribution is

!

Weibull F(z) = (=) (13)

where z’ is the threshold wave height, which should be smaller than the minimum
wave height in the extreme data set. For unexperienced engineers several threshold
values can be tried, and the one which produces best fit is finally chosen.

the maximum likelihood estimate & is obtained by solving the following equation by
an iterative procedure:

N N N =4
N4+k Zln(:ci - 2') = NkZ((mg - ') In(z; — 2)) (Z(% - 5'»”);6) (14)

i=1 i=1

The maximum likelihood estimate of 4 is

(15)

=1

For the Gumbel distribution, the maximum likelihood estimate of A is obtained by
solving the following equation by an iterative procedure:

émi exp (—-%) = {%émz = A] gexp (——%) (16)

The maximum likelihood estimate of B is

N (é exp (—%)) T (17)

B=A4dln
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4.6 Plotting position formulae

When the least square method is applied a plotting position formula must be chosen.
The plotting position formula is used to assign a non-exceedence probability to each
extreme wave height. The plotting position is of special importance when dealing
with very small samples.

The non-exceedence probability (F;) to be assigned to (z;), can be determined based
on three different statistical principles, namely sample frequency, distribution of
frequency and order statistics, cf Burcharth et al (1994).

Mean, median and mode

The definition of mean, median and mode of a random variable X is given in the
following because they are involved in some of the plotting position formulae.

Take the Gumbel distribution as an example. The distribution function Fix(z) and
density function fx(z) of a Gumbel random variable X reads

~(55)

_ de(IE)

Fylz) = P(X <) = & fx(z) o (18)
The definition and value of the mean, the median and the mode are
400 .
Meali Tmean = E[X] = / cfx(z)dz ~ B+ 0.57TA (19)
Median Zpmedion = :c|FX($)=O_5 = B+0.3674 (20)
Mode Zmode = :cl = B (21)

Gumbel probability density f(x)

X

median

50% area

TN

X mode X mean

Fig. 8. Mean, median and mode of the Gumbel random variable.
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Order statistics

Assume that a random variable X has a cumulative distribution function Fx, and
probability density function fx, i.e.

Fx(z) = P(X < z) (22)

Furthermore, assume n data sampled from X and arranged in the descending order,
z1 being the largest value in n data.

Here z; is one realization of the ordered random variable X;, defined as the largest
value in each sample. The distribution function of X; is

Fxi(z) = P(X <z) = (Fx(2))" = (P(X <a))" (23)

Fx, (z) may also be interpreted as the probability of the non-occurrence of the event
( X > z ) in any of n independent trials.

The density function of X, fx, and the density function of X;, fx,, are sketched in
Fig.4.

probability density

x

Fig. {. fx : Density function of X. fx, : density function of X;.
For other ordered random variables X;, ¢ =2, 3, ---, n, The distribution functions

Fx,(z) can also be expressed as the function of Fx(z), cf. Thoft-Christensen et
al.(1982).
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Plotting position based on sample frequency

This method is based solely on the cumulative frequency of the samples. The widely
used formula is the so-called California plotting position formula

F=1-2 i=1,2 -, 7 (24)
n
where By Extreme data in the descending order (z;=max)
F; Non-exceedence probability of z;.
n Sample size, i.e. total data number.

The disadvantage of this plotting position formula is that the smallest extreme data
z, cannot be used because F,, = 0.

Plotting position based on distribution of frequencies

Assume that the random variable X has a cumulative distribution function Fx. The
i’th highest value in n samples, X;, is a random variable, too. Consequently, Fix,(z;),
the cumulative frequency of z;, is a random variable, too. The philosophy of this
method is to determine the plotting position of z; via either the mean, the median
or the mode of the random variable Fx,(z;). The plotting position formula by this
method is independent of the parent distribution (distribution-free).

Weibull (1939) used the mean of Fx,(z;) to determine the cumulative frequency F;
to be assigned to z;
2

n+1

Weibull F; ==1 — (25)

There is no explicit formula for the median of Fy,(z;). However, Benard (1943)
developed a good approximation

1 —0.3
n-+0.4

Benard F; ~ 1 — (26)

The plotting position formula based on the mode of Fx,(z;) has not drawn much
attention, because the chance of the occurrence of mode is still infinitesimal even
though mode is more likely to occur than the mean and median,
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Plotting position based on order statistics

The philosophy of this method is to determine the plotting position of z; via the
mean, the median and the mode of the ordered random variable X.

F(x) , fx1
i

F1.mode F1.medlun Fi smean

X 1.mode
’M X 1,median
X4 ;mean

|

|1| = X

)

Fig. 5. Illustration of the determination of Fy based on the mean, the median
and the mode of X;.

Plotting positions based on the mean value are distribution-dependent and not ex-
plicitly available. The best known approximations are

Blom Bo=1= :L;_l_?{% Normal distribution (27)
Gringorten Fe= b — ::’T'jé Gumbel distribution (28)
Petrauskas F; =1 — (=03-018/k  waihyll distribution (29)

n+0.21+0.32/k

Goda F;=1-— % Weibull distribution (30)

The plotting position based on the median value of the ordered random variable is
the same as that based on the median value of distribution of frequency.

Summary on plotting position formulae

The choice of the plotting position formula depends on engineer’s personnel taste.

From the statistical point of view the plotting position formula based on the mean
(unbiased) is preferred because the expected squared error is minimized. Rosb-
jerg (1988) advocates the choice of the median plotting position formula (Benard
formula) because it is distribution-free and is based both on the distribution of fre-
quency and the order statistics. In practice the Weibull plotting position formula is
most widely used.
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4.7 Fitting goodness

Normally several candidate distributions will be fitted and the best one is chosen.
The linear correlation coefficient, defined as
Cov(X,Y)

a \/Va,r ) Var(Y) (31

is widely used as the criterion for the comparison of the fitting goodness. However,
p is defined in the linear plotting domain (y, x), where the reduced variate y is de-
pendent on the distribution function. Therefore, the interpretation of this criterion
1s less clear.

With the fitted distribution functions, the wave heights corresponding to the non-
exceedence probability of the observed wave heights can be calculated, cf. egs (33)
and (34). The average relative error E, defined as

i = E I Ti,estimated — Ti,0bserved | (32)
N Li,0bserved
is a good simple criterion with a clear interpretation. £ = 5 % means that on

the average, the central estimation of wave height deviates from the observed wave
height by 5 %. Obviously a smaller E-value indicates a better fitted distribution.

The statistical hypothesis test can also be used in the comparison of the fitting
goodness (Goda et al. 1990)
4.8 Design wave height: 27

The design wave height z7 is the wave height corresponding to the return period 7.
The Weibull and Gumbel distributions, eqs (6) and (7), are rewritten as

z= A(-In(l - F)) + B Weibull distribution (33)
z= A(=In(=In(F))) + B Gumbel distribution (34)

Define the sample intensity A as

5 = number of extreme data (35)

number of years of observation
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and employ the definition of return period T

1 1

Inserting eq (36) into eqs (33) and (34), we get (now z means the wave height
corresponding to return period T', and therefore is replaced by z%)

1

27 = A(-in(F))" + B Weibull distribution (37)

= A (—ln(—ln(l - %))) + B Gumbel distribution (38)

where A, B and k are the fitted distribution parameters.

Remark

Some students have a confusion between the short-term distribution of individual
wave heights and the long-term distribution of extreme wave heights. The confusion
can be cleared by the following figure.

Short—term distribution Long term distribution
Individual wave heights Extrene wave heights
H Hs e H e & exponantial
1, Mz, =, Hy Rayleigh Weibull
I Hs,1 , Hs,z . HS,N Gumbel
Log—normal
HS,O Frechet
(1) Hg

& zero—-upcrOSSing point O peak over threshold

Hg 3 Hs 4
Hs1 Haz .
AE g L% ..\ t (s) f % N
AT T T 4 - —
l\ﬂ Y WOWIN A,

T years

4 5
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4.9 Example

Delft Hydraulics Laboratory performed a hindcast study for the Tripoli deep water
wave climate and identified the 17 most severe storms in a period of 20 years. The
ranked significant wave heights are listed in Table 2.

Table 2. Tripoli storm analysis

Significant non-exceedence Reduced variate Reduced variate
rank wave height probability v Yi
i z; (m) E Gurnbel Weibull (k = 2.35)
1 9.32 0.944 2.86 1.57
2 8.11 0.889 2.14 1.40
3 7.19 0.833 1.70 1.28
4 7.06 0.778 1.38 1.18
5 6.37 0.722 1.12 1:11
6 6.15 0.667 0.90 1.04
7 6.03 0.611 0.71 0.98
8 5.72 0.556 0.53 0.92
9 4.92 0.500 0.37 0.86
10 4.90 0.444 0.21 0.80
11 4.78 0.389 0.06 0.74
12 4.67 0.333 -0.09 0.68
13 4.64 0.278 -0.25 0.62
14 4.19 0.222 -0.41 0.55
15 3.06 0.167 -0.58 0.49
16 2.73 0.111 -0.79 0.40
17 2.33 0.056 -1.06 0.30

You are required to find the design wave height which has 22% exceedence proba-
bility within a structure lifetime of 25 years.

The steps in the analysis are as follows:

Calculate the sample intensity by eq (35) A = %
Calculate the return period by eq (3) T' = 100 years

Assign a non-exceedence probability F; to each observed wave height z;
according to the Weibull plotting position formula. Results are shown in
Table 2.

Choose the Weibull and the Gumbel distributions as the candidate distri-
butions. Calculate the values of the reduced variate {y;} according to eqgs
(11) and (12) respectively. For the Weibull distribution {y;} involves the
iterative calculation. {y;} of the two distributions are also shown in Table 2.
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5) Fit data (yi,2;) to eq (10) by the least square method and obtain the dis-
tribution parameters:
Weibull, k=235 A=517, B=0.89
Gumbel, A =1.73, B =4.53
The fitting of the data to the Gumbel and the Weibull distributions is shown
in Fig. 6.

6) Compare the goodness of fitting according to the value of the average rela-
tive error E, eq (32)
E = 4.72 % for the Weibull distribution fitting
E = 6.06 % for the Gumbel distribution fitting
Because of a clearly smaller E-value the Weibull distribution is taken as the
representative of the extreme wave height distribution

7) Calculate the wave height corresponding to a return period of 100 years
X190 by eq (37) z'% = 10.64 m

1/2.35

reduced variate y = —In(—In(F)) reduced variate y = (—in(71-F))
49 o

@ measured point ® measured point

p=0.974 E=6.06 % »=0.978 E=4.72 %
“29 z 4 6 8 io 0% z r} § 8 10
a) Gumbel distribution fitting % (m) b) Weibull distribution fitting * (™)
T
z (m)
20
15
10
E —— Central estimate by Weibull distribution
54 ------ Central estimate by Gumbel distribution
E e  Data sample point
il Return period T (years)
o 3 1 Ll i Laal il 1 1 [P RN

1 10 100 1000

c) Comporison of fittings by Gumbel and Weibull distributions

Fig. 6. Fitting to the Gumbel and the Weibull distributions and comparison.
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4.10 Sources of uncertainties and confidence interval

Sources of uncertainties

The sources of uncertainty contributing to the uncertainty of the design wave height

are:

1) Sample variability due to limited sample size.

2) Error related to measurement, visual observation or hindcast.

3) Choice of distribution as a representative of the unknown true long-
term distribution

4) Variability of algorithms (choice of threshold, fitting method etc.
5) Climatological changes

The uncertainty sources 1) and 2) can be considered by numerical simulation in the
determination of the design wave height.

Wave data set contains measurement/hindcast error. Measurement error is from
malfunction and non-linearity of instruments, such as accelerometer and pressure
cell, while hindcast error occurs when the sea-level atmospheric pressure fields are
converted to wind data and further to wave data. The accuracy of such conversion
depends on the quality of the pressure data and on the technique which is used
to synthesize the data into the continues wave field. Burcharth (1986) gives an
overview on the variational coefficient C' (standard deviation over mean value) of
measurement /hindcast error.

Visual observation data should not be used for determination of design wave height
because ships avoid poor weather on purpose. With the advance of measuring
equipment and numerical model, generally C value has been reduced to below 0.1.

Table 1. variational coefficient of extreme data C

Methods of Accelerometer Horizontal radar Hindcast Hindcast Visual
determination Pressure cell by SPM other
Vertical radar

Variational Coe. C 0.05-0.1 0.15 0.12-0.2 0.1-0.2 0.2

Confidence interval of design wave height =7

We use an example to demonstrate how the confidence interval of the design wave
height is determined. The gumbel distribution curve in Fig.7 is obtained by fitting
Tripoli significant wave height to Gumbel distribution by the least square fitting
method and the Weibull plotting position formula.
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Fig.7. Design wave height.

If the design level for design wave height is a return period of 100 years, i.e. ' = 100,
the design wave height is z'%° = 12.2 m.

If other uncertainties, e.g. sample variability, is included, the design wave height z'%°
becomes a random variable. The distribution of the design wave height z'%°, which
is usually assumed to follow the normal distribution, can be obtained by numerical
simulation to be described in the next section, cf. Fig.7. In order to account sample
variability, a confidence band is often applied. For example, the design wave height
is 14.8 m which corresponds to the 90% one-sided confidence interval, cf. Fig.7.

Numerical simulation

To exemplify the discussion, it is assumed that the extreme wave height follows the
Gumbel distribution

F = Fplg) = P(X <2) =ezp (-—ea:p (—(3:;18))) (39)

where X is the extreme wave height which is a random variable, z a realization of
X, A and B the distribution parameters.

Due to the sample variability and measurement/hindcast error, the distribution
parameter A and B become random variables,

In order to account the sample variability and measurement/hindcast error, a nu-
merical simulation is performed as explained in the followings.

A sample with size N is fitted to the Gumbel distribution. The obtained distribution
parameters A, and B,,,. are assumed to be the true values.
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1) Generate randomly a data between 0 and 1. Let the non-exceedence
probability F) equal to that data. the single extreme data z is
obtained by (cf. Fig.8)

r = FEI(F]_) = Atrue ["ln(—lnFl)] + Buue (4:0)

2) Repeat step 1) N times. Thus we obtain a sample belonging to the
distribution of eq (39) and the sample size is N.

3) Fit the sample to the Gumbel distribution and get the new esti-
mated distribution parameters A and B.

4) Calculate the wave height 27 corresponding to the return period T
by eq (38)

5) Repeat steps 2) to 4), say, 10,000 times. Thus we get 10,000 values
of zT.

6) Choose the wave height corresponding to the specified confidence
band.

In order to include the measurement /hindcast error the following step can be added
after step 1). This step is to modify each extreme data z generated by step 1), based
on the assumption that the hindcast error follows the normal distribution, cf. Fig.8

1*)  Generate randomly a data between 0 and 1. Let the non-exceedence
probability F5 equal to that data. the modified extreme data z,,o4ieq
15 obtained by

Lmodified — L + C T ‘I’—I(F'Z) (41)

where ® is the standard normal distribution and C' is the coefhicient
of variation of the measurement/hindcast error. C' ranges usually
from 0.05 to 0.1.

F(x) Gumbel

Fi1. & : random number
between O and 1

P
[
L | —
X X imodified

Fig.8. Simulated wave height taking into account measurement/hindcast error.
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Example

Again the Tripoli deep water wave data is used as an example to demonstrate the
determination of the design wave height and the influence of sample variability.

By fitting the extreme data to Gumbel distribution we obtain the distribution pa-
rameters A = 1.73 and B = 4.53, c¢f. Fig.9. The design wave height corresponding
to a return period of 100 years 1s 12.2 m.

Probability density

Return value x* (m) o3 Gumbel (A=173, B=4.53)
15 — y Sample size N=17

Total No. of x® 15000

[
J Gumbel
|

Sample size: 17

04 TR v el ]

1 10 00 1000
Return period T (years)

Fig.9. Simulated distribution of 2'%° (sample variability).

If sample variability is included, the design wave height z'°° becomes a random vari-
able. The distribution of the design wave height ' can be obtained by numerical
simulation, cf. Fig.9. In order to account sample variability, an 80% confidence
band is often applied. In the case of wave height estimate, one-sided confidence
interval is preferred over two-sided confidence interval because the lower bound of
the confidence band is of less interest. Therefore, the design wave height is 14.8 m
which corresponds to 90% one-sided confidence interval.
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4.11 Physical consideration of design wave height

Wave breaking

The design wave height must be checked against wave breaking condition. Wave
breaking occurs due to wave steepness (Stokes wave theory) or limited water depth
(Solitary wave theory). Based on laboratory and field observations, many empirical
formulae for wave breaking condition have been proposed, e.g. Goda (1985).

Structural response characteristics

The choice of design wave height depends not only on the structure life time, but
also on the character of the structural response.

Fig.10 indicates as an example the differences in armour layer damage development
for various types of rubble structures. The figure illustrates the importance of evalu-
ation of prediction and confidence limits related to the estimated design wave height,
especially in case of structures with brittle failure characteristics. To such cases a
lower damage level must be chosen for the mean value design sea state. The figure
is illustrative. In reality also the confidence bands for the damage curves should be
considered.

@ @

Rock
Cubes

Tetrapods
Dolosse

Mean value/ Design sea state
design sea (upper confidence
state band,

Fig.10. Illustration of typical armour layer failure characteristics for
various types of rubble mound structures (Burcharth 1993).
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4.12 Wave period

There is no theory to determine the design wave period corresponding to the design
wave height obtained by the extreme analysis, due to the complexity and locality of
the joint distribution between wave height and wave period.

Fig.11 shows examples of scatter diagrams representing the joint distribution of
significant wave height, H,, and mean wave period, T;,, and still water level, z,
respectively. The numbers in the scatter diagrams are the number of observations
falling in the corresponding predefined intervals of H,, T}, and z.

H, (m)
8.0
. (m)
H,(m
4 I =
5.0 5.0
5|12 3
2 7 |14
4.0 40
21|18 12 R
4 |17|41|30] 8 AR EEIEAERE
20 2.0
a|z1)|s4|14|12| 3 5141820015 2] 2
4| 70|88 |2t t|a|e|s0|0|sa|ssfse|alz
20 20
3 |30 |2e9135| 14| 3 1 |2z | 61 |117{128|125| 75 | 15
3 |30|101| 99| 54 | 20 2 | 64 |130| 208| 214| 241|126 30| 3
1.0 1.0
4| 5|48 e 2 | 7 | 82 |274| 417| 506|508 | 28| 42
3ials|4 10 | 41 |213{ 630 970|555|108| 5
o ]
0o 1 2 8 4 5 6 7 & ® 10 11 12 0 10 20 30 4.0 5.0 60
T (s) High water level z (m)

Fig.11. Scatter diagrams signifying examples of joint distributions of
H, and T,,, and H; and water level, z.

In practice, several wave periods within a realistic range are simply assigned to the
design wave height to form the candidates of the design sea state conditions. Then
by theoretical consideration and/or laboratory investigation, the one which is most
dangerous 1s chosen.

DS449 gives the range of peak wave period

130 H, 280 H,
& I, <
g g
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4.13 Water level

The sea water level is affected by the following effects:

1) Astronomical effect: Tides generated by the astronomical aspect is the best
understood due to their extreme regularity and the simplicity of observa-
tions. At a site without any previous tidal records usually one or a few
month of recording will be sufficient to analyze the astronomical effect on
the water level. The astronomical tidal variations can be found in the Ad-
miralty Tide Tables.

2) Meteorological effect: In shallow water the water level is also affected by
the meteorological effects, namely,
i) Barometric: The higher barometric pressure causes a lower water level

and vise versa.
ii) Wind: Strong wind creates a set-up of the water level on the downwind

side and a set-down on the upwind side.
It is difficult to determine the meteorological effect on the water level. If
water level records are available for a long period of time, the meteorological
effect can be isolated from the astronomical effect and subjected to the
extreme analysis in order to establish the long-term statistics of the water
level. If such records are not available, numerical models can, using wind
and/or barometric chart, give reliable results.

3) Earthquake

The water depth read from the Chart Datum is the one corresponding to the Lowest
Astronomical Tide, which is the lowest tide level under the average meteorological
conditions, cf. Fig.12, which gives also the widely used terminology and abbreviation
of the various sea water levels.

The extreme analysis should be performed on both the high water level and the low
water level. Based on the established long-term statistics is given the design low
water level and the design high water level.

D

Land elevation

HOWL Highest observed water level

é HAT Highest Astronomical tide

\ MHVL Mean tide high water level

Fig.12. Water depth.

\ / MWL Mean water level

\/ MLWL Mean tide low water level
LAT Lowest astronomical tide

{chart datum)
Water depth in the chart datum
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4.14 Multiparameter extreme analysis

A sea state should be characterized at least by some characteristic values of wave
height (e.g. H;), wave period (e.g. Ty,), the wave direction, and the water level,
because these four parameters are the most important for the impacts on the struc-
tures. Of importance is also the duration of the sea state and sometimes also the
shape (type) of the wave spectrum.

When more sea state parameters have significant influence on the impact on the
structure considerations must be given to the probability of occurrence of the various
possible combinations of the parameter values.

Burcharth (1993) proposed the following principle for multiparameter extreme anal-
ysis:

For the general case where several variables are of importance but the correlation
coefficients are not known the best joint probability approach would be to establish

a long-term statistics for the response in question, e.g. for the run-up, the armour
unit stability, the wave force on a parapet wall, etc.

If we assume that the variables of importance are H;, Ty, o (wave direction) and
z (water level) then by hindcasting or/and measurements several data sets covering
some years can be established

(Hs,ia Tm,i-; Qo zi)v 1= 17 2: L

For each data set the response in question is either calculated from formulae or
determined by model tests. If for example run-up, R,, is in question a single variable
data set is obtained

(Bug), t=1,2, ... %

The related long-term statistics can be established by fitting to a theoretical extreme
distribution (extreme analysis).
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4.16 Exercise

1)

The design wave height for Sines breakwater in Portugal is the significant
wave height corresponding to 100 years return period.

The hindcast study of Sines breakwater wave climate gave the following 17
severest storms in the period of 1970-1985:

H, in meter

12.0 10.8 10.7 10.2 10.1 9.8 9.6
93 93 90 88 81 78 7.7
73 6.9 6.3

Fit the data to Gumbel distribution by the least square method and the
maximum likelihood method and calculate the design wave height.

Taking into consideration sample variability, Use the Monte-Carlo simula-
tion to draw the probability density function of the design wave height and
calculate the upper bound of the design wave height corresponding to 90%
confidence.

65



5 Wave generation in laboratory

The importance of wave generation in laboratory is due to the fact that we cannot
describe wave phenomenon (formation, transformation and especially breaking) and
wave-structure interactions (wave force, run-up, overtopping etc.) purely by math-
ematics, and hence model tests play an important role in the design of coastal and
offshore structures.

5.1 Principle of wave generator

Fig.1 illustrates the basic concept of wave generators. The input signal is the time
series of voltage to be sent to servo mechanism. At the same time the servo mecha-
nism receives information on the position of wave paddle through the displacement
censor (feed-back). After the comparison of the input signal with the paddle po-
sition, the servo mechanism sends a control signal to the valve of hydraulic pump,
which converts the output of the hydraulic pump into the movement of the wave
paddle.

In stead of hydraulic pump, electric servo-motor, direct-current motor and hydraulic
pulse pump have also been applied. The wave paddle shown in Fig.1 is called piston-
type wave paddle. Another popular one is hinged-type wave paddle. In reality there
are over 20 types of wave paddles.

input signal
volt(t)

e(t) time series of paddle movement
t n(t) time series of surface elevation
Sy(f) variance spectrum of design wave

volt(t) time series of voliage feeded to paddle

serve displacement
mechanism censor
Sa(f)

signal

hydraulic

RRME ()

AN AN i, s

SIS LSS S Y W

Fig.1. Qutline of the wave generator at AaU, Denmark.
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5.2 Biésel transfer functions

Biésel transfer functions express the relation between wave amplitude and wave
paddle displacement (Biésel et al. 1951).

Formulation

Under the assumption of irrotational and incompressible fluid, the velocity potential
produced by paddle movement is formulated in Fig.2.

a2 ¢ (x,z.1) A% (x,z,1) _
arz 9 PR

/\/“

@®

w39 (x,z.1) a2 e(x,z,) | 82¢(x,z.1) - d¥(x,z,t)

i o W LR sl ol i S S )] e ———— T =

@) S B 0] @ —47 0
wre(z)xcos(wt)

d¥(x.z.t) s

2
b2/ az

Fig.2. Formulation of boundary value problem.

In Fig.2 the equations express:
0. Laplace equation. Basic equation for potential flow.

1. All water particles at the free surface remain at the free surface (kinematic
boundary condition). Free surface is at constant pressure (dynamic boundary
condition).

2. The water accompanies the wave paddle. The horizontal velocity of water
particle is the same as the paddle. The time series of paddle movement is

Slz) .

e(#1) = m(z’t)ipaddle = % sin(wt) (1)
where S(z) is the stroke of the paddle, cf. Figs 4 and 5.

3. The bottom is impermeable.

4. The propagating wave 1s of constant form.
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Near-field and far-field solution

By solving the boundary value problem the surface elevation in the generated wave
field 1s

n(x,t) = (c-sinh(kh)) cos(wt — kx) + ( i ¢y, sin (knh) e_k“'m) sin(wt) (2)

n=1

where ¢, ¢, and k, are coefficients depending on the paddle type, paddle cycling
frequency and water depth.

The first term in eq (2) expresses the surface elevation at infinity, by Biésel called
the far-field solution, while the second term is the near-field solution. In general only
the far-field solution is interesting because the amplitude of a linear wave should not
change with location. Fortunately, the “disturbance” from the near-field solution
will in a distance of 1-2 water depth from the wave paddle be less than 1% of the
far-field solution, cf. Fig.3.

A Generated /farfield
b

A —--=—= Amplitude
‘\ —— Phase
1

Fig.3. Wave amplitude and phase of the generated wave field relative to the far-field
solution. Water depth = 0.7 m and wave period = 0.7 sec

Fig.3 shows that the far-field surface elevation is phase-shifted Z relative to the
displacement of the wave paddle. However, because the initial phase of the surface
elevation will not change wave properties, the paddle movement is often written as
in phase with the surface elevation.

The Biésel transfer function, i.e. the amplitude relation between wave and paddle,

is obtained by the far-field solution
H

c(S(2), k,h)-sinh(kh) = 5 (3)

The Biésel transfer functions for the two most popular wave paddles are given in

the followings.
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Biésel Transfer Function for piston-type paddle

S(z) = 50

H 2 sinh?(kh)
So  sinh(kh) cosh(kh) + kh

Anss
A S 5 A h=1,0 m
Ll L h=0.8 m
# h=0.6 m
h=0.4 m
------- h=0.2 m
So
Ll |' 1
N
i
— 1
Frequency , I
f f - ‘

3.0 4.0 Hz

Fig.4. Biésel Transfer Function for piston-type paddle.

Biésel Transfer Function for hinged-type paddle

S
S(z) = %(HZ), So = 8(z=0)
H _ 2sinh(kh) (1 — cosh(kh) + kb sinh(kh)) (5)
So kh (sinh(kh) cosh(kh) + kh)
Av/se
5L =m=m=eiees— h=1.0 m
R il
.............. bt
e e — st
15 4 ’ il
1.0 L f'f
==
0.5 - /
Frequency
0 ( | s S

0 1.0 2.0 3.0 4.0 Hz

Fig.5. Biésel Transfer Function for hinged-type paddle.
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5.3 Examples

Calibration of wave paddle

Before generating waves the wave paddle should be calibrated in order to obtain the
calibration coefficient of the paddle. The calibration of wave paddle is performed by
sending a signal which increases gradually from 0 to 1 voltage in one minute, and
then measuring the wave paddle displacement, cf. Fig.6.

Voltage feeded to wave paddle

measure
5 seconds i displacement | S seconds

|
s | 1 1
10 | /\/

fsurnple =50 Hz

- 1 volt
" paddle displeccement in meter

(v/m)
Fig.6. Signal to be sent to wave paddle for calibration.

Modification of signal

In order to avoid a sudden movement of wave paddle, the signal should be modified
by a data taper window. Fig. 7 illustrates the principle of the linear data taper
window.

volt’(1)
original time series
i
To
b d(t app. 5 waves
1:0:
finear ‘Iinear data taper window
line t

volt(t)=volt'(t) d(t)

t modified time series

To

Fig.7. Linear data taper window.
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General procedure

The most important aspect of wave generation is the preparation of the input signal
corresponding to the variance spectrum of design wave. Fig.8. illustrates one of
simple methods.

Irregular wave
Hs Tp

l

Variance spectrum of
design wave

Snlf)

;'

i)
Time series of Regular wave

surface elevation H T

¥
|

et)
Time series of
paddle movement

l

Time series of voltage
to be feeded to paddle

3

volt(t)

3

Fig.8. Preparation of input signal.

Of course the recording of the generated wave is necessary so that it can be checked
whether the variance spectrum of the generated wave is close to that of design wave,
according to Murphy’s law!.

IMurphy’s law: Anything, which might go wrong, will go wrong.
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Example : Linear wave generation

Generate a linear wave by piston-type wave paddle.

Wave height H =01 m
Wave period T =15 s
Water depth A =04 m

The surface elevation of the linear wave is
n(t) = a cos(wt+48) = g cos(wt + §)

where the angular frequency w = 27/T = 4.2 s, The initial phase § is
given a random number between 0 and 2.

Convert the time series of surface elevation into the time series of piston
movement by the help of Biesel transfer function.

The Biésel transfer function for the piston-type wave paddle

H 2 sinh?(kh)
L= = sinh(kk) cosh(kh) + kh Rl

The time series of the piston movement is

e(t) = % cos(wt + 6) = % cos(wt + 6)

Convert the time series of piston movement into the time series of voltage
to be feeded to the piston-type wave paddle.

volt(t) = C e(t)
where C' is the calibration coefficient of the wave paddle.

Modify the time series of the voltage by the linear data taper window in
order to avoid sudden movement of the wave paddle.

Sample the data from the modified time series of the voltage at fsampre = 50
Hz and send the signal to the wave paddle.
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Surface elevation 7(t) (m)
0.05 ‘i
0.00

ANANNANANNNANAAN, S
iyl /VAVAVAVAVAVEVAVAVATAVAVAYS

Paddle movement e(t) (m)

oo IN AN AN ADANANAN, ©
_0.05~VVV\FVVV1VVV\7VV\;O

Voltage feeded to paddle volt(t) (v)

o 10 AN AN AN NAAND,
-0.54/\/\/\/5\/\/\/”(/\/\/\?\/\/\;0

Modified voltage feeded to paddle wvolt(t) (v)
0.5 ‘{

0.0 A/\/\[\/\/\[\/\/\/\I/\,\Alt@)
—0.54 Vv\ﬁvvv“v\/\/\;’/\/v 20

Signal of first and last 5 waves is modified

!

Fig.9. Preparation of tnput signal for linear wave.
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Example : Irregular wave generation

Generate irregular wave by piston-type wave paddle according to JONSWAP spec-
trum with A = 0.1 m, 7, = 1 s, water depth 2 = 0.4 m and peak enhancement
coefficient v = 3.3.

JONSWAP spectrum

I
— 2
w-estirm(aly) SO e

A

0.0020

a : amplitude
af : frequency band width

e 0.0624
0.230 4 0.0336 v — (1‘09.11%5 )

p = o (-S54
007 f</fp
~ 009 f=2/

Q
&

Q
¢

v : peak enhancement coefficient

1) Draw the JONSWAP spectrum with the specified parameters.
Note S,(f,) = 0.00193 (m? s).

2) Divide the spectrum evenly into N parts in the interval ( fetart, fotop)-

To ensure accuracy usually

N Z580  Sp(ftare) <001 Sp(fp)  Sy(fetop) < 0.01 55(fp)
For the sake of simplicity in this example

N=T fiurr=08Hz Fup=20Hz

The frequency band width
— fstop - fstart
N

That is to say, the irregular wave is composed of 7 linear waves. The surface
elevation of the irregular wave is

Af = .2 Hz

n(t) = dom(t) = > ai cos(wit +6)

=1 i=1
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Determine the angular frequency w;, amplitude a; and initial phase ¢; of
each linear waves.

The frequency of each linear wave is

. A )
i = fstart"‘z/—\f_"'éi g a2 Lo 2y s
The angular frequency is
2
w = % = orf; i=1,2,---,7
The variance of each linear wave is

1
S??(fi)Af — 561.3 i:1,2,---,7

Therefore the amplitude is
dy = .90 &Y = 12 ey i

S(f:) is calculated from the JONSWAP spectrum. The initial phase &; is
assigned a random number between 0 and 27.

Convert the time series of surface elevation into the time series of piston
movement by the help of Biesel transfer function.

The Biésel transfer function for the piston-type wave paddle

H; 2 sinh®(k;h) .
B, = — = — =1,2,--,7
S sinh(k;h) cosh(k;h) + kih '

The time series of the piston movement is

L 8oz L. H
e(t) = Y =L cos(wit+6;) = > cos(w;t + &;)

= 2 = 2B
i 1 2 3 4 5 6 7
07 (Hz) | 0.7 0.9 1.1 1.3 1.5 *7 1.9
T5 (s) 14 141 0.9 0.8 0.7 0.8 0.5
L; () 2.5 137 12 0.9 0.7 0.5 0.4
w; (/s) 4.4 5.7 6.9 8.2 9.4 10.7 11.9
k; (/fm) | 2.6 3.6 5.0 6.9 9.1 11.6 14.5
Sn{f:) (m?s) | 0.00007 0.00079 0.00103 0.00036 0.00021  ©.00012  0.00007
a; (m) 0.0052  0.0178  0.0203  0.0119  0.0092 0.0070  0.0055
H; (m) 0.0103  0.0356  0.0406  0.0239  0.0183 0.0141 0.0110
8 1.2 0.7 0.3 2.5 6.1 4.3 4.1
B; 1.00 1.36 1.69 1.90 1.98 2.00 2.00
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5) Convert the time series of piston movement into the time series of voltage
to be feeded to the piston-type wave paddle.

volt(t) = C e(t)
where C is the calibration coefficient of the wave paddle.

6) Modify the time series of the voltage by the linear data taper window in
order to avoid sudden movement of the wave paddle.

7) Sample the data from the modified time series of the voltage at fsqmpie = 50
Hz and send the signal to the wave paddle.

Surface elevation 7(t) (m)

ulnH MnAn A AL Aapns ¢
; _ VUV WTTV e TV VB WUV 20

-0.05

Paddle movement e(t) (m)
0.05 - t (s)

At A NN Aaanann s iasa NN Aapnn
- VERVAAZ A" S ZAVA AV Y ERVAVA VA Y2 AV AVA Y~

—0.05 -

Voltage feeded to paddle volt(t) (v)
0.5 - t (s)

A.AA.A‘ Aoann A NAan N Anan
. VA AA A" AZAAAAV TV EAAAA A A AAAVT

-5 =
Modified voltage feeded to paddle wvolt(t) (v)
0.5 t (s)
B0 3@505501%90”0#35 20
-0.57 Signal of first and last 5 seconds is modified

Fig.10. Preparation of input signal for irregular wave.
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Remarks

For more complicated wave generation method, including active wave absorption and
3-D wave generation, reference is made to Frigaard et al. (1993). All these aspects
have been implemented in a user-friendly software package named PROFWACO
(Frigaard et al. 1993). With respect to wave generation techniques we are proud of
the fact that the Hydraulic & Coastal Engineering Laboratory of Aalborg University
is one of the leading institutes in the world.
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5.5 Exercise

1) Estimate the minimum power of motor needed for generating a linear wave
with Wave height H = 0.20 m, wave period T' = 1.5 s, water depth 2~ = 0.4 m,
wave flume width B = 1.5 m.

2) What is the minimum distance between the wave gauge and wave paddle 7
3) Explain the importance that the wave paddle can produce sufficiently large

wave height. List the factors which limit the maximum wave height obtain-
able in a wave flume.

4) Make a computer program for examples given in lecture.
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