Stiffness Formulation of Flexible Bucket Foundation

a macro model approach

Ibsen, Lars Bo; Liingaard, Morten; Larsen, Kim André

Publication date:

2009

Document Version

Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

The response of offshore wind turbines e.g. static, eigen frequencies and eigen modes, are affected by elastic properties of the foundation and the subsoil. The Elastic Macro Model is developed to evaluate the soil-structure interaction of flexible bucket foundations for offshore wind turbines so that it can be properly included and analysed in a composite structure-foundation system. The typical approach for analysing the structure-foundation system is to use a finite element method. Such an approach is, however, inefficient and time consuming. The Elastic Macro Model describes the foundation as a substructure with predetermined properties. The interaction between the foundation and structure is expressed purely in terms of force and moment resultants, and their conjugate displacements and rotations. The Macro Model modeling the Bucket Foundation is suitable for implementation in an internationally recognized aero-elastic code as e.g. HAWC or FLEX.

The Bucket Foundation

The monopod bucket foundation, also called “monopod suction caisson”, is a promising foundation concept for offshore wind turbines which has the potential to be cost-effective in certain soil conditions. Depending on the skirt length and diameter, the bucket foundation can have a bearing capacity similar to that of a monopile, a gravity foundation or in between.

Prototype installed:
December 2002: Frederikshavn, Denmark.
March 2009: Horns Rev 2 Offshore Wind Farm, Denmark.

The interaction between the foundation and structure are within the macro model expressed purely in terms of force and moment resultants, and their conjugate displacements and rotations. The elastic stiffness of the foundation can be expressed by dimensionless elastic stiffness coefficients corresponding to vertical ($K_{yy,v}$), horizontal ($K_{xx,h}$), moment (K_{mm}), and torsional (K_{tt}) degrees of freedom. Cross coupling between horizontal and moment loads exists so an additional cross coupling term (K_{mmh}) is necessary. Under general (combined) static loading, see figure, the elastic stiffness of the foundation system can be expressed as:

$$
\begin{bmatrix}
\frac{V}{GRu} \\
\frac{H}{GRu} \\
\frac{T}{GRu} \\
\frac{M}{GRu} \\
\frac{M}{GRu} \\
\end{bmatrix} =
\begin{bmatrix}
K_{yy,v} & 0 & 0 & 0 & 0 & 0 \\
0 & K_{xx,h} & 0 & 0 & 0 & -K_{mmh} \\
0 & 0 & K_{tt} & 0 & 0 & 0 \\
0 & 0 & 0 & K_{mm} & 0 & 0 \\
0 & 0 & 0 & 0 & K_{tt} & 0 \\
\end{bmatrix}
\begin{bmatrix}
\frac{w}{R} \\
\frac{u_h}{R} \\
\frac{\theta}{R} \\
\frac{\theta_{h}}{R} \\
\frac{\theta_{tt}}{R} \\
\end{bmatrix}
$$

R is the radius of the foundation, G is the shear modulus of the soil and K_{tt} is non-dimensional static stiffness components.

Stiffness Coefficients

The stiffness coefficients can be used to describe the static elastic behaviour of both surface and bucket foundations, however there are some conditions that are worth noticing:

- The stiffness coefficients for the surface foundation are dependent on Poisson’s Ratio ν, shear modulus G of the soil and the flexibility of foundation.
- The stiffness coefficients for the bucket foundation are dependent on ν, G of the soil, the flexibility of the bucket material, the skirt thickness t and the embedment ratio of the bucket, $H/2R$.

The dimensionless elastic stiffness coefficients can be determined as:

$$
K_{yy,v} = \frac{V}{GRu} \\
K_{xx,h} = \frac{H}{GRu} \\
K_{mmh} = \frac{M}{GR} \\
K_{mm} = \frac{M}{GRu} \quad \text{or} \quad K_{mm} = \frac{H}{GR} \\
K_{tt} = \frac{G}{GRu} \\
$$

Results

Material and model data used in the evaluation of the dimensionless stiffness coefficient.

<table>
<thead>
<tr>
<th>Variants</th>
<th>ν</th>
<th>t</th>
<th>$H/2R$</th>
<th>E_{soil}</th>
<th>G_{steel}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.05</td>
<td>0.05</td>
<td>2.1</td>
<td>10^{-11}</td>
<td>2.1 \times 10^{15}</td>
</tr>
</tbody>
</table>

Influence of the skirt thickness

Poisson ratio = 0.25, $E_{soil} = 0.05$, $G_{steel} = 2.1 \times 10^{15}$