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Abstract Six US first-year university students in humanities or social science degree
programmes were interviewed while solving 4 tasks on continuity and asymptotes in a
required mathematics course. The focus was on how the students referred to the
definitions or to the concept images when solving the tasks and if partial understand-
ings appeared. Partial understanding denotes when the definition or the concept image
has correct parts but essential parts are missing or incoherencies occur. Some students
confused continuity with differentiability or perceived it as a graph not having holes,
which is also reported by other studies. Another misconception that emerged is to
perceive points on the x-axis as non-continuous. The partial understandings of asymp-
totes were related to the vertical asymptote as it was confused with a function property.
Some students referred to the definitions when correctly solving some of the tasks and
some students with coherent concept images were successful solving some of the tasks
even when they did not refer to the definitions.

Keywords Asymptote . Calculus . Concept definition and concept image . Continuity .

Non-STEM students

Introduction

This paper focuses on university students who are required to study mathematics, for
instance calculus, even though they are not in any science, technology, engineering and
mathematics (STEM) degree programme. Many students who enrol at a university do
not wish to have mathematics as a compulsory part of their degree programme
(Guzman, Hodgson, Robert & Villani, 1998) and first-year engineering students often
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complain about having to study calculus (Harterich, Kiss, Rooch, Monnigmann, Darup
& Span, 2012). However in many countries, students within non-STEM degree
programmes such as history, literature, education and language, are required to study
mathematics, just as students in STEM degree programmes are required to study
subjects in the humanities and social sciences. For instance, in the USA, such courses
satisfy the universities’ disciplinary breadth requirements whose purposes are to make
the students acquainted with various traditions and thinking modes. The required
mathematics is different from Bmathematics as a service subject^ (Howson, Kahane,
Lauginie & de Turckheim, 1988, p. 3) seen in subjects like physics, chemistry,
engineering, biology and economics, where mathematics is a useful tool. Although
STEM university students’ learning of calculus has been studied, not much research has
yet been done on the large number of non-STEM university students who are required
to study mathematics to satisfy such breadth requirements. Their understandings of
mathematics may, or may not, be similar to those of the STEM students, but one might
anticipate that their level of motivation and understanding is lower and that they
approach mathematics differently from the STEM students. One might furthermore
argue that they also deserve quality teaching aimed at their learning needs, and more
research is therefore needed about how they learn mathematics.

Background Literature

Previous Studies on University Students’ Difficulties in Calculus

Students in different STEM degree programmes do not have similar ways of learning
calculus. Maull and Berry (2000); Bingolbali, Monaghan and Roper (2007) and
Bingolbali and Monaghan (2008) argue that mathematics and engineering students’
mathematical concepts develop differently and have different meanings to the students.
Engineering students see mathematics as a tool and wish to see applications as part of a
course. Rensaa (2014) studies an engineering student whose main strategy is instru-
mental, i.e. does not aim at relational understanding. Engineering students often lack
fundamental understanding of difficult concepts due to an inability to perform deduc-
tive reasoning (Morgan, 1990). Macbean (2004) compares physics with biochemistry
students and finds significant differences in how they approach mathematics and in
their conceptions of mathematics. The student groups also have different learning
outcomes even when they take the same course. Jukić (2011) compares mathematics,
science and engineering students in a joint first-year calculus course. On all the tasks
with a significant difference in the groups’ performance, the mathematics students
outperform the non-mathematics students. Jukić and Dahl (2012) study the long-term
retention of core calculus concepts and find that the science and engineering students
mostly have limited knowledge even though they encountered calculus in other courses
later in their degree programme.

In terms of non-STEM students’ learning of mathematics, Jóelsdóttir, Lindenskov,
Misfeldt and Rattleff (2012) investigated economics students in an introductory math-
ematics course integrated with macro-economics and statistics. They argued that a
transdisciplinary approach might help the students apply mathematics, but if mathe-
matics is not taught on its own, it might be harder for the students to activate it later in
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new situations. Another study by Abramovich and Grinshpan (2008) argued for special
teaching of mathematics to engineering, business and life sciences students using real-
life projects.

Hence, from this overview of some of the literature, it appears that STEM students
are not one group but they differ in how they learn calculus. It also appears that non-
STEM students are different from any of the STEM students. Therefore, one cannot
know how the students in non-STEM degree programmes learn and perceive mathe-
matics when they take a required mathematics course like calculus. One might have
expectations, but research is needed in order to verify revise, or reject such expecta-
tions, which is a goal of this study.

The Role of Definitions and Concept Images in Learning and Problem Solving

Vinner (1991) argues that definitions create problems for learning mathematics since
they represent a difference between mathematics as a structured body of knowledge
and the cognitive processes of learning mathematics. In mathematics contexts, as
opposed to everyday contexts, Byou should consult definitions, otherwise mistakes
might occur^ (Vinner, 1991, p. 67). He further argues that whenever one hears a
concept’s name, what is usually evoked in one’s memory is not its definition, but
what he calls one’s concept image. A concept image is a non-verbal association in
the mind. It might include visual representations and other impressions and experi-
ences, and it is entirely individual. All these mental associations form a cognitive
structure and they might at some point be translated into verbal forms, but this is not
what is first evoked in a person’s memory. A part of the process of acquiring a
concept is the development of one’s own concept image because knowing a defini-
tion by heart does not necessarily entail an understanding of the concept. The term
‘concept definition’ denotes the definition accepted by the mathematical community
(Tall & Vinner, 1981). According to Vinner (1991), in many everyday situations
when a concept is learnt by definition, e.g. a forest, a concept image is formed and
Bthe moment the image is formed, the definition becomes dispensable^ (p. 69). This
is different from mathematics where definitions do not only help form the concept
images but they are also essential when solving tasks. Zandieh and Rasmussen
(2010) argue that a main role of mathematical definitions is to describe a
characteristic and single out a concept with certainty. This is not contradictory to
Vinner (1991) but has another focus than its role in solving tasks. A concept image
might not include all aspects of a concept, so just relying on a concept image when
solving tasks can lead to mistakes. The relationship between the concept image and
the definition is two-way: if a concept is introduced by a definition, the concept
image will be empty at first but it will be gradually ‘filled’ after the person sees some
examples. On the other hand, a person might first see some examples and later get
introduced to the definition, which then alters the concept image. According to
Vinner (1991, p. 71 – 72), a solution should only be attempted after consulting the
definition; he describes three ways for this:

1. Consult the definition, then via interplay with one’s concept image, solve the task.
2. Solve the task solely using the definition.
3. Via one’s concept image, a proper definition is chosen to solve the task.
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Vinner (1991) argues that due to habits from everyday life, usually, only the concept
image is consulted when solving tasks. This is only adequate when the tasks are
routine. In concurrence with Vinner (1991), several studies have shown that students
often do not use the definitions in building the concept image (Vinner & Dreyfus, 1989)
and they do not rely on the definition but on the concept image when solving problems
(Rasslan & Tall, 2002). Sometimes, undergraduate mathematics students do not use
definitions even when they are able to state and explain them correctly. If there is a
conflict between the definition and the concept image, the latter wins (Edwards &
Ward, 2004). Rösken and Rolka (2007) report that definitions play a marginal role for
24 German final-year secondary school students’ conceptual knowledge of integral
calculus. The students mainly lean on their concept images, which cause difficulties in
their reasoning and problem solving. Kidron (2011) describes a student who experi-
ences a conflict between her concept image of the horizontal asymptote and the
definition relating to the dual nature of the notion of limit as a process and as a
number. Williams (1991) describes some college students’ models of limit and show
that they vary widely. Juter (2005) also shows that although students claim that a
function cannot attain its limit values, they still consider it possible in problem solving.
Hence, their concept image of limit is not good enough to solve the problems. Jukić and
Dahl (2011) investigate science students in a calculus course and show that no student
knows the definitions, which causes problems solving the tasks. Wawro, Sweeney and
Rabin (2011) argue that university students’ descriptions of subspace in linear algebra
often differ substantially from the definition. Randahl (2012) finds that first-year
engineering students starting a calculus course have major difficulties making sense
of and use textbook definitions given by formal definitions.

These studies are all done on STEM students and document that definitions are often
either not known or not used when students build up their concept images or when they
solve tasks. This impacts the STEM students’ ability to solve tasks negatively. The
present study investigates whether six non-STEM students have a similar marginal use
of definitions and lack of success solving tasks using the concept images. This includes
investigating which of Vinner’s (1991) three ways of using a definition is chosen, if
any, when they solve tasks.

Partial Understandings

Tall and Vinner (1981) argue that a definition can be learnt in either a rote fashion or
more meaningfully by being related to the concept. Viholainen (2008) defines a concept
image as coherent if the conception about the concept is clear; all conceptions
concerning the concept are connected to each other; there are no internal
contradictions, and the concept image does not contain conceptions contradictory to
the formal system of mathematics. Otherwise, the concept image is incoherent. Tall and
Vinner (1981) argue that as the concept image develops, it does not need to be coherent
at all times but can include contradictions to the definition, which students may not be
aware of. Also, Vinner and Dreyfus (1989) argue that learning a concept does not
happen in one step: BIn these intermediate stages, some peculiar behaviours are likely
to occur. Several cognitive schemes, some even conflicting with each other, may act in
the same person in different situations that are closely related in time^ (p. 365). This
indicates that the route to having understood a concept is a process with ups and downs,
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not a jump from no understanding to full understanding. Ron, Dreyfus and
Hershkowitz (2010), in this context, define ‘partially correct’ to describe situations
where the match between a student’s construct and the corresponding formal mathe-
matics is partial. One might further argue that while the term ‘incoherent’ emphasises
the inadequacies of the students’ understanding, the term ‘partially correct’ emphasises
the qualities of the students’ incoherent understanding. In this study, the term ‘partial
understanding’ is used when students’ expressed definition has correct parts but
essential parts are missing, or when a concept image is incoherent but also shows
some coherence with the formal definition. An example of what this paper terms
‘partial understanding’ is seen in Tall and Vinner (1981) where students call a function
discontinuous as it is not in one piece. This is correct if we deal with real intervals, but
if students are not aware of this, they have a partial understanding.

Research Questions

It is not yet known if non-STEM students have the same perception of calculus as
various STEM students, and it is also not known how they use definitions or apply their
concept images when solving tasks. The learning of asymptotes has also not been
studied extensively. The paper addresses the following research questions:

1. How do the six students apply the definitions or their concept images when solving
the given tasks in continuity and asymptotes?
2. Which correct, wrong or partially correct understandings occur and what are their
qualities?

Methodology

The Students, Lessons and Textbook Definitions

The study took place in the autumn of 2011 at a private US university in the top 10 of
the Times Higher Education ranking of North American universities 2011 – 2012
(Times, 2012). The university offered three sequences for calculus. One was an
Honours sequence for students intending to study mathematics and physics and the
two others were standard single variable courses. These two options covered the same
material but at a different pace. Students were encouraged to take the slower one if they
only needed calculus to satisfy the university’s disciplinary breadth requirement or
basic medical school requirements. The faster course was for students who needed
calculus for engineering, science and economics studies. The students reported in this
paper were from the slower course, which consisted of 191 first-year students. The
author was informed that the majority of the students had either not taken the Advanced
Placement (AP) calculus exam (US high school level) or they did not get a good score
on it. To find participants for the study, the lecturers encouraged the students, and the
author stood up in class and asked for volunteers. Hence, the sampling was voluntary,
which means that it was unlikely that the students represented the whole student body.
The students in this sample came from different non-STEM programmes such as
history, literature, education and languages. The students’ midterm or final grade was
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not known to the author due to confidentiality, but grades were also not relevant in
determining how they used the definitions or concept images.

The course was taught by two lecturers from the mathematics department. The
students were divided into three sub-groups. One lecturer taught two sub-groups and
the other taught the third sub-group. Each lecturer taught two or three times during the
week, serving each of the three sub-groups, but the students were free to attend any
lecture they wanted. The teaching styles of the lecturers were quite similar (one being
under guidance of the other). Both lecturers used the blackboard and mixed their
lectures with questions to the students as well as minor tasks the students should
discuss with each other. The atmosphere was informal and questions were welcomed.
Each lecture was around 85 min.

The textbook (Stewart 2009, p. 113 – 121) defined a function f to be continuous at
x = a if lim

x→a
f xð Þ = f (a) with three things implied: (1) f (a) is defined (x = a is in the

domain), (2) lim
x→a

f xð Þ exists (i.e. lim
x→a−

f xð Þ = lim
x→aþ f xð Þ, and (3) lim

x→a
f xð Þ = f (a).

During class, the lecturers stated, ‘Intuitively, the graph of a continuous function has no
gaps’, and, ‘You can sketch the graph without lifting your pen’ (author’s notes). The
textbook used a similar description: BGeometrically, you can think of a function that is
continuous at every number in an interval as a function whose graph has no break in it.
The graph can be drawn without removing your pen from the paper^ (Stewart, 2009, p.
113). Concerning asymptotes, Stewart (2009, p. 125 – 129) stated that the line y = L is a
horizontal asymptote of y = f (x) if lim

x→þ=−∞
f xð Þ = L. A function has a vertical asymptote

at x = a if any of these six conditions hold: lim
x→aþ =−

x→af xð Þ = +/ −∞. Limit was

defined as lim
x→a

f xð Þ = L and Bthe limit of f(x), as x approaches a, equals L… the values

of f (x) tend to get closer and closer to the number L as x gets closer and closer to the
number a^ (Stewart, 2009, p. 95). These were therefore given without the precise
epsilon-delta definitions. Similar definitions were given in class.

Qualitative Study Design

Given the small sample of six students, one cannot reach general conclusions about
how non-STEM students, as a whole, behave. Furthermore, the students are from
different degree programmes, which may or may not have an impact. What they do
have in common is a greater interest in studying non-STEM topics, and that they did
not have good results from calculus in high school (as stated above); but given that they
now study at a top university, one can assume that they generally get good grades and
know how to study. Since one cannot reach general conclusions in qualitative studies,
Schofield (1990) argues for replacing the notion of generalisability by ‘fittingness’,
Bthe degree to which the situation matches other situations in which we are interested^
(p. 207). Ergo, detailed descriptions are important to determine the applicability of a
study to other situations. Therefore, even though the sampling was voluntarily, the
results might be of interest beyond the six students.

The data collection was pair or single student interviews to achieve details and
personal accounts (Morgan, 1998b). The students were challenged to elaborate their
answers and thoughts about the solutions to the given tasks (Kvale, 1996). During a
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pair discussion, the participants did a lot of the exploration for the interviewer (Morgan,
1998a), since when two work together, there is more verbalisation, and the reasons for
the decisions are open. Furthermore, when working in pairs, the students discuss the
tasks more with each other than the author, limiting the need for the author to prompt,
hence influencing the students’ thinking and choices. The students were paired accord-
ing to when they had time to meet the author, but due to practicalities such as students
asking to reschedule, two were interviewed alone. Since all interviews were qualitative
and aimed for details and personal accounts, the methodological consequence of four
being done in pairs and two alone is not significant, but the author needed to prompt
more when interviewing students alone. The interviews lasted 30–45 min each. To
compensate them for their trouble and to make them relax, soft drinks and cookies were
provided. The students were assured that their identity would not be revealed, they
became acquainted with the purpose of the study, and were asked for permission to
audio tape. This was done orally in class, before the interview began and in writing at
the top of the sheets with the tasks.

The Tasks

The students received two sheets with questions on limits, continuity and asymptotes,
and plenty of empty sheets to write on. These topics were chosen as the students had
recently had a midterm test on them. The topics were, furthermore, central to calculus.
The sheets had seven tasks, but task 2 consisted of six questions named f – k. There
were no illustrations provided. To allow for a deeper analysis within a single paper,
only the following four tasks (original numbering kept) were discussed, including two
questions (g, j) from task 2:

1. Define continuity for a function f at a given point.

2. Explain if, and where, the following functions are continuous (xϵR)

g xð Þ ¼ 0 x < 0
x x ≥ 0

�
j xð Þ ¼ x if x is rational

1−x if x is irrational

�

4. Define horizontal and vertical asymptotes of a function f.
5. Can the graph of a function cross its vertical and horizontal asymptotes? Explain
why/why not. If yes, how many times?

The tasks were similar to tasks in most calculus textbooks such as the one used in
this course. The students did not have access to the textbook or notes during the
interview. The tasks were created to expose the students’ concept images and under-
standing of the definitions and to investigate if the students had two of the common
misunderstandings in relation to continuity: confusion with differentiability and only
perceiving continuity as something that relates to a graph not having any holes. Task 1,
therefore, asked for the definition of continuity. Task 2g tested if they confused
continuity with differentiability and task 2j detected if the students knew that continuity
is not only related to functions whose graphs have no holes. Task 2j was more difficult
as it required that they knew that between any two rational numbers is an infinite
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number of irrational numbers. Furthermore, task 2 also tested if the students knew that a
continuous function is a function that is continuous on all points on its domain, hence,
the specific formulation with ‘and where’ inserted. Task 4 asked for the definitions of
asymptotes and task 5 aimed at exposing their individual concept images. The first part
of task 5 could be answered by just finding an example of a horizontal asymptote being
crossed many times, but the question about the vertical asymptote required more
reasoning. The second part of task 5 asked for an explanation so the students had to
show more than just an example of a function. Task 5 was almost identical to a task on
the midterm test that had only asked about the horizontal asymptote. Taken together,
tasks 1 and 4 asked directly for the definitions while tasks 2gj and 5 were ‘indirect’, as
Vinner (1991) argued that one needs indirect tasks to expose a student’s concept image.

Results

The Analysis

The analysis uses Kvale’s (1996, pp. 214 – 217) contexts of interpretations. The first
context is ‘self-understanding’, where the researcher in a condensed form summarises
and rephrases what the students do and say. A second context is ‘theoretical under-
standing’, where a theoretical framework is applied to interpret the students’ statements
and actions. These two contexts are similar to Mason’s (2002) distinction between
‘accounting of’ and ‘accounting for’, where the former is a brief description without
explanation and interpretation, and the latter is when some theorising is added to
explain and interpret the incident. The analysis, therefore, consists of three steps:

1. Identify situations where definitions of continuity and asymptotes are given (tasks 1
and 4) or where explanations are given (tasks 2 and 5).
2. Understand the students’ self-understanding, e.g. an ‘account of’, summary, in the
author’s words of what the students are observed doing or saying.
3. Apply the notions of concept definition, concept image and partially correct under-
standing to get a theoretical understanding; e.g. when the students’ actions are ex-
plained by reference to which of Vinner’s (1991) three ways of applying the definition
the students have used, or if they have partial understanding or not.

Students A and B

Two male students, A and B, write the following when answering task 1:
In the first context of interpretation—the self-understanding—one sees that the

students believe that the definition refers to all x values and not just to one point
x=a (criteria 1, Fig. 1). The students also confuse the concepts ‘defined’ and ‘exist’
(criteria 2, Fig. 1). The fact that some mathematical entity can be defined does not mean
that it exists. However, this difference is technical and one might argue that this error is
not too serious for students at this level. Hence, in the theoretical understanding of the
students’ utterances, one can argue that the definition is partially correct since it has
elements in common with the formal definition, but it also has some wrong elements.
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As seen below, criteria 1 creates problems in task 2j. Regarding task 2g, the students
refer to the definition in Fig. 1 when they determine if g is continuous. After some
discussion, they write the following:

From Fig. 2, one sees that the students use their definition of continuity to explain if
g is continuous. They make a good attempt at using a precise mathematical language
even though the use of ‘defined’ is not correct. Thus, it appears that the students follow
the second option of Vinner (1991). When they reach task 2j, they get stuck. In the
theoretical interpretation, one might argue that an incoherency in each of the student’s
concept images becomes visible, particularly after the interviewer (I) gives a hint after a
period of observing the students are stuck [minutes and seconds into the interview are
in brackets]:

I: If I say that it is continuous in only one point? [13:20]

7 s of silence.

A: Hmm, continuous, what do you say?

B: In, at, at, at one place? [sounds surprised]

I: Hmm-hmm, in one point.

A: THIS is continuous in only one point? [sounds surprised]

I: Hmm-hmm.

7 s of silence.

B: As in one set interval?

I: No, just one point, one x value.

5 s of silence.

Fig. 1 The definition of continuity by students A and B

Fig. 2 Answer to task 2g by students A and B
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I: Can a function be continuous just in one x value?

A and B: [A and B talk at the same time, interrupt each other.] No. It can’t. I don’t
think so. It does not make sense [B shows an interval with his hands].

A: If it has to be continuous, it has to be continuous at every x value.

The definition seen in Fig. 1 stating that the first condition is true for all x values
means that the students reject the idea that a function can be continuous at only one
point. In the theoretical understanding, task 2j, therefore, exposes an instance where the
partially correct definition cannot be used to reach the correct answer. They also both
appear to rely on a concept image of continuity as something that refers to an interval,
which might be related to the fact that in order for a function to be called a ‘continuous
function’, it has to be continuous on its whole domain. Hence, the students consult each
of their concept images, both of which state that it is not possible for a function to be
continuous at only one point; but consulting the concept image creates problems here.
Thus, here, they appear to follow the first of Vinner’s (1991) three ways for applying
the concept definition when solving tasks. Despite the fact that each of them only has a
partially correct understanding of the definition of continuity, they are examples of
students who do use the definition when solving tasks.

Student B leaves for another appointment at task 4, but student A gives correct
definitions of the horizontal and the vertical asymptotes (see Fig. 3). He could have
added ‘−∞’ to the definition of horizontal asymptote, but it is also correct as stated. The
same can be said about the vertical asymptote for x→ a− and x→ a+. The definition of
the vertical asymptote obviously causes problems seen from the several attempts. In
terms of task 5, student A gives the right answers to both questions and each time, he
uses both the definitions and examples of functions such as 1/x and sin(1/x). Seen from
the perspective of the theoretical understanding, Student A has a correct understanding
of the definition and refers to this as well as his overall concept image while solving the

Fig. 3 Answer to task 4 by student A
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tasks; hence, he applies the first of Vinner’s (1991) ways of applying the concept
definition when solving tasks.

Students C and D

Two female students, C and D define continuity as lim
x→a

f xð Þ = f (a), which is correct. In

task 2g, they discuss the point x = 0 and draw some graphs while discussing if there
are points of jump discontinuities. Student C states: B[4:13] It is not differentiable
but it is continuous^. They decide that g is continuous on all real numbers. Then, the
interviewer challenges them to explain how they reached this conclusion:

I: What made you decide [that it was continuous]—when you drew the graph, or
did you look at how continuity is defined, or did you do something else? [4:54]

D: Eh, well, I drew the graph because that’s like, easier to visualise pictures, but I
guess we could also have done the limits from both sides as x approaches 0 (C:
Yeah) and then we would have found that it is 0.

I: OK.

C: Yeah, for me I think that if it is a less obvious one, then I will go back to the
definition of a limit (I: Hmm-hmm) and solve for the limit from the left hand and
the right hand and solve for f (a) and make sure they are all equal, but for this one,
it was more clear (D: To this graph), yeah.

In a theoretical understanding, referring to their concept images by looking
for jumps in the graph is the easiest method; hence, they use the third way of
Vinner (1991). They do know the definition and can, in detail, describe how
they could have used it. It appears that in their view, looking at the graph or
using the definition are equally valid methods for determining if a function is
continuous. The choice is a matter of convenience. In task 2j, they are stuck,
but after hints from the author to search for one point, D states: B[13:58] That’s
where they connect … so I’d say it is continuous where x equals ½^. Here,
they refer to the piece wise function g, and it is, therefore, a reference to a
concept image, but after some encouragement from the author to use the
definition, they discuss the following:

D: As it goes to ½. … The limit as it goes to what. I don’t know how to start.
[14:59]

C: I think that when these two are equal, they are ½, right, so that’s a critical
point.

Hence, D does not know how to begin while C knows how to use the
definition and can investigate the limits of x → ½, but none of them chooses
this approach on their own.
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The students give a correct definition of the horizontal asymptote in task 4 (see
Fig. 4). In task 5, about the horizontal asymptote, they explain the following: ‘[32:36]
C: You can cross it like, if you, you can go, uhhh, as long as at its end, it is approaching
that line’. Here, from the perspective of the theoretical understanding, the students just
refer to their concept images (which here are similar for C and D) and rely on a graph
seen in class.

As for the definition of a vertical asymptote, they say, ‘[27:54] D: As the x values
approach that point, the y gets either infinitely, it approaches infinity in either direction’.
Their orally stated definition is correct but they are unable to formally state it in writing,
which in the theoretical interpretation makes it just partially correct. They also deny that
a graph of a function can cross its vertical asymptote:

D: If it were to cross the vertical asymptote, it wouldn’t be a one-to-one function,
because the asymptote itself means that you have values over here that are
approaching somewhere, but you also have values over there for the x and so,
and these ones continue on and would interfere. It wouldn’t pass the vertical line
test. [32:54]

The students show that they can use their orally stated definition, which is Vinner’s
(1991) second way, and that they have some understanding of what a function is. But
D’s understanding of a function is partially correct, as being 1 – 1 is not a criterion of a
function.

Student E

Student E was interviewed alone. She correctly defined continuity as lim
x→a

f xð Þ = f (a).

When solving task 2g, she nevertheless claimed that g is not continuous at x = 0:

E: Technically, because of the shape of that, that wouldn’t be continuous at that
sequence. Well, no, it is continuous. The limit doesn’t exist, though [3:12]

I: What is the limit if x is zero?

Fig. 4 Answer to tasks 4 and 5 by students C and D
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E: It equals zero and that also equals zero but graphically …

In student E’s self-understanding, continuity relates to the shape of a graph. Apply-
ing the theoretical framework, she has an incoherent concept image of continuity as she
talks about ‘sequence’ and not points. She then draws some figures and compares the
graph of g with the graph of the absolute value function |x| and appears stuck. Then, the
interviewer prompts: B[5:21] Maybe you are thinking about differentiability?^ After a
few seconds of silence she says, ‘[5:25] THAT’S what I am thinking about [laugh]’.
She is the only one who confuses the concepts of continuity and differentiability.
Hence, she writes the correct definition but she does not fully understand it, and she
does not refer to it when determining if g is continuous. She relies on her (wrong)
concept image of continuity and also gives a wrong answer to task 2g. In terms of task
2j, the student does not know the difference between rational and irrational numbers, so
this task is abandoned.

In task 4, she gives a correct definition of a horizontal asymptote and a partially
correct definition of a vertical asymptote (see Fig. 5). The definition of a vertical
asymptote is partially correct, as she does not write that x = a is the vertical asymptote
and the notation ‘DNE’ (shorthand for ‘does not exist’) is not formally correct. In terms
of the horizontal asymptote in task 5, she answers correctly that a graph of a function
can cross its horizontal asymptote many times but does not give an explanation and
says, ‘[22:25] NN [the lecturer] told us in class. Didn’t really explain it. I just remember
him drawing that’. Hence, in the theoretical understanding, she does not refer to the
definition but to her concept image containing memorisations from class. Regarding the
vertical asymptote in task 5, she draws a graph (see Fig. 5). The interviewer adds
something wrong to this graph (showing a graph crossing a vertical line many times) in
order to make her explain her answer. She then says:

E: I can define in terms of what kind of function generates a vertical asymptote. If
you have y = 1 / (3 − x), the vertical asymptote is x = 3 and it couldn’t cross it
because if you apply 3 as the x value into the denominator, you can’t divide by 0
so that’s undefined for that function. [23:33]

Hence, in the theoretical understanding she refers to a partially correct definition in
combination with her concept image when correctly answering the question about the
vertical asymptote, which fits the third option of Vinner (1991).

Fig. 5 Answer to tasks 4 and 5 by student E. Wrong additions to the graph were made by the interviewer.
DNE does not exist
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Student F

Student F was interviewed alone. In task 1 she answered, ‘Continuity for a function is
whereby the points do not break, they continue through the x-axis’, which is not
correct. Figure 6 shows more thick marking when x < 0, so she appears to believe that
as the function was identically 0 when x < 0, and therefore ‘on’ the x-axis, this makes it
not continuous here. She gives a wrong answer to task 2g while referring to her
erroneous definition; this is Vinner’s (1991) second way. From a theoretical under-
standing, she is able to refer to a definition but this (wrong) definition gives her the
wrong answer. Furthermore, her understanding of the definition is not partially correct
but incorrect. Due to the weak nature of her understanding of continuity, task 2j is
skipped.

Student F gives a correct definition of a horizontal asymptote, but the definition of
vertical asymptotes is partially correct and lacks formal mathematical language (see
Fig. 7). In her answer to task 5, she states that a graph can cross its horizontal asymptote
and gives sin(1/x) as an example. She then draws a graph to illustrate that a graph can
cross its vertical asymptote. When the interviewer challenges her if such a graph is a
graph of a function, she refers to the vertical line test to explain why it indeed is not.

In a theoretical understanding, F does not refer to her definitions of asymptotes but
to her concept images in her answers to task 5. Regarding the horizontal asymptote, she
refers to a concept image of sin(1/x), but her knowledge of the vertical asymptote is
very weak.

Discussion and Conclusions

How Did the Students Apply the Definitions or Concept Images when Solving
the Tasks?

In terms of task 1, three students provided a correct definition (C, D, E), two a partially
correct definition (A, B) and one a wrong definition (F) of continuity. In task 2, the
students were asked to determine if two given functions (g and j) were continuous. Four
students correctly stated that g is continuous on its whole domain (A, B, C, D) while
two did not provide a correct answer (E, F). The reasoning behind the right and wrong

Fig. 6 Answer to task 2g by student F
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answers varied. Three referred to the definition by themselves (A, B, F), two needed a
hint to use the definition (C, D) and one (E) only used the concept image. In relation to
function j, the study also found a mix of answers as two students referred to the
definition (C, D, after a hint) or referred to a definition together with the concept image
(A, B). Overall, in relation to the continuity tasks, the study found all combinations of
providing a correct definition (or not), right/wrong answers and used/used not the
definition. All six students at some point referred to the definition they stated. It also
appeared (not surprisingly) that when the definition was correct and applied, the answer
to the task was correct. The use of a wrong definition led to a wrong answer (also not
surprisingly), while the use of a partially correct definition sometimes led to the right
answer, sometimes the wrong answer. The latter is discussed in the next section about
the quality of the partial correct definitions.

Regarding the answers to the tasks about asymptotes, the answers showed much less
variety. All students gave the correct definition of the horizontal asymptote, but only
one (A) gave a correct definition of the vertical asymptote. In relation to the first part of
task 5, all students answered the question about the horizontal asymptote correctly, but
four students (C, D, E, F) only relied on their concept image while one (A) used both
the definition and his concept image. Hence, none of them relied solely on the
definition. The answers to the task on the vertical asymptote in the first part of task 5
varied. Four (A, C, D, E) answered it correctly using either the definition in combina-
tion with the concept image by referring to a graph (A, correct definition; E, partially
correct definition), or used a property of a function (C, D, partially correct definition).
The student (F) who gave the wrong answer used the concept image of asymptote. It
therefore appeared that four students did not use the definition in solving the task about
the horizontal asymptote but successfully relied on their concept images, while five
used the definition together with the concept images and property of a function when
solving the task about the vertical asymptote. See Table 1 for an overview.

Summing up, the six students were different. In line with studies referred to above,
two students who only referred to their concept images in some tasks failed to get the
right answer (E in 2g, F in 5v), but what is different from these studies is that four
students were successful in answering some tasks only using their concept images (C,
D, E, F; all in 5 h). It also appears that two students (A, B) successfully just referred to
the definition when solving task 2g. All students referred to their concept image at
some point when solving the tasks, which often helped them to get the correct answer.
The students furthermore used all Vinner’s (1991) three ways of using the definition,
when they applied a definition.

Results that are Different from Other Studies. This study gave examples of non-
STEM students who were successful in solving tasks when just referring to their

Fig. 7 Answer to tasks 4 and 5 by student F
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concept image and students who were able to use the definition when solving tasks.
Both are different from the main conclusions in the studies of STEM students referred
to earlier, where students often do not use the definitions when solving tasks but instead
mainly use their concept images, which cause problems for them. This study, therefore,
both adds different examples to the large body of literature of how students use, or do
not use, the definition or concept image when solving a task, but it also adds to the
smaller body of literature on non-STEM university students’ learning of mathematics.
One might ask why the results about the use of definitions and concept images are
different from the other studies. One reason is that these other studies did not state that
it never happened that students used the definitions or successfully used the concept
images; they reported on main trends. Another reason might be that the students in this
study are indirectly led to use the definition as they are asked about the definition
before the tasks. This does not change that some of them show that they are able to use
the definition. A reason why some students are successful only applying their concept
images might be that they have coherent concept images. Earlier, Vinner (1991) is
referred to for arguing that students should always refer to the definition, but coherent
concept images might be enough when tasks are routine. Further study is needed here.

The Students’ Correct, Wrong and Partial Understandings and their Qualities

Continuity. Three partial or incorrect understandings appeared: (1) none of the six
were aware that continuity had to do with property at a point and not property of a
graph; (2) one student confused differentiability with continuity. Both types were
documented in previous literature (e.g. Nuñéz, Edwards & Matos, 1999; Selden,
Selden, Hauk & Mason, 1999; Tall & Vinner, 1981). A third (3) type appeared when
F stated that points that were ‘on’ the x-axis, which meant that the graph was not
continuous at that place. These partial or incorrect understandings were not equally
wrong. The first was a partial understanding that was still usable in determining if some

Table 1 Overview of answers

Task 1 Task 2g Task 2j Task 4h Task 4v Task 5h Task 5v

A
B

Partial
correct

Correct.
Use cd

Wrong. Use cd
and ci

Correct Correct Correct.
Use cd
and ci

Correct. Use
cd and ci

C
D

Correct Correct. Use
ci, use cd
when prompt

Correct with help.
Use ci, use
cd when
prompt

Correct Partial
correct

Correct.
Use ci

Correct. Use cd
and property
of a function

E Correct Wrong.
Use ci

NA Correct Partial correct Correct.
Use ci

Correct. Use ci,
use cd when
prompt

F Wrong Wrong. Use cd NA Correct Partial
correct

Correct.
Use ci

Wrong. Use
ci

Note. For Tasks 4 and 5, h and v stands for horizontal and vertical, respectively

NA the task was skipped, cd concept definition, ci concept image
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functions were continuous. This was not possible with types two and three, which were
incorrect. The third type was probably also related to a general lack of understanding of
graphs and coordinate systems. Referring to the discussion above about learning being
a process with incoherencies (Vinner & Dreyfus, 1989, p. 365), one could argue that
although the concept images of continuity of A and B were not completely coherent,
they were more useful in solving tasks than the concept image of E, who correctly
recalled the definition but did not fully understand it.

Asymptotes. It appeared that the definition of the horizontal asymptote was easier than
the vertical asymptote. The students had difficulties with the formal language of the
vertical asymptote. The study found an opposite pattern among the six students: the
students all knew the definition of the horizontal asymptote, but did not use it much in
correctly answering task 5, while most students only had a partial understanding of the
definition of the vertical asymptote, but they nevertheless often used this definition
alongside their concept image of a property of a function. A reason for not always
relying on the definition was offered by C and D who said that had it been a ‘less
obvious’ (i.e. more difficult or non-routine) function, they would have relied on the
definition. C and D obviously thought that using the graph was an equally valid method
as referring to the formal definition. Nevertheless, as argued earlier, the learning of
asymptotes has not been studied extensively, but this study showed differences in the
difficulty of understanding the horizontal and the vertical asymptote, and to some
students the latter appear related to the notion of a function.

Implications for Teaching

Continuity. Nuñéz et al. (1999) argue that the informal/intuitive definition of continu-
ity characterises it as a process without gaps or sudden changes. As described earlier,
the intuitive definition is used by the textbook and by the lecturers. A continuous
function is a function that is continuous at every point of its domain, but a rational
function such as f(x) = 1/(x + 3), for example, is continuous on its whole domain but
its graph exhibits a hole at the restricted value (x = −3), hence one needs to ‘lift your
pen’ to draw the graph. Ergo, the intended help might have contributed to the
confusion or at least to form some partially correct understanding and incoherent
concept images. The formal definition deals with static and discrete elements, and
Nuñéz et al. (1999) argue that the two definitions are different and it is thus a
problem that students are often not told this. In this study, C and D obviously think
that using the graph (i.e. the informal intuitive definition, concept image) is equally
valid as referring to the formal definition. Leron and Hazzan (2006) argue that
students need to be made aware of the different modes of thinking and how they
operate. For teaching, one can, therefore, argue that teachers need to make the
students aware of this, which might help the students understand the definition and
develop their concept image and have a better understanding of their mutual rela-
tionship. Students also need tasks that are too difficult or non-routine to solve solely
relying on the concept image, such as tasks like task 2j. In line with this, Vinner
(1991) argues for non-routine tasks. As suggested by Edwards and Ward (2004), it is
essential to spent time on definitions to aid the students in using them.
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Asymptotes. As seen earlier, all students knew the definition of a horizontal asymptote
whereas the definition of a vertical asymptote caused problems. However, as noted by
Kidron (2011) referred to earlier, the definition of the horizontal asymptote can also be
difficult for students. In this study, the definition and concept image of the vertical
asymptote was often related to how students defined a function; hence, teaching of a
vertical asymptote should put students in situations that expose them to the relationship
between these concepts as well as how an asymptote relates to the concept of limit.

What to Expect Mathematically of Non-STEM Students? Given that this calculus
teaching is without epsilon-delta definitions, and hence, less precise, this in itself makes
it more difficult for the students to get to the depth of understanding the concepts of
limits, continuity and asymptotes. Ergo, when the students are introduced to less precise
definitions, it is not surprising that the study then reports many partial understandings.
However, even within the frames of the present course and textbook, it is possible to
arrive at correct understandings if, for instance, statements such as ‘graphs with no
holes’ are properly explained and coherent concept images are developed. It is worth
noting that some students appeared stronger than others and had correct understanding,
coherent concept images and good partial understandings, while others were weaker
and did not even know, for instance, the difference between rational and irrational
numbers. This study is qualitative, hence, one cannot make generalisations on behalf of
all non-STEM university students based on these six students. Knowing how large a
portion of all non-STEM students would resemble the six students is beyond the scope
of this study. One may ask why some of the six students were able to get the relatively
high level of understanding, particularly since, as also stated earlier, Randahl (2012)
reports that first-year engineering students have major difficulties using definitions
provided as formal definitions, and Morgan (1990) states that engineering students
have difficulties performing deductive reasoning. Based on these studies, the perhaps
obvious assumption is, as also stated earlier, that non-STEM students would have even
greater difficulties as they are even farther away from mathematics than engineering
students. But this might not always be the case. Hasse argues that in Italy, physics is not
seen as a ‘hard’ discipline and many physics students have a humanistic background,
B[T]he ‘classical’ students become especially apt physics students because they,
through their knowledge of philosophical and classical subjects, learn to think in the
abstract lines of thought of importance to both the natural sciences and the humanities^
(2009, p. 123). This does not mean that all non-STEM students would understand
epsilon-delta definitions but some could. One suggestion, therefore, is to stop suggest-
ing a slower-pace calculus course for all non-STEM students as it is not one group.
Some non-STEM students are able to take courses with epsilon-delta definitions and
enjoy it even though they are not going to use it later.

Closing Comments

The study shows that the notions of concept image and concept definition are useful to
interpret students’ behaviours as they put names to what students do. As also stated
earlier, not much research has been done on the non-STEM students who are required
to study mathematics as part of their degree programme in humanities or social science.
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The six students in this study do not represent all non-STEM students, also given the
fact that they attend a top US university. Nevertheless, going back to the concept of
‘fittingness’ (Schofield 1990) discussed earlier, the results might be used as a point of
reference for other studies addressing similar issues not only in relation to non-STEM
students but also in relation to the extent to which STEM students might be more
successful in solving tasks even when they only apply the concept image, contrary to
the main results in many studies referred to earlier. The study shows cases of benefits of
using concept image over concept definition when such images are coherent. This
study also shows cases of students who are able to refer to the definitions when solving
tasks, which is different from the main conclusions of many previous studies. Further
study is therefore needed to understand the learning process of the non-STEM students
at other types of universities as well.
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