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Fully Automated Design Method Based on
Reinforcement Learning and Surrogate Modelling

for Antenna Array Decoupling
Zhaohui Wei, Zhao Zhou, Peng Wang, Jian Ren, Member, IEEE, Yingzeng Yin, Member, IEEE,

Gert Frølund Pedersen, Senior Member, IEEE, and Ming Shen, Senior Member, IEEE

Abstract—Modern electromagnetic (EM) device design gen-
erally relies on extensive iterative optimizations by designers
using simulation software (e.g. CST), which is a very time-
consuming and tedious process. To relieve human engineers and
boost productivity, we proposed a machine learning framework
to solve the problem of automated design for EM tasks. The
proposed approach combines advanced reinforcement learning
(RL) algorithms and deep neural networks (DNNs) in an attempt
to simulate the decision-making process of human designers to
realize automation learning. Specifically, the RL-based agent
can interact with the EM design software without engaging
human designers, allowing for automated design. Besides, the
data accumulated during EM software simulation in the early
design stage are reused as training data to build a DNN surrogate
model to replace the time-consuming EM simulation and further
accelerate the training of RL to achieve better optimization of
EM design. Two types of antenna array decoupling including
1×2 and 1×4 arrays working at 3.5 GHz are used as test vehicles
to validate the proposed method. The decoupling metasurfaces
designed by the proposed fully automated method based on RL
showed satisfactory results comparable to the results achievable
by human designers. This indicates that the proposed method
can be used to build powerful tools to boost the design efficiency
of EM devices.

Index Terms—design automation, decoupling metasurface, re-
inforcement learning, deep neural networks

I. INTRODUCTION

EM metasurfaces are recently utilized to minimize the
coupling between antenna elements [1–4] due to their

outstanding manipulation of EM waves. Traditional design
methods [5–9] rely on extensive trial and error by expert
engineers, which is a time-consuming and inefficient proce-
dure as the simulated data cannot be constructively reused.
Furthermore, to obtain an acceptable decoupling performance,
the metasurface and array antenna are generally co-simulated,
which increases the structure’s complexity and lengthens the
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time for each EM iteration. As a result, swiftly designing a
satisfactory decoupling metasurface is a challenging task.

In recent years, artificial neural networks (ANNs) are
rapidly emerging as a powerful tool in EM-based modeling
and optimization [10], such as passive circuits and components
[11–13], field-effect transistors [14], antennas [15–18], and
fault detection and diagnosis [19], [20]. Deep learning (DL)
enhanced the ability of ANNs by utilizing deeper networks
and more neurons and has become a dominant paradigm
in addressing more complex problems [21], [22]. In [23],
a hybrid DNN model was proposed to model and simulate
microwave filters, leading to a higher accurate result with
fewer samples than traditional ANNs. To further improve
training efficiency, domain knowledge was employed to assist
DNNs with the design of metalens antenna [24], metasurfaces
[25–28], frequency selective surface (FSS) [29], [30], mode
recognition [31], and reflectarray [32]. Moreover, a multi-
branch DNN-assisted strategy [33] was presented to enhance
the algorithm robustness by searching for multiple different
branches. Easum et al. [34] combined a black-box multiob-
jective optimization technique with a surrogate model for the
design of monopole and vivaldi antennas. On the other hand,
recent methodologies developed within the so-called System-
by-Design (SbD) framework [35], enable effective and com-
putationally efficient integration of machine learning surrogate
models with evolutionary optimizers. By means of the superior
prediction capabilities of the surrogate model and solution-
exploration abilities of optimizers, the SbD framework has
been successfully applied for the design of complex EM
devices and systems, including isotropic lenses[36], innovative
radomes[37], reflectarray antennas[38], multiband antennas
[39], etc.

Another prominent machine learning method is reinforce-
ment learning (RL) [40]. Unlike other ML methods described
above, which require the human designer to annotate the
training data set, the RL algorithm can automatically explore
an unknown environment to collect training data by interacting
with it using the trial-and-error method. RL algorithms have
been successfully applied in a variety of fields of science
and technology, including wireless communication [41], [42],
resource allocation [43], video games [44], machine trans-
lation [45], and EM component design [46–48], and so on.
Furthermore, AlphaGo built by DeepMind based on DNNs
and RL, which is the same approaches taken by this work,
has defeated the world human champion of Go [49] and its
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upgraded version, AlphaGo Zero, has reached a level way
beyond human capacity [50]. Moreover, the time needed in
chip design floorplanning, by using RL, can be reduced from
months to hours as reported by Google [51]. These successful
achievements have encouraged us to apply RL and DL to
leverage the automated design of antennas and surfaces.

In this work, we are motivated to apply RL and deep
learning for the automated design of decoupling metasurfaces
(DCMSs), in an attempt to minimize the mutual coupling
between array antenna elements. The design of DCMSs is
one of the most challenging EM design tasks which usually
require at least days of design time by human designers, and
we aim at shortening the design time while maintaining the
design outcomes. For this purpose, we first design an RL-based
framework to transform the array antenna decoupling problem
into a Markov Decision Process (MDP) by defining states,
actions, and rewards. Subsequently, the RL-based algorithm
can independently learn to self-adjust the parameters of DCMS
according to the design target. The EM data collected by
CST is not only used to make decisions for the virtual agent
but also used to build a surrogate model for CST to speed
up the EM simulations. It is worth mentioning that these
two processes are carried out simultaneously. Compared to
existing supervised deep learning design methods that require
manual pre-processing and annotation of training data sets, the
proposed approach has the advantage of automated annotation,
and improved quality of the training data set. This is because
it can analyze the correct exploration direction from the prior
data, reducing many ineffective explorations and enhancing the
speed of convergence of the surrogate model by virtue of the
decision-making capability of the RL algorithm. The RL-based
virtual agent can interact directly with the surrogate model
once it has been trained, drastically lowering the time it takes
to locate the goal solution. Finally, the proposed approach is
tested by designing a 1×4 array antenna DCMS.

The remainder of this paper is organized as follows. The
basic knowledge of RL is given in Section II. Section III
presents the details of the proposed method and algorithm im-
plementation. Then, the performance of the proposed method
is verified through two numerical experiments in Section IV.
Finally, we conclude this paper in Section V.

II. PRELIMINARY

A. Terminologies of RL

As shown in Fig. 1, RL can be demonstrated by termi-
nologies of state, action, and reward. Based on the current
state sk, the agent select an action ak to perform under the
control of policy π (ak | sk). Then the environment makes a
transition from the current state sk to a new state sk+1 and
return a reward rk to the agent. The reward is required to be
previously defined and can be adjusted flexibly in terms of
different problems. Also, it is an indicator that reflects how
good or how bad action is. According to the rewards from the
environment, the agent tends to select more good actions to
perform while bad actions are excluded.

Agent

Environment

action ak

reward rk

state sk+1

state sk

Fig. 1. The agent-environment interaction in reinforcement learning.

B. Q-learning Framework

Q-learning is an off-policy RL algorithm whose objective
is to find an optimal action a∗(k) to take given the current
state sk. The Q in Q-learning means Q-value function, which
is introduced to evaluate the impact of the action ak under
the policy π (ak | sk). The Q-value function also called the
discounted cumulative reward, is given by [52]

Q (sk, ak) = E [Uk | sk, ak]

= E

[ ∞∑
t=0

γtrk+t+1 | sk, ak

]
= E

[
rk+1 + γrk+2 + γ2rk+3 + · · · | sk, ak

] (1)

where E denotes the expectation operation and the discount
factor γ ∈ [0, 1) ensures the sum converges. As a mathematical
trick, γ is used to balance immediate and future rewards.
γ approaching zero means the agent would mainly consider
immediate rewards, while γ approaching one means the future
rewards would be considered with greater weight. Moreover,
by observing the definition of the Q-value function, we can
find that all future rewards are required to calculate the Q-
value of each action. In other words, it is only calculated
until one episode (each episode is composed of the agent
moving from the initial state to the goal state) is finished.
However, obtaining the total reward to compute the Q-value
function would be difficult and time-consuming, especially
for complex scenarios. To solve the problem, the temporal
difference algorithm improves the updating rule by predicting
the long-term future rewards of each action, which is given by

Q (sk, ak) =Q (sk, ak) + α · [r (sk, ak)

+γ · max
ak+1∈A

Q (sk+1, ak+1)−Q (sk, ak)

]
(2)

where α ∈ (0, 1) stands for the learning rate. All the state-
action pairs and the corresponding Q-value form the Q-value
table. The goal of training is to optimize the Q-value table.
Once the Q-value table is close enough to convergence, it
can be utilized to find the optimal sequences of states by
performing the actions with the highest Q-values at each state.
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ek=[sk, ak,

rk, sk+1]

Random 

Sample ek

rk, sk+1

sk, ak

Q(sk, ak; θ)

rk+ γ maxQ(sk+1, ak+1; θ’)
ak+1

Experience Pool

E = {e1,e2,…,eT }

Experience Pool

E = {e1,e2,…,eT }

Update θ’ 

with θ per 

N steps

Update θ 

IL:  Input Layer

HL: Hidden Layer

OL: Output Layer
IL HL OL

Estimation Network (θ)

IL HL OL

Target Network (θ’)

Loss Function 

L(θ)

Fig. 2. Deep Q network (DQN) architecture.

C. The Selection Strategy

The exploration and exploitation are pairs of contradictions
in the action-selection process. For greedy algorithms, ex-
ploitation is mainly considered; that is, the agent always selects
the actions with the highest reward to perform. Although the
greedy algorithm takes full advantage of the experience from
prior exploration, it is easy to trap into the local optimum.
On the contrary, the random selection algorithm considers the
exploration with greater weight. The local optimum can be
avoided by randomly selecting actions. However, the random
selection algorithm has a very slow convergence velocity.
Therefore, a trade-off has to be made between exploration and
exploitation.

In this paper, we use the ϵ-greedy selection strategy. It can
be represented by

ak =

{
argmaxa∈A Q(a), 1− ϵ
random action, ϵ (3)

In the ϵ-greedy algorithm, the agent randomly selects an
action with the probability of ϵ while selecting the action
with the highest Q value with the probability of 1-ϵ. Due to
the introduction of ϵ, the agents can achieve a good balance
between exploration and exploitation.

D. DQN Algorithm

The design of DCMS is a complex issue because there are
many parameters to tune. That would mean that tremendous
states and actions need to be stored by the Q-value table, which
is impractical for the Q-learning algorithm to implement.
DQN has solved this problem by introducing a deep learning
technique into Q-learning. Using DNN to approximate the
Q-value function instead of the Q-value table enables the
Q-learning algorithm to deal with high dimensional input
problems.

The DQN architecture is shown in Fig. 2. We can see
that the DQN consists of two identical DNNs except for
the weights, namely estimation, and target network. At the
time k, the agent’s experience ek is defined as a tuple
(sk, ak, rk, sk+1). By interacting with the environment, the

agent can obtain extensive experiences, which are stored in
the experience pool. In the training process, these experiences
are randomly sampled from the experience pool to cut off their
correlations. This method is called experience memory replay,
which has been shown that it can significantly improve and
stabilize the DQN training. Moreover, we can also find that the
experience retrieved from experience pool are divided into two
parts, (sk, ak) and (rk, sk+1) pairs. The former is input into
the estimation network, while the latter is input into the target
network. As a result, the Q (sk, ak; θ) and Q (sk+1, ak+1; θ

′)
can be obtained, respectively. Next, the loss function L(θ) can
be calculated by

L(θ) = E

[
rk + γmax

ak+1

Q (sk+1, ak+1; θ
′)

−Q (sk, ak; θ)]

(4)

It is worth mentioning that the target and estimation network
is asynchronously updated. In the beginning, the weights of
the target network θ′ are frozen, and then only the estimation
network θ is updated. After updating the N steps, the weights
of the target work are updated to the new weights of the
estimation network.

III. THE PROPOSED METHOD AND IMPLEMENTATION

A. Problem Statement

Fig. 3 shows the structure of a 1×2 array antenna de-
coupling design. The height of the antenna element from
the ground plane is H2 = 4.5 mm. The length of the
antenna element is lp = 30.5 mm. The spacing between the
antenna elements is sp = 1.5 mm. Generally, the adjacent
array antenna elements are arranged very close to each other
to save space (as shown in Fig. 3(b)), which makes the
inter-cell coupling become strong and seriously affects the
performance of the array antenna, including pattern distortion
and impedance mismatch. To solve this problem, a DCMS
can be placed above the array antenna (as shown in Fig. 3(a))
in an attempt to reduce the coupling between array antenna
elements by manipulating the scattering of EM waves, which
has achieved good results in [1–4]. However, the process of
designing and adjusting the DCMS can be very complicated
and time-consuming. On the one hand, DCMS itself (as shown
in Fig. 3(c)) has many parameters to be adjusted, and the
parameters are interrelated with each other. On the other
hand, the introduction of DCMS will destroy the impedance
matching of the array antenna, and the antenna matching
has to be re-adjusted. Therefore, how to improve the design
efficiency of DCMS according to different array antennas is a
big challenge.

B. System Framework

We proposed and constructed a scenario for the design of
DCMS based on RL and surrogate modeling, as illustrated in
Fig. 4. The objective of this scenario is to build a mechanism
that automatically designs the DCMS for array antennas. Note
that the proposed design system needs to be trained, and a
well-trained RL algorithm and surrogate model can accelerate
the DCMS designs according to different design targets.
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Fig. 3. Geometry of 1×2 array antenna and the corresponding DCMS. (a)
Front view of the overall structure. (b) Top view of the 1×2 array antenna.
(c) Top view of the DCMS.

There are three stages in the proposed system framework:
1) Early training and data-collection stage: the RL-based

agent learns on its own and automates the generation of the
training data set by interacting with the environment with-
out human involvement. DCMS works as the manipulatable
component whose parameters can be adaptively tuned under
the control of the RL algorithm. Full-wave EM simulation
software CST is used to evaluate the performance of DCMS
and assign rewards accordingly. The collected data is mainly
used for the training of the RL algorithm. In addition, it is
also re-used to train a surrogate model in stage 2 to speed up
the EM simulation.

2) Surrogate training stage: A surrogate model is built and
trained to rapidly predict the scattering response of the EM
structures. In the training process, the geometric parameters
of DCMS are used as the input of the surrogate model, while
the scattering parameters are used as the output, and a loss
threshold is set to determine whether the surrogate model is
sufficiently trained or not. In this paper, this loss threshold

Take action

Reward

Next state

(Geometric 

Parameters,

Scattering 

Parameters)

Loss < ε 

N

Y

2. Surrogate Training Stage 

1. Early Training and Data-collection Stage 

Bootstrapping

Surrogate Model

3. Acceleration Stage 

Environment (CST)Environment (CST)

RL-based Agent 

(DCMS)

Take action

Reward

Next state

Bootstrapping

RL-based Agent 

(DCMS)

Surrogate Model

Fig. 4. System framework of the proposed method.

is set to 0.003, which allows for a balance between training
accuracy and efficiency. Table I lists the parameters of the
surrogate model, which is based on the platform of the Py-
torch ML framework using a ThinkStation P920 Workstation
computer.

3) Acceleration stage: Once the surrogate model is trained,
the RL algorithm will stop interacting with CST but directly
with the surrogate model. In such a condition, a large number
of training data can be obtained in a short time, which
contributes to the fast convergence of the RL-based model.

The RL algorithm can be trained by exploiting the train
system shown in Fig. 2. Once the convergence of the RL
algorithm is reached, the corresponding parameters of DCMS
can be found.

C. Surrogate Model Training

The training of the surrogate model is described in detail
in this subsection. This is a typical prediction problem in
which the geometric parameters of the EM model are input
and the surrogate model outputs its corresponding reflection
and transmission coefficients. Since there are 9 geometric
parameters to be optimized, the input layer of the neural
network has nine neurons. The default dimension of the
reflection and transmission coefficients exported from CST is
1001. To reduce the training difficulty and improve training
efficiency, we reduce them to 101 dimensions and merge them,
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TABLE I
PARAMETERS OF THE SURROGATE MODEL.

Variable Value
Learning rate 0.0005

Optimizer Adam
Batch size 32

Episode 2000
No. of neurons in input layer 9

No. of neurons in output layer 202
No. of hidden layers 4

No. of neurons in each layer {500,400,300,200}

so that the output layer of the network has a dimension of
202. Another trick is to use linear values of the reflection and
transmission coefficients for model training, which can obtain
a higher accuracy since the linear values range from 0 to 1
and fluctuate less compared to their corresponding logarithmic
values. The surrogate model has four hidden layers, each with
500, 400, 300, and 200 neurons. The first three hidden layers
are followed by a ReLU as the activation function while
the last hidden layer has no activation function. The data
acquisition and training of the surrogate model are carried
out in multiple sessions. This is because the training data
comes from the interaction of RL with the CST. The surrogate
model starts training once when RL has collected 100 samples.
The total samples are split into training and test datasets in
a ratio of 7:3, and the loss threshold is set to 0.003. When
the training does not satisfy the requirements, the surrogate
model continues to be trained using the data obtained from
the interaction between RL and CST until the loss threshold
is satisfied.

D. Algorithm Implementation

This section will introduce how to utilize the DQN algo-
rithm to design the DCMS. It is necessary to transform the
DCMS design into an RL problem by identifying the system
state, action, corresponding reward, and next state.

1) State: Two terminologies are required to be defined: state-
space S and state sk. The state-space S can be represented by
the parameters of the DCMS of all steps in one episode, which
is given by

S = (s1, s2, ..., sk, ...sN ) (5)

where N stands for the total number of steps in one episode.
We define the state sk of the DCMS in step k as

sk = (lmk, wmk, sxk, syk, H1k, lsk, wsk, lk, dk) (6)

where lmk, wmk represent the length and width of the meta-
unit, respectively. sxk, syk are the meta-unit spacing of along
x-axis and y-axis. H1k stands for the height of DCMS with
respect to the upper surface of the array antenna. lsk, wsk, lk
and dk are the parameters used to tune the impedance matching
of array antenna, which are the length, width, and spacing of
rectangular slots, as well as the location of feeding point.

2) Action: For the design problem, there are three operations
for each parameter: addition, subtraction, and in-variance. For

the sake of simplicity, the amplitude of increase or decrease is
set as the same, which is represented by amp. Therefore, the
variations of each parameter p can be mathematically defined
as pv ∈ {amp, 0,−amp}. The setting of amp depends on the
sensitivity of each structure parameter, which can be quickly
obtained by parameter scanning. We find that small changes
of the input variables l, lm, wm, ls, ws can have a more
significant effect on the reflection and transmission coefficients
compared to that of other structure parameters, so the amp of
l, lm, wm, ls, ws are set to 0.2 while that of the other variables
are set to 0.5. In such a condition, the action ak at step k can
be given by substituting the p in pv with the parameters of
DCMS:

ak =
(
lvmk, w

v
mk, s

v
xk, s

v
yk, H

v
1k, l

v
sk, w

v
sk, l

v
k, d

v
k

)
(7)

3) Reward: In the array antenna decoupling design, the
isolation of the array antenna and VSWR are two essential
parameters to evaluate the performance of DCMS design.
Therefore, these two parameters are selected as the criterion
for system evaluation of reward, which is given by

r (sk, ak) =

{
1, Lk < Lk−1

−1, otherwise (8)

Lk = η × LS11k + (1− η)× LS21k (9)

LS11k = (S11k − Smin) (S11k − Smax)
T

+
∣∣∣(S11k − Smin) (S11k − Smax)

T
∣∣∣ (10)

LS21k =
(
S21k − Smin

′) (S21k − Smax
′)T

+
∣∣∣(S21k − Smin

′) (S21k − Smax
′)T∣∣∣ (11)

where Lk indicates the difference between the results at the k
time step and the target results. The formula for Lk is given in
Equations (9) to (11). The η in Equation (9) is used to adjust
the ratio between the reflection coefficient and the transmission
coefficient. The closer η is to 1, the more attention is paid to
the reflection coefficient, and the closer η is to 0, the more
attention is paid to the transmission coefficient. In the design
of array antenna decoupling, the transmission coefficients are
more of interest, so the η is set to 0.2. In Equations (10)
and (11), S11k, S21k represent the reflection and transmission
coefficients of DCMS samples at the k time step. Smin, Smin

′

are the reflection and transmission coefficient’s lower limits
of the target DCMS. Smax, Smax

′ indicate the reflection and
transmission coefficient’s upper limits of the target DCMS.
Also, the boldface is denoted as a row vector, and (*)T

represents the transpose operator.
4) Next state: Based on the definition of state sk and ak

demonstrated before, the next state sk+1 is represented by

sk+1 = sk + ak (12)

Also, the termination conditions of the algorithm are given
as follows:
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TABLE II
THE PSEUDO CODE OF DQN ALGORITHM.

Algorithm: DQN-based DCMS Design
Initialization: Learning rate α, discount factor γ
ϵ-greedy ϵ, replay memory D, batch size B
estimation and target network weight θ and θ′

Process:
For episode = 1, 2, ..., E do

Initialize state s1
For k = 1, 2, ..., K do

With probability ϵ select a random action ak

With probability 1-ϵ select
ak = maxak+1 Q (sk+1, ak+1; θk)

Execute action ak and obtain reward rk

Store transition (sk, ak, rk, sk+1) in D
Sample random batch B of transitions from D
If Criterion
rk+1 = rk

else
rk+1 +maxak+1 Q (sk+1, ak+1; θk)

Perform a gradient descent step on
Every Tstep steps reset θ′ = θ

End for
End for

TABLE III
THE DETAILED PARAMETERS OF DQN ALGORITHM.

Variable Value
Learning rate α 0.001

Discount factor γ 0.9
ϵ-greedy ϵ 0.2

Replay memory D 2000
Batch size B 32

Maximum episode E 100
Maximum steps of each episode K 50

Criterion =

{
Yes, Lk = 0
No, otherwise (13)

The algorithm will end when it exceeds the allowable episode
length or satisfy the termination condition. The pseudo-code of
the DQN algorithm is shown in Table II, and the corresponding
parameters of the DQN algorithm are listed in Table III.

IV. APPLICATION EXAMPLES

Two array antenna DCMSs are designed in this section to
prove the effectiveness of the above-mentioned design concept.
To reduce processing costs and deal with restricted computing
resources, the array antennas employed in this study are 1×2
and 1×4 arrays, respectively. The array element is a patch
antenna that is implemented on an F4B dielectric substrate
with a permittivity of 2.65 and a thickness of 0.5 mm. While
DCMS has greatly improved the isolation between antenna
array elements, the matching of the antenna array deteriorates
with the addition of the DCMS. Moreover, it is difficult to
re-adjust the antenna array to impedance matching just by
changing the size and the feed settings of the antenna array
elements. Thus, we introduce two rectangular slots on the
antenna array elements to add extra degrees of freedom for
impedance tuning.

Target max mask Target min mask

(a) (b)

S11

S21

Fig. 5. Simulated reflection and transmission coefficients of the 1×2 array
antenna without DCMS. (a) Reflection coefficients (S11). (b) Transmission
coefficients (S21).

Fig. 6. Loss for the training data set during the training process.

A. 1×2 Array Antenna DCMS

Fig. 3 shows the geometry of 1×2 array antenna DCMS. As
shown in Fig. 3(b), the spacing of antenna elements is 1.5 mm
(0.017λ), where λ is the free-space wavelength corresponding
to the center frequency. Fig. 5 shows the reflection and
transmission coefficients of 1×2 array antenna without DCMS.
We can find that the isolation between the antenna elements is
around 10 dB within the operating frequency band, indicating
that the mutual coupling between the antenna elements is
serious at such a close distance. To suppress the mutual
coupling, the DCMS is introduced over the array antenna to
improve the isolation. Using the DQN algorithm, the system
can gradually learn how to quickly find the parameters of
DCMS to achieve the desired isolation while maintaining a
good impedance matching. To accelerate the simulation of
CST software, we build a surrogate model and train it to get
the EM responses of array antenna DCMSs.

Fig. 6 shows the error between CST and its surrogate model
over iterations. For the 1×2 array, we collect a total of 400
simulation samples in the first two stages of the proposed
system framework in Fig. 4. The total time spent on data
acquisition and model training is 40.3 hours. When the training
is completed, the mean square error (MSE) is 1×10−3 for the
training data set. Fig. 7 shows the interval probability of the
test dataset under different MSEs for providing an overview
of the performance of the surrogate model. We can find from
the figure that the majority (80%) of the tested samples had an
MSE of less than 0.004. The largest MSE of the test dataset
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Fig. 7. The interval probability of test dataset under different mean squared
errors (MSEs).

(a)

(b)

(c)
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CST
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CST
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CST

SM

CST

SM

CST

SM

CST

SM

CST

SM

CST

SM

CST

SM

CST

(a)

(b)

(c)

SM

CST

SM

CST

SM

CST

SM

CST

SM

CST

SM

CST

Fig. 8. Three examples are randomly sampled from the test data set. (a) Test
example 1. (b) Test example 2. (c) Test example 3. SM: Surrogate Model.

is about 0.011 and its probability is only 2%. Moreover, the
average MSE of the total test dataset is 0.003. We demonstrate
the accuracy of the well-trained DNN with three examples
that are randomly selected from the test data set. As shown in
Fig. 8, the predicted scattering coefficients are labeled with the
red dotted line, while the accurate results simulated with CST
are labeled with the solid blue line. Excellent agreements have
been achieved between the predicted and simulated results,
which indicates that the surrogate model is well trained and
can replace CST to give the EM responses of DCMS.

The returns of the DQN algorithm over episodes are de-
picted in Fig. 9. The reward value is normalized. It is observed
that the return is relatively low at the beginning of the learning
process. This is because the agent has no prior knowledge of

Fig. 9. Normalized returns of the DQN algorithm.

(a) (b)

SM

CST

SM

CST

(a) (b)

SM

CST

SM

CST

Target max mask Target min mask

S11

S21

Fig. 10. Comparison between simulated results of CST and predicted results
of surrogate model (SM). (a) Reflection coefficients (S11). (b) Transmission
coefficients (S21).

the environment (DCMS) and takes action randomly. As the
training episodes increase, the agent gradually learns the pa-
rameters of the system; therefore, the return increases greatly.
We can also find some fluctuations on the curve, which can
be explained by the ϵ-greedy selection strategy. Specifically,
a small probability of random action should be taken to
prevent the system from getting to a local minimum, leading
to fluctuations. After about 350 episodes, the return fluctuates
gently, indicating that the DQN algorithm has reached a
convergence.

To achieve an ideal decoupling performance while maintain-
ing a good impedance matching, it is generally required that
the magnitudes (logarithm value) of transmission coefficients
are less than -25 dB while return coefficients are less than -10
dB. Based on the constraints explained above, we define two
sets of masks for the transmission and reflection coefficients.
It is noticed that the upper mask (marked as red lines) plays
an important role in controlling the transmission and return
coefficients over the band of interest 3.4-3.6 GHz. Therefore,
the design objective of transmission and return coefficients
should focus more on satisfying the upper mask. The predicted
results from the surrogate model and the simulated results from
CST are shown in Fig. 10 for validation. It can be found that
both results agree well and transmission coefficients of less
than -25 dB with return coefficients of less than -10 dB over
the working band of 3.4-3.6 GHz are achieved. The parameters
of the designed DCMS are listed in Table IV.
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TABLE IV
DIMENSIONS OF THE DESIGNED 1×2 ARRAY ANTENNA DCMS.

Variable Value Variable Value Variable Value
H1 7.5 lm 18 sx 9
ls 21.2 l 13 sy 21
wm 6 d 1 ws 1.4

State 1

State 2

State 3

State 4

State 1 State 3

State 2

State 4

Target max mask Target min mask

(a) (b)

Fig. 11. The intermediate processes of how the RL tuned the structural
parameters.

TABLE V
THE STRUCTURAL PARAMETERS OF THE INTERMEDIATE PROCESS FOR

1×2 ARRAY.

Variable State 1 State 2 State 3 State 4
H1 8.5 10 9 8
sx 9.5 9 10 9.5
sy 20.5 20.5 21 21
lm 16.6 17 17.8 18.2
wm 5.4 5.8 6.2 6
ls 20.2 20.8 21 21.2
ws 1.2 1.0 1.6 1.4
l 13.4 13.2 12.8 13
d 1 1.8 1.4 1.2

To better illustrate how the trained RL adjusts the structural
parameters to achieve array decoupling, we provide four
intermediate processes (from state 1 to state 4) from the
surrogate model. The reflection and transmission coefficients
are presented in Fig. 11, while their corresponding geometric
parameters are presented in Table V. As shown in Fig. 11, state
1 is an arbitrarily chosen initial state. It has poor impedance
matching but very low coupling between antenna elements.
This is because most of the energy is reflected off and not
radiated through the antenna, resulting in a very low coupling
between the elements. From state 1 to state 2, the impedance
matching and isolation are significantly improved. From state
2 to state 3, good impedance matching has been achieved but
the coupling between antenna elements has deteriorated. In
state 4, a compromise is made between the reflection and
transmission parameters, allowing impedance matching and
isolation to advance one step further from the target.

B. 1×4 Array Antenna DCMS

Following the verification of the validity and convergence
of the DQN algorithm, we move on to the implementation
of 1×4 array antenna DCMS. Fig. 12 shows the geometry of
1×4 array antenna DCMS. The spacing of antenna elements

H1

H2 o
x

y

lp

lp

ls

d

ws l

sp

lm

sx

sy

wm

Fig. 12. Geometry of 1×4 array antenna and the corresponding DCMS.
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Fig. 13. Simulated reflection and transmission coefficients of the 1×4
array antenna without DCMS. (a) Reflection coefficients (S11, S22). (b)
Transmission coefficients (S21, S31, S41, and S23).

remains the same at 0.017 λ. The reflection and transmission
coefficients of the 1×4 array antenna elements without DCMS
are given in Fig. 13. Considering the symmetry, we only give
the scattering coefficients of S11, S22, S21, S31, S41, and
S23. We can find that the 1×4 antenna array becomes more
complex due to the number of antenna elements increasing
compared to the 1×2 array antenna. The mutual coupling and
the distance between antenna elements are closely related; the
isolation of antenna elements adjacent to each other is around
15 dB while that of antenna elements farther away is more than
25 dB. We can also observe that mutual coupling has a great
effect on impedance matching. As shown in Fig. 13(a), the
antenna elements located at the edge of the array have a good
impedance matching but the impedance matching of antenna
elements in the middle of the array deteriorates, which can
be explained by that the latter has a more complex coupling
environment than the former. Therefore, we introduce two
rectangular slots to increase the capacitance effect to adjust
the impedance matching of the array antenna.

Fig. 14 shows the error between CST and its surrogate
model over iterations. For the 1×4 array, we collect a total of
500 simulation samples in the first two stages of the proposed
system framework in Fig. 4. The total time spent on data
acquisition and model training is 67 hours. When the training
is completed, the MSE is 2 × 10−3 for the training data set.
The interval probability of the test dataset under different
MSEs is depicted in Fig. 15 for providing an overview of
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Fig. 14. Loss for the training data set during the training process.

Fig. 15. The interval probability of test dataset under different mean squared
errors (MSEs).

the performance of the surrogate model. It can be found from
the figure that the samples with MSE less than 0.004 account
for 89% of the overall samples. The largest MSE of the test
sample is approximately 0.008 with a probability of 2%. The
average MSE of the test dataset is 0.002. We illustrate the
accuracy of the well-trained DNN with three examples that are
randomly selected from the test data set. As shown in Fig. 16,
the predicted scattering coefficients are labeled with the dotted
lines, while the corresponding accurate results simulated with
CST are labeled with the solid lines in the same color. Good
agreements have been achieved between the predicted and
simulated results, which indicates the surrogate model can still
be well trained and accurately predict the EM response of
DCMS even when the array antenna is complex.

The returns of the DQN algorithm over episodes are de-
picted in Fig. 17. Similarly, the return is relatively low at the
beginning of the learning process and increases rapidly as the
episodes increase. After about 500 episodes, the return fluctu-
ates slightly, indicating that the DQN algorithm has reached
a convergence. We use the well-trained DQN algorithm to
search for the desired solution. To verify the rightness of the
proposed method, the predicted scattering parameters and the
simulated results are depicted in Fig. 18. We can find that an
acceptable agreement is reached and transmission coefficients
of less than -25 dB and return coefficients of less than -10 dB
over the working frequency band of 3.4-3.6 GHz are achieved.
The parameters of the designed DCMS are listed in Table VI.
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S21
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Fig. 16. Three examples are randomly sampled from the test data set. (a)
Test example 1. (b) Test Example 2. (3) Test example 3. (Note: the predicted
results from the surrogate model (SM) are represented by a dotted line while
the real results from CST are represented by the solid line with the same color.
Considering the symmetry, reflection coefficients (S11, S22), and transmission
coefficients (S21, S32, S41, and S23) are given in the left and right figures,
respectively.)

Fig. 17. Normalized returns of the DQN algorithm.

V. RESULTS AND DISCUSSION

A. Results

To demonstrate the advantages of the proposed approach,
Table VII compares the three DCMS design methodologies.
The GPU is used only for neural networks training not
used for CST in this study and has already achieved good
performance. Superior performance will be obtainable if the
GPU can be used for CST with some firmware setting. From
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Fig. 18. The comparison between simulated results of CST and predicted
results of surrogate model (SM). (a) Reflection coefficients (S11, S22). (b)
Transmission coefficients (S21, S31, S41, and S23).

the perspective of data acquisition, our proposed method (RL
+ Surrogate Model) can achieve satisfactory training results
using fewer samples than the second method (GA + Surrogate
Model), which stems from the different training mechanisms
of the two methods. Specifically, the second method requires
data collection in advance to train the surrogate model. The
brute data acquisition method of parameter scanning used in
the second method may lead to a large number of invalid
samples in the training dataset. Our proposed approach, on the
other hand, alternates between collecting data and training two
neural networks (surrogate model and RL algorithm). In other
words, the RL algorithm first interacts with the environment
to collect a portion of EM simulation data and then uses this
portion of data to train both RL and the surrogate model, with
the aim of improving the decision-making ability of RL and
the prediction ability of the surrogate model. Next, the trained
RL continues to interact with the environment to collect data,
and the cycle continues. In such a mechanism, the quality
(relevance to the target) of the collected data will be higher and
good performance can be obtained using less data. Moreover,
the training time is longer since both the RL algorithm and the
surrogate model are needed to train, but the optimization time
is shorter owing to the excellent decision-making capability
obtained by the trained RL.

Compared to the trial-and-error method, the design effi-
ciency of the latter two methods is higher, which mainly
stems from two aspects: on the one hand, the well-trained
DNN surrogate model allows for the rapid derivation of the
scattering response of EM structures, which greatly improves
CST simulation speed. On the other hand, the use of intelligent
algorithms (GA, DQN) considerably improves the efficiency
of exploring the optimal solution. In addition, the proposed
design method achieves a fully automatic design of the DCMS.
The trial-and-error method relies entirely on the designer’s
experience and a large number of simulation iterations, while
the second method (GA + DNN) also requires the designer
to artificially provide data for the DNN training. In contrast,
the proposed method takes advantage of the decision-making
capability of the RL algorithm to obtain increasingly bet-
ter training data without human involvement. Therefore, the
proposed method is an efficient and fully automated design
method.

TABLE VI
DIMENSIONS OF THE DESIGNED 1×4 ARRAY ANTENNA DCMS.

Variable Value Variable Value Variable Value
H1 7.5 wm 3 sx 6
ls 21.2 l 12.6 sy 19
lm 16.8 d 1 ws 1.8

TABLE VII
PERFORMANCE COMPARISON OF THREE METHODS FOR 1 × 2 ARRAY

DECOUPLING.

Methods
Trail-and

Error

GA +
Surrogate

Model
This work

Computational
Resources

CPU CPU, GPU CPU, GPU

Data
Acquisition

/ 600 samples,
60 h

400 samples,
40 h

Model
Training

/ 3 mins 20 mins

Optimization 168 h 0.5 h 5 mins

Total Time 168 h 60.5 h 40.4 h

Automation
Level

Manual Semi-
Automation

Full-
Automation

B. Discussion

It should be noted, that the advantage of the fully automated
process allows easy implementation of the proposed methods
to different EM designs without time-consuming simulation
and manual annotation for big amount of straining data used
in most existing supervised deep learning design methods.

Some limitations of the current method are pointed out.
Since the DQN algorithm has to discretize the action space,
it is computationally intensive when solving high-dimensional
or continuous action space problems, and the discretization
may lose some important action information. This problem
can be alleviated by using more advanced RL algorithms, such
as deep deterministic policy gradient (DDPG) [53], proximal
policy optimization (PPO) [54], etc. In addition, the neural
network structure of the surrogate model used in this method is
fixed. Such an architecture may not yield optimal performance
when dealing with different problems and different sizes of
data. It may be a promising solution by using evolutionary
algorithms to optimize the structure of the surrogate model
[55] for improving its generalization ability.

C. Future Work

In this paper, we have chosen a double-layer rectangular
patch as a metamaterial unit, which is not ”invented” by the
machine to decouple the microstrip patch antenna array. For
some other forms of array antennas, this metamaterial unit may
not be a suitable choice. But there is plenty of proven metama-
terial unit forms available and a unit library can be built for the
RL agent to choose from using a simple classification network
currently under development. In future work, we will upgrade
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the RL algorithm to explore unknown metamaterial units for
decoupling different array antenna types. To achieve this goal,
we plan to include a VAE network, based on our previous
work to generate different metamaterial units [29], and then
combine the proposed method to achieve the exploration of
metamaterial units to further improve the design efficiency of
DCMS.

VI. CONCLUSION

In this paper, we proposed an RL-based automation design
method for decoupling array antennas. Through the interaction
of the RL algorithm and the surrogate models, the proposed
method can find satisfactory solutions efficiently. Compared
with classic trial-and-error and supervised learning methods,
the proposed method makes full use of the decision-making
capability of RL derived from data analysis, which consider-
ably enhances the quality of the training data set and accel-
erates the convergence of the surrogate model. Meanwhile, it
also eliminates the manual training data preparation needed
by supervised learning, achieving the automation design of
array antenna decoupling. Two array decoupling metasurface
examples have been given to demonstrate the feasibility of the
proposed method. This design concept paves the way for the
fully automated design of EM components and systems.
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