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The Higher-Order Ψ-calculus framework (HOΨ) is a generalisation of many first- and higher-order
extensions of the π-calculus. It was proposed by Parrow et al. who showed that higher-order calculi
such as HOπ and CHOCS can be expressed as HOΨ-calculi. In this paper we present a generic
type system for HOΨ-calculi which extends previous work by Hüttel on a generic type system for
first-order Ψ-calculi. Our generic type system satisfies the usual property of subject reduction and can
be instantiated to yield type systems for variants of HOπ , including the type system for termination due
to Demangeon et al.. Moreover, we derive a type system for the ρ-calculus, a reflective higher-order
calculus proposed by Meredith and Radestock. This establishes that our generic type system is richer
than its predecessor, as the ρ-calculus cannot be encoded in the π-calculus in a way that satisfies
standard criteria of encodability.

1 Introduction

Process calculi are formalisms for modelling and reasoning about concurrent and distributed computations;
a prominent example being the π-calculus of Milner et al. [19, 25], which models computation as
communication between processes, by passing messages on named channels. Since its inception, a
multitude of variants of the π-calculus have appeared; e.g. Dπ [11], the calculus of explicit fusions [9], the
spi-calculus with correspondence assertions [1] and the eπ-calculus [6]. These calculi are all first-order,
in the sense that only atomic channel names can be passed around, not processes themselves. Bengtson et
al. [3, 4] created Ψ-calculi as a generalisation of these first-order variants and extensions, allowing a range
of calculi, including all of the aforementioned, to be expressed as instances of the Ψ-calculus framework
through appropriate settings of a small number of parameters. However, there also exist higher-order
variants of the π-calculus, such as the Higher-Order π-calculus, HOπ , [24, 23], that also allow processes
to be sent across channels. Parrow et al. [21] have extended the Ψ-calculus framework with a construct
for higher-order communication, creating the Higher-Order Ψ-calculus, HOΨ. Calculi such as HOπ and
CHOCS [26] can now be represented as HOΨ-instances, as well as every calculus that the ‘first-order’
Ψ-calculus framework can represent.

One of the techniques for reasoning about processes is that of type systems. The first type system
for a process calculus is due to Milner [19] and deals with the notion of correct usage of channels in the
π-calculus: In a well-typed process only names of the correct type can be communicated. Pierce and
Sangiorgi [22] later described a type system that uses subtyping and capability tags to control the use
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of names as input or output channels; and also many of the aforementioned first-order extensions of the
π-calculus have been given type systems to capture such properties as secrecy, authenticity and access
control.

In [12], Hüttel noted that these type systems, despite arising in different settings, share certain
characteristics: The type judgments for processes P are all of the form Γ ` P where Γ is a type environment
recording the types of the free names in P, so processes are only classified as being either well-typed
or not. On the other hand, terms M are given a type T , so type judgements for terms are of the form
Γ ` M : T . Based on these shared characteristics, Hüttel then created a generic type system for the
first-order Ψ-calculus framework, that generalises several of the type systems for the π-calculus and
its variants. This generic type system can similarly be instantiated through parameter settings to yield
both well-known and new type systems for the calculi that are representable as first-order Ψ-calculi. An
important advantage of this approach is that a general result of type system soundness can be formulated,
which is then inherited by all instances of the type system.

There has been some other works on generic type systems, notably those of König [16], Caires [5]
and Igarashi and Kobayashi [15]. However, these are formulated for variants of the first-order π-calculus,
which thus limits their applicability to languages that can be represented in the first-order paradigm. Stated
otherwise, they exclude languages such as the aforementioned eπ-calculus, which cannot be encoded into
the first-order π-calculus, as shown in [6], but which nevertheless can be given a type system using the
generic approach of Hüttel, indicating that the latter is a more general framework for first-order calculi.

However, the generic type system of Hüttel can only type first-order calculi; it cannot be instantiated
to yield type system for higher-order calculi, such as HOπ or CHOCS. Both of these higher-order calculi
can be encoded into the first-order π-calculus, as shown by Sangiorgi in [24], and may therefore also
be represented in just the first-order Ψ-calculus. Not surprisingly, there is therefore little work on type
systems for higher-order calculi, since these encodings allow us to disregard the higher-order behaviour
and instead just type the first-order translations. One exception is the type system for termination in
variants of HOπ , due to Demangeon et al. [7]. As these authors argue, it may not always be desirable
(or even possible) to type a higher-order language through a first-order representation, if the language
contains features that are difficult (or impossible) to encode. For example, higher-order behaviour may
alternatively be viewed as a special case of reflection; i.e. the ability of a program to turn code into data,
modify or compute with it, and reinstantiate it as running code; and process mobility here appears as a
special case where data (code/processes) are transmitted without modification.

This reflective capability is inherent in the Reflective Higher-Order (RHO or ρ) calculus of Meredith
and Radestock [18], and this calculus cannot be uniformly encoded in the π-calculus, as shown in [17].
This calculus therefore gives us an example of a language that cannot easily be represented in the first-order
paradigm, thus making it difficult (or impossible) to adapt any of the existing first-order type systems to
this language. Yet it can be instantiated as a HOΨ-calculus, as we shall show in the following.

The goal of the present paper is therefore to extend the aforementioned generic type system by
Hüttel, to create a generic type system for the HOΨ-calculus framework that will allow us to capture
typability in the higher-order paradigm. It allows us to identify what should be required of type systems
for higher-order process calculi that are instances of the HOΨ-calculus, and these requirements here take
the form of a number of assumptions that must hold for each instance. Like its predecessor, our generic
type system also satisfies a general subject reduction property that is inherited by all instances. We use
this to formulate simple type systems for HOπ , and we show that the type system for termination by
Demangeon et al. also can be captured as an instance of our type system. Lastly, we show that our generic
type system can be instantiated to yield a type system for the ρ-calculus, which establishes that our type
system is richer than the first-order type systems. To our knowledge, no type system has hitherto been
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published for this calculus, so we regard this instance as a further contribution of the present paper. A
technical report with full proofs of most results is available in [2].

2 The higher-order Ψ-calculus

The Higher-Order Ψ-calculus extends the original Ψ-calculus [3] with primitives for higher-order commu-
nication, i.e. process mobility. In this section we first review the syntax of HOΨ as given in [21], and then
proceed to give a reduction semantics for the calculus.

2.1 Syntax

The Higher-Order Ψ-calculus is a general framework, which is intended to allow many different calculi
to be obtained as instances, by setting a small number of parameters which takes the form of definitions
of three (not necessarily disjoint) sets of terms, conditions and assertions. To allow the framework to
be as general and flexible as possible, the authors of [3, 21] identify only a few restrictions that must be
imposed on these sets: they must be nominal datatypes. Informally, a nominal set, in the sense of Gabbay
and Pitts [8], is a set whose members can be affected by names being bound or swapped. If a,b are names
and X is an element of a nominal set, then the transposition of a and b on X , written (a,b)·X , swaps all
occurrences of a for b in X and vice versa. A function on a nominal set is equivariant, if it is unaffected
by name swapping; and a nominal datatype is a nominal set together with a set of equivariant functions
on it. This requirement is very mild and allows e.g. non-well-founded sets to be used in an instantiation.
The utility of this shall become apparent later, when we create a HOΨ-calculus instance where the set of
processes (which itself contains terms) is included in the set of terms.

Another important notion is that of support: if X is an element of a nominal set, the support of X ,
written n(X), is the set of names that occur in X . Conversely, a name a is fresh for X , written a#X , if
a /∈ n(X); and we extend this to sets of names A such that A#X if it is the case that ∀a ∈ A.a /∈ n(X). This
is pointwise extended to lists of elements X1, . . . ,Xn, so we write A#X1, . . . ,Xn for A#X1∧ . . .∧A#Xn.

As mentioned above, any Ψ-calculus instance requires a specification of three nominal datatypes: the
terms, conditions and assertions. The datatype of terms, ranged over by M,N ∈ T, contains the terms
that can be communicated and used as channels. These could be e.g. single names, as in the monadic
π-calculus, vectors of names as in eπ and the polyadic π-calculus; or elements of a composite datatype
(e.g. the integers). The datatype of conditions, ranged over by ϕ ∈ C contains the conditions that can
be used in conditional process expressions. Finally, and importantly, we have the nominal datatype
of assertions, ranged over by Ψ ∈A. Each of the datatypes T, C and A must include an equivariant
substitution function, written (·) [ã := M̃], substituting tuples of terms M̃ for tuples of names ã of equal
arity. It must be defined such that it satisfies the following substitution laws:

1. If ã⊆ n(X) and b ∈ n
(
Ỹ
)

then b ∈ n
(

X [ã := Ỹ ]
)

2. If ũ#X , ṽ then X [ṽ := Ỹ ] =
(
(ũ, ṽ)·X

)
[ũ := Ỹ ]

The requirements are quite general and should be satisfied by any ordinary definition of substitution:
The first law states that names cannot be lost in substitution, i.e. the names present in Ỹ must also be
present when the substitution has been performed; whilst the second law states that substitution cannot be
affected by transposition.

Since the calculus allows arbitrary terms to be used as channels, any Ψ-calculus instance requires
a definition of two equivariant operators, channel equivalence •←→ and assertion composition ⊗, a unit
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element 1 of assertions, and an entailment relation , defined on the respective nominal datatypes and
with the following signatures:

•←→ :T×T→ C channel equivalence
⊗ :A×A→A assertion composition

1 ∈A assertion unit
⊆A×C entailment relation

We write the entailment relation as Ψ  ϕ instead of (Ψ,ϕ) ∈  to denote that the condition ϕ holds,
given the assertions Ψ. Note that comparison by channel equivalence M1

•←→ M2 is itself a condition,
which may or may not be entailed by some assertions Ψ, according to the definition of the entailment
relation.

The set of HOΨ-calculus processes PΨ is generated by the formation rules:

P ∈PΨ ::= 0
∣∣ P1 | P2

∣∣ MN.P
∣∣ M(λ x̃ : T̃ )N.P∣∣ run M

∣∣ case ϕ̃ : P̃
∣∣ (νx : T )P

∣∣ !P
∣∣ LΨM

where ϕ̃ : P̃, ϕ1 : P1 [] . . . [] ϕn : Pn.
Most of these constructs are similar to those of the π-calculus; the input and output prefixes generalise

those of the π-calculus, since here both subject and object are terms rather than just names. Thus MN.P
outputs the term N on M and continues as P, whilst M(λ x̃ : T̃ )N.P receives a term (e.g. K) on M that
must match the pattern N. Here, x̃ is a list of pattern variables, binding into N and P, that is used to
extract subterms from K that will then be substituted for the occurrences of x̃ within the continuation P.
Unlike the presentation in [21], we here use a typed version of the language: thus the types of the pattern
variables are found in the list T̃ where |x̃|= |T̃ |, and likewise, in the restriction (νx : T )P, we annotate
the name x bound in P with its type T .

The selection construct case ϕ̃ : P̃ is a shorthand for a list of cases and is to be understood as saying: If
condition ϕi is entailed by the assertions Ψ, we continue as Pi. If more than one condition is entailed, the
process is chosen non-deterministically. This construct thus generalises the choice and matching operators
of the π-calculus.

Higher-order communication is handled by representing processes as terms, thus allowing them to be
communicated. We assume the existence of assertions of the form M⇐ P. By writing such an assertion,
M becomes a handle of the process P, and we can then send P by sending its handle. Thence M may be
used to activate the process P, and for this we use the only construct that is new to the higher-order setting,
the invocation construct run M. Note that the set of processes may itself be included in the set of terms,
thus allowing assertions of the form P⇐ P whereby a process becomes a handle for itself.

Lastly, an assertion LΨM is said to be guarded, if it occurs as a subterm of an input or output, and
unguarded otherwise. The authors in [21] impose the restriction that no assertion may occur unguarded
in the processes in a conditional expression case ϕ̃ : P̃, nor in a replicated process !P, nor in processes
spawned by a run M operator. We say that processes conforming to this criterion are well-formed, and we
shall only consider well-formed processes in the following.

2.2 Reduction semantics

Unlike previous presentations such as [4, 21] we here use reduction semantics, as this will simplify our
account of the generic type system. As in other reduction semantics for process calculi, we introduce a
notion of structural congruence, ≡S, as the least congruence on process terms containing α-equivalence,
the commutative monoidal rules for parallel composition, and the rule for scope extrusion:

[S-SCOPE] (νx : T )P | Q≡S (νx : T )(P | Q) if x#Q
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[E-RES]
ΨB P≫P′

ΨB (νx : T )P≫(νx : T )P′
(x#Ψ)

[E-STRUCT]
P≡S P′

ΨB P≫P′

[E-CASE]
Ψ  ϕi

ΨB case ϕ̃ : P̃≫Pi

[E-RUN]
Ψ M⇐ P

ΨB run M≫P

[E-PAR]
Ψ⊗FΨ(Q)B P≫P′

ΨB P | Q≫P′ | Q
(Fν(Q)#Ψ,Fν(P) ,P) [E-REP]

ΨB !P≫P | !P

[R-COM]
Ψ M •←→ K

ΨBMN[x̃ := L̃].P | K(λ x̃ : T̃ )N.Q→ P | Q[x̃ := L̃]

[R-EVAL]
ΨB P≫Q ΨB Q→ P′

ΨB P→ P′
[R-RES]

ΨB P→ P′

ΨB (νx : T )P→ (νx : T )P′
(x#Ψ)

[R-PAR]
Ψ⊗FΨ(Q)B P→ P′

ΨB P | Q→ P′ | Q
(Fν(Q)#Ψ,Fν(P) ,P)

Figure 1: Reduction semantics for the HOΨ-calculus

We introduce a parametrised, asymmetric evaluation relation · B ·≫ · to properly handle case
expressions and unfolding of run M terms, both of which may depend on the assertions currently in effect.
It replaces the usual structural congruence rule in the reduction semantics to ensure that neither of these
operations may be reversed by a reverse reading of the rules, whilst including ≡S for the other kinds
of process rewrites where symmetry is unproblematic. The reduction relation · B · → ·, including the
evaluation relation, is then given by the rules in figure 1, and reductions are thus on the form ΨB P→ P′,
i.e. relative to a global Ψ containing the assertions currently in effect.

New assertions LΨM may also appear in the syntax and therefore become enabled during the evolution
of the program. These are collected by the frame function FΨ(P) in the [R-PAR] and [E-PAR] rules; and
likewise are any new names (νx : T ) collected by Fν(P), used in the side conditions to ensure freshness
of x w.r.t. Ψ and the process in parallel composition. The relevant clauses for FΨ(P) and Fν(P) are:

FΨ(P | Q) ,FΨ(P)⊗FΨ(Q)

FΨ((νx : T )P) ,FΨ(P)
FΨ(LΨM) ,Ψ

Fν(P | Q) ,Fν(P)∪Fν(Q)

Fν((νx : T )P) , {x}∪Fν(P)

and with all remaining clauses of the forms FΨ(P), 1 and Fν(P), /0 respectively.

3 The generic type system

The goal of our generic type system is to be able to instantiate it such that we obtain a sound type system
for a given HOΨ-calculus instance. As in other type systems, we need to describe when processes
are well-typed, but since we in the HOΨ-calculus also have terms, conditions and assertions, we shall
therefore also need a way to decide when they are well-typed. However, since these nominal datatypes are
parameters to the HOΨ-calculus, we cannot specify a set of type rules for them, as we can with processes.
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Instead, such rules must likewise be provided as parameters to create an instance of the generic type
system, and these rules must then satisfy a number of requirements, here denoted instance assumptions,
which we shall need in the proof for subject reduction. We describe them in detail below, in section 3.3.

3.1 Types and type judgements

Types can contain names, and we assume that the set of types Types is a nominal datatype ranged over
by T ; however, we do not allow substitution of terms for names inside types.1 Furthermore, we need
the concept of a type environment Γ to record the types of free names; thus Γ is a partial function with
finite support Γ : N ⇀ Types. We can think of Γ as a set of tuples Γ⊆N ×Types where (x,T ) ∈ Γ if
Γ(x) = T , and we write Γ,x : T to denote the type environment Γ extended by the name x with type T .

As usual, our type judgments will be relative to a type environment Γ. However, due to the presence
of assertions which may affect the well-typedness of a process, term, condition, or indeed an assertion,
our type judgments must also be relative to a global assertion Ψ. As it may be composed with assertions
appearing in a process, we shall therefore also need the notion of a specialisation preorder on assertions.
We say that Ψ1 ≤Ψ2 if there exists a Ψ such that Ψ2 = Ψ1⊗Ψ, and n(Ψ1)⊆ n(Ψ2).

Given the above, type judgements for processes will be of the form Γ,Ψ ` P. As previously mentioned,
the type rules for terms, assertions and conditions will depend on how these parameters are defined for a
specific instance of the HOΨ-calculus, and they must therefore be provided as part of the instantiation of
the generic type system. However, like type judgments for processes, they must also be relative to a type
environment Γ and a global Ψ, so we require that they be of the form Γ,Ψ `J , where J is defined by
the formation rules:

J ,M : T
∣∣ ϕ

∣∣ Ψ

3.2 Channel compatibility

When we type an input or output prefix term, the type of the subject M and the type of the object (the
term transmitted on channel M) must be compatible w.r.t. a compatibility predicate " that describes
which types of values can be carried by channels of a given types. Thus, T1" T2 denotes that channels
of type T1 can carry terms of type T2, and we require that the set of types be defined such that this holds.
Furthermore, we distinguish between output compatibility"+, and input compatibility"−, and we write
T1" T2 if both T1"+ T2 and T1"− T2.

As an example, consider the channel types in the sorting system by Milner [19]. Here, a name has type
ch(T ), if it is a channel that can be used to transmit names of type T , so in that case we would therefore
require that ch(T )" T .

In our definition of compatibility, we assume given a subtype ordering ≤ on types. If T1 ≤ T2, then a
term of T1 can be used wherever a term of type T2 is needed. Thus we require the usual subsumption rule
for types, namely that a term of a given type T1 can also be typed with a supertype T2:

[SUBSUME]
Γ,Ψ `M : T1 T1 ≤ T2

Γ,Ψ `M : T2

The compatibility predicate for a type T must further satisfy the following requirements w.r.t. the subtyping
relation:

1As we shall see in our examples of instantiations of the type system, a type T may itself contain a type environment Γ, which
thus may contain names with type annotations. By this requirement, we disallow that such names may be substituted for terms.
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[T-ENV-WEAK] Γ,Ψ `J =⇒ Γ,x : T,Ψ `J

[T-ENV-STRENGTH] Γ,x : T,Ψ `J ∧ x 6∈ n(J ) =⇒ Γ,Ψ `J

[T-COMP-TERM] Γ,Ψ `M[x̃ := L̃] : F(T̃ ) =⇒ Γ,Ψ ` L̃ : T̃

[T-ASS-WEAK] Γ,Ψ `J ∧Ψ≤Ψ
′∧n(Ψ′)⊆ dom(Γ) =⇒ Γ,Ψ′ `J

[T-WEAK-CHANEQ] Ψ M1
•←→M2 =⇒ Ψ⊗Ψ

′ M1
•←→M2

[T-SUBS] Γ,Ψ ` L̃ : T̃ ∧Γ, x̃ : T̃ ,Ψ `J =⇒ Γ,Ψ `J [x̃ := L̃]

[T-EQUAL] Γ,Ψ `M : T ∧Ψ M •←→ N =⇒ Γ,Ψ ` N : T

[T-ENV-CLAUS] Γ,Ψ `M : T ∧T x Γ
′ =⇒ dom(Γ)⊆ dom(Γ′)

[T-WEAK-ASS-CLAUS] Ψ M⇐ P∧Γ,Ψ `M⇐ P∧Ψ≤Ψ
′∧n(Ψ)⊆ Γ =⇒ Ψ

′ M⇐ P

[T-SUBS-RUN] Γ,Ψ `M : T ∧T x Γ
′∧Ψ M[x̃ := L̃]⇐ P =⇒ Γ

′,Ψ ` P

Figure 2: Instance assumptions for the generic type system.

1. If a channel type can carry two distinct types, then the types have to be related by the subtype
ordering. That is, if d ∈ {+,−}, T "d T1 and T "d T2 with T1 6= T2, then T1 ≤ T2 or T2 ≤ T1.

2. Output compatibility is contravariant. That is, if T "+ T2 and T1 ≤ T2, then also T "+ T1. This
requirement mirrors that of [22]. If T1 ≤ T2, then a term of type T1 can be used where ever a term of
type T2 is needed, and a channel that outputs terms of the more general type T2 can therefore be
used, where ever a channel of the specialized type T1 is required.

3. Input compatibility is covariant. That is, if T "− T1 and T1 ≤ T2, then also T "− T2. This
requirement, too, mirrors that of [22]. Here, if T1 ≤ T2, a channel that accepts terms of type T1 can
also be used to accept terms of type T2.

3.3 Instance assumptions

In order to ensure soundness, we introduce a collection of assumptions, given in Figure 2, that must hold
for an instance of the generic type system to be valid. They pertain to the type judgments Γ,Ψ `J for
terms, conditions and assertions, which, as previously mentioned, we cannot specify in advance, but on
which we must nevertheless impose certain restrictions to allow us to prove subject reduction for the
generic type system. Specifically, the assumptions will guarantee that the properties of weakening and
strengthening and the substitution lemma will hold for any instance that satisfies these assumptions.

Firstly, we require every instance of our generic type system to satisfy certain natural requirements
about the use of type environments Γ; these are similar to those of Hüttel in [12]. The assumptions
[T-ENV-WEAK], [T-ENV-STRENGTH], [T-COMP-TERM] and [T-ASS-WEAK] are the usual requirements of
weakening and strengthening; these must hold for type environments as well as for assertions. [T-WEAK-
CHANEQ] tells us that channel equivalence is closed under weakening of assertions. The assumptions [T-
SUBS] and [T-EQUAL] tell us that typability must be invariant under substitution and channel equivalence.

Other assumptions are particular to the higher-order setting and thus new. Here, one particularly
important question is which type environment Γ a process P should be typed in relation to, if P is
transmitted using the higher-order process mobility construct, with M as a handle for P. To solve this,
we write T x Γ to express that if M is a handle for some process P and has type T , then we can extract
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[T-IN]

T " T ′

Γ,Ψ `M : T

Γ, x̃ : T̃ ,Ψ `N : T ′

Γ, x̃ : T̃ ,Ψ `P

Γ,Ψ `M(λ x̃ : T̃ )N.P
[T-RUN]

T x Γ
′

Γ,Ψ `M : T

Ψ M⇐ P

Γ
′,Ψ `P

Γ,Ψ ` run M
[T-OUT]

T " T ′

Γ,Ψ `M : T

Γ,Ψ `N : T ′

Γ,Ψ `P

Γ,Ψ `MN.P

[T-PAR]
Γ,Fν(Q) ,Ψ⊗FΨ(Q) ` P Γ,Fν(P) ,Ψ⊗FΨ(P) ` Q

Γ,Ψ ` P | Q

(
Fν(P)#Ψ,Fν(Q) ,Q

Fν(Q)#Ψ,Fν(P) ,P

)

[T-NEW]
Γ,x : T,Ψ ` P

Γ,Ψ ` (νx : T )P
(x#Ψ) [T-NIL]

Γ,Ψ ` 0 [T-REPL]
Γ,Ψ ` P

Γ,Ψ ` !P

[T-CASE]
Γ,Ψ ` ϕi Γ,Ψ ` Pi

Γ,Ψ ` case ϕ̃ : P̃
[T-ASSERT]

Γ,Ψ `Ψ′

Γ,Ψ ` LΨ′M

Figure 3: Type judgements for processes

the type environment Γ for typing P from the type T of the handle M. This is thus another requirement
we impose on how the set of types must be defined. As a simple example, suppose that every type of a
term would consist of a channel component and a run type component (T,Γ); then we could define the x
relation to be (T,Γ)x Γ.

The new assumptions are as follows:

• The assumption [T-ENV-CLAUS] tells us that that the type environment extracted from the type of a
handle M must mention at least the free names of M.

• The assumption [T-WEAK-ASS-CLAUS] is necessary to prove weakening of assertion environments;
i.e. by allowing unused assertions to be added. It states that if M is a handle for P, then M must still
remain a handle for the same process P if the assertion environment is weakened.

• The assumption [T-SUBS-RUN] is needed to ensure that typability is preserved by substitution also
in the higher-order case. It states that if a term M becomes a handle for a new process P after a
substitution, then the new process must still be well-typed in the environment we obtain from M’s
type T .

3.4 Type rules for processes

Unlike the aforementioned type rules for terms, conditions and assertions, the type rules for processes are
common to every instance. As in [12], we only consider type judgements that are well-formed; that is, if
n(Ψ)∪n(P)⊆ dom(Γ), so every name mentioned in the term or process in the judgement is bound in the
type environment. The rules are given in Figure 3; they are mostly similar to those of [12], except for the
rule [T-RUN] used to type the run M construct, which is the only construct that is new to the higher-order
setting.

We shall comment on the rules in some detail: In the rule for input, [T-IN], the subject M must have
type T , which must be compatible with the type T ′ according to the aforementioned compatibility relation
". The pattern N must then have this type T ′, given the assumptions that the variables x̃ have types T̃ ,
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and lastly, the continuation P must be well-typed given these assumptions. The output rule, [T-OUT] then
mirrors the input rule as usual. In both cases, the type judgment Γ,Ψ `M : T appears in the premise, and
as previously mentioned, the rules for this judgment must be provided as part of the instantiation.

In the rule [T-PAR] we require that for a parallel composition P | Q to be typable, P and Q must
both be typable within type environments and assertions that add information extracted from the other
component; thus we here overload the function Fν(·) for (νx : T )P to mean Fν((νx : T )P), x : T,Fν(P).
This is a natural requirement, since P can, among other things, mention handles for processes established
in Q. The side condition then asserts that all new names declared in P, using the (νx : T ) construct, must
be fresh for Ψ and both the free and new names occurring in Q, and vice versa for Q, similar to the side
conditions for the [E-PAR] and [R-PAR] rules in the semantics.

Likewise in the rule [T-NEW], we require that the new name x must be fresh for Ψ, again mirroring the
side conditions in the corresponding semantic rules [E-RES] and [R-RES], and P must then be well-typed
given the assumption that x has type T .

The rules for the nil process and replication, [T-NIL] and [T-REPL] are as usual, and the rule for
case ϕ̃ : P̃ is also quite straightforward. Here, we write Γ,Ψ ` ϕi and Γ,Ψ ` Pi to say that every condition
ϕi in the list of conditions ϕ̃ , and every process Pi in the list of processes P̃, must be well-typed w.r.t. the
same Γ and Ψ. As in the cases for input and output above, the rules for concluding Γ,Ψ ` ϕi must be
provided as part of the instantiation; and likewise for concluding Γ,Ψ `Ψ′, which appears in the premise
of the [T-ASSERT] rule.

Lastly, since a key motivation for the present type system is the ability to type higher-order behaviour,
we must be able to describe what can happen when a handle M⇐ P is released by a run M. This is
handled by the rule [T-RUN], which states that run M is well-typed for Γ and Ψ if M is a handle for P in
Ψ and P is well-typed in the environment Γ′ extracted from M, using the aforementioned x relation.

4 Properties of the generic type system

Type systems normally ensure two properties of well-typed programs: a subject reduction property
guarantees that a well-typed program remains well-typed under reduction; and a safety property ensures
that if a program is well-typed then a certain safety predicate holds. The latter will depend on the
particular instance of the type system and must therefore be shown individually, for each instance, but
subject reduction can be shown for the generic type system. We establish this through a series of lemmas,
beginning with the usual results of weakening and strengthening of the type environment:

Lemma 1 (Weakening and strengthening).
• If Γ,Ψ ` P then Γ,x : T,Ψ ` P

• If Γ,x : T,Ψ ` P and x#P,Ψ then Γ,Ψ ` P

A similar result holds for assertions. Any process that is well-typed remains well-typed after a
composition of any assertion in the assertion environment, so long as all names in the new assertion
environment are in the support of the type environment:

Lemma 2 (Assertion environment weakening). If Γ,Ψ ` P, n(Ψ′)⊆ dom(Γ) and Ψ≤Ψ′ then Γ,Ψ′ ` P.

This lemma is necessitated by the syntax of the HOΨ-calculus itself, which allows guarded assertions
in continuations to become unguarded after a reduction. It is in the proof of this result that the instance
assumptions [T-ASS-WEAK], [T-ENV-CLAUS] and [T-WEAK-ASS-CLAUS] become important.

As we here use reduction semantics with an asymmetric evaluation relation to handle unfolding of
case and run expressions, we shall also need two results that describe how frames can evolve during
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evaluation. The former, given in Lemma 3 is used in the proof of subject reduction (Theorem 1) to find
any new assertions that may have become composed onto the pre-existing assertion environment after
a reduction. The latter, given in Lemma 4 states that the assertions in a process are unaltered by an
evaluation: This is mainly ensured by the criterion for well-formed processes, asserting that all processes
under replication or in a case expression, and all processes spawned by a run M operator, may not contain
unguarded assertions. The proof then establishes that the property of being assertion-guarded is preserved
by the evaluation relation≫.

Lemma 3 (Frame post reduction). If ΨB P→ P′ then FΨ(P)≤FΨ(P′)

Lemma 4 (Frame post evaluation). If ΨB P≫P′ then FΨ(P) = FΨ(P′).

The above lemmas can now be used to prove that a well-typed process remains well-typed after an
evaluation:

Lemma 5 (Subject evaluation). If Γ,Ψ ` P∧ΨB P≫P′ then Γ,Ψ ` P′.

Lastly, we need a standard result of substitution, which states that a well-typed process remains
well-typed after a well-typed substitution. The proof of this lemma requires the instance assumptions
[T-SUBS] and [T-SUBS-RUN].

Lemma 6 (Subject substitution). If Γ, x̃ : T̃ ,Ψ ` P and Γ,Ψ ` L̃ : T̃ then Γ,Ψ ` P[x := L̃].

This, at last, gives us our main result:

Theorem 1 (Subject reduction). If Γ,Ψ ` P∧ΨB P→ P′ then Γ,Ψ ` P′.

Outline. Induction in the reduction rules. In many of the cases, the instance assumptions are needed.
An example is that in the case of the [R-COM] rule, the substitution assumption [T-SUBS] is needed to
ensure that the substitution of the received message can be well-typed and the weakening assumptions
[T-ENV-WEAK] and [T-ASS-WEAK] are needed to ensure that the resulting process can be typed within the
same type environment as before.

The subject reduction theorem holds for all valid instances of the generic type system. This is all
that we can guarantee in our generic setting, as a notion of safety will also depend on a definition of
runtime error, which will be specific to each instance. Safety must therefore be proved individually for
each instance.

5 Instances of the generic type system

We now show how our generic type system can be applied to provide sound type systems for higher-order
process calculi. We first consider type systems for a version of the HOπ-calculus [24], and then a type
system for the ρ-calculus [18] introduced by Meredith and Radestock.

5.1 The Higher-Order π-calculus

Parrow et al. [21] give several examples of HOΨ-instances with process mobility: for example, by
including the set of processes PΨ in T, a process P may appear as the object of an output. If for all
P ∈PΨ.P⇐ P is entailed by all assertions, a language similar to Thomsen’s Plain CHOCS [27] is
obtained, and by further allowing both names and processes to appear as objects of an output, we get a
simplified version of Sangiorgi’s HOπ-calculus, similar to the one described in [20]. We set the parameters
for T,C and entailment thus:
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T ,N ∪PΨ

C ,
{

a •←→ b | a,b ∈N
}
∪
{

P⇐ Q | P,Q ∈PΨ

}
∪{>}

 ,
{
(1,a •←→ a) | a ∈N

}
∪{(1,P⇐ P) | P ∈PΨ }∪{(1,>)}

and (initially) with A , { /0}, ⊗ , ∪ and 1 , /0. We also include the symbol > in C to represent a
condition that is entailed by all assertions, and use that for every condition in a case ϕ̃ : P̃ construct to
obtain a representation of non-deterministic choice. This parameter setting obviously allows unwanted
processes such as

aP.0 | a(λx)x.xb.0→ Pb.0

where the process P is substituted for the subject x in the output construct xb.0 after a reduction step.
However, we can now use our generic type system to create an instantiation that will disallow such
possibilities. We define the types of terms as:

T ∈ Types ::= ch(T )
∣∣ drop(Γ)

The behaviour of channels and first-order variables is captured in the same manner as the simple sorting
system for the π-calculus [19]. Process terms and higher-order variables will have the type drop(Γ),
where the processes are well-typed in Γ. Type errors can then be expressed as a simple error predicate,
with

Γ,Ψ `M : drop(Γ′)
Γ,Ψ `M(λx)x.Q→WRONG

Γ,Ψ `M : ch(T )
Γ,Ψ ` run M→WRONG

as the most relevant rules. We now define the instance parameters:

[T-CON]
Γ,Ψ ` >

[T-CHA]
ch(T )" T

[T-ASS]
P : drop(Γ) ∈Ψ′

Γ,Ψ ` LΨ′M

[TERM1]
Γ(x) = ch(T )

Γ,Ψ ` x : ch(T )

[T-END]
drop(Γ)x Γ

[TERM2]
P : drop(Γ′) ∈Ψ Γ′,Ψ ` P

Γ,Ψ ` P : drop(Γ′)

Here we let the type environment in a drop type be the same type environment that is exposed to
the processes, when it is defined as an object in an output prefix, i.e. if we have Γ,Ψ ` aP, we want
Γ,Ψ ` P : drop(Γ). In this way, when we run the process, we can recall the bound variables and their
types at the time when the process was sent. To implement this, we shall use the (previously unused)
assertions Ψ as type environments for processes. Thus we redefine A as follows:

A,℘
({

P : T
∣∣ P ∈P ∧T ∈ Types

})
We can now show safety for the type system instance:

Theorem 2. If Γ,Ψ ` P then P 6→WRONG.

The proof is by induction in the rules of Γ,Ψ ` P. Details are given in [2].

5.2 A type system for termination

We now turn our attention to an instance of the generic type system that captures a liveness property.
Demangeon et al. [7] present a type system for checking termination in variants of the HOπ-calculus: for
any well-typed process P we have that P→∗ P′ 6→. These authors study HOpi2, a higher-order process
calculus in which only processes can be communicated. The syntax of HOpi2 is given by the formation
rules
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P ::= 0
∣∣ a(X).P

∣∣ a<Q>.P
∣∣ P1 | P2

∣∣ (νa : T )P
∣∣ X

In this type system, processes P are typed with a type n, where n is a natural number called the level
of P. Names a have types of the form chk(�), where � denotes the type of processes and k is a natural
number, the level of a. This is interpreted as saying that a is only used to carry processes whose level n is
less than k. Type judgements are of the form Γ ` P : n. The type rules, shown below, ensure that the level
of processes that are sent on any channel a will be strictly smaller than that of a.

[IN]

Γ,X : (k−1) `P : n

Γ(a) = chk(�)
Γ ` a(X).P : n

[OUT]

Γ ` Q : m Γ ` P : n

Γ(a) = chk(�) m < k
Γ ` a<Q>.P : max(k,n)

[NIL]
Γ ` 0 : 0

[NEW]
Γ,a : chk(�) ` P : n
Γ ` (νa : T )P : n

[PAR]
Γ ` P : m Γ ` Q : n

Γ ` P | Q : max(m,n)
[VAR]

Γ(X) = n
Γ ` X : n

It is straightforward to represent the HOpi2 calculus as an instance of the Higher-Order Ψ-calculus,
using a variant of the parameter setting described in section 5.1. In order to represent the type system, we
introduce assertions of the form

Ψ ::= n
∣∣ n−

∣∣ n+

We use assertions to indicate in which way a channel is to be used; an input use can only be typed
in the presence of an assertion n− and output use must be used with an assertion n+. We have that
n⊗n− = n−⊗n = n; that n⊗n+ = n+⊗n = n; and that n1⊗n2 = max(n1,n2). We distinguish explicitly
between input uses (chk

−(�)) and output uses (chk
+(�)) of channels:

T ∈ Types ::= n
∣∣ chk

−(�)
∣∣ chk

+(�)
and we let chn(�)x (n−1) and chn(�)x k whenever k < n. Type judgements are of the form Γ,m`M : T
for terms and Γ,m ` P for processes. We represent the judgement Γ ` P : n as Γ,n ` P. The type rules for
channels are thus:

[CH-IN]
Γ(a) = chk

−(�)
Γ,n− ` a : chk

−(�)
[CH-OUT]

Γ(a) = chk
+(�)

Γ,n+ ` a : chk
+(�)

5.3 The ρ-calculus

The Reflective Higher-Order calculus of Meredith and Radestock [18] is less well-known than e.g. CHOCS
and HOπ , so we recall it in some detail. Unlike other calculi, the ρ-calculus does not assume an infinite
set of names: instead, names and processes are both built from the same syntax, so names are structured
terms, rather than atomic entities. The syntax for both processes and names is given by the formation
rules:

P ::= 0
∣∣ P | P

∣∣ x〈|P|〉
∣∣ x(y).P

∣∣ qxp
x,y ::= pPq

where the syntax for names is simply pPq, pronounced quote P. Names can be passed around as in the
π-calculus, as well as un-quoted (called drop), and thus higher-order behaviour becomes an inherent
property of the calculus, rather than just an extension on top of an already computationally complete
language.
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The parallel, and the input construct x(y).P, are similar to their π-calculus counterparts. The lift
operation, x〈|P|〉 is an output construct that quotes the process P, thereby creating the name pPq, and sends
it out on x; thus the calculus can generate new names at runtime without the need of a ν-operator. The
converse of lift is the drop operation, qxp: it is a request to run the process within a name, by removing
the quotes around it. This is not performed by a reduction, but rather by a form of substitution

qxp
{
pPq/x′

}
= P if x≡N x′

where the entire process qxp is replaced with the process P found within the substituted name, similar
to how process variables are replaced by processes in e.g. HOπ . Notably, this means that if x is a free
name, then qxp will be a deadlock, since x can never be touched by a substitution at runtime. Otherwise,
substitution is the standard, capture-avoiding substitution of names for names, and note in particular that
substitution does not recur into processes under quotes; i.e. pPq{x/y}= pPq if y 6≡N pPq regardless of
whether the name y exists somewhere within pPq.

The reduction semantics is given by the standard rules for parallel composition and structural congru-
ence (as in e.g. the π-calculus) plus the following rule for communication:

[ρ -COM]
x1 ≡N x2

x1(y).P | x2 〈|Q|〉 → P{pQq/y}
One subtlety of this calculus concerns the notion of structural congruence, ≡. It is the usual least

congruence on processes, containing α-equivalence, ≡α , and the abelian monoid rules for parallel
composition with 0 as the unit element. However, with structured terms as names, ≡α in turn requires a
notion of name equivalence, written ≡N , that is also used for comparing subjects in the [ρ -COM] rule
above. It is defined as the smallest equivalence relation on quoted processes, closed forward under the
rules:

[ρ -NAMEEQ1]
P≡ Q

pPq≡N pQq
[ρ -NAMEEQ2]

pqxpq≡N x
This yields a mutual recursion between name equivalence, structural congruence and α-equivalence,

albeit one that always terminates as proved in [18], because both the sets of names and processes are
well-founded; their smallest elements being 0 (the inactive process) and p0q respectively.

5.3.1 Instantiation as a Ψ-calculus

The ρ-calculus is interesting in the present setting, because it cannot be encoded in the π-calculus in a
way that satisfies a number of generally accepted criteria of encodability, similar to those of [10]. This has
been established by one of the authors in [17].

The key reason for this impossibility lies in the ability of the ρ-calculus to generate new, free, and
hence observable, names at runtime, whilst this is not possible in the π-calculus; and, dually, its use of
name equivalence, which will equate more names than strict syntactic equality. However, the ρ-calculus
can be represented in the HOΨ-framework as follows. We define

T ,N ∪{pPq | P ∈PΨ }∪{〈|pPq|〉 | P ∈PΨ }
C ,

{
M •←→ N | M,N ∈T

}
∪ {P1 ≡ P2 | P1,P2 ∈PΨ }

∪ {M⇐ P | M ∈T∧P ∈PΨ }

and (initially) with A , { /0}, ⊗ , ∪ and 1 , /0 as before. Note the two different kinds of terms: we
use terms of the form pPq to represent a statically quoted name in the ρ-calculus, which can never be
dropped and never substituted into. Conversely, we use 〈|pPq|〉 for the equivalent of the object of a x〈|P|〉,
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which in the ρ-calculus is a process that therefore can be substituted into, and which later may be dropped.
Furthermore, we shall assume that all bound names are implemented as distinct atomic names x ∈N ;
this is a trivial conversion, since their structure has no semantic meaning in the ρ-calculus. The encoding
is then given by the translation:

J0K = 0
JP1 | P2K = JP1K | JP2K
Jn(x).PK = JnK(λx)〈|x|〉 .JPK

Jn〈|P|〉K = JnK〈|pJPKq|〉 .0

JqxpK = run x
JqpPqpK = 0

JpPqK = pN JPKq
JxK = x

where N JPK is similar to JPK except that N JqpPqpK = run pN JPKq.
Note the two translations of drop for processes: the process qpPqp has no reduction in the ρ-calculus

and is therefore behaviourally equivalent to 0; but its counterpart run pPq might have a reduction,
since run M is not evaluated eagerly in the HOΨ-calculus. For the purpose of preserving operational
correspondence, we therefore translate the drop of a free name pPq as 0, and the drop of an atomic name
x as run x, since atomic names are bound by construction. However, we cannot do this within names,
since name equivalence is determined by the structure, rather than the behaviour of the process within
quotes. Thus we use the second level translation N JPK for statically quoted names, since these can never
be dropped.

Lastly, we shall define entailment such that it contains the rule Ψ  pPq⇐ P, making every term pPq
a handle for the process P within, to mirror the duality of names and processes in the ρ-calculus. We
furthermore include the following rules for entailment of channel equivalence •←→, mirroring the rules
[ρ -NAMEEQ1] and [ρ -NAMEEQ2] for concluding name equivalence:

[CHANEQ1]
Ψ  prun Mq •←→M

[CHANEQ2]
Ψ  P1 ≡ P2

Ψ  pP1q
•←→ pP2q

including the symmetric and transitive closure of •←→. We then let the entailment relation for conditions of
structural congruence ≡ be defined such that ≡ contains α-equivalence; that (P/≡, | ,0) is an abelian
monoid; and containing the four congruence rules derived from the above translation:

[PAR]
Ψ  P1 ≡ P2

Ψ  P1 | R≡ P2 | R
[IN]

Ψ M1
•←→M2 Ψ  P1 ≡ P2

Ψ M1(λx1)〈|x1|〉 .P1 ≡M2(λx2)〈|x2|〉 .P2

[RUN]
Ψ M1

•←→M2

Ψ  run M1 ≡ run M2
[OUT]

Ψ M1
•←→M2 Ψ  P1 ≡ P2

Ψ M1 〈|pP1q|〉 ≡M2 〈|pP2q|〉
This translation is sound and complete w.r.t. operational correspondence up to a reasonable notion of

behavioural equivalence ':

Theorem 3 (Operational correspondence). Let ' be a notion of behavioural equivalence for processes
of the HOΨ-instance of the ρ-calculus, that includes at least structural congruence and the axiom
run pJPKq' JPK. Then P→ P′ ⇐⇒ JPK→' JP′K.

Outline. The proof requires a number of steps. First we show that the translation preserves name
equivalence; i.e. x1 ≡N x2 ⇐⇒ 1  Jx1K •←→ Jx2K by induction in the rules of name equivalence and
structural congruence. Then we show that substitution can be moved out of the translation; i.e. JPσK'
JPKJσK and 1  J(n)σK •←→ (JnK)JσK, where σ , {pQq/x} and JσK , [JxK := JpQqK], by induction in
the clauses of the translation function. This step relies on our assumption about '. Lastly we can show
soundness and completeness w.r.t. operational correspondence by induction in the two semantics. In both
cases, the interesting clauses are the communication rules, which require the aforementioned substitution
and name equivalence preservation results. Details are available in [2].
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5.3.2 A type system for reflection

Other higher-order calculi such as CHOCS and HOπ can be encoded in the π-calculus and may thus be
typable through translation, but as we noted above there cannot be such an encoding of the ρ-calculus into
the π-calculus. Thus, we cannot hope to create a type system for the ρ-calculus by adapting an existing
first-order type system. In fact, we are not aware of any type system for the ρ-calculus, so we shall now
create one by instantiating our generic type system. We let types for names be of the form

T ∈ Types ::= 〈T,Γ〉
∣∣ 〈B,Γ〉

where B is a basis type, and Γ is a type environment representing the possibility of executing the process
within the name. Furthermore we shall use assertions as type environments for processes as we previously
did with HOπ , so we update the definition accordingly.

A,℘({pPq : T | P ∈PΨ∧T ∈ Types}∪{〈|pPq|〉 : T | P ∈PΨ∧T ∈ Types})

with assertion unit and composition as 1 , /0 and ⊗ , ∪ respectively. Note that by construction ∀x ∈
N .x#pPq, so substitution can only occur in terms of the form 〈|pPq|〉 : T . We then append an assertion to
the encoding of input and output:

JpRq〈|P|〉K, pJRKq〈|pJPKq|〉 .0 | L
{
pJRKq : T,〈|pJPKq|〉 : T ′

}
M

JpRq(x).PK, pJRKq(λx)〈|x|〉 .JPK | L{pJRKq : T }M

Lastly, we also need to take the type information into account when concluding channel equivalence, to
ensure that two terms with initially dissimilar types cannot become channel equivalent after a substitution.
Thus we redefine the entailment rule [CHANEQ2] as follows:

[CHANEQ2]
Γ,Ψ  P1 ≡ P2 Γ,Ψ ` pP1q : T ⇐⇒ Γ,Ψ ` pP2q : T

Γ,Ψ  pP1q
•←→ pP2q

Now we can instantiate the generic type system by defining the instance parameters:

[TERM-1]
pPq : 〈T,Γ′〉 ∈Ψ Γ′,Ψ ` P

Γ,Ψ ` pPq : 〈T,Γ′〉
[TERM-2]

〈|pPq|〉 : 〈T,Γ′〉 ∈Ψ Γ′,Ψ ` P
Γ,Ψ ` 〈|pPq|〉 : 〈T,Γ′〉

[T-ASS]
P : T ∈Ψ′ =⇒ T x Γ

Γ,Ψ ` LΨ′M
[T-CHA] 〈T,Γ〉" T [T-END] 〈T,Γ〉x Γ [TERM-3]

Γ(x) = T
Γ,Ψ ` x : T

Note in particular the rules [TERM-1] and [TERM-2]: these rules say that the process within a
term must be well-typed w.r.t. the type environment in the second component of its type, and that the
process-type pair must be represented in the assertion.

Since we include [CHANEQ2] in order to properly simulate the ρ-calculus, all names that eventually
become equal during reduction must have the same type. This amounts to requiring that the programmer
must know in advance all the names that will be generated by the program during execution. We have yet
to find a type system for the ρ-calculus without this constraint.

6 Conclusions and future work

We have presented a generic type system for higher-order Ψ-calculi, which extends a previous type system
for first-order Ψ-calculi. Like its predecessor, type judgements for processes are of the form Γ ` P and are
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given by a fixed set of rules. Terms, assertions and conditions are assumed to form nominal datatypes, and
only a few requirements on type rules are imposed.

The generic type system allows us to identify what should be required of type systems for higher-
order process calculi that are instances of the Ψ-calculus; these requirements take the form of instance
assumptions. Thus it may also yield important insights into the general structure of type systems for
higher-order calculi, and it may therefore also be taken as a starting point for developing more advanced
type systems for any language that can be shown to be an instance of higher-order Ψ-calculi.

Our type system satisfies a general subject-reduction property and can be instantiated to yield type
systems with a notion of channel safety for higher-order calculi such as CHOCS, HOπ and also the
ρ-calculus. The latter in particular is interesting, as there is no valid encoding of the ρ-calculus into
the π-calculus, and thus we cannot capture higher-order typability in a purely first-order setting. This
establishes that our generic type system is richer than first-order type systems. However, typability in the
ρ-calculus comes at the cost of necessitating that we include type information directly in the definition of
channel equivalence. This amounts to saying that the programmer must know (and specify) in advance the
type of all names that will be generated during the course of program evaluation. We do not know whether
it is possible to create other (non-trivial) type systems for the ρ-calculus without such a restriction.

There are two important lines of future work in this direction: In [13], Hüttel extends the generic
type system to consider more general notions of subtyping and resource awareness, and in [14] he also
considers session types for psi-calculi. Both of these extensions are formulated for first-order Ψ-calculi
only, and they would therefore be relevant to also consider in the higher-order setting.
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[13] Hans Hüttel (2014): Types for Resources in ψ-calculi. In Martı́n Abadi & Alberto Lluch Lafuente, editors:
Trustworthy Global Computing, Springer International Publishing, Cham, pp. 83–102, doi:10.1007/978-3-319-
05119-2 6.
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