
 

  

 

Aalborg Universitet

Determinantal shot noise Cox processes

Møller, Jesper; Vihrs, Ninna

Published in:
Stat

DOI (link to publication from Publisher):
10.1002/sta4.502

Creative Commons License
CC BY 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Møller, J., & Vihrs, N. (2022). Determinantal shot noise Cox processes. Stat, 11(1), Article e502.
https://doi.org/10.1002/sta4.502

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 16, 2024

https://doi.org/10.1002/sta4.502
https://vbn.aau.dk/en/publications/99110723-deae-40bc-a4f1-19f0f438a21c
https://doi.org/10.1002/sta4.502


OR I G I N A L A R T I C L E

Determinantal shot noise Cox processes

Jesper Møller | Ninna Vihrs

Department of Mathematical Sciences,

Aalborg University, Aalborg, Denmark

Correspondence

Jesper Møller, Department of Mathematical

Sciences, Aalborg University, Skjernvej 4A,

DK-9220 Aalborg Ø, Denmark.

Email: jm@math.aau.dk

We present a new class of cluster point process models, which we call determinantal

shot noise Cox processes (DSNCP), with repulsion between cluster centres. They are

the special case of generalized shot noise Cox processes where the cluster centres

are determinantal point processes. We establish various moment results and describe

how these can be used to easily estimate unknown parameters in two particularly

tractable cases, namely, when the offspring density is isotropic Gaussian and the ker-

nel of the determinantal point process of cluster centres is Gaussian or like in a scaled

Ginibre point process. Through a simulation study and the analysis of a real point pat-

tern data set, we see that when modelling clustered point patterns, a much lower

intensity of cluster centres may be needed in DSNCP models as compared to shot

noise Cox processes.

K E YWORD S
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1 | INTRODUCTION

This paper studies a cluster point process model defined as follows. Let Y be a simple locally finite point process defined on the d-dimensional

Euclidean space ℝd; we can view Y as a random subset of ℝd (for background material on spatial point processes, see Møller &

Waagepetersen, 2004). Assume Y is stationary, that is, its distribution is invariant under translations in ℝd. Conditioned on Y, let X be a Poisson

process on ℝd with an intensity function

ρðxjYÞ¼ γ
X
y � Y

kαðx�yÞ, x�ℝd, ð1Þ

where γ >0 and α are parameters and kα is a probability density function (pdf) on ℝd; in our specific models α will play the role of a band width

(a positive scale parameter). We can identify X by a cluster process [ y � YXy where conditioned on Y, the clusters Xy are independent finite

Poisson processes on ℝd and Xy has the intensity function ρyðxÞ¼ γkαðx�yÞ (depending on the “offspring” density kα relative to the cluster cen-

tre y).

In the special case where Y is a stationary Poisson process, X is a shot noise Cox process (SNCP), see Møller (2003). Then there may be a large

amount of overlap between the clusters unless the intensity of Y is small as compared to the band width α. In this paper, we will instead be inter-

ested in repulsive point process models for Y. This may be an advantage since the repulsiveness of Y implies less overlap of clusters. Thereby it

may be easier to apply statistical methods for cluster detection, and when modelling clustered point pattern data sets a much lower intensity of Y

may be needed as compared to the case of a SNCP. The idea of using a repulsive point process Y is not new, where Van Lieshout and Baddeley

(2002) suggested to use a Markov point process. However, we are in particular interested in the case where Y is a stationary determinantal point

process (DPP) in which case we call X a determinantal shot noise Cox process (DSNCP). Briefly, a DPP is a model with repulsion at all scales
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(cf. Lavancier et al., 2015; Møller & O'Reilly, 2021, and the references therein). There are several advantages of using a DPP for Y: In contrast to a

Markov point process, there is no need of MCMC when simulating a DPP, and as we shall see Y and hence X possess nice moment results, which

can be used for estimation.

The cluster point process X given by (1) is a special case of a stationary generalized shot noise Cox process (GSNCP), see Møller and Torrisi

(2005), and it may be extended as follows. Suppose X conditioned on both Y and positive random variables fΓygy � ℝd and fAygy � ℝd is a Poisson

process with an intensity function

ρðxjY,fΓygy � ℝd ,fAygy � ℝd Þ¼
X
y � Y

ΓykAy ðx�yÞ, x�ℝd,

where kAy is a pdf on ℝd. In addition, assume that fΓygy � ℝd ,fAygy � ℝd , and Y are mutually independent, the Γy are independent and identically dis-

tributed with mean γ and has finite variance, and the Ay are independent and identically distributed. Then X is still a stationary GSNCP, and if also

Y is a stationary DPP, we may call X a DGSNCP. In fact, all results and statistical methods used in this paper will apply for the DGSNCP when kα is

replaced by EkAy in all expressions to follow. The DGSNCP may most naturally be treated in a MCMC Bayesian setting using a similar approach as

in Beraha et al. (2022) and the references therein.

In the present paper, we study and exploit for statistical inference the nice moment properties for various DSNCP models as follows. In

Section 2 we describe further what it means that Y is a DPP and present two specific cases of DSNCP models where we let kα be an isotropic

Gaussian density as in the Thomas process (Thomas, 1949), which is the most popular example of a SNCP. Section 3 considers general results for

so-called pair correlation and K-functions for first the GSNCP model and second the DSNCP model. Section 4 discusses how the results in

Section 3 may be used when fitting a parametric DSNCP model in a frequentist setting, and we illustrate this on a real data example. In Section 5

we investigate the ability to distinguish between DSNCPs and Thomas processes through a simulation study. Finally, in Section 6 we summarize

our results.

All statistical analyses were made with R (R Core Team, 2019), and all plots were made using the package ggplot2 (Wickham, 2016). As

supporting information, we have added the file functions.R containing the functions we have written in R and the file results_for_paper.R con-

taining the code for the figures, the analysis of data, and the simulation study reported in this paper. The comments in both files explain the struc-

ture and where the various parts of the code have been used.

2 | DETERMINANTAL SHOT NOISE COX PROCESS MODELS

In this section we consider the DSNCP model for X and suggest some specific models. In brief, the DPP Y is specified by a so-called kernel, which

is usually assumed to be a complex covariance function cðu,vÞ defined for all u,v�ℝd; for details, see Appendix A.1. We assume Y is a stationary

DPP with intensity ρY >0, meaning two things: First, if A�ℝd is a bounded Borel set, YðAÞ denotes the cardinality of Y\A, and jAj ¼ Ð
Adu is the

Lebesgue measure of A, then EYðAÞ¼ ρY jAj<∞. Second, jcðu,vÞj ¼ jcðu�v,0Þj for all u,v�ℝd where jsj denotes the modulus of a complex number

s. We denote the corresponding complex correlation function by rðu,vÞ¼ cðu,vÞ=ρY and assume it depends on a correlation/scale parameter β >0

so that r¼ rβ with

rβðu,vÞ¼ r1ðu=β,v=βÞ: ð2Þ

The correlation parameter β cannot vary independently of ρY since there is a trade-off between intensity and repulsiveness in order to secure

that a DPP model is well defined (Lavancier et al., 2015). For instance, for many DPP models rβ is real, continuous, and stationary, that is,

rβðu,vÞ¼ rβ,stðu�vÞ, where rβ,st :ℝd !½�1,1� is a continuous, symmetric, and positive semi-definite function with rβ,stð0Þ¼1. Then, if rβ,st is square

integrable and has a Fourier transform φβðuÞ¼
Ð
rβ,stðvÞcosð2πu �vÞdv where � is the usual inner product, the DPP is only well-defined for

ρYsupφβ ≤1 (cf. Lavancier et al., (2015)). In case of (2), this existence condition of the DPP means that 0 < β ≤1=ðρ1=dY supφ1Þ, where for a fixed

value of ρY , most repulsiveness is obtained when β¼1=ðρ1=dY supφ1Þ.
Consider the special case where Y is a jinc-like DPP, that is, d¼2 and rðu,vÞ¼ J1 2

ffiffiffi
π

p ku�vkð Þ= ffiffiffi
π

p ku�vkð Þ where J1 is the first order Bessel

function of the first kind and k �k denotes usual distance. So, the distribution of Y depends only on the intensity, and Y is a most repulsive DPP in

the sense of Lavancier et al. (2015); see also Biscio and Lavancier (2016) and Møller and O'Reilly (2021). Christoffersen et al. (2021) used this spe-

cial case of a DSNCP model in a situation where a realization of X but not Y was observed within a bounded region. They estimated ρY with a min-

imum contrast procedure based on the pair correlation function (pcf) given by (5) in Section 3, where the pcf had to be approximated by

numerical methods. Instead, we consider more tractable cases, as we shall see in Section 3.

Note that X is stationary with intensity ρX ¼ γρY . We will consider two specific DSNCP models of X where we let kα be the pdf of Ndð0,α2IÞ,
the zero-mean isotropic d-dimensional normal distribution, and Y is given by one of the following two DPPs.
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1. If rβðu,vÞ¼ exp �kðu�vÞ=βk2
� �

is the Gaussian correlation function, then Y is a Gaussian DPP (Lavancier et al., 2015).

2. If d¼2 and we identify ℝ2 with the complex plane C, and if rβðu,vÞ¼ expððuv�juj2=2�jvj2=2Þ=β2Þ where v and jvj denote the complex conju-

gate and the modulus of the complex number v, then Y is a scaled Ginibre point process (Deng et al., 2014; Miyoshi & Shirai, 2016; Y is the

standard Ginibre point process, Ginibre, 1965, if ρY ¼1=π and β¼1).

Both these DPP models are well defined if and only if 0 < β ≤1= ρ1=dY

ffiffiffi
π

p� �
(Lavancier et al., 2015). For a fixed value of ρY ,Y becomes in both

cases less and less repulsive as β decreases from 1= ρ1=dY

ffiffiffi
π

p� �
to 0, where in the limit Y is a stationary Poisson process and X is a Thomas process.

Therefore, we call X a Gaussian-DPP-Thomas process in the first case and a Ginibre-DPP-Thomas process in the second case. In both cases, Y

and hence also X are stationary and isotropic, although rβ is only stationary when it is the Gaussian correlation function (Appendix A.2.1 verifies

that the distribution of a scaled Ginibre point process Y is invariant under isometries).

The two first columns of plots in Figure 1 show simulated realizations of a Ginibre-DPP-Thomas process and a Gaussian-DPP-Thomas pro-

cess within a 20�20 square region, where α¼1, ρX ¼1 (so we expect to see about 400 points in each simulated point pattern), and in the three

rows of plots we have β¼2,3,4 (from bottom to top). In each case, ρY ¼1=ðπβ2Þ is as large as possible. For comparison, the third column of plots

in Figure 1 shows simulations of Thomas processes with the same values of ðρX ,ρYÞ as for the two first columns of plots. So, in each row the three

processes have the same expected number of clusters, the same expected cluster sizes, and the same offspring density. For all processes, as β

increases (that is, ρY decreases and γ increases), we see that the point patterns look more clustered, since we get less and less cluster centres but

larger and larger clusters. We also see that the eye detects less diffuse clusters in the DPP-Thomas processes compared to the Thomas processes,

which is in agreement with the fact that cluster centres are repulsive in DPP-Thomas processes whereas they are completely random in Thomas

processes. From Figure 1 it can be difficult to make any conclusions about the differences between Gaussian- and Ginibre-DPP-Thomas pro-

cesses, but we will make further comparisons between these in Sections 3 and 4.

F IGURE 1 Simulations of Gaussian-determinantal point process (DPP)-Thomas processes, Ginibre-DPP-Thomas processes, and Thomas
processes (as stated at the top of each column) within a square with side lengths 20 when α¼1,ρX ¼1,β¼2,3,4 (stated to the left of each row),
and ρY ¼1=ðπβ2Þ in all processes. Note that β is not a parameter of the Thomas process and is thus only used to calculate ρY in this case

MØLLER AND VIHRS 3 of 14
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3 | PAIR CORRELATION AND K-FUNCTIONS

3.1 | The general setting of stationary GSNCPs

Consider again the general setting in Section 1 of a stationary GSNCP. Henceforth, we assume the stationary point process Y has a pair correla-

tion function (pcf) gY . This means that if A,B�ℝd are disjoint bounded Borel sets, then

E½YðAÞYðBÞ� ¼ ρ2Y

ð
A

ð
B

gYðu,vÞdu dv <∞:

By stationarity, gYðu,vÞ¼ gY ,stðu�vÞ depends only on the lag u�v almost surely (with respect to Lebesgue measure) and for ease of presentation

we can assume this is the case for all u,v�ℝd.

The stationary GSNCP X given by (1) has intensity ρX ¼ γρY and a stationary pcf gXðu,vÞ¼ gX,stðxÞ where x¼ u�v and

gX,stðxÞ¼ kα ∗ ~kα ∗gY ,stðxÞþkα ∗ ~kαðxÞ=ρY , x�ℝd , ð3Þ

where ∗ denotes convolution and ~kαðxÞ¼ kαð�xÞ is the reflection of kα (cf. Møller & Torrisi, 2005). Thus, gX decreases as ρY increases; this makes

good sense since ρY is the intensity of clusters and the first term in (3) corresponds to pairs of points from different clusters whilst the second

term is due to pairs of points within a cluster. Furthermore, from (3) we obtain Ripley's K-function (Ripley, 1976, 1977)

KðrÞ¼
ð

kxk≤ r

gX,stðxÞdx, r >0,

which will be used in Section 4 for parameter estimation.

In the special case where Y is a stationary Poisson process (i.e., X is a SNCP), we have gY ¼1 and (3) reduces to gX,st ¼1þkα ∗ ~kα=ρY . Thus,

gX ≥1 and gX ≠1, which is usually interpreted as X being a model for clustering. This is of course also the situation if gY ≥ 1. However, such

models for clustering may cause a large amount of overlap between the clusters unless ρY is small as compared to the band width α.

3.2 | The special setting of DSNCPs

When Y is a DPP and we let RβðyÞ¼ jrβðy,0Þj2, we have

gY,stðyÞ¼1�RβðyÞ, y�ℝd ð4Þ

(cf. Lavancier et al., 2015). Thus, gY ≤1, which reflects that a DPP is repulsive. From (3) and (4) we get

gX,stðxÞ¼1�kα ∗ ~kα ∗RβðxÞþkα ∗ ~kαðxÞ=ρY , x�ℝd: ð5Þ

This is in accordance to intuition: As Rβ increases, meaning that gY decreases and hence that Y becomes more repulsive, it follows from (5)

that gX decreases; and as the band width α tends to 0, we see that gX,stðxÞ tends to gY ,stðxÞ for every x�ℝd. Below, we let kα be the pdf of

Ndð0,α2IÞ and consider the pcfs and K-functions in the special cases of Gaussian/Ginibre-DPP-Thomas processes.

Let X be a Gaussian-DPP-Thomas process. Then Y is a Gaussian DPP and

RβðyÞ¼ exp �2ky=βk2
� �

, y�ℝd: ð6Þ

Thus, we obtain from (5) that gX,stðxÞ¼ gX,isoðkxkÞ is isotropic with

gX,isoðrÞ¼1þ
exp � r2

4α2

� �

4πα2ð Þd=2ρY
�

β2=2
� �d=2

exp � r2

4α2þβ2=2

� �

4α2þβ2=2
� �d=2 , r >0: ð7Þ

4 of 14 MØLLER AND VIHRS
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We have

gX,isoðrÞ⋚1, r2 ⋛
ln ρY

2πα2β2

4α2þβ2=2

� �d=2
� �

1
4α2þβ2=2

� 1
4α2

, ð8Þ

where

ln ρY
2πα2β2

4α2þβ2=2

� �d=2
� �

1
4α2þβ2=2

� 1
4α2

> 0

since ρY ≤ πβ2
� ��d=2

. Furthermore, if ωd denotes the volume of the d-dimensional unit ball and Fd=2 is the CDF of a gamma distribution with shape

parameter d=2 and scale parameter 1, we obtain

KðrÞ¼ωdr
dþ 1

ρY
Fd=2

r2

4α2

� �
� πβ2=2
� �d=2

Fd=2
r2

4α2þβ2=2

� �
, r >0: ð9Þ

Let X be a Ginibre-DPP-Thomas process. Then Y is a scaled Ginibre point process that has some similarity to the Gaussian-DPP, since β has

the same range in the two processes and

RβðyÞ¼ expð�jy=βj2Þ, y�C, ð10Þ

in the case of a scaled Ginibre point process. It thus follows from (4), (6), and (10) that the pcfs of the scaled Ginibre point process and the

Gaussian-DPP are of the same form, but β2 in the scaled Ginibre point process corresponds to β2=2 in the Gaussian-DPP. This shows that the

scaled Ginibre point process is more repulsive than the Gaussian-DPP when using the same parameters ρY and β, and therefore, it will be possible

to obtain a larger repulsion between the clusters in a Ginibre-DPP-Thomas process than in a Gaussian-DPP-Thomas process. In fact, if β¼
1=

ffiffiffiffiffiffiffiffi
πρY

p
when Y is a scaled Ginibre point process, then Y is a most repulsive DPP in the sense of Lavancier et al. (2015). Because β2 in the scaled

Ginibre point process corresponds to β2=2 in the Gaussian-DPP, (7)–(9) give that gX,stðxÞ¼ gX,isoðkxkÞ is isotropic with

gX,isoðrÞ¼1þ exp �r2=ð4α2Þ� �
4πα2ρY

�β2 exp �r2= 4α2þβ2
� �� �

4α2þβ2
, r >0,

gX,isoðrÞ⋚1, r2 ⋛
ln ρY

4πα2β2

4α2þβ2

� �
1

4α2þβ2
� 1

4α2
,

and

KðrÞ¼ πr2þ 1
ρY

1� exp � r2

4α2

� �� �
�πβ2 1� exp � r2

4αþβ2

� �� �
, r > 0:

Figure 2 shows plots of gX,isoðrÞ and KðrÞ�πr2 for Gaussian- and Ginibre-DPP-Thomas processes for different values of β when ρY ¼1=ðπβ2Þ cor-
responds to the most repulsive case and without loss of generality we let α¼1. For comparison the plots also include the case of a Thomas pro-

cess with the same values for γ and ρY . Note that KðrÞ�πr2 ¼0 in case of a planar stationary Poisson process, and the figure shows that as β

increases, the processes behave less and less like a planar stationary Poisson process. The pair correlation functions in the cases of the DSNCP

processes show an increasing degree of clustering at small scales and regularity at larger scales as β increases, whereas Ripley's K-function only

reveals an increasing degree of clustering. We furthermore see that the Ginibre-DPP-Thomas processes are overall more regular than the

corresponding Gaussian-DPP-Thomas processes, especially at larger scales, which again reflects that the cluster centres are more regular in the

Ginibre-DPP-Thomas processes. The considered Thomas processes are more clustered than the corresponding DSNCP processes and show no

signs of repulsive behaviour.

MØLLER AND VIHRS 5 of 14
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4 | STATISTICAL INFERENCE

Suppose d¼2,W�ℝ2 is a bounded observation window, X\W¼fx1,…,xng is a point pattern data set, and we want to fit a parametric DSNCP

model given by either the Gaussian-DPP-Thomas or Ginibre-DPP-Thomas process. There is a trade-off between ρY and γ because of the relation

ρX ¼ γρY . Therefore, when modelling the data, we choose to let ρY ¼1=ðπβ2Þ, which means that Y will be as repulsive as possible. That is, γ > 0 and

θ¼ðα,βÞ� ð0,∞Þ2 are the unknown parameters.

4.1 | Estimation

Likelihood-based inference is complicated because of the unobserved process of cluster centres. Møller and Waagepetersen (2004) showed how

a missing data MCMC approach can be used for maximum likelihood estimation in the special case of the Thomas process, and it may be simpler

but still rather complicated to use a MCMC Bayesian setting along similar lines as in Beraha et al. (2022). We propose instead to exploit the para-

metric expressions of the intensity and of the pcf or K-function given in Section 3.2 when estimating γ and θ. In this paper, we use a minimum

contrast procedure and leave it for future research to investigate the alternative approaches of composite likelihood (Guan, 2006) and Palm likeli-

hood (Tanaka et al., 2008) using the expressions of ρX and gX,st;see the review in Møller and Waagepetersen (2017), and the references therein.

Specifically, we use a minimum contrast procedure for estimating θ, where it is preferable to consider Ripley's K-function, since it is easier to

estimate K than gX,st by non-parametric methods (see, e.g., Møller & Waagepetersen, 2004). Since K does not depend on γ, we need to estimate γ

separately. Writing K¼Kθ to stress the dependence of θ and K̂ for a non-parametric estimate based on fx1,…,xng, the minimum contrast estimate

of θ is given by

θ̂¼ arg min
θ

ðrmax

rmin

jK̂ðrÞq�KθðrÞqjpdr
	 


where we use the R-package spatstat (Baddeley et al., 2015) for calculating K̂ and the minimum contrast estimate by using default settings for

the choice of rmin , rmax , q, and p. Finally, having estimated θ, we estimate γ from the unbiased estimation equation ρX ¼ γ=ðπβ2Þ¼ γρY ¼ n=jWj.

4.2 | Model checking

When checking a fitted model, we prefer to use other functional summary statistics than K̂ since this was used as part of the estimation proce-

dure. The standard is to consider empirical estimates of theoretical functions known as the empty space function (or spherical contact function) F,

the nearest-neighbour function G, and the J-function, which are defined for a stationary point process X as follows. Consider any number r >0

and an arbitrary point u�ℝd. Then,

F IGURE 2 Plots of gX,isoðrÞ (left) and KðrÞ�πr2 (right) for the Thomas process (black curves), Gaussian-determinantal point process (DPP)-
Thomas process (dark grey curves), and Ginibre-DPP-Thomas process (light grey curves) when d¼2,α¼1,β¼2,3,4 (dotted, dashed, and solid
curves, respectively), and ρY ¼1=ðβ2πÞ. The plots also show the constant lines corresponding to the cases of a stationary Poisson process

6 of 14 MØLLER AND VIHRS
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FðrÞ ¼PðdistðX,uÞ≤ rÞ,
GðrÞ ¼PðdistðX ∖ fug,uÞ≤ r ju�XÞ,
JðrÞ ¼ ð1�GðrÞÞ=ð1�FðrÞÞ:

Here J is only defined for FðrÞ<1,distðX,uÞ¼ inffr >0jbðu,rÞ\X≠ ;g is the distance from u to X, and in the definition of G when conditioning

on u�X it means that X ∖ fug follows the reduced Palm distribution of X at u (see, e.g., Møller & Waagepetersen, 2004). Since X is stationary, the

definitions of F,G, and J do not depend on the choice of u.

We have not been able to derive the expressions of F,G, and J for Gaussian- and Ginibre-DPP-Thomas processes; to the best of our knowl-

edge, these expressions are not even known for a Thomas process. We refer to empirical estimates of these theoretical functions as functional

summary statistics and use the relevant functions in spatstat to calculate such non-parametric estimates (always using the default settings

including settings that account for boundary effects). Figure 3 concerns means of non-parametric estimates F̂,Ĝ, and Ĵ calculated from simulations

of Thomas processes, Ginibre-DPP-Thomas processes and Gaussian-DPP-Thomas processes for the parameters stated in the caption. In agree-

ment with Figure 2 the plots show an increasing degree of clustering as β increases and that the Thomas processes are more clustered than the

corresponding DSNCP processes. The plots also indicate that the Gaussian-DPP-Thomas processes are more clustered and exhibit more empty

space than the corresponding Ginibre-DPP-Thomas processes, and the difference becomes more apparent as β decreases.

In order to validate a fitted model, we use 95% global envelopes and global envelope tests based on the extreme rank length as described in

Myllymäki et al. (2017), Mrkvička et al. (2020), and Myllymäki and Mrkvička (2019), which is implemented in the R-package GET (Myllymäki &

Mrkvička, 2019). These envelopes are based on functional summary statistics calculated from a number of simulations under the fitted model. We

use 2499 simulations as recommended in the above references.

4.3 | An application example

The first point pattern in Figure 4 shows the positions of 448 white oak trees in a square region (scaled to a unit square) of Lansing Woods,

Clinton County, Michigan USA, which is part of the lansing data set that is available in spatstat. We will refer to this point pattern as xobs. By

using the method of minimum contrast estimation as described in Section 4.1, we fitted a Gaussian-DPP-Thomas process, Ginibre-DPP-Thomas

process, and Thomas process to xobs. The obtained estimates are given in Table 1. We see that the fitted DPP-Thomas processes expect much

fewer clusters than the Thomas process and thus also more points in each cluster. As we expected, the fitted Ginibre-DPP-Thomas process is the

one that expects the fewest clusters. Because of its expected 35 clusters with about 12 points on average in each cluster it also seems to be a

more sensible cluster process model than the other processes, which have many clusters with only a few points in each cluster. Figure 4 also

shows a realization of each fitted model. The behaviours of these realizations are apparently in good agreement with xobs. In order to check

F IGURE 3 Means of F̂,Ĝ, and Ĵ calculated from 500 simulations of Thomas processes (black curves), Gaussian-determinantal point process
(DPP)-Thomas processes (dark grey curves), and Ginibre-DPP-Thomas processes (light grey curves) on a square with side lengths 20. In all types
of processes, α¼1,β¼2,3,4 (dotted, dashed, and solid curves, respectively), ρY ¼1=ðπβ2Þ, and γ¼1=ρY . Note that β is not a parameter of the
Thomas process and is thus only used to calculate ρY in this case

MØLLER AND VIHRS 7 of 14
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whether the models fit to data, we made 95% global envelope tests as described in Section 4.2. Figure 5 shows the results, which indicate that all

three models fit well, but the Ginibre-DPP-Thomas process has a much higher p value than the other two processes.

In connection with this paper, we considered over 100 examples of point pattern data sets and found 20 point patterns, which the considered

DSNCP models describe well, including the application example in this section. For all of these we also found that the Thomas process fits well

but that the fitted Thomas process models expected more clusters than the corresponding fitted DSNCP models. Thus, the situation exemplified

in this section where all three of the considered models can be used to model data but the DSNCP models expect fewer clusters appears to be a

typical situation.

5 | SIMULATION STUDY

Section 4.3 suggests that it may be difficult to distinguish between realizations of Thomas, Gaussian-DPP-Thomas, and Ginibre-DPP-Thomas pro-

cesses. To investigate this further, we in this section describe a simulation study where we considered the parameters

ρY ¼10, 30, 50,γ¼10, 30, 50, and α¼0:03, 0:04, 0:05 for the three considered cluster point process models (in the DPP-Thomas processes we as

always used the relation ρY ¼1=ðπβ2Þ or equivalently β¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðπρYÞ

p
). The values of α are like those in Table 1, and the values of ρY and γ are like

those from the fitted Ginibre-DPP-Thomas process in Table 1. For each combination of parameters and each model we made 100 simulations on

a unit square (for the simulation procedures we used, see Appendix A.3). For each of these simulations, we fitted the two models that were not

the true one and made a global envelope test as described in Section 4.3 for validating the fitted models. Since this simulation study is time

F IGURE 4 Plots of the whiteoak point pattern (xobs) and a simulation from fitted models of the type stated at the top of each plot

TABLE 1 Estimated parameters when fitting models to xobs. Note that the Thomas process does not have the parameter β

Model β ρY γ α

Gaussian-DPP-Thomas 0.05 105.36 4.25 0.03

Ginibre-DPP-Thomas 0.09 35.32 12.68 0.05

Thomas - 204.11 2.19 0.03

F IGURE 5 Plots of 95% global envelopes (grey area) and p values (stated above each plot) for global envelop tests (see Section 4.2) based on
ĴðrÞ from 2499 simulations from the fitted model stated to the left of each plot. The solid curves show Ĵ for Xobs, and the dashed curves show the
mean of Ĵ calculated from the simulations

8 of 14 MØLLER AND VIHRS
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consuming, we only used 1999 simulations to calculate each global envelope test in order to save some time, but this is still in agreement with the

recommendations regarding the number of simulations in global envelope tests.

Table 2 shows the proportion of tests that yielded a p value below 0.05 for each combination of parameters, true models, and fitted models.

We overall see that in order to distinguish between the models, the ideal situation is when γ is large and α is small, meaning that the realization

consists of small clusters with many points in each. Overall, it also seems to be an advantage if there is a moderate number of clusters since the

rejection rates are generally higher when ρY ¼30, especially for small α. It appears to be most difficult to distinguish between the Gaussian-DPP-

Thomas process and the two remaining processes, especially the Thomas process, whereas it is easier to distinguish between Thomas and

Ginibre-DPP-Thomas processes. Figure 6 shows a realization under each model with parameters α¼0:03, γ¼50, and ρY ¼30, which the simula-

tion study suggests is a good situation when it comes to distinguishing between the models.

We also used this simulation study to investigate the apparent tendency for fitted Thomas processes to expect more clusters than fitted

DPP-Thomas processes. Table 3 shows the mean of the fitted value of ρY divided by the value of ρY in the true model for each combination of

parameters, model, and fitted model. We see that when the true model is a DPP-Thomas process, the fitted Thomas processes expect more clus-

ters than the true model, especially when the true model is a Ginibre-DPP-Thomas process; this behaviour gets more extreme as α and ρY

increase. This is also the behaviour of the fitted Gaussian-DPP-Thomas processes when the true model is a Ginibre-DPP-Thomas process,

although it is not so extreme as for the fitted Thomas processes. If the true model is a Thomas process, we similarly see that the fitted DPP-

Thomas processes expect fewer clusters than the true model, especially the Ginibre-DPP-Thomas process; this behaviour gets more extreme as

ρY increases, whereas in this case it seems that α has only little influence on this behaviour. This is also the behaviour of the fitted Ginibre-DPP-

Thomas processes when the true model is a Gaussian-DPP-Thomas process. The parameter γ in the true model has no apparent effect on the

expected number of clusters in the fitted models.

TABLE 2 Table of the proportion of global envelope tests in the simulation study for which the p value was below 0.05. Concerning the
column with the fitted model, for short the models Thomas process, Gaussian-DPP-Thomas process, and Ginibre-DPP-Thomas process are
written as Thomas, Gaussian, and Ginibre, respectively

ρY ¼10 ρY ¼30 ρY ¼50

Fitted model: γ¼10 γ¼30 γ¼50 γ¼10 γ¼30 γ¼50 γ¼10 γ¼ 30 γ¼50

True model is a Ginibre-DPP-Thomas process

α¼0:03 0.02 0.35 0.37 0.05 0.56 0.79 0.06 0.26 0.52

Thomas α¼0:04 0.03 0.11 0.30 0.02 0.06 0.22 0.05 0.06 0.00

α¼0:05 0.01 0.09 0.20 0.02 0.01 0.01 0.03 0.01 0.03

α¼0:03 0.02 0.09 0.14 0.02 0.33 0.55 0.05 0.33 0.51

Gaussian α¼0:04 0.06 0.09 0.10 0.02 0.11 0.24 0.04 0.10 0.06

α¼0:05 0.02 0.05 0.18 0.05 0.03 0.05 0.03 0.02 0.02

True model is a Gaussian-DPP-Thomas process

α¼0:03 0.02 0.17 0.22 0.03 0.20 0.19 0.07 0.09 0.13

Thomas α¼0:04 0.02 0.06 0.09 0.04 0.02 0.05 0.02 0.04 0.02

α¼0:05 0.02 0.06 0.10 0.03 0.01 0.00 0.01 0.03 0.04

α¼0:03 0.02 0.10 0.08 0.18 0.31 0.44 0.21 0.35 0.44

Ginibre α¼0:04 0.03 0.07 0.10 0.09 0.15 0.15 0.04 0.14 0.15

α¼0:05 0.04 0.06 0.06 0.05 0.03 0.02 0.04 0.02 0.07

True model is a Thomas process

α¼0:03 0.08 0.19 0.25 0.25 0.45 0.60 0.19 0.48 0.56

Ginibre α¼0:04 0.06 0.11 0.12 0.07 0.15 0.18 0.06 0.09 0.08

α¼0:05 0.03 0.05 0.05 0.03 0.06 0.10 0.02 0.05 0.02

α¼0:03 0.02 0.08 0.06 0.06 0.07 0.15 0.08 0.08 0.19

Gaussian α¼0:04 0.03 0.07 0.04 0.06 0.06 0.06 0.04 0.06 0.04

α¼0:05 0.02 0.04 0.01 0.05 0.02 0.03 0.02 0.04 0.05
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6 | CONCLUSION

We have presented the new class of cluster point process models called determinantal shot noise Cox processes, which have repulsion between

cluster centres. For the two special cases that we have called Gaussian-DPP-Thomas processes and Ginibre-DPP-Thomas processes, we have

derived closed form expressions for the pair correlation function and Ripley's K-function. The ability to actually derive such closed form paramet-

ric expressions for these theoretical summary functions is a huge advantage compared to using Markov point processes for the cluster centres,

which has previously been done for cluster point processes with repulsion between clusters, since easy and fast parameter estimation can then

be achieved with the method of minimum contrast estimation or other methods based on the pair correlation or K-function, cf. Section 4.1.

We have seen that the fitted DPP-Thomas process models in Sections 4.3 and 5 expect much fewer clusters than a Thomas process, and

thus, they also expect much more points in each cluster, especially the Ginibre-DPP-Thomas model. In many situations it will be intuitively more

F IGURE 6 Simulation of a realization under the model stated at the top with parameters α¼0:03,γ¼50, and ρY ¼1=ðπβ2Þ¼30

TABLE 3 Table of the mean of the fitted value of ρY divided by the value of ρY in the true model. Concerning the column with the fitted
model, for short the models Thomas process, Gaussian-DPP-Thomas process, and Ginibre-DPP-Thomas process are written as Thomas, Gaussian,

and Ginibre, respectively

ρY ¼10 ρY ¼30 ρY ¼50

Fitted model: γ¼10 γ¼30 γ¼50 γ¼10 γ¼30 γ¼50 γ¼10 γ¼30 γ¼50

True model is a Ginibre-DPP-Thomas process

α¼ 0:03 1.92 1.85 1.84 2.83 2.77 2.78 3.71 3.55 3.54

Thomas α¼ 0:04 2.10 2.10 2.08 3.78 3.52 3.65 5.11 4.71 4.85

α¼ 0:05 2.50 2.23 2.54 4.93 4.66 4.32 6.73 6.50 6.68

α¼ 0:03 1.26 1.22 1.22 1.60 1.57 1.57 1.98 1.91 1.90

Gaussian α¼ 0:04 1.32 1.32 1.31 2.03 1.89 1.96 2.63 2.41 2.50

α¼ 0:05 1.49 1.35 1.51 2.55 2.42 2.25 3.41 3.29 3.38

True model is a Gaussian-DPP-Thomas process

α¼ 0:03 1.52 1.59 1.71 1.89 1.93 1.81 2.03 2.02 2.04

Thomas α¼ 0:04 1.72 1.73 1.61 2.00 2.01 2.12 2.41 2.19 2.17

α¼ 0:05 1.87 1.95 1.98 2.41 2.36 2.18 2.31 2.49 2.45

α¼ 0:03 0.85 0.89 0.93 0.70 0.71 0.67 0.59 0.59 0.59

Ginibre α¼ 0:04 0.85 0.86 0.81 0.61 0.61 0.63 0.55 0.51 0.52

α¼ 0:05 0.83 0.86 0.87 0.62 0.60 0.57 0.45 0.49 0.49

True model is a Thomas process

α¼ 0:03 0.70 0.65 0.64 0.44 0.45 0.43 0.37 0.38 0.38

Ginibre α¼ 0:04 0.66 0.59 0.64 0.44 0.42 0.43 0.34 0.34 0.35

α¼ 0:05 0.59 0.59 0.61 0.38 0.40 0.40 0.33 0.31 0.33

α¼ 0:03 0.83 0.77 0.75 0.65 0.67 0.62 0.62 0.64 0.64

Gaussian α¼ 0:04 0.81 0.72 0.78 0.71 0.66 0.69 0.64 0.65 0.66

α¼ 0:05 0.76 0.76 0.78 0.67 0.71 0.70 0.69 0.64 0.68
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pleasing to fit a cluster point process with few clusters consisting of many points compared to many clusters consisting of very few points. We

have also seen through a simulation study that the ideal situation for distinguishing between the considered three types of cluster point process

models is if the realization has small clusters with many points in each.
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Myllymäki, M., & Mrkvička, T. (2019). GET: Global envelopes in R. Available at arXiv:1911.06583.
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APPENDIX A

A.1 | DEFINITION OF A DPP AND SOME PROPERTIES

Let Y be a simple point process defined on ℝd and c be a complex function defined on ℝd�ℝd so that for every integer n>0 and pairwise disjoint

bounded Borel sets A1,…,An �ℝd, we have

E YðA1Þ…YðAnÞ½ � ¼
ð
A1

…
ð
An

detfcðui ,ujÞgi,j¼1,…, ndu1…dun <∞

where detfcðui ,ujÞgi,j¼1,…,n is the determinant of the n�n matrix with ij0th entry cðui, ujÞ. Then Macchi (1975) defined Y to be a DPP with kernel c.

Note that Y must be locally finite and the function

ρðnÞðu1,…, unÞ¼detfcðui, ujÞgi,j¼1,…, n ð11Þ

is the so-called n'th order intensity function ρðnÞ of Y.

In fact for the DPP Y, its distribution is unique and completely characterized by the intensity functions of all order, cf. Lemma 4.2.6 in Hough

et al. (2009). Thus, stationarity of Y is equivalent to that ρðnÞðu1,…,unÞ¼ ρðnÞðu1þv,…,unþvÞ for all v�ℝd and (Lebesgue almost) all u1,…,un �ℝd,

and isotropy of Y means that ρðnÞðu1,…,unÞ¼ ρðnÞðOu1,…,OunÞ for all n�n rotations matrices O and (Lebesgue almost) all u1,…,un �ℝd.

For later use, consider any numbers β > 0 and 0≤ p≤1, and the scaled point process βY¼fβyjy�Yg. Let Yβ,p be an independent p-thinning of

βY (that is, the points in βY are independently retained with probability p and Yβ,p consists of those retained points). It is easily seen that Yβ,p is a

DPP with kernel

cβ,pðu,vÞ¼ ðp=βÞdcðu=β,v=βÞ: ð12Þ

A.2 | SOME RESULTS FOR THE SCALED GINIBRE POINT PROCESSES

In the following, assume d¼2 and Y is a standard Ginibre point process as defined in Section 2, so we identify ℝ2 with the complex plane C. Let
Yβ,p be as above and let λ¼ ρYβ,p

be its intensity. By (12), Yβ,p is the DPP with kernel

cβ,pðu,vÞ¼ λexpððuv�juj2=2�jvj2=2Þ=β2Þ, u, v�C,

and λ¼ðp=βÞ2=π. In Section 2 we used the variation dependent parametrization ðρYβ,p
,βÞ, which is in one-to-one correspondence to ðβ,pÞ. For the

following it is convenient to let ν¼ p2 and use the variation independent parametrization ðν,λÞ� ð0,1��ð0,∞Þ, which is also in one-to-one corre-

spondence to ðβ,pÞ. Using this parametrization, with a slight abuse of notation we write Yν,λ for the DPP Yβ,p and

cν,λðu,vÞ¼ λexp ðλπ=νÞðuv�juj2=2�jvj2=2Þ
� �

ð13Þ

for its kernel.

A.2.1 | Invariance under isometries

Below we show that the n0th order intensity function is invariant under translations and rotations, and therefore, Y is stationary and isotropic. In

the same way, it can be shown that ρðnÞ is invariant under reflections and glide reflections. So the distribution of Y is invariant under isometries

(mappings of the form z! azþb and z! azþb where a,b�C with jaj ¼1; these mappings correspond to translations, rotations, reflections, and

glide reflections).

Denote Sn the set of all permutations of f1,2,…,ng and sgnðσÞ the sign of a permutation σ � Sn. From (11) and (13) we get
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ρðnÞðu1,…,unÞ ¼ P
σ � Sn

sgnðσÞQn
i¼1cν,λðui,uσðiÞÞ

¼ λn
P

σ � Sn

sgnðσÞexp ðλπ=νÞPn
i¼1 ui�uσðiÞ � juij2=2�juσðiÞj2=2

� �� �

¼ λn
P

σ � Sn

sgnðσÞexp ðλπ=νÞPn
i¼1 ui�uσðiÞ � juij2

� �� �
:

Hence, for any a,b,u1,…,un , a straightforward calculation gives

ρðnÞðau1þb,…, aunþbÞ¼ ρðnÞðu1,…, unÞ,

so ρðnÞ is invariant under translations and rotations.

A.2.2 | Spectral decompositions

Spectral representations of the kernel restricted to compact regions are needed for simulation as well as other purposes (cf. Lavancier

et al., 2015). The simplest case occurs when we consider Yν,λ restricted to a closed disc around zero. So for r >0, let bð0,rÞ�C be the closed disk

around zero with radius r� ð0,∞Þ and Yν,λ,r ¼Yν,λ\bð0,rÞ the restriction of Yν,λ to bð0,rÞ. Because Yν,λ is a DPP, Yν,λ,r is a DPP with kernel

cν,λ,rðu,vÞ¼
cν,λðu, vÞ ifðu, vÞ� bð0, rÞ,
0 otherwise:

	

The integral operator corresponding to the kernel cν,λ has only one eigenvalue, namely, ν, and the eigenfunctions are

ϕi
ν,λðuÞ¼

ffiffiffi
λ

p ðλπÞði�1Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði�1Þ!νi

p expð�λπjuj2=ð2νÞÞui�1, u�C, i¼1,2,…:

This follows easily by exploiting the moment properties of two independent zero-mean complex normally distributed random variables and the

definition of the complex exponential function

(expðzÞ¼P∞
k¼0z

k=k! for z�C) for the term expððλπ=νÞuvÞ in (13). In other words, we have the spectral representation

cν,λðu,vÞ¼
X∞
i¼1

νϕi
ν,λðuÞϕi

ν,λðvÞ:

Similarly, we see that the integral operator corresponding to cν,λ,r has eigenfunctions

ϕi
ν,λ,rðuÞ¼ϕi

ν,λðzÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fiðλπr2=νÞ

q
, u� bð0,rÞ, i¼1,2,…,

with corresponding eigenvalues

ξiν,λ,r ¼ νFiðλπr2=νÞ, i¼1,2,…, ð14Þ

and the spectral representation is

cν,λ,rðu,vÞ¼
X∞
i¼1

ξiν,λ,rϕ
i
ν,λ,rðuÞϕi

ν,λ,rðvÞ:

A.3 | SIMULATION PROCEDURES

For simulating determinantal point processes, we use the algorithm described in Lavancier et al. (2015), which is a specific case of the simulation

algorithm of Hough et al. (2006). We refer to these references for specific details. The algorithm is implemented in spatstat for the models
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suggested in Lavancier et al. (2015), which include Gaussian DPPs. For these models, it is necessary to approximate the kernel because the spec-

tral representation is unknown. In the case of a scaled Ginibre point process, this approximation is however unnecessary for simulating it on a disc

because the spectral representation is known. The simulation is still only approximate because the procedure also involves other approximations

including approximating the upper bound for rejection sampling chosen in Lavancier et al. (2015) (an approximation that is, in fact, not necessary

for the models they consider since the expression simplifies in those cases). For simulating a scaled Ginibre point process on a windowW, we thus

use the spectral representation on a disc to simulate the process on bð0, rÞ�W and thereafter extract the part that is in W.

For simulating DPP-Thomas processes on a window W, we first simulate the DPP Yext obtained by restricting Y to an extended window in

order to account for boundary effects. Regarding the extension, we decided to use the default setting from the function rThomas in spatstat,

which simulates a Thomas process. Given the cluster centres Yext on the extended window, we simulate the clusters of the DPP-Thomas process

X independently as finite Poisson processes with intensity functions ρyðxÞ¼ γKαðx�yÞ for each y�Yext. That is, first simulate the number of points

ny in a cluster Xy centred at y�Y from a Poisson distribution with rate γ. Then sample the ny independent points in Xy from the d-dimensional

normal distribution Ndðy, α2IÞ. Finally, the simulation of X on W is the part of [ y � YXy , which falls in W.

14 of 14 MØLLER AND VIHRS
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