Structure and Topology of Na2O-B2O3-Al2O3-SiO2 Mixed Network Glasses
Zheng, Qiuju; Youngman, R. E.; Hogue, C.L.; Mauro, J.C.; Potuzak, M.; Ellison, A.J.; Smedskjær, Morten Mattrup; Yue, Yuanzheng

Publication date: 2011

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Structure and Topology of Na$_2$O-B$_2$O$_3$-Al$_2$O$_3$-SiO$_2$ Mixed Network Glasses

Qiuju Zheng1,2, Randall E. Youngman2, Carrie L. Hogue2, John C. Mauro2, Marcel Potuzak2, Adam J. Ellison2, Morten M. Smedskjaer1, Yuanzheng Yue1,3

1Section of Chemistry, Aalborg University, DK-9000 Aalborg, Denmark
2Science and Technology Division, Corning Incorporated, Corning, New York, USA
3Key Laboratory for Glass and Ceramics, Shandong Polytechnic University, Jinan, China

Boroaluminosilicate glasses serve as the basis for a variety of industrial glasses. Hence, it is critical to understand the relationship between physical properties and structure of these mixed network former glasses. Also it is important to model the effects of composition on properties based on structural speciation by applying constraint theory and then to compare the modeled and experimental results. We have designed six Na$_2$O-B$_2$O$_3$-Al$_2$O$_3$-SiO$_2$ glasses with variation of the [Al$_2$O$_3$]/[SiO$_2$] ratio to access different regimes of sodium behavior. We use 11B, 27Al, 29Si, and 23Na MAS NMR to determine changes in both network speciation and modifier cation environment as a function of the composition. We link these structural changes to changes in measured thermal, mechanical, and rheological properties.