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Abstract: Power availability from renewable energy sources (RES) is unpredictable, and must be
managed effectively for better utilization. The role that a hybrid energy storage system (HESS)
plays is vital in this context. Renewable energy sources along with hybrid energy storage systems
can provide better power management in a DC microgrid environment. In this paper, the optimal
PI-controller-based hybrid energy storage system for a DC microgrid is proposed for the effective
utilization of renewable power. In this model, the proposed optimal PI controller is developed using
the particle swarm optimization (PSO) approach. A 72 W DC microgrid system is considered in
order to validate the effectiveness of the proposed optimal PI controller. The proposed model is
implemented using the MATLAB/SIMULINK platform. To show the effectiveness of the proposed
model, the results are validated with a conventional PI-controller-based hybrid energy storage system.

Keywords: Bidirectional DC-DC converters; hybrid energy storage systems; DC microgrid; renewable
energy sources; particle swarm optimization

1. Introduction

Nowadays, DC microgrids are increasingly popular because of their various applica-
tions such as electric vehicles (EVs) [1], uninterruptible power supplies (UPS) [2], and so
on. DC microgrids consist of various renewable energy sources (RES) such as solar, wind,
fuel cells, etc., along with hybrid energy storage systems (HESS) to maximize efficiency
and neutralize fluctuating voltage [3]. Generally, the energy storage system (ESS) can be
established by various devices such as the battery, supercapacitors (SC), flywheels, ultraca-
pacitors, and so on. Among all storage devices, batteries are the most commonly used for
ESSs. The utilization of batteries alone in the ESS can lead to a reduction in battery life due
to a longer response time of the battery under rapidly varying environments [4,5]. Thus,
the usage of more than one device to form a HESS is becoming popular and has several
advantages. The combination of a fast-responding SC along with a slow-responding battery
in HESS can reduce the burden on the battery from the intermittent nature of an RES. Here,
the SC has a higher power capacity to meet power fluctuations during the transient period,
and similarly, the battery has a high energy capacity to compensate for power requirements
during a steady state [6,7]. The structure of the DC microgrid is illustrated in Figure 1, and
connects various power generation systems, RESs, ESSs, and different types of loads such
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as EVs, smart buildings, etc. The necessity of sustainable energy has motivated researchers
to focus upon study of the DC microgrid.
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Figure 1. Structure of a DC microgrid.

In a HESS, the steady-state period is handled by the battery, while in the transient
period the SC regulates the power flow [8–15]. A HESS with a better energy-management
scheme will improve the life of the battery and reduce issues related to the DC microgrid [7].
To understand the better energy operation of a HESS, a detailed comparison of batteries
with supercapacitors [16] is shown in the Table 1.

Table 1. Parameter comparison of battery and SC.

Parameters Battery Supercapacitor

Recharge cycle lifetime <103 cycles >106 cycles
Self-discharge rate 5% 30%

Voltage 3.7 V–4.2 V 0 V–2.7 V
Energy density (Wh/kg) High (20–150) Low (0.8–10)
Power density (W/kg) Low (50–300) High (500–400)
Fastest charging time Hours s~min

Fastest discharging time 0.3~3 h <a few min
Charging circuit Complex Simple

Bidirectional converters play a vital role in the better power management of DC
microgrid environments. The various converter configurations, such as isolated and
non-isolated topologies, are presented in the literature for integrating a HESS with a DC
microgrid. Non-isolated topologies are mostly preferred over isolated topologies, due to



Sustainability 2022, 14, 14666 3 of 18

their ease of control. Bidirectional DC-DC boost converter topologies are more accurate
for HESS applications [1]. Dual active bridge converters [17], interleaved bidirectional
converters [18], and bidirectional SEPIC converters [19] are also finding application in
HESSs. Non-isolated buck-boost converters are employed between the source and load to
provide bidirectional operation. Figure 2 shows the different HESS configurations presented
in the literature. Figure 2a,b shows a passive HESS configuration, where the battery and
SC are directly connected to the DC bus. The major limitation of this configuration is that
it is uncontrollable. Figure 2c,d represents a semi-active configuration, where one of the
storage devices is connected to a converter and the other is directly connected to the DC
bus. Figure 2e,f shows an active configuration, which consists of a converter for both the
ESSs. Therefore, this configuration is fully controllable and more efficient. In an active
configuration, either two DC-DC converters can be separately connected to the ESS, as
in Figure 2e, or a multiple-input DC-DC converter topology can be used, as depicted in
Figure 2f.
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Figure 2. Various hybrid ESS configurations (a,b) passive configuration, (c,d) semi-active configura-
tion, (e,f) active configuration.

There are numerous control algorithms reported in the literature, such as artificial
intelligence, fuzzy controls, artificial neural networks, game theory, and genetic algo-
rithms [20–24]. A model predictive control-based SC system is introduced in [21]. Further,
several authors have proposed a PI-controller-based HESS for DC microgrids [22–25], a
robust model predictive controller for energy management of HESS grids [26–28]. This
paper presents the optimal PI-controller-based HESS for effective power management of
DC microgrids. The modeling, analysis, and design of the bidirectional boost converter are
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developed to integrate the DC grid with a HESS. The prime objective of the proposed model
is to maintain constant DC grid power, irrespective of load and source disturbances. To
achieve the aforementioned goal, the optimal PI controller is proposed in this work with the
help of the particle swarm optimization (PSO) approach. In order to validate the proposed
optimal controller, the results are compared with a conventional PI-controller-based HESS.
This work attempts to accentuate the response enhancement of the aforementioned system
for varying grid conditions, such as source and load fluctuations, with the PSO-optimized
PI controller. The organization of the paper is as follows. Section 2 presents the system
configuration and design following an introduction from Section 1. Mathematical modeling
of the HESS is presented in Section 3. Section 4 presents the simulation, result analysis,
and performance comparisons of various parameters within the proposed system. The
conclusion of the paper is provided in Section 5.

2. System Configuration and Design

Two or more interdependent energy storage systems that are capable of operating as a
single unit wherein one surpasses the other, such as batteries, fuel cells, SCs, etc. are known
as HESSs. The schematic configuration of a HESS is depicted in Figure 3; it consists of a
battery, supercapacitor, and bidirectional boost converter (BBC) for both battery and SC.
Figure 4 illustrates the control scheme of a HESS. There are three proportional–integral
(PI) controllers used for the voltage control loop and current control loops of the battery
and SC, respectively. The voltage control loop regulates grid voltage, whereas the current
control loops compensate for the power imbalance between SC and battery during source
and load variations.
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2.1. Converter Design

The design and analysis of the BBC is carried out in continuous-conduction mode
(CCM). Figure 5 shows the steady-state waveforms for the charging–discharging modes of
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the BBC. Both the battery and the SC have charging–discharging operations, so the BBC
is considered [22]. Two BBCs are used to link the battery and SC to the DC microgrid.
Each BBC has two switches, with Mb1 and Mb2 for the battery and Ms1 and Ms2 for the
SC. The output filter capacitors (Cb and Cs) of the BBCs are considered together as Co.
Here, the microgrid is represented as a resistive load RL with grid voltage Vg. The BBCs
are connected to the load through a common output capacitor filter, Co. The DC grid is
considered to be a constant voltage source with Vg = 24 V. From Figure 3, the voltage across
the inductors Lb and Ls is provided by

Lb
diLb(t)

dt
= Vtb (1)

Ls
diLs(t)

dt
= Vts (2)

where Vtb and Vts are the terminal voltage of battery and supercapacitor, respectively, and
Lb and Ls are the inductance of the BBC of battery and SC, respectively. Next, the current
through the capacitor is provided by

Cb
dvg(t)

dt
=
−Vg

RL
(3)

Cs
dvg(t)

dt
=
−Vg

RL
(4)

where Vg represents the microgrid voltage, and Cb and Cs are the output capacitor filter of
battery BBC and SC BBC, respectively. Thus, the values of inductor and capacitor can be
found from (1)–(4) as

Lb =
Vgδb

∆iLb fs
(5)

Ls =
Vgδs

∆iLs fs
(6)

Cb =
Vgδb

∆vgRL fs
(7)

Cs =
Vgδs

∆vgRL fs
(8)

where ∆iLb and ∆iLs are the ripple current in the inductor and are taken as 5%, ∆Vg is the
capacitor ripple voltage, which is considered as 2%, fs is the switching frequency, δb and δs
are the duty cycle of the battery and SC, respectively, and RL represents resistive load.

2.2. Small-Signal Analysis of Boost Converter

The small-signal model of a BBC as depicted in Figure 3 is provided as follows:

Lb
diLb(t)

dt
= vtb − (1− δb)vg (9)

Cb
dvcb(t)

dt
= (1− δb)iLb −

vg

RL
(10)

Ls
diLs(t)

dt
= vtsc − (1− δs)vg (11)

Cs
dvcs(t)

dt
= (1− δs)iLs −

vg

RL
(12)

where Lb and LS are the inductance of the battery converter and SC converter, respectively.
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The transfer functions obtained after the small-signal modeling are as follows. The
voltage-mode control transfer function:

Gvδb(s) =
v̂g

îLb
=

(1− δb)vg − (LbiLb)s

LbCbs2 + Lb
RL

s + (1− δb)
2 (13)

Gvδs(s) =
v̂g

îLs
=

(1− δs)vg − (LsiLs)s

LsCss2 + Ls
RL

s + (1− δs)
2 (14)

The current-mode control transfer functions:

Giδb(s) =
îLb

δ̂b
=

(
Cbvg

)
s + 2(1− δb)iLb

LbCbs2 + Lb
RL

s + (1− δb)
2 (15)

Giδs(s) =
îLs

δ̂s
=

(
Csvg

)
s + 2(1− δs)iLs

LsCss2 + Ls
RL

s + (1− δs)
2 (16)

The output transfer impedance for the battery and SC converters can be obtained from
(13)–(16):

Gvib(s) =
v̂g

îLb
=

(1− δb)vg − (LbiLb)s

LbCbs2 + Lb
RL

s + (1− δb)
2 (17)

Gvis(s) =
v̂g

îLs
=

(1− δs)vg − (LsiLs)s

LsCss2 + Ls
RL

s + (1− δs)
2 (18)

3. Mathematical Modeling
3.1. Battery Model

Lead acid batteries (LAB) are considered to be an ESS. The mathematical model of
an LAB represented as a controlled voltage source and internal resistance is shown in the
Figure 6.
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Current 
filter

Exp(t)

0 (Discharge)

1 (Charge)

Figure 6. Equivalent circuit of lead acid battery.

The controlled voltage source Ebat can be expressed as [29–31]:

Echar = Eo − K
Q

it + 0.1Q
.i∗ − K

Q
Q− it

. it + Exp(t) (19)

Edischar = Eo − K
Q

Q− it
.(it + i∗) + Exp(t) (20)

The terminal voltage of the battery Vtb can be expressed as [29,30]:

Vtb = Ebat − iR (21)

where Exp(t) represents the exponential zone voltage, I represents current in the battery, Eo
is constant voltage in the battery, K is the polarization constant, Q is battery capacity, it is
actual charge in the battery, A is amplitude of the exponential zone, B is the inverse of the
exponential zone time constant, i* is filter current, and RL is the internal resistance of the
battery.

The battery SOC is a key factor in the battery’s operation. Battery SOC will vary slower
than in an SC. So, the SOC is kept at 50% [30]. The battery discharge characteristics are
shown in Figure 7.
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3.2. Supercapacitor Model

The equivalent circuit for the supercapacitor is shown in Figure 8. For a fully charged
SC, the SOC will be 100%, and if it is empty, SOC will be 0%. The mathematical model of
an SC is obtained by combining the Helmholtz model and the Gouy–Chapman model. The
expression for the SOC of an SC is provided below [32,33]:

SOC =
Qinitial −

∫ t
0 i(τ)dτ

QT
(22)
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The total internal charge QT in coulombs is expressed as [32,33]:

QT =
∫

iscdt (23)

i(t) is provided by the expression [33]:

i(t) = isc. (1− u(t)) + isel f dis.u(t) (24)

When isc = 0, the SC will be self-discharging; then, the QT is represented as [33]:

QT =
∫

isel f disdt (25)

The controlled-voltage-source output voltage [33]:

VT =
NsQTd

NpNeεε0 Ar
+

2NeNsRT
F

sinh−1 QT

NpN2
e Ar
√

8RTεε0c
(26)

The terminal voltage of SC Vts is obtained from the Stern equation as [33]:

Vts =
NsQTd

NpNeεε0 Ar
+

2NeNsRT
F

sinh−1 QT

NpN2
e Ar
√

8RTεε0c
− Rsc. isc (27)

where ε is the permittivity of electrolytic material (Fm−1), ε0 is the permittivity of free
space (Fm−1), Ns is a number of SCs connected in series, Np is a number of SCs connected
in parallel, Ne is a number of electrode layers, R is the ideal gas constant, T is operating
temperature, c is molar constant (mol-m−3), d is the thickness of the Helmholtz layer (m),
and iSC is SC current [32,33].

3.3. Controller Design

The role of a controller is crucial in the DC microgrid environment for better power
management between the RES and HESS. In this work, the optimal PI-controller-based
HESS for a DC microgrid is developed for the effective utilization of renewable power.
In this model, the proposed optimal PI controller is developed using the particle swarm
optimization approach. The role of the PI controller is to regulate the DC-DC boost
converter. The control scheme provides a stable operation between converter characteristics
and external uncertainties. A low-pass filter (LPF) is used to perform power-sharing in
the HESS, which splits the total current into higher- and lower-frequency components. To
reduce the delay in the system, 31 rad/s is chosen as the cut-off frequency of the LPF [2].
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The power flow equation of the proposed HESS–DC microgrid system is provided by

Pl(t) = Pb(t) + Psc(t) + Pg(t) = Pavg(t) + P̂trans(t) (28)

where Pl(t) is the total power of load, Pb(t) is the battery power, Psc(t) is the SC power, Pg(t)
is the grid power, Pavg(t) is the total average power, and P̂trans(t) is the transient power
demand that the HESS must supply or absorb from the DC microgrid to balance the load
conditions and maintain the DC microgrid power as constant.

The general form of the PI controller is provided by

PIx = Kpx +
Kix
s

(29)

3.4. PSO Algorithm

The PSO algorithm is a multi-agent parallel-search technique which maintains a swarm
of particles, with each particle in the swarm representing a potential solution [23]. It was
developed by Eberhart and Kennedy in 1995, and is inspired by the behavior of birds and
fish swarms. In PSO, all the randomly initiated particles are evaluated, and the fitness is
computed together with the best values of each particle and the entire swarm. Then, a loop
searches for an optimal solution. In the loop, the particle’s velocity is updated first by the
personal and global best values; then, the current velocity will update the position of the
particle. This can be illustrated by the equation

Vj(t + 1) = w ∗Vj(t) + C1r1
(

pj − Xj(t)
)
+ C2r2

(
pg − Xj(t)

)
(30)

where t is the iteration number, j is the particle number, the personal best value of particle j
at a given stage is represented by the vector pj, the global best values calculated from all the
particles at t is represented by the vector pg, C1 and C2 are the acceleration parameters, and
vectors r1 and r2 are uniformly distributed random variables which have values between 0
and 1. The current velocity updates the particle positions to attain an optimal solution as
shown below:

Xj(t + 1) = Xj(t) + Vj(t + 1) (31)

The PSO algorithm has a lot of advantages, as it has very simple calculations and is
an algorithm without a derivative. It has a limited number of parameters which have less
impact on the solution, and is easy to implement [23]. Figure 9 shows the PSO tuning of
the PI controller. In this paper, the PSO algorithm which is used to determine the optimal
values of parameters of the PI controller has already been designed. The integral square
value of error (ISE) is the objective function used. It is based on the error obtained from the
input–output comparison. The maximum value of every computation is the updated value
of the next stage. If e(t) represents the voltage-tracking error at a particular instant of time t,
then ISE can be expressed as:

ISE =
∫ ∞

0
e2(t)dt (32)
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4. Results and Discussions

To validate the analysis and to evaluate the performance of a PI-controller-based
HESS and optimal PI-controller-based HESS, simulations are carried out using MAT-
LAB/Simulink platform. A controlled DC voltage source is considered as the main DC
bus to study the performance of a HESS for line and load perturbations. The design spec-
ifications of bidirectional boost converters for both the battery and SC are illustrated in
Table 2.

Table 2. Parameters of the Hybrid ESS unit.

System Parameters Values

Battery voltage (Vb) 12 V
SC voltage (VSC) 16 V

Load resistance (RL) 8 Ω
Inductance of battery converter (Lb) 2 mH

Inductance of SC converter (LS) 1.8 mH
Output capacitor filter values (Co) 250 µF

Power output (Pdc) 72 W
Switching frequency (fs) 20 kHz

Output voltage (Vdc) 24 V

Figures 10 and 11 depict the simulation waveforms of the conventional PI controller
and the proposed optimal PI-controller-based HESS with a sudden increase and decrease
in source voltage at 0.5 s and 1 s, respectively. The source voltage of 12 V is offered at t = 0
s, and at time t = 0.5 s there is a sudden increase in the source voltage from 12 V to 16 V. At
this instant, there is a sudden fluctuation in the load voltage which leads to an imbalance
between DC grid power and load power. Under such conditions, the load current increases
while the requirement of load power is constant at 72 W. As power supplied by the source
during a sudden increase in voltage is more than the power demanded by the load, and
DC grid voltage increases more than 24 V, The excess power is absorbed by the SC for
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a short duration until the grid voltage is regulated to 24 V by the battery. Thus, by this
energy-management scheme, the battery and SC charge accordingly in order to maintain
the constant grid voltage at 24 V. Further, during this period of time, the SC compensates
for the power, and thus, reduces the burden on the battery.
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From the simulation results, it can clearly be seen that the settling time for the conven-
tional PI-controller-based HESS is around 30 m whereas the settling time of 6 m is achieved
with the proposed optimal PI-controller-based HESS, which resulted in faster dynamic
response and better DC grid regulation with of the proposed optimal PI controller for a
sudden increase in source voltage. Similarly, a sudden decrease in source voltage from 16 V
to 12 V at t = 1 s results in load current decreases, while the requirement of load power
is constant at 72 W. As power supplied by the source during a sudden decrease in source
voltage is less than the power demanded by load, and DC grid voltage decreases less than
24 V, SC supplies the deficit power for a short duration until the battery can regulate the
grid voltage to 24 V. Under this condition, the settling times for the conventional PI and
optimal PI controller are 25 m and 5 m, respectively. From the simulation results, it clearly
shows that the proposed optimal PI-controller-based HESS has better performance than
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the conventional PI controller for source disturbance. Further, the proposed optimal PI
controller is 5 times faster than the conventional PI controller.
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Figures 12 and 13 show the simulation waveforms of the conventional PI controller
and the proposed optimal PI-controller-based HESS with a sudden increase and decrease
in load demand at t = 0.4 s and t = 1 s, respectively. The load current of 1 A is offered at
t = 0 s; at time t = 0.4 s there is a sudden increase in the load current from 1 A to 2 A. At
this instant, there is a sudden fluctuation in the load voltage which leads to an imbalance
between DC grid power and load power. During this period of time, the SC compensates
for the power, and thus, reduces the burden on the battery. Then, the voltage is restored to
its actual value, that is, 24 V. The response time for the conventional PI-controller-based
HESS with a sudden increase in load disturbance is around 14 m, whereas a response time
of 8 m is achieved with the optimal PI controller, which results in a faster response for the
HESS to the load disturbance.
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Further, the sudden decrease in load current is introduced at t = 1 s, and the voltage
spike due to the load change is restored to its actual value, with a response time for the
conventional PI-controller-based HESS around 13 m and a response time of 7 m achieved
with the optimal PI controller. From the simulation results, it is clearly shown that the
proposed optimal PI-controller-based HESS has better performance than the conventional
PI controller for load disturbance. Further, the proposed optimal PI-controller is two times
faster than a conventional PI controller.

The performance parameters such as settling time and maximum peak overshoot
are evaluated for the conventional PI controller and proposed optimal PI-controller-based
HESS with source and load disturbance. The peak overshoot during source disturbance
and load disturbance is evaluated as follows.

%MP =
Vg,re f −Vg,max

Vg,re f
(33)

Figure 14 illustrates the performance evaluation of the conventional and proposed
optimal PI controllers. The advantages of the proposed control over conventional control
are depicted in the graph. The proposed controller is five times faster in response during
source variations. Under varying load conditions, the proposed controller is two times faster
compared to the conventional one. The percentage voltage overshoot is improved under
increasing values of source voltage and load. In Case II, the source voltage is decreased,
causing reduction in the grid voltage to the nominal value. Thus, HESS regulates the
power, and there is a voltage undershoot of 9.5% and 10.1% for a short duration with
the conventional and proposed controllers. For the proposed controller, undershooting is
slightly more than that of the conventional controller.

In case IV, the DC-grid-side load is back to the rated load condition, which leads to an
increase in grid voltage. This causes an overshoot of 11.6% and 12.5% for the conventional
and proposed controllers for a short duration. This is settled within milliseconds. Thus,
the proposed controller overshoot is slightly more than that of the conventional controller.
From the above results, it can be noted that the improvement in response time is greater
with the proposed controller. Conversely, the peak undershoots during a sudden reduction
of load and source are marginal for the proposed control method.
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5. Conclusions

In this paper, the optimal PI control for a HESS-based DC microgrid is developed
for effective power management. The modeling, analysis, and design of BBCs are carried
out. The optimal PI controller is designed for a BBC with battery and SC as storage
devices. The performance of the proposed optimal PI-controller-based HESS is analyzed
with changes in source and load variations. The controller effectively regulates the DC
grid voltage with changes in source and load variations. The effectiveness of the proposed
optimal PI controller is compared with the conventional PI controller strategy for HESS.
Simulation results show the settling time has been reduced sharply and improved peak
overshoot. The proposed optimal PI controller has robustness during load and source
uncertainties. Subsequent work will address the proposed controller feasibility for various
DC-DC converter topologies in HESS applications, and propose controllers for different
RESs.
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