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Abstract: The transition from internal combustion engines to electric vehicles (EVs) has received
significant attention and investment due to its potential in reducing greenhouse gas emissions.
The integration of EVs into electric and transport systems presents both benefits and challenges
in energy management. The scheduling of EV charging can alleviate congestion in the electric
system and reduce waiting times for EV owners. The use of renewable energy sources (RESs) for
EV charging and supporting the grid can help mitigate the uncertainty of these energy resources.
Vehicle-to-grid (V2G) technology can be used as an alternative approach in the event of sudden
high consumption of the grid. Additionally, cost minimization through large-scale coordinated
planning is crucial for the future of e-mobility systems. This review paper focuses on the latest
trends considering the various approaches and features in coordinated EV scheduling, as well as the
influence of different stakeholders, categorized as single- and multiple-charging stations (CS) and
aggregator levels. By implementing coordinated EV scheduling, various methods are presented to
better manage the needs and satisfaction of EV owners as well as the profit of CS and the market
trends of e-mobility systems. In this regard, EV charging strategies considering V2G, uncertainty
evaluation of parameters, coordinated charging management, congestion of CSs and electrical lines,
route mapping, and technical and economic aspects of the system hierarchy, including consumers,
CSs and aggregators, are reviewed and discussed.

Keywords: electric vehicles; charging station; EV charging management; EV scheduling; V2G;
stakeholders; distribution system

1. Introduction

Electric vehicles (EVs) create potential for future energy systems by lowering the use of
fossil fuels and greenhouse gases (GHG). The European Union’s long-term goal to achieve a
low-carbon economy [1] supports accessible charging frameworks and facilities, as well as
strategies, for developing a green transportation system, which has led to extreme interest
in renewable energy sources (RESs) in energy and e-mobility systems. EVs as a clean
means of transportation have a significant impact on energy systems in both infrastructure
and characteristics. EVs play key roles in the development of sustainable urban transport
systems and offer various advantages, including reducing noise, improving local air quality,
decreasing CO2 due to higher efficiency compared to internal combustion engines, allowing
grid integration of RESs, and reducing the dependence on fuels as the source of energy.
In [2], mitigating CO2, as well as efficient use of RESs, is surveyed, while the impact of
different stakeholders’ objectives is considered.

1.1. Charging Station Congestion Evaluation

One of the innovative applications of RESs is utilizing these resources in charging EVs.
Authors of [3] modelled a dynamic pricing scheme for RES generation in charging stations
(CSs) and a decision mechanism for EVs to find the best location for charging based on
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congestion and traffic, as well as the price of electricity. Moreover, flowing numerous EVs to
the CSs in the crowded areas near city centers results in traffic congestion at CSs. However,
increasing the number of EVs requires suitable infrastructure, locating the best charging
spots to build CSs [4] and providing enough facilities [5]. In this regard, building new CSs
requires evaluating several aspects including charging prices, locations, and capacities in
strategic planning. Authors of [6] proved that considering a series of existing CSs’ profit
and loss, while running new CSs, makes the final optimal scenario different. Operational
and investment costs from the owner’s perspective and the convenience of EV owners
shall be considered in a competitive environment. From another perspective, transitioning
from fuel-powered to electrified transportation systems results in a massive number of
EVs charging randomly. In city centers during peak hours, energy management strategies
are needed to effectively balance demand and supply. By growing the EV industry with
more and more EVs in the market and consequently on roads, their charging patterns give
rise to congestion in the electrical grid [7]. From the point of view of the uncertainty of
RESs and network load, the importance of balancing the electricity and power demand is
remarkable [8,9]. This helps in changing consumers’ behavior by motivating them to use
their electrical devices in less busy times, which, by the revolution of EV home charging,
positively impacts controlling the congestion of lines.

1.2. Power Transaction with Electrical Network

Power transactions include customer services by CSs and services provided by EVs
into the grid, as well as charging infrastructure. The vehicle-to-grid mode (V2G) is described
as a situation where an EV can inject electricity back into the grid through discharging
mode. In this case, EVs can be discharged during the period of peak hours in the V2G mode
and contribute to the security of supply. As a result, EV users have the advantage of selling
electricity to the power grid when the electricity price is high. This can be estimated as
being similar to the storage system in peak shaving [10]. Moreover, V2G can participate in
valley filling and spinning reserve [11] and demand response [12]. Furthermore, increasing
variability in power generation due to RES systems makes the storage capacity necessary.
The adoption of EVs can also lead to the development of technologies related to RES. V2G
technology enables EVs to store energy from RESs, such as solar and wind power, and then
discharge that energy back to the grid during times of peak demand. This allows EVs to
function as mobile energy storage systems, which can help to balance the grid and reduce
the need for additional energy generation. In this regard, EVs can improve the stability of
the grid. For example, EVs can be used as mobile energy storage systems, which can help
to balance the grid by discharging electricity. In this regard, V2G technology creates the
advantage of EVs to exchange electricity within the power grid and, in consequence, has a
significant impact on the operation and management of power systems and the electricity
market. However, careful planning and management of the energy system is necessary to
ensure that the integration of EVs and renewable energy is efficient and environmentally
sustainable [13–15].

1.3. EV Aggregators

EV aggregators manage and optimize the charging and discharging of large numbers
of EV batteries. These companies utilize EV batteries to aggregate energy and provide
services to the energy market or grid. EV aggregators offer demand response services,
which involve adjusting the charging and discharging of EV batteries in response to changes
in grid conditions or energy prices. This service helps to balance supply and demand by
reducing or increasing the electricity from EV batteries. Moreover, EV aggregators provide
frequency regulation services that result in grid stability. Furthermore, EV aggregators can
sell energy stored in EV batteries to provide services to energy markets.
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1.4. Uncertainty in EV Charging Management

The RES has the advantage of providing extra electricity capacity and creating more
resilience to the system. However, due to their intermittent nature, these energy sources
present challenges and inefficiencies in energy production. The fluctuating nature of RESs
can create imbalances in the supply and demand of electricity. However, EVs can help to
mitigate these issues by serving as mobile energy storage systems. The use of EVs as energy
storage can help to increase the penetration of RESs in the electric grid. By allowing excess
RESs’ energy to be stored and used later, EVs can help to reduce the curtailment of these
resources, which occurs when energy production exceeds demand, and the excess energy
is not utilized. Researchers of [16] considered demand and supply balance by contributing
to the electricity demand response while the comfort of customers is provided. From
another side, the charging behavior of EV owners has a direct impact on the uncertainty
of the integrated power and transportation network. In this regard, a suitable mechanism
for modelling the stochastic nature of consumers’ charging patterns [17] is vital. In [18],
the authors declared that modelling a realistic and robust system cannot exist without
considering the uncertainty of energy resources and electrical network load. The uncertain
parameters, which are modelled in different articles, are shown in Figure 1.

Energies 2023, 16, 3669 3 of 29 
 

 

aggregators provide frequency regulation services that result in grid stability. Further-

more, EV aggregators can sell energy stored in EV batteries to provide services to energy 

markets. 

1.4. Uncertainty in EV Charging Management 

The RES has the advantage of providing extra electricity capacity and creating more 

resilience to the system. However, due to their intermittent nature, these energy sources 

present challenges and inefficiencies in energy production. The fluctuating nature of RESs 

can create imbalances in the supply and demand of electricity. However, EVs can help to 

mitigate these issues by serving as mobile energy storage systems. The use of EVs as en-

ergy storage can help to increase the penetration of RESs in the electric grid. By allowing 

excess RESs’ energy to be stored and used later, EVs can help to reduce the curtailment of 

these resources, which occurs when energy production exceeds demand, and the excess 

energy is not utilized. Researchers of [16] considered demand and supply balance by con-

tributing to the electricity demand response while the comfort of customers is provided. 

From another side, the charging behavior of EV owners has a direct impact on the uncer-

tainty of the integrated power and transportation network. In this regard, a suitable mech-

anism for modelling the stochastic nature of consumers’ charging patterns [17] is vital. In 

[18], the authors declared that modelling a realistic and robust system cannot exist with-

out considering the uncertainty of energy resources and electrical network load. The un-

certain parameters, which are modelled in different articles, are shown in Figure 1. 

 

Figure 1. Uncertain parameters in integrated transportation & electrical system. 

1.5. Coordinated vs. Uncoordinated Charging Management 

Charging management of EVs in smart systems is not possible without proper man-

agement strategies. Uncoordinated EV charging is a situation when EVs can start charging 

immediately by the time they arrive at the CS. The uncoordinated charging of EVs through 

CSs connected to the distribution system (DS) could cause extra load and congestion to 

the system [19]. Coordinated charging, on the other hand, is an energy management ap-

proach in which the time and power of charging and discharging modes are optimized. 

Moreover, technical constraints of the electrical grid, EV battery requirements, and CS 

capacity are considered. To mitigate the negative impacts of uncontrolled charging of EVs, 

a system-constrained coordination method is proposed in [20]. In this research, the pro-

posed management scheme helps in mitigating extra pressure on the grid as well as 

Figure 1. Uncertain parameters in integrated transportation & electrical system.

1.5. Coordinated vs. Uncoordinated Charging Management

Charging management of EVs in smart systems is not possible without proper man-
agement strategies. Uncoordinated EV charging is a situation when EVs can start charging
immediately by the time they arrive at the CS. The uncoordinated charging of EVs through
CSs connected to the distribution system (DS) could cause extra load and congestion to
the system [19]. Coordinated charging, on the other hand, is an energy management ap-
proach in which the time and power of charging and discharging modes are optimized.
Moreover, technical constraints of the electrical grid, EV battery requirements, and CS
capacity are considered. To mitigate the negative impacts of uncontrolled charging of
EVs, a system-constrained coordination method is proposed in [20]. In this research, the
proposed management scheme helps in mitigating extra pressure on the grid as well as
congestion and traffic of charging spots. Another coordinated EV charging/discharging
is proposed in [21] in the format of a cooperative strategy in which EVs of a building can
interact with each other in V2V mode and lower the consumption of the electrical grid,
with the help of vehicle-to-load (V2L), minimizing the cost. The objective functions which
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are optimized through different coordinated management schemes in different research
articles are shown in Figure 2.
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From the multi-stakeholder’s perspective in EV charging management, each one
follows its profit. Two or more e-mobility stakeholders, including distribution system
operators (DSO), CS operators (CSOs), EV owners, aggregators, and electricity market
operators are considered in the reviewed papers. In this regard, optimal EV scheduling
in multilevel stakeholder systems requires an efficient management scheme. Therefore,
it is necessary to optimize the operation of CSs and coordinate management of electrical
systems, while the satisfaction of customers in financial and time efficiency is met. In [22],
the convenience of EV owners as the lowest level of stakeholders is evaluated. Power loss
and voltage deviation of the grid and CS traffic management are surveyed through a fuzzy
logic method. Moreover, it is essential to model the benefits of CSs to assess their economic
viability, plan infrastructure development, and make policy decisions. By analysing factors
such as the demand for charging, the cost of installation and operation, and the impact on
the grid, stakeholders can make informed decisions about infrastructure development and
investment to support the growth of the electric vehicle market and the development of a
sustainable transportation system. In this regard, the price of electricity for charging electric
vehicles is considered in a suitable scheme in CSs. From the perspective of coordinated
EV scheduling, CS charging management can be categorized into three different decision-
making schemes: centralized, decentralized, and hybrid. Centralized decision-making
for EV charging is defined as control and management of charging/discharging EVs by a
central operator or aggregator, which has the responsibility to receive the data from EVs
and the electrical grid and arrange the scheduling. Additionally, the charging costs of
EV owners besides the DS constraints is necessary [23]. The scheduling problem aims to
minimize electricity costs of CSs and EV owners, controlling queues of EVs, minimizing
their waiting time, avoiding charging in high consumption hours, etc. In [19], a centralized,
coordinated EV charging in a grid-connected system framework is offered. Decentralized
charging scheduling is developed in such a way that EV owners can communicate with
the CSO by sending and receiving signals [24]. In this regard, cost and waiting time
minimization and congestion avoidance in each CS is done through negotiation between
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CSs and EVs in a distributed manner. Diagrams of centralized and decentralized EV
scheduling are shown in Figure 3.
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Furthermore, to take advantage of both centralized and decentralized decision-making
capabilities, a hybrid decision-making approach is applicable. In a hybrid controlling ap-
proach, both centralized and decentralized frameworks are modelled, in which the system
consists of two levels (centralized level through a system operator and the decentralized
level within a distributed management scheme).

This review paper is surveying recent publications in journals related to electrical and
energy systems with the specialty of EV charging management. The aim is to investigate
the latest trends in multi-stakeholders’ hierarchy, considering technical and economic
characteristics. Different techniques and methodologies, as well as controlling strategies of
each modelling approach proposed in each paper, are discussed, and their motivations and
limitations are categorized.

The main contributions of this review paper are as follows:

• Investigating communication levels of different stakeholders in multilevel decision
making in single-CS, multiple-CS, and aggregator-based scheduling.

• Study of grid-connected EV charging challenges and benefits, as well as the uncertainty
of parameters related to an interconnected electrical and transportation system.

• Reviewing coordinated charging scheduling approaches in each centralized, decen-
tralized and hybrid EV scheduling schemes referred to in the reviewed papers.

• Surveying various optimal dispatch models and methods which are used in EV charg-
ing management.

The paper is organized as follows:
In Section 2, EV scheduling in a single-CS is reviewed in different parts. Section 3,

surveys articles that focused on different approaches in EV charging management of mul-
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tiple CSs. Section 4 describes aggregator-based EV charging scheduling. Sections 5 and 6
present a discussion and conclusion, respectively.

2. Single-CS EV Charging Scheduling

In recent years, the EV industry has grown, following the low carbon emission re-
duction policy worldwide. EVs bring various benefits to the transportation system, due
to finite features of fossil fuels. However, the increasing number of EVs results in some
challenges in an integrated electrical and transportation system: charging facilities offering
services to EV owners with the least waiting time, growing congestion of lines due to the
electricity consumption from the grid, increasing the use of RESs to lower the dependence
of electricity from the upper grid, intermittency of RESs’, as well as EVs’, random behavior,
arrangement, and operation inside a CS. Moreover, EV charging loads should not exceed
the charging power capacity of each CS, while user satisfaction on receiving their minimum
SOC is required. Therefore, managing a CS and, in other words, charging scheduling of
EVs, is necessary to meet different stakeholders’ benefits and requirements. In this regard,
several research works investigated the charging scheduling of one or several EVs in a
single CS from different technical and economical perspectives. The framework of a single
CS system with different communication parts is shown in Figure 4.
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2.1. Congestion Management in a Single-CS System

From the point of view of congestion management in a single-CS system, both EV
owners and the owners of CSs face different issues. For example, flowing a large number
of EVs into one CS results in a long waiting time for EV charging and negatively impacts
user satisfaction. On the other hand, the higher waiting time affects the CS because EV
owners leave the charging spot in the queue traffic condition. In [25], these challenges are
contributed to the research through a pricing scheme for a dual charging mode (AC and
DC) capability. An optimal charging scheduling possibility is presented in this research,
which helps in lowering the drop rate of EV charging and minimizing the waiting times.
In [26], a heuristic fuzzy inference algorithm is used to minimize the objective of waiting
time on a public CS. The research works focused on congestion of CS as well as other
objectives are presented in Figure 5.
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2.2. Modelling the Uncertainty of Parameters in a Single-CS System

To model the uncertainty of parameters, a bi-level programming model is presented
in [16], when the interaction of the energy system and CS is modelled considering the
probability of RESs (wind and PV). Moreover, EV scheduling is managed in the CS by the
combination of fast charging (FC) and semi-FC chargers. Authors of [26] evaluated the
uncertainty of EVs’ behavior in a CS in which the charging management of EVs is done
through fuzzy scenarios. From the perspective of the uncertainty of future EV demands,
researchers in [27] introduced a scenario tree and benders decomposition method to solve
the stochastic optimization problem. The idea of developing a multimode CS with PV
support is also presented in [28], which focuses mostly on the modelling of uncertain
parameters to maximize the overall system profit in optimistic and pessimistic scenarios.
In [29], a two-stage stochastic scheme is proposed for charging management in a commercial
PL, considering the uncertainty of electricity price, EV arrival and departure and charging
demand. Another stochastic modelling based on the forecasting method and the stochastic
model predictive scheme is applied in [30]. The aim is to optimize charging scheduling in a
CS under the uncertainty of RES and electrical network loads. In [31], a chance-constrained
linear programming (LP) approach under uncertainty of PV power and the network load is
presented. In [32], the CSO acts as the responsible party between the DS and EVs to sell
electricity under stochastic behavior of EV arrival and departure times through suitable
strategies. Authors of [33] present an optimal grid-connected EV scheduling approach
under uncertain EVs’ behavior by different scenario evaluations. The uncertain parameters
and methods used in the surveyed articles focused on a single CS are shown in Table 1 brief.



Energies 2023, 16, 3669 8 of 28

Table 1. Single-CS uncertainty of parameters and modelling/methods.

Number Uncertainty Uncertainty Modelling/Methods

RES EV Behavior Electricity Price Network Load

[25]
√

Probabilistic method (Poisson point process)

[27]
√ √

Monte-Carlo and scenario tree

[32]
√

PEM

[16]
√ Probabilistic sequence discrete (Weibull and

Beta distribution)

[28]
√ √ √ Interval modelling for PV and price- EV

demand and charging time using Gaussian
distribution and clustering method

[26]
√

Min-max aggregation method

[30]
√ √

Chance-constrained model predictive control

[34]
√

Probabilistic method (Poisson distribution)

[35]
√ √

Monte-Carlo method

[36]
√

Probabilistic method (Normal distribution)

[29]
√ √ price forecasting: ANN, Charging demand:

exponential distribution, Arrival/departure:
Poisson distribution

[31]
√ √

Monte-Carlo method

[33]
√

Probabilistic/Scenario-based modelling

[37]
√ Probabilistic/scenario-based

(Normal distribution)

[38]
√ √

MDP—Fuzzy

[39]
√ SOC using lognormal distribution and

arrival time using normal distribution

[40]
√ Probabilistic method

(Scenario-based modelling)

[41]
√

Probabilistic method (normal distribution)

[42]
√ √

Robust chance-constraint

2.3. Electricity Exchange between EVs and the Grid in a Single-CS

In [16], EVs’ positive impact on improving the flexibility of the system using demand
response and discharging EVs as spinning reserve through a chance-constrained method
is evaluated. In [31] a grid connected energy management system is developed in which
an aggregator assigns strategies for trading electricity with an upper grid. Authors of [32]
presented a joint interval-based algorithm for V2G and G2V management in a PL, from
the perspective of the PL operator. Furthermore, a method of encouragement/punishment
for EV owners is implemented to motivate EVs to discharge in peak hours. Another grid-
connected approach is presented in [42], in which the overall system balance is considered
as the main objective function. Different scenarios are implemented for the charging and
discharging of EVs, considering incentivizing strategies for EV owners to contribute effec-
tively in V2G. In [34], a centralized/decentralized scheme tries to optimize and manages the
charging and discharging scheduling of EVs through V2G to give rewards to both EV own-
ers and chargers. Researchers in [35] proposed a stochastic charging/discharging scheme
through V2G mode by modelling the price of charging/discharging and the participation
rate of EVs.

In [33], two objectives, including maximizing the profit of both CSs as responsible
for V2G and G2V and EV owners’ costs, are evaluated. In [37], a V2G capability in the
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discharge mode of grid-connected EVs in a PL is considered to improve the flexibility
of the DS. In [38], a V2G mode for EVs is considered to exchange surplus EVs’ power,
offering the best price for EV participation. Researchers of [43] evaluated different case
studies in G2V/V2G modes to improve the flexibility of the system in helping with valley
filling and load flattening, while on the opposite side limiting V2G in peak shaving due
to increasing the cost of battery degradation. Authors of [44] introduced an overload
mitigation approach using V2G and investigated the scenarios that V2G cannot help with
overloading conditions. However, the economic impact of valley filling and overload
mitigation is not evaluated as well as the pricing mechanism in each scenario.

2.4. Coordinated Charging Management in a Single CS

Coordinated charging management of EVs, as an important approach compared to
uncoordinated EV charging, has been noted in various research articles. Authors of [45]
proposed an algorithm to control the charging scheduling of EVs in an FC PL. In [25], both
short-term EV scheduling and long-term profit of parking lot (PL) owners are evaluated,
considering the least-rejected demand of EV owners. Authors of [16] proposed a joint
optimization function, combining total operation costs of the multi-energy system and
CS operation through a dynamic pricing scheme. In [46], a binary integer programming
mechanism is used to optimize the use of PV in charging EVs in a single charging station
and using a controlling protocol and a reservation mobile application to consider the im-
pact of EV owners on charging management of the charging station. Furthermore, among
controlling EV scheduling methods in coordinated management, several papers focused
on either centralized or decentralized charging management. However, each of these two
approaches has some capabilities and limitations. The centralized EV scheduling has the
advantage of low complexity modelling in comparison with a decentralized control strategy.
Figure 5 shows each objectives’ category of the research works referred to in this article. For
example articles [29–31] and [35–44,46] considered minimum cost while [32–35], focused
on maximum profit of the charging station as objectives. References [31–34,36,46] pre-
sented methodologies for optimal penalty/reward of EV charging/discharging. Likewise,
minimum voltage drop was studied in [37] and [44]. Authors of [16,29,45,47] considered
demand response, while [39,40] and [44,45] focused on peak shaving and valley filling. Im-
proving the resilience aspects was proposed in [39] while [25,26,37] addressed congestion
management issues.

The centralized EV scheduling takes place through a central controller directly on
charging management inside the CSs or PLs. For example, in [42], a PL owning several
chargers in a commercial enterprise is modelled under the management of a central con-
troller. Different scenarios of charge/discharge are considered, while EVs and PV energy
stored in the battery and utility grid is used to feed the electric load of the commercial. A
centralized bi-level programming approach using an ESS is presented in [48], while the
CS is assisted by both a grid-connected and self-consumption system. Authors of [26]
focused on the minimum waiting time of EVs to maximize the serviceability in a sin-
gle CS. A comparison between coordinated management under the time of use pricing
and uncoordinated charging is implemented in [43]. In this research, a centralized EV
scheduling system is developed to minimize the charging costs of EVs considering battery
degradation. In [35], centralized, coordinated management is done using the admission
mechanism for accepting EVs in the CS, while ESS is used as a storage for RESs (wind and
PV). Researchers in [36] proposed a centralized, coordinated charging model for an EV
fleet fed by both PV and the grid. In this research, different charging management models
considering winter and summer variations are implemented. The strategy of trading off
between peak shaving and improving resilience is presented as supporting future outages
in [39]. In this research, ESS charge/discharge is used in an FCS providing this capabil-
ity while the total operation cost of the CS is minimized. In [16,40], an online charging
scheduling is implemented to optimize total charging cost and peak load under a robust
analysis of future EVs forecasting. The decentralized EV scheduling approach, on the
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other hand, has proficiency in the security of consumers charging information and gives
them the possibility to communicate with the CS on their charging needs and preferences.
In [49], a decentralized EV scheduling algorithm based on multi-agent cooperation has
been proposed for a CS connected to the DS. In this regard, coordination between several
EVs is arranged through communications and EVs will get charged according to their
urgency. Another decentralized charging scheduling is presented in [50], when each EV
can contribute to overload mitigation through a CS demand-response framework. In this
research, EVs communicate with each other and the CSO, and the ones who are willing to
contribute shift their charge schedule to other time intervals. A deep reinforcement learning
approach is introduced in [38], in which charging and discharging scenarios are managed
in a decentralized way under the random behavior of EVs in a solar PL. However, in some
research works, both control strategies (centralized and decentralized) are evaluated. In
the centralized EV scheduling each charger in the CS decides which EV to get the charging
preference under time-of-use electricity pricing, while in the decentralized approach each
charger as an agent observes the EV states [34]. Table 2 shows the different methods of the
centralized, decentralized and hybrid schemes used in the surveyed single-CS articles. The
focus on the charging coordinated management in single CSs is on centralized approaches
based on latest research trends. Moreover, mathematical approaches and heuristic methods
are used mostly as solvers in optimization problems.

Table 2. Single-CS network optimization modelling/methods.

Number Coordinated Management Optimization Model/Method

[25]

Centralized

Convex Optimization/CVX toolbox in MATLAB

[27] Stochastic Dual Dynamic Programming/Bender’s decomposition,
Gurobi solver in MATLAB

[48] MINLP/KKT, converted to MILP using McCormick relaxation and
Big-M method, CPLEX solver in MATLAB

[28] MILP and QP/Robust optimal scheduling algorithm using Gurobi
solver in MATLAB

[29] Approximate dynamic programming, big-bang-big-crunch algorithm
[42] Heuristic algorithm
[26] Fuzzy Integer LP/Heuristic Fuzzy
[30] Grey wolf Optimization, Chance-constraints model predictive control
[31] Chance constraint LP/LP software in MATLAB (i.e., linprog)
[36] NLP/WORHP solver in MATLAB
[35] Convex optimization/solvers in MATLAB toolbox
[43] MIP and QP/Augment Epsilon-constrained technique
[33] PSO Algorithm
[37] Mixed real and binary vector/PSO algorithm
[44] GA algorithm
[39] LP/CPLEX in Visual Studio
[40] Greedy algorithm and max flow algorithm (Fold-Fulkerson)
[41] Political optimization algorithm

[34] Centralized & decentralized Reinforcement learning

[47]

Decentralized

MILP/Big-M method and CPLEX, BARON
[16] MILP/Sequence operation theory Chance-constrained/CPLEX
[49] A multi-agent-based cooperative algorithm—Graph theory
[50] Non-cooperative game theory/KKT, distributed consensus algorithms

[38] Hybrid Agent-based deep reinforcement learning and fuzzy logic

3. Multiple-CS EV Scheduling

By spreading the number of EVs on the road, several challenges might happen in a
transportation system:

• The availability of CSs in different parts of cities;
• The price of electricity;
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• The use of RES to contribute to charging EVs;
• Avoiding DS line congestion and congestion of CSs in high traffic areas;
• Choosing charging spots location time and cost efficiently.

In this regard, several research papers surveyed the charging scheduling of multiple
CSs from different technical and economic aspects and presented strategies to handle smart
energy system management. The framework of an integrated electrical and transportation
system is shown in Figure 6.
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3.1. Route Planning and Congestion Management in a Multiple-CS System

From the point of view of minimizing waiting time and congestion in CSs, authors
of [51] proposed a hybrid energy management algorithm combining heuristic methods
for large-scale systems. In [52], an EV-optimal routing is modelled to guide owners to
the best charging location to minimize charging costs. Researchers of [53] developed a
Stackelberg game model for real-time interaction of EVs and CSs. The focus of this research
is to decide the best route considering charging service fees. Moreover, traffic and queue
waiting time for each CS are considered in the objective function. Authors of [14] presented
a model that helps in linearizing the nonlinearity of charging-load congestion in CSs with
RES. A hybrid decomposition algorithm is developed to minimize the CS congestion on an
hourly basis. An incentive pricing strategy is proposed in [54] to motivate EVs to choose
higher capacity CSs for charging. In this research, a suitable function is modelled to help
EV owners in choosing charging spots based on distance, price, and capacity. An optimal
route-travel scheduling is implemented in [55] to minimize the traffic condition of EVs.
In [56], the CSO is trying to optimize social welfare under an optimal routing plan for
each EV. In [57], a dynamic programming algorithm is used to model the shortest path
for EVs to reach a suitable CS for charging. To evaluate energy management of multiple
CSs under uncertainty of the parameters, authors of [51,58,59] modelled EV arrival time
using the Poisson distribution. In [60], a Monte Carlo method is applied for modelling
uncertain EV parameters, such as EVs’ arrival and departure time and the location of the
charge. In [61], a Markov decision process (MDP) is used to model the uncertainty of EV
charging navigation without knowing the transition probability, while charging prices
and waiting time probabilities are modelled using a normal distribution. Authors of [62]
used an interval-based analysis for modelling the uncertainty of RES. In [57], a model for
the probability of EV charging based on time-of-use pricing is proposed. Moreover, the
Monte Carlo method is used to model the traffic of EVs and their trip time and distance.
Researchers in [63] introduced an analytical method called “spherical simplex unscented
transformation” to model the RES generation, network load, and PL charging load demand
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uncertainties. In [64], robust optimization is applied to deal with the stochastic behavior
of wind and solar. The uncertain parameters and methods used in the surveyed articles
focused on multiple CSs are shown in Table 3 briefly.

Table 3. Uncertainty of the parameters in a multiple-CS system.

Number Uncertainty Uncertainty Modelling/Methods

RES EV Behavior Electricity Price Network Load

[52]
√ √

Scenario-based modelling
[53]

√
Mixed logit model/Monte Carlo method

[54]
√ √ √

Normal distribution/Monte Carlo method
[55]

√ √
Scenario-based modelling

[57]
√ Poisson distribution for EV behavior, Normal

distribution for charging time/Monte Carlo
[58]

√
Probabilistic method (Poisson process)

[59]
√

Probabilistic method (Poisson arrival process)
[60]

√
Normal distribution/Monte Carlo method

[61]
√ √

MDP
[62]

√ √
Interval based modelling

[63]
√ √ √ Normal distribution (EV behavior)/Spherical

simplex unscented transformation (RES, Net load)
[64]

√
Robust optimization method

[65]
√

MDP
[66]

√
Probabilistic method (Weibull distribution)

[67]
√

Robust optimization based on interval forecasting
[68]

√ √
Robust Optimization

[69]
√ √

Lyapunov drift-plus-penalty
[70]

√
Probabilistic method (Normal distribution)

[71]
√ Scenario-based modelling combined

with forecasting
[72]

√ √ √
PEM method

[73]
√

Poisson distribution/Monte Carlo method
[74]

√
Robust Optimization

[75]
√ √ √

Scenario based modelling

3.2. Modelling the Uncertainty in EV Charging/Discharging Management

To evaluate energy management of multiple CSs under uncertainty of the parameters,
authors of [51,58,59] modelled EV arrival time using a Poisson distribution. In [60], a
Monte Carlo method is applied for modelling uncertain EV parameters such as EVs’ arrival
and departure time and the location of the charge. In [61], an MDP is used to model the
uncertainty of EV charging navigation without knowing the transition probability, while
charging prices and waiting time probabilities are modelled using a normal distribution.
Authors of [62] used an interval-based analysis for modelling the uncertainty of RES.
In [57], a model for the probability of EV charging based on time-of-use pricing is proposed.
Moreover, the Monte Carlo method is used to model the traffic of EVs and their trip time
and distance. Researchers in [63] introduced an analytical method called “spherical simplex
unscented transformation” to model the RES generation, network load, and PL charging
load demand uncertainties. In [64], robust optimization is applied to deal with the stochastic
behavior of wind and solar. In [55], the stochastic behavior of vehicle traffic, electricity
price, and RES are modelled via multiple scenarios. The uncertain parameters and methods
used in the surveyed articles focused on multiple CSs are shown in Table 3 briefly.

3.3. V2G Capability of EVs in an Integrated Electrical-Transportation System

In [76], the V2G option is given as an alternative to EV owners based on the price of
electricity they are offered. In this research, the profit of EV owners in charging/discharging
is optimized, and V2G is implemented through an EV aggregator. Researchers of [60]
focused on the peak shaving and valley filling approach in implementing V2G to improve
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the flexibility of the system through a proposed algorithm. In [77], a hybrid clustering
combining K-means and canopy clustering methods is used to apply V2G for each group of
EVs by each recommended CS to improve EVs’ welfare and credit on participation. In this
research, the total cost of EVs and grid in response to V2G are evaluated in the second stage.
An extra V2G trip is modelled in [78], where each EV can decide to choose an alternative
discharging option according to the price.

In this research, an EV aggregator takes the responsibility to sell the electricity in
V2G mode to the wholesale market. Authors of [68] introduced a central aggregation V2G
model to mitigate voltage and frequency deviations of the grid in the smart grid. In [63],
the V2G approach is implemented from the point of view of PL profit optimization when
the flexibility of DS is improved. A time-expanded V2G modelling is presented in [79]. In
this research, EV owners can minimize their costs by gaining revenue from discharging
electricity to the grid in a joint route-scheduling framework. In [70], a V2G approach is
considered as a support to improve distribution system flexibility by peak shaving and
valley filling impact on the system load curve.

3.4. Optimal Dispatch of an Integrated Power-Transportation System

Regarding the coordinated management in multiple CSs in comparison with unco-
ordinated charging, several research works proved that coordinated strategies prevent
technical system issues while optimizing different stakeholders’ benefits. In this regard,
EV scheduling from the perspective of different stakeholders’ objectives for both the tech-
nical and economic aspects is evaluated in the recent research papers. In [53], a pricing
strategy for every CS in each location is modelled to respond to EVs’ charging requests.
The objective of the research works focused on multiple CSs referred to in this article
are presented in Figure 7. In this regard, [55–58,71–73,77,79–84], for example, evaluated
minimum cost and [52–57,63,64,78,81,82,85] focused on maximum profit of the charging
station. Authors of [61,77,81,82] presented methodologies for optimal penalty/reward of
EV charging/discharging. Improvement of voltage drops and power losses were given
focus in [66,68,71–73,83], while refs. [60,65,70], incorporated energy users’ engagement in
their studies in forms of demand response actions. Articles [57,63,70] studied improved
loading of the network in terms of peak shaving and valley filling; [14,60,65] contributed
to resilience improvement aspects. Authors of [51,54,56,61,83] focused on minimum wait-
ing time while [55–57,61,78,79,82] considered route optimization related to congestion
management of charging stations.

Moreover, several articles have presented coordinated scheduling in CSs located in
different regions in a centralized, decentralized, or hybrid manner. A centralized EV energy
management scheme is presented in [56] through a pricing-routing mechanism. In [54],
DSO, as a central coordinator, optimizes the expected profit of selling electricity to EV own-
ers, considering power system constraints in which the power loss caused by EV charging
is considered in the calculations. A centralized EV scheduling model is presented in [68],
when the central aggregator is responsible for coordinating EVs’ arrival and departure hier-
archy, as well as the operation of CSs. Moreover, in this research, the benefit of aggregators
and EV owners in regulating voltage and frequency is evaluated. In [63], a Stackelberg
game approach is proposed to coordinate DSO operational costs and PL profit optimization
in the form of a bi-level programming. In [55], a coordination strategy is presented in
which several EVs are controlled utilizing an aggregator, while all CSs are managed with a
central operator. In this research, optimization is done considering the marginal price of
conventional generators in an iterative, while the revenue of CSs is optimized. Researchers
of [65] proposed reinforcement learning-based coordinated management of CSs when a
coordinating agent interacts with the system and acts accordingly. In [64], asymmetric
Nash bargaining is implemented to model an incentive mechanism for EVs to participate
in DS resilient restoration. Furthermore, in this research, two DS restoration strategies are
presented, when one is without EVs and the other under an EV payment model considering
degradation and time costs. A joint route-mapping and scheduling scheme for EVs with
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central control of a server is presented in [79]. The efficiency of the proposed joint function
scenario over the uncoordinated charging/discharging scheduling is surveyed and proved
in this research. Researchers of [70] proposed a centralized, coordinated EV scheduling
controlled by two types of operators, CSOs and central coordinators, enabling demand
response and load variation. In this regard, the CSO is responsible for modelling charging
possibilities by taking driving information from EVs while a central coordinator does the
optimal scheduling.
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From the point of view of decentralized, coordinated management, a multi-agent
communication-based energy management scheme is presented in [85]. The goal of each
CS is to maximize the number of charging scenarios while EV owners’ strategy is to choose
the specific CS to get service under an online and offline negotiation. Another multi-
agent system is modelled in [81] combining local agents, CS aggregator, and global agent,
in which the signalling and interactions are simulated using reinforcement learning in
different hierarchies. In [80], first, real-time centralized energy management is done with
the help of a central aggregator, and then a distributed algorithm using a method of low
complexity distribution algorithm is presented. In this research, an EV aggregator takes
the responsibility to sell the electricity in V2G mode to the wholesale market. In [67],
a distributed multi-agent optimal scheduling is proposed through price negotiation of
different agents including micro-grid agents, FCS agents, and the electrical grid. In this
research, the possibility of EV changing their routes, generation costs, and electricity trading
prices are considered, aiming to minimize total operation costs. Authors of [61] presented
a deep reinforcement, learning EV charging-navigation strategy to optimize the cost of
charging in CSs while minimizing driving times. However, in this research, the optimization
problem is evaluated from the point of view of one EV owner. In [59], real-time charging
management of EVs in a system of FCSs is modelled in a multi-agent framework. EV
agents decide on the CS to charge, and CSs adjust their prices based on minimum waiting
time and user welfare. A time-of-use pricing scheme is presented in [57] to optimize
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the CS profit, while the EV owner’s strategy on choosing the least cost of charging and
maximum welfare is modelled and evaluated. Authors of [66] proposed both centralized
EV scheduling from the point of view of EV aggregators and distributed schemes based on
bender’s decomposition. In a distributed solution, a hierarchical multi-agent approach is
presented to respect the privacy of the information of multiple levels in the system. Another
decentralized coordinated scheduling/pricing model is offered in [83] to the coordinated
transportation system and DS. The objective of this research is to minimize the operation
cost under an AC optimal power flow and traffic delay of EVs. In [69], a distributed
EV scheduling is presented to minimize the total cost from the perspective of a utility
system, while the revenue of CSs is maximized through a game theory approach. In [67], a
distributed EV scheduling system is presented to minimize the cost of thermal generators
as well as minimize network power loss. Moreover, CS incentive-based modelling is
implemented in this research. The use of hybrid-coordinated management in EV scheduling
is proposed in [82], between several CSs when the scheduling problem is solved in three
steps algorithms. The algorithms are among the electricity purchasing algorithm for each
CS, finding the least distance for each EV and energy scheduling for CSs, respectively.
Moreover, a reward function for maximizing CSs’ revenue is modelled in this research.
A hybrid approach is presented in [62] to coordinate the energy management of CSs and
electrical distribution system in the electricity market. Researchers of [58] proposed a dual
objective model for in-route EVs to minimize EVs’ trip time to CSs, as well as charging costs
as a hybrid-coordinated technique. Another hybrid-coordinated management of CSs and
the EV aggregator is proposed in [52], when both real-time and day-ahead electricity pricing
values are taken into account. In [76], a non-profit central cloud operator is considered
to operate the charging management of a system through a hybrid framework. Table 4
shows the control strategies and optimization methods used in multiple-CS research papers.
In multiple-CS systems, both decentralized and centralized approaches are used, mostly
based on latest research trends. Moreover, different methods including mathematical, game
theory and heuristic algorithms are developed in several research works to evaluate the
coordinated charging management of multi-region systems.

Table 4. Coordinated management controlling optimization modelling/methods in a multiple-
CS system.

Number Coordinated Management Optimization Model/Method

[56]

Centralized

Non-convex quadratic problem/An algorithm solution for hard
capacity constraints

[54] MILP/CPLEX in MATLAB
[68] NLP/MATLAB toolbox
[64] Mixed integer second-order cone model/GUROBI solver
[55] MILP/CPLEX in MATLAB
[65] Reinforcement learning

[79] MINLP/K-shortest path problem combined Yen’s algorithm—artificial
intelligence-based algorithm

[70] LP/MATLAB solvers (i.e., Linprog)
[72] NLP/Chaotic Crow search algorithm

[14] MINLP/Hybrid algorithm (Sample Average Approximation + Progressive
Hedging algorithm)

[73] NLP/CONOPT 3 solver in GAMS
[51] PSO & Firefly algorithms

[63]

Centralized & decentralized

Stackelberg game MINLP/Strong duality theorem and KKT—Off-the-shelf solver
for MILP

[66] Multi agent system/Bender’s decomposition, KNITRO solver in GAMS (NLP),
fmincon solver MATLAB (LP)

[80] Convex optimization/Interior points method, CVX

[71] Non-Convex converted to convex with sec-order-conic/MPC method and
differential evolution algorithm
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Table 4. Cont.

Number Coordinated Management Optimization Model/Method

[78]

Decentralized

An iterative solution using Branch-and-Bound
[85] ILP/IBM ILOG CPLEX
[81] Reinforcement learning
[53] Multi-agent Stackelberg game
[59] Agent-based dynamic programming—multinomial logit model
[67] Convex optimization/ADMM
[77] MILP/Canopy+ k-means clustering -CPLEX in Python
[61] MINLP/Big-M method and Deep Reinforcement Learning

[83] Convex optimization, NLP/IPOPT solver for NLP optimal power flow -ADMM
for coordinated pricing method for scheduling

[69] Convex optimization/Nash equilibrium game theory and Lyapunov optimization
using MATLAB toolbox CVX

[84] Non-Convex converted to convex based on strong duality/ADMM
[74] Mixed integer nonlinear programming/GAMS solver (MINLP)

[76]

Hybrid

SSA (heuristic method)
[58] Convex optimization/Lagrangian method and KKT
[62] Gisa pyramid construction and recurrent neural network
[82] multi-agent reinforcement learning combined with online heuristic dispatching
[57] Bilayer PSO
[75] An iterative solution using Branch-and-Bound

4. Aggregator-Based EV Scheduling

With the increasing number of electric vehicles in the transportation system, the role of
EV aggregators in commercial and residential PLs is essential. In this regard, EV charging
scheduling, through aggregators in one layer and coordination between several aggregators
in a two-layer coordination scheme, has been the topic of different research works. Figure 8
shows a framework of the charging scheduling system with aggregators.
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4.1. Grid-Connected EV Scheduling

EV owners can minimize their costs by gaining revenue from discharging electricity
to the grid through the management of one or multi-layer aggregators. For example,
in [86], a network of EVs participating in the energy and regulation market through V2G
under a main aggregator’s management is modelled. In this research, the optimal revenue
is optimized considering the battery degradation of EVs. Authors of [87] modelled the
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worst case for the least trading electricity with the electricity market through V2G service
as one lower stage objective in the multi-level optimization problem. In [88], both V2G
and vehicle-to-vehicle (V2V) capabilities are considered in the optimization model under
real-time electricity price, while a punishment/reward policy for EVs is defined. A DS
network-constrained EV scheduling framework is proposed in [89], based on multi-agents
in which V2G mode provides the active/reactive power injected from each charging
point agent to the network. A V2G trading based on a hierarchical three-layer blockchain
(data, operation, and transaction) is proposed in [90] using cellular automata technique
to optimize the benefit of three stakeholders: EVs, aggregators, and grid, and minimizing
grid load variation. Another blockchain based on controlled charging and discharging
is presented in [91] from the aggregator perspective. In this research, several challenges,
including low power quality, power loss and overloading, are discussed.

4.2. Uncertainty Involved in a System of EVs and Aggregators

The stochastic nature of RES in the DS and electricity market price can affect charging
scheduling and energy management strategies. In this regard, EV aggregators, as the
operators of EVs, are facing different system uncertainties as well as changeable EVs’
traveling behavior. Regarding uncertainty of parameters, the authors of [92] developed
a stochastic-based modelling scenario using the autoregressive moving average (ARMA)
method for electricity market prices and a fuzzy system for wind farm uncertainty in power
generation. Robust optimization is applied in [87] to model uncertain arrival time and
demand of EVs. In [93], the uncertainty of EV behaviors is included in the optimization
problem using stochastic programming, while robust optimization is applied to model the
intermittency of locational marginal price. In [94], the information gap decision theory
(IGDT) method is applied to model the uncertainty of RES and find the best decision in the
robustness of the variables without knowing the probability density functions. Authors
of [95] also developed an IGDT method to evaluate the uncertainty of electricity market
price and a scenario-based stochastic method to model EV arrival, departure times, and
SOC. The uncertain parameters and methods used in the surveyed articles focused on
aggregator-based EV scheduling are shown in Table 5.

Table 5. Modelling/methods of uncertainty in a system with aggregators and EVs.

Number Uncertainty Uncertainty Modelling/Methods

RES EV Behavior Electricity
Price

Network
Load

[86]
√

Probabilistic method (Normal distribution)
[87]

√
Robust Optimization

[96]
√

Normal distribution/Monte-Carlo
[97]

√ √
Stochastic total sectoral load disaggregation

[24]
√

Probabilistic method (Normal distribution and lognormal)
[98]

√
MDP

[99]
√ √

Receding horizon optimization-based
[93]

√ √
Stochastic programming/Robust Optimization

[94]
√ √

IGDT
[100]

√
Normal distribution/Monte-Carlo

[95]
√ √

Normal distribution/Scenario-based stochastic and IGDT

[92]
√ √ √ √ Scenario-based modelling (ARMA,

Adaptive-neuro-fuzzy-inference system,
Normal distribution)

[101]
√

Robust Optimization

4.3. Energy Management in a System with One or Several Aggregators

From the point of view of controlling management approaches, both centralized and
decentralized schemes are applied in a system with EVs and aggregators as operators of
EV charging managing. For instance, in [74], a multi-level hierarchical optimization model
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is proposed in the condition of worst-case SOC through a central aggregator’s decision-
making. In [31], a centralized energy management algorithm for a CS is presented when an
aggregator is responsible for the coordination of EV scheduling. In [78], an EV customer
incentive pricing strategy is modelled to improve users’ comfort as well as minimize their
charging costs. In [96], a centralized coordinated EV scheduling through an aggregator is
developed when a combination of valley filling/peak shaving and charging costs is con-
sidered as the objective function. In this research, two modes of FC and slow charging are
chosen according to the urgency of each EV in a public CS. Researchers in [102] developed
a centralized EV scheduling by modelling a two-stage hierarchical scheme considering
charging priority for EVs. In this research, actual and predicted residential EV loads and
non-EV loads consumed are modelled in the valley filling optimization strategy. Authors
of [100] developed a coordinated EV charging scheduling scheme under the control of an
aggregator and urgency indicator for both home charging and public charging. Authors
of [75] introduced an algorithm for EV scheduling in the residential and commercial areas,
each one controlled with one aggregator. In this research, the aggregator’s responsibility
is to optimize its own profit as well as provide demand response for DS and satisfy EV
owners. Another demand response scheme through aggregators is implemented in [97]
in a distributed game theory-based model. Moreover, in this research, financial benefits
are optimized using an incentive price mechanism offered by each aggregator. Figure 9
shows corresponding objectives in an aggregator-based network. In this figure, for example
articles [24,92,97] and [99] evaluated minimum cost and references [74,88,92–95] focused
on maximum profit of the charging station. References [88,98] presented methodologies for
optimal penalty/reward of EV charging/discharging. Minimum voltage drops and power
losses were considered in [89,94,99,102,103]. Regarding the load management aspects,
authors of [24,75,97,98] focused on demand response actions while [96,100,102,104,105]
contributed to the peak shaving and valley filling.
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Another approach for coordinated charging under the control of an aggregator and
operator is proposed in [106]. Energy management is implemented by designing an optimal
model to minimize the dissatisfaction of EV owners, as well as calculating charging costs
and discharging rewards. A single agent Q-learning approach is used for the day-ahead
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charging scheduling of an EV fleet. Additionally, in this research, non-scheduled EV
charging is arranged on valley times at night. An aggregator-based charging/discharging
coordination model is implemented in [99], considering network characteristics. In this
regard, the voltage constraints are met in the optimization problem to alleviate DS under-
voltage and over-voltage situations. Another two voltage-constrained centralized and
decentralized frameworks are implemented in [103] to manage the charging scheduling
of EV owners connected to the nodes of a DS in a residential area by mitigating voltage
magnitude drop and load variation. In [89], a load variation minimization under an
AC optimal power flow is developed through a multi-agent distributed EV scheduling
including EVs agents, charging points agents, and charging clusters. From the point
of view of electricity prices in the pool market, a risk-averse optimization framework
is modelled in [92] for a three pool-market (day-ahead, regulation market, and balance
market). In this research, EV scheduling is managed through an aggregator trying to
minimize its costs, while the virtual power plant manages the coordination between the
wind power plant and the aggregator. Another price-based EV scheduling is proposed
in [24] through a decentralized and two centralized schemes, in a system with three different
stakeholders (DSO, aggregator, and EVs). In this regard, pricing strategies and their cons
and pros are evaluated for each centralized and decentralized aggregator-based system
scenario. Another decentralized EV scheduling scheme (with the aim of valley filling) is
presented in [104], on different EV groups managed by an aggregator. From the point
of view of the aggregator’s profit in coordination with an energy hub, a decentralized
coordination scheme between an EV aggregator and an energy hub is developed in [93].
Another distributed coordinated management is implemented in [105] through bidirectional
communications in different scenarios between EVs and aggregators in one layer and
aggregator’s coordination in another layer. In [95], a hybrid optimization method is used
to maximize the aggregator’s profit under risk-averse and risk-seeking strategies based on
the forecasted price of electricity. Another hybrid algorithm is developed in [94], when the
aggregator’s revenue is optimized, and DS cost is minimized.

Moreover, in this article, CO2 emission caused by conventional vehicles and power
loss of electrical networks, as well as the use of DGs producing electricity, are minimized.
Table 6 presents optimization methods applied in the surveyed aggregator-based EV
scheduling. Furthermore, an aggregator-based system-centralized controlling method is
used. Additionally, mathematical optimization modelling techniques are used mostly to
solve EV charging coordination problem.

Table 6. Optimization modelling/methods of an aggregator-based system.

Number Coordinated Management Optimization Model/Method

[86]

Centralized

NLP/Generalized reduced gradient method
[87] NLP converted to MILP using/CPLEX in Pyomo (Python)
[96] MIP/(i.e., MATLAB solver intlinprog)
[88] MILP/Intlingprog in MATLAB

[101] PSO algorithm
[98] Reinforcement learning
[99] QP/CVXPY solver (i.e., CPLEX) in Python

[100] CPLEX in MATLAB
[106] QP/GUROBI in Python
[102] Convex and quadratic/CVXOPT in Python
[92] MIP/i.e., MATLAB solver intlinprog
[87] MINLP solvers in GAMS (i.e., SBB, DICOPT2, etc.)
[31] Chance-constrained, LP/LP solver in MATLAB (i.e., linprog)

[24]
Centralized & decentralized

The decentralized scenario is solved with the interior-point methodCentralized
scenarios solved with: extended bi-level optimization and PSO

[104] Game theory, Mixed discrete/Water filling-based algorithm
[103] Shrunken primal-dual sub gradient algorithm
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Table 6. Cont.

Number Coordinated Management Optimization Model/Method

[97]

Decentralized

Non-cooperative game/backward induction-based
[78] An iterative solution using B&B
[93] Mixed integer quadratic conic/ADMM
[89] Multi-agent NLP/MIPS solver in Math power

[105] MIQP/ADMM
[107] Reinforcement learning

[94] Hybrid
MINLP/e-constrain theory for converting multi-objective to the single objective

problem–Grey wolf heuristic and PSO
[95] MINLP solvers in GAMS (i.e., SBB, DICOPT2, etc.)

5. Discussion and Future Works

The future transportation system with an increasing number of electric vehicles will
face several challenges in developing advanced charging infrastructure and efficient man-
agement schemes. An integrated electric and transport system needs to be robust to
technical issues like congestion of electric lines caused by several EVs connected to DS
nodes or other factors, such as RES uncertainty, network load changes, node voltages, and
so on. Furthermore, from the point of view of economic benefits in a smart transportation
system, each participant’s costs and welfare shall be evaluated and well-defined. This
review paper surveyed several research articles about charging coordination of EVs from
the point of view of technical and economic aspects. Regarding coordinated EV charging
management, different research works developed optimal models and controlling strategies
to handle related technical and economic issues. Network-constrained systems in which
active/reactive power, as well as the voltage of DS nodes, required to be checked by the
system operator or coordinator, are modelled in several articles. Some of the researchers
paid much attention to peak shaving or valley filling by modelling load variation function
as the main objective. Additionally, demand response is still one of the interests of several
research works by growing the EV industry. Handling the uncertainty caused by RES as
substitute sources for fossil fuels is another issue that is evaluated, especially with CSs
equipped with PV panels. In this regard, several reviewed articles assessed EV impact as
mobile battery storage in handling different system issues:

• By V2G possibility, EVs can contribute to the security of supply and transfer electricity
back to the grid or to other EVs through the V2V framework V2L, which lately has
been considered lately.

• Contributing to demand response, valley filling and peak shaving by charging EVs in
off-peak and discharging in peak loads, considering incentive/price-based mechanisms.

• The contribution of RES in charging electric vehicles during low consumption hours
and the possibility of acting as a reserve to help the network during high consump-
tion times.

The challenges related to an integrated electric transportation system reflected in this
review paper can be categorized into technical and economic challenges.

5.1. Technical Challenges

• Voltage regulation in distribution networks, since EVs contribution to demand increase
affect stability of the distribution network and result in voltage drop, while during
lower charging demands, EVs provide support to the network by supplying energy
back to the grid;

• Power loss of the electrical energy in the distribution network, since EVs can lead to an
increase in power losses due to the additional load on the grid and the need to transmit
power over longer distances to reach charging stations and improve the power loss by
integrating electricity back to the grid in peak demand or grid instability;
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• Power capacity and grid stability, since EV charging infrastructure requires large
amounts of power, which can strain the electrical grid and result in instability;

• Congestion of electrical lines due to a large number of EVs charging at the same time,
especially during peak hours, in which an efficient charging management of EVs in
CSs and PLs can mitigate electrical lines overload created by EV charging;

• Scalability as a challenge due to the increase in the number of EVs on the roads and the
lack of enough charging infrastructure, which leads to congestion in existing charging
spots in city centres and requires an increase in charging infrastructure;

• Uncertainty of RES (such as wind and solar) generation as supporting resources in
electricity supply: this intermittency can affect charging and discharging of EVs, while
EVs can store the RES energy in batteries and discharge whenever needed;

• Stochastic behaviour of EV owners in travelling times, SOC, and arrival times which
makes deterministic charging planning unreal;

• Battery degradation of EVs due to continuous charge/discharge scenarios in V2G on
battery lifetime and contribution to the supply of electrical grid;

• Proper communication for efficient EV-grid management, which requires interoper-
ability functions that enable seamless communication and data exchange between
different EV stakeholders. This includes, but is not limited to, standardization of
communication protocols, such as the open charge point protocol (OCPP—used for
communication between charging stations and central management system), ISO
15118 (related to plug and charge functionality and allows for seamless authentication
and payment for EV charging), and the combined charging system (CCS—used for
communication between charging stations and central management system), and
the implementation of interoperability functions that enable seamless authentication
and payment for EV charging. By improving interoperability in the EV industry,
EV-grid management can help to promote the growth and adoption of EVs, while also
enhancing the overall user experience and convenience for EV owners.

5.2. Economic Challenges

• Assuring the profitability of existing CSs in providing charging facilities while meeting
technical considerations and their costs on interaction with the electricity market;

• Charging costs and welfare of EVs as well as maximizing their benefits in the electricity
market through participation in V2G mode;

• Aggregators’ benefits on giving service to allocated EVs charging/discharging in an
aggregator-based scheduling system;

• Efficient pricing strategies for CSs in real-time and short-time intervals;
• Costs on constructing new charging spots considering the revenues of existing ones;
• The high cost of installing and maintaining of CSs.

5.3. Future Challenges and Trends

There are still open issues regarding the management of EVs in the future transport
system, according to recent research reviews on charging operation and management.

Convincing customers to participate in V2G by motivating strategies inside the CSs
and modelling a real, all-inclusive pricing mechanism to cover the costs of battery degrada-
tion during its lifetime are the challenge of future transportation systems.

Additionally, an optimal smart operation platform inside the FCSs can be a strategy
to manage charging and discharging EVs simultaneously and in a time efficient manner.
Furthermore, coordination between CSs together, as well as charge coordination within
each CS to enhance the competitive environment, is another topic for future research works.
The need for reservation systems to manage EV charging is a trend that is still under
evaluation. The rapid expansion of the EV market, the need for charging infrastructure,
and the integration of RES require sustainable charging solutions. Advances in new
technologies, such as smart charging and V2G, are other approaches among the trends
of future electric transportation systems. The applicability of peer-to-peer energy trading
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through blockchain to apply for V2G in the future needs further research [108]. Moreover,
internet of vehicles with the use of blockchain is another trend topic of future research
works [109]. Future trends in charging station planning aim to improve accessibility and
sustainability of EV charging infrastructure. From the perspective of a decentralized energy
management strategy, modelling appropriate communication infrastructures between CSs
and EVs while accessing online road traffic information, is a necessity. Moreover, evaluating
applicable competitive strategies among CSs can help with reduced traffic in crowded areas
in city centres. The capability of battery swapping in charging spots, as well as using near
end-of-life EV batteries as storage devices to manage energy inside these CSs, can be another
approach for future research. From the point of view of residential EV charging, modelling
centralized aggregators that can manage PLs and coordinate them with the energy market
is another approach to facilitate existing PLs with EV chargers, both technically and cost
efficiently. Slow charging overnight can lower the risk of overloading the electrical system
and yield the possibility of discharge management during nights to store in the ESS for use
in peak times. The capability of V2V through inductive or instant charging inside the CSs
is another interesting topic for future research works targeting EVs’ coordinated charging
schedules. The use of EVs in public transportation is another trend that helps to reduce the
amount of pollution emitted by traditional fossil fuel-powered vehicles. This potential can
significantly reduce emissions and improve the quality of air in cities, as battery technology
and charging infrastructure can improve charging management of electric buses and trains.
Overall, the management of CSs faces a complex set of challenges and requires ongoing
research and innovation to support the growth of the EV market and the development of a
sustainable transportation system.

From the point of view of future market mechanisms, EVs can participate in different
electricity markets and ancillary services. For example, EVs can participate in energy
markets by providing demand response services. This helps to balance the grid and reduces
the need for additional power generation during peak hours. EVs can also participate in
frequency regulation services by adjusting their charging rate in response to changes in
grid frequency. EVs can be charged and discharged based on the drop or rise in frequency.
EVs can also participate in capacity markets by providing capacity by using EVs to provide
backup power during emergencies and discharge during peak hours to help with peak
loads. EVs can also provide spinning reserve services by acting as a backup power source
in case of unexpected grid disruptions.

Overall, EVs can participate in several electricity markets and ancillary services,
providing a valuable resource for grid operators to manage supply and demand and
maintain grid stability.

6. Conclusions

E-mobility is a green transportation technology, and along with RES, could help to
follow the green transition policy. The importance of assessing the effects of the increasing
number of EVs on roads and power grids and how to build appropriate facilities and smart
charging management is undeniable. The purpose of this review article was to survey
the latest research ideas on the coordinated management of EVs’ charging/discharging
in future integrated electricity and transportation systems and to find new trends in this
field on which to focus. To be able to categorize more effectively, the surveyed articles
were categorized into three main groups including single CS, multiple CSs, and aggregator-
based scheduling. In each category, different challenges, approaches, and solution methods
were discussed. Research works that focused on single CSs developed more centralized
controlling methods over decentralized methods inside the CSs. In this category, economic
aspects of different stakeholders were taken into account excessively, and penalty/reward
mechanisms were modelled for EV owners. In multiple-CS scheduling, more attention was
given to the convenience of EV owners, route optimization, and congestion of CSs, as well
as the economic aspects of the stakeholders. Aggregator-based EV scheduling, on the other
hand, focused more on electrical system balance, peak shaving, valley filling, and demand
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response, as well as economic efficiency. Moreover, FC was mostly modelled for public CSs
and slow charging for residential or commercial PLs. However, some researchers proposed
two charging modes within the CS to provide customers with both offers based on their
preferences and conditions. The hybrid controlling approach is used in some of the articles
to take advantage of two different approaches or methods in a combined scheme. In some
papers, centralized scheduling of switching from FC to slow charging was also presented
to manage critical conditions and avoid peak loads. The economic functions modelled in
the papers were:

• The profit of CSs on giving service to EVs and discharging electricity to the upper grid
and electricity market;

• Costs of EV on charging including battery degradation cost and peak-load charging;
• Aggregators’ profits on charging management of EVs;
• Social welfare and convenience of EV owners;
• Cost allocated to system operation considering the operation of conventional genera-

tors, system operation costs, CS operation costs, etc;
• Investment costs for constructing new CSs and RES power plants as supply energy

of CSs.

Finally, the overall purpose of this review article was to try to give a broad perspective
on recent trends in the future of e-mobility systems. In addition, it intended to give a view
to the ideas of continuing more research pathways in coordinated charging management of
integrated electrical and transportation systems.
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Abbreviations

EV Electric vehicles
RES Renewable energy source
DG Distributed generators
ESS Energy storage system
V2V Vehicle to vehicle
V2G Vehicle to grid
V2L Vehicle to load
G2V Grid to vehicle
CS Charging station
PL Parking lot
DS Distribution system
DSO Distribution system operator
CSO Charging station operator
MDP Markov decision process
ANN Artificial neural network
PSO Particle swarm optimization
GA Genetic algorithm
PEM Point estimate method
LP Linear programming
ILP Integer linear programming
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MILP Mixed integer linear programming
NLP Nonlinear programming
QP quadratic programming
MIQP Mixed integer quadratic programming
GAMS General algebraic modelling system
MPC Model predictive control
SSA Salp swarm algorithm
ADMM Alternating direction method of multipliers
IGDT Information gap decision theory
SBB Simple branch and bound
KKT Karush–Kuhn–Tucker
SOC State of charge
FC Fast charge
FCS Fast charging station
PV photovoltaic
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