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Abstract

Linear prediction (LP) is the most prevalent method for

spectral modelling of speech, and line spectrum pair (LSP) de-

composition is the standard method to robustly represent the

coefficients of LP models. Specifically, the angles of LSP poly-

nomial roots, i.e. line spectrum frequencies (LSFs), encode ex-

actly the same information as LP coefficients. The conversion

of LP coefficients to LSFs and back, has received considerable

attention since mid 1970s when LSFs were introduced.

The present paper demonstrates how Leja ordering LSFs re-

duce amplification of rounding errors when converting LSFs to

LP coefficients. The theory behind Leja ordering and the LSFs

to LP coefficients conversion is presented. To supplement the-

ory, numerical experiments illustrate the accuracy gain achieved

by Leja ordering LSFs prior to conversion. Accuracy is mea-

sured as the root mean square deviation between estimated co-

efficient vectors with and without prior Leja ordering.

Index Terms: Line spectral frequencies, linear prediction coef-

ficients, Leja order

1. Introduction

Linear prediction (LP) is the premier method for spectral mod-

elling of speech. The coefficients representing the LP model

are, however, sensitive to quantization errors, i.e. small errors

may lead to detrimental distortions in the spectral domain. In

the mid 1970s, a method for robust representation of LP coef-

ficients was introduced, cf. [1]. The method, now known as

line spectrum pair (LSP) decomposition, decomposes the LP

model’s denominator polynomial into LSP polynomials with

useful inherent properties; see, e.g. [2, 3, 4] for elaborate pre-

sentations of LSP polynomial properties. A notable property

is that LSP polynomials’ roots are all unit-modulus; hence, they

can unambiguously be represented by their arguments (frequen-

cies). Unit-modulus roots appear as vertical lines in the spectral

domain, thus the term line spectral frequencies (LSFs). Com-

pared to LP coefficients, LSFs quantize well and encode exactly

the same information. Therefore, LSFs are predominant when

parameterizing analysis and synthesis filters in linear predictive

coding of, e.g. speech and audio.

By exploiting properties of LSP polynomials’ roots, e.g.

they occur in complex conjugate pairs and interlace on the unit

circle, LSF estimation is done in R1 and very efficient tech-

niques exist. See, e.g. [5] for an effective root estimator based

on a Chebyshev series formulation of the LSP polynomials.

Matlab c© incorporate functionality to convert LP coefficients to

LSFs and back; the functions are poly2lsf and lsf2poly

respectively. Intrinsic Matlab c© functions are, in this paper, set

in typewriter font. Both of these methods are based on work

presented in [5].

However, even in well conditioned cases, significant per-

tubations may occur when computing polynomial coefficients

from roots, e.g. LP coefficients from LSFs. This may come

as a surprise, as the procedure appears simple and straightfor-

ward, but rounding errors tend to accumulate. The present pa-

per demonstrates how the accumulation of rounding errors can

be suppressed by ordering the LSP polynomial roots prior to

computing the LP coefficients. The ordering scheme is known

as Leja ordering due to the Polish mathematician Franciszek

Leja, cf. [6]. Leja ordering, which is in time O(n2) [7],

is not conducted as part of lsf2poly. Inspired by [8], a

Matlab c© implementation of Leja ordering has been published

in [9]; the implementation is utilized in the present paper. The

papers [10, 11] also contain interesting insights into suppres-

sion of rounding error accumulation by Leja ordering and Leja

sequences.

The results of the current paper show that by introducing the

Leja ordering, the root mean square deviation (RMSD) between

true and estimated LP coefficient vectors is in the neighborhood

of machine epsilon, ε, up to the tested maximum coefficient

vector length of 160. In this paper, ε ≈ 2.22 · 10−16, i.e. IEEE

754 double precision. These results are significantly better than

what is obtained when estimating the coefficients without prior

Leja ordering with lsf2poly. Especially without Leja order-

ing, the RMSD increases as a function of LP coefficient vector

length, and for lengths beyond 50, the rounding errors accumu-

late to such an extent as to dominate LP coefficient estimations.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces the preliminaries of the study, i.e. LSP poly-

nomials, LSP decomposition, LSF, and Leja ordering. Section

3 presents the proposed method, and in section 4 the method

is tested with regard to LP coefficient estimation accuracy. Sec-

tion 5 presents the results of the tests conducted in the numerical

experiment, and in the closing section, section 6, the results are

discussed along with future perspectives.

2. Preliminaries

This section introduces the preliminaries of the current paper,

i.e. LSP polynomials, LSP decomposition, LSF and Leja order-

ing.

2.1. Line spectrum pair polynomials

Decomposing the denominator polynomial of a LP model into

LSP polynomials is often referred to as LSP decomposition. To

introduce the decomposition, the following definition is useful.

Definition 1 Palindromic and anti palindromic polynomial.

A real polynomial, a(x) =
∑N

n=0
anx

n, is palindromic iff

an = aN−n and anti-palindromic iff an = −aN−n.

Note the following properties of (anti-) palindromic polynomi-

als; cf. [2, 3, 4] for elaborate presentations of LSP polynomial

properties.



Property 1 (Anti-) palindromic polynomials.

1: Every real polynomial that has all of its roots on the unit

circle is either palindromic or anti-palindromic.

2: Conversely, not every palindromic or anti-palindromic

polynomial has all its roots on the unit circle.

In LSP decomposition, the idea is to define (anti-) palindromic

polynomials with all roots on the unit circle, cf. property 1,2.

Definition 2 LSP decomposition.

Any real polynomial, a(x), of orderN can be stated as the sum

of a palindromic polynomial, p(x), and an anti-palindromic

polynomial, q(x):

a(x) = 1

2
(p(x)+q(x)) where

p(x) = a(x) + xN+1a(x−1)
q(x) = a(x)− xN+1a(x−1)

The LSP decomposition is bijective and the polynomials p(x)
and q(x) are referred to as LSP polynomials. Notable properties

of a(x), p(x), and q(x), proved in [3], are:

Property 2 LSP polynomials.

1: If all the roots of a(x) are inside the unit circle, then all

the roots of p(x) and q(x) are interlaced on the unit circle.

2: Conversely, if the roots of two real polynomials of the

same order, one palindromic and one anti-palindromic, e.g.

p(x) and q(x), are interlaced on the unit circle, then their sum,
e.g. a(x), always has all its roots inside the unit circle.

Polynomial p(x) has a real root at -1, and q(x) has a real root

at 1; all other roots occur in complex conjugate pairs. A root

vector, e.g. of a(x), is denoted by

λ = [λ1, λ2, ..., λN ]T ∈ CN

2.2. Line spectrum frequency

As LSP polynomials’ roots lie on the unit circle they can un-

ambiguously be expressed by their arguments, i.e. frequencies.

This leads to the following definition:

Definition 3 Line spectrum frequencies.

LSFs are the arguments (frequencies) of LSP polynomials’

roots.

Since LSP polynomials’ roots occur in complex conjugate pairs,

except for the two real roots at ±1, it suffices to determine the

LSFs on the upper half unit circle, i.e. in the interval ]0;π[ . See

[5] for an effective root estimator based on a Chebyshev series

formulation of the LSP polynomials. A LSF vector, e.g. for the

N ’th order polynomial a(x), that leaves room for the two real

roots’ arguments can be denoted by

θ = [θ1, θ2, ..., θN+2]
T ∈ RN+2

+

The roots of a polynomial define the polynomial’s coefficients

up to scaling. Hence, the LSFs define the LSP polynomials,

p(x) and q(x), which in turn define the LP model’s denomina-

tor polynomial, a(x), cf. definition 2. Further, stability of the

estimated LP model is ensured as a(x) will have all roots in-

side the unit circle, cf. property 2. This illustrates the path of

conversion from LSFs to LP coefficients.

Roots on the unit circle can unambiguously be represented

by their arguments (frequencies) and appear in the spectral do-

main as vertical lines; hence, the name line spectral frequencies.

2.3. Leja ordering

Leja ordering proves useful when the coefficients of the LP

model’s denominator polynomial, a(x), are to be determined

accurately from the LSFs. In theory, the mapping between LP

coefficients and LSFs is bijective up to order and scaling, but in

numerical computations, accumulation of rounding errors can

become detrimental. In the present paper, Leja ordering is con-

sidered as a remedy to alleviate rounding error accumulation in

the LSFs to LP coefficients conversion.

Definition 4 Weighted Leja ordering [8]

|λn|

n−1∏

i=1

|λn − λi| = max
n≤l≤N

|λl|

n−1∏

i=1

|λl − λi|

for n = 1, 2, ..., N .

For the first root, n = 1, the equation reduces to

|λ1| = max
1≤l≤N

|λl|

For the second root, n = 2, the equation is

|λ2| · |λ2 − λ1| = max
2≤l≤N

|λl| · |λl − λ1|

Example 1 illustrates that Leja ordering is not unique as the

maximization may yield more candidates.

Example 1 Leja ordering inR1

λ in = [1, 2, 3, 4, 5]
λ1 = 5, λ2 = 2 ∨ 3, λ3 = 4 ∨ 1,

λ4 = 1 ∨ 4, λ5 = 3 ∨ 2
λ out = [5, 2, 4, 1, 3]
λ out = [5, 3, 1, 4, 2]

Already, implementations of the Leja ordering scheme exist,

e.g. a Matlab c© implementation - inspired by [8] - is published

in [9]. The ordering is in time O(n2) [7].

3. Proposed method

Table 1 outlines the proposed method and algorithm for estimat-

ing LP coefficients from Leja ordered LSFs. The real coefficient

vectors for a(x), p(x) and q(x) are denoted by a, p and q re-

spectively. Root vectors are denoted by λ and LSF vectors by

θ. The LP polynomial, a(x), is of order N .

1 Form unit-modulus roots λ ∈ C2N from θ ∈ RN .

Complex conjugates included.

2 De-interlace λ and form λp,λq ∈ CN , cf. prop. 2.

3 Leja order λp and λq , cf. def. 4.

4 Compute coefficients ap, aq ∈ RN+1 by expanding

N∏

n=1

(x− λp,n) and

N∏

n=1

(x− λq,n)

5 Convolve real roots ±1 into aq and ap respectively.

6 Compute a = 1

2
(ap + aq) ∈ R

N+1, cf. def. 2.

Table 1: Outline of the proposed method and algorithm.



The significant difference between lsf2poly and the pro-

posed method is the Leja ordering, i.e. step 3 in table 1. The

ordering is in time O(n2) [7].

4. Numerical experiment

4.1. Experiment setup

In this numerical experiment, the proposed method, cf. table

1, is compared to lsf2poly. As Leja ordering is applied to

reduce rounding error accumulation, the objective of the exper-

iment is to measure potential improvements in accuracy. This

is done by evaluating the root mean square deviation (RMSD)

between true LP coefficient vectors and vectors estimated with

lsf2poly and the proposed method.

4.2. Data material

The data material is generated by converting LP coefficient vec-

tors into LSF vectors. The coefficient vectors are randomized

and range in length. Theorem 1 is employed in coefficient vec-

tor generation to ensure that all roots of the LP model’s denom-

inator polynomial, a(x), lie inside the unit circle. Now, the es-

timations can be compared with the true LP coefficient vectors.

Theorem 1 Eneström-Kakeya [12]

If a(x) =

N∑

n=0

anx
n

with a0 ≥ a1 ≥ ... ≥ aN > 0,

then all the roots of a(x) lie outside the open unit disk. Con-

versely, if aN ≥ aN−1 ≥ ... ≥ a0 > 0, then all the roots of

a(x) lie in the closed unit disc.

Minimum phase sequences are generated, i.e. aN ≥ aN−1 ≥
... ≥ a0 > 0 all in R, by reversing the coefficient ordering of

aN = 1, aN−1−i = aN−i + r, i ∈ [0;N − 1], and making

the polynomial monic. The uniform distribution is denoted by

U and r ∼ U [0, 1]. Figure 1 exemplifies a coefficient vector

and the pertaining LSFs. In the upper panel, the coefficients

are ordered in descending powers, i.e. how Matlab c© orders

polynomial coefficients.
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Figure 1: Upper: Coefficient vector, a, from the data set, N =
80. Lower: LSFs computed from the example vector above.

5. Results

In figure 2, a typical example of error between the true and the

estimated coefficient vectors is illustrated. The dataset is a sin-

gle minimum phase sequence of length 80.
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Figure 2: Typical instance of error between true, a, and esti-

mated coefficient vectors. Upper: Without Leja ordering, u.

Lower: With Leja ordering, o.

Figure 3 illustrates the RMSD between true and estimated co-

efficient vectors. The dataset consists of 31 minimum phase

sequences that range in length 50-80. The range has been cho-

sen to illustrate the abrupt accumulation of inaccuracies when

LSP polynomial roots are not Leja ordered.
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Figure 3: RMSD between true and estimated coefficient vec-

tors. Upper: Without Leja ordering. Lower: With Leja order-

ing.

Table 2 lists the mean and standard deviation of 14 RMSD

populations. For each coefficient sequence length, N =
40, 60, ..., 160, the RMSDs between 50 true and estimated co-

efficient vectors are obtained. Again, estimations are done with

and without Leja ordering.



Without Leja ordering With Leja ordering

Format: µ; σ Format: µ; σ

N=40 2.27·10−8; 1.00·10−8 4.90·10−15; 1.71·10−15

N=60 2.08·10−3; 9.46·10−4 9.62·10−15; 3.12·10−15

N=80 1.73·102 ; 7.04·101 1.63·10−14; 5.03·10−15

N=100 1.93·107 ; 6.99·106 2.10·10−14; 6.71·10−15

N=120 1.70·1012 ; 7.65·1011 2.56·10−14; 6.92·10−15

N=140 1.82·1017 ; 7.97·1016 3.20·10−14; 1.02·10−14

N=160 2.03·1022 ; 7.73·1021 4.78·10−14; 1.67·10−14

Table 2: Population mean and standard deviation of RMSD. The

population size is 50 for each N .

6. Discussion

The results express differences in rounding error accumulation

with and without Leja ordering the LSP polynomial roots. It

is evident, cf. figure 3 and table 2, that the errors accumulate

to such an extent as to dominate the LP coefficient estimations

when Leja ordering is not applied. Quantization or rounding er-

rors are unavoidable whenever a continuous space is discretized

to allow for numerical evaluation. In the present paper, the com-

putations have been done in Matlab c© using IEEE 754 double

precision floating point numbers, i.e. the machine epsilon is

ε = 2−52 ≈ 2.22 · 10−16. That is, between 2n and 2n+1

the numbers are equispaced with increments of 2n−52; as n in-

creases, the spacing increases. The spacing between 1 and 2, i.e.

n = 0, yields ε. The rounding procedure is round-to-nearest

and round-half-up. Hence, the maximum relative error induced

by rounding the result of a single arithmetic operation is ε/2;

broadly, the rounding level is about 16 decimal digits.

In speech processing, the order of a linear predictive model

is typically 10-12. To fit 4 resonant peaks, i.e. formants, 8 poles

are required; a few extra poles may increase modelling accu-

racy. However, the decrease in prediction error as function of

model order is not pronounced beyond order 10-12. From this

practical viewpoint, the results in the present paper are mostly

of theoretical interest.
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