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Abstract

The production of renewable energy from solar panels and windmills is rapidly

increasing these years. However, one of the biggest hurdles that need to be

overcome in the green transition is cost-efficient energy storage to reach the

full exploitation of their potential. A promising energy storage technology is

redox flow batteries (RFBs), particularly using quinones as electron carriers.

The prototypes of quinone batteries have been derived from crude oil, which

unfortunately falls short of the ambition of sustainable energy production

purely from renewable sources. It is well-known that filamentous fungi have a

great capacity for quinone production. and the first RFB with a fungal-

produced quinone was recently generated as a proof-of-concept. Here, we give

our opinion and perspectives on which challenges need to be solved before an

RFB with fungal-produced quinones can be applied in the green transition.
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1 | INTRODUCTION

The intermittency of renewable solar energy and wind
power leads to periods with both high and low energy pro-
duction during the day, which can vary up to 80% within
time scales of minutes to hours.1 This supports the need
for storage technologies even more since the energy
demand and consumption do not match this variability of
available energy from renewables. The availability of sur-
plus energy at the peak production does not always match
the demand, resulting in surplus energy in the peak pro-
duction periods as well as a lack of energy when the
energy demand exceeds the energy production.2,3

The traditional lithium-ion batteries are commonly
used in, for example, electronics and transportation
industries due to their high energy density, lightweight,
low self-discharge, and high efficiencies. However, they

are not suitable for long-duration grid-scale energy stor-
age technology as they do not feature the possibility to
cost-effectively store enough renewable energy required
to facilitate the long discharge durations needed for regu-
lating the intermittency of renewable energy sources.4,5

The redox flow battery (RFB; Figure 1) is another via-
ble, cost-effective, and safe technology that has been rec-
ognized for large-scale stationary energy storage, and
offers energy and power to be scaled independently, as
well as short response times (depending on the electro-
lyte kinetics).5-9 The RFB technology could be used to
match the energy supply from renewables to the demand
since the technology, in contrast to lithium-ion batteries,
offers the ability of long-duration discharge for example,
due to the ability to decouple energy and power as well
as lower self-discharge ratios, which is a result of having
the electrolytes stored in separate reservoirs.5,10-13
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Flexibility in the energy and power ratio is an advantage
as the energy density refers to the energy possible to store
per unit volume or mass whereas the power density
refers to the energy transfer rate possible per unit volume
or mass, thereby making it possible to design the RFB
devise for the specific needs.14

Many chemistries have already been investigated and
studied as the active material for RFB electrolytes. To
date, the vanadium flow battery (VFB) is the most
researched and commercialized RFB system11 since it
can be operated at high concentrations, offers long cycle
life, high-power density, fast charge and discharge, quick
response times15,16 as well as limited electrolyte crossover
due to the use of closely related vanadium complexes as
electrolytes. These consist of the VO2

+/VO2+ couple
(V5+/V4+ oxidation state) as the posolyte and the V3+/
V2+ couple (V3+/V2+ oxidation state) as the negolyte
both dissolved in a sulfuric acid electrolyte.17-20 VFBs
allow a lifespan of 15 000 to 20 000 charge/discharge
cycles21 and the literature even suggests that 270 000
charge–discharge cycles have been demonstrated.22,23

2 | QUINONE RFBs

The use of water-soluble organic redox couples to consti-
tute the positive and negative electrolyte solutions in

RFBs has been investigated since the 2010s.24-26 Among
some of the organic compounds researched are quinones,
viologen, TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl),
and ferrocenes.24 The organic compounds show compara-
ble volumetric capacities with that of the vanadium spe-
cies and are even higher in some cases. The volumetric
capacity possible to obtain is directly linked to the solu-
bility of the compound in the used solvent.13 Quinones
consist of aromatic ring structures (benzene rings) linked
with carbonyl groups. They are divided according to the
number of benzene rings in the backbone structure.27,28

Having the simplest structure, benzoquinones consist of
one aromatic ring with two carbonyl groups placed in
either ortho- or para-position, while naphthoquinones
are bis-cyclic aromatic and anthraquinones are multi-
cyclic aromatic hydrocarbons.29,30

In an aqueous solution, quinones undergo reversible
two-electron reactions due to them having two carbonyl
groups present in their structures.30,31 The redox proper-
ties of the quinones largely depend on the operating con-
ditions such as the supportive electrolyte and pH. At low
pH, the reduction reaction proceeds as a single-step two-
electron two-proton process. At high pH, the reduction
reaction is a two-electron process and does not involve
protons. In a neutral pH solution, the reduction reaction
is somewhere in between and proceeds as a one-proton
two-electron reaction or proceeds as seen in a high alka-
line solution.6,32 Furthermore, the reduction potential
varies with pH and becomes more negative with increas-
ing pH. Since a low reduction potential of the negolyte is
preferred to achieve high cell voltage of the RFB, alkaline
supportive electrolytes are often used.33

Quinones are well-researched in this field, and some
performance characteristics seen from RFB full-cell cycling
experiments in the literature with different quinones as
electrolyte material can be seen in Figure 2. As seen in the
figure, especially anthraquinone derivatives have been
investigated over the years, and they show good solubility
in both acidic solutions through sulfonation and in alka-
line solutions through hydroxylation. Because of the low
redox potentials observed for many of them, they are good
candidates for negolyte materials.37,49 The anthraquinones
also show better cycling stability compared to benzoqui-
nones, which can be reasoned by greater chemical stability
due to the additional two rings.

By using different synthetic approaches, the stability
of anthraquinones has been improved remarkably and
research in the anthraquinones such as 2,6-DBEAQ,
2,6-DPPEAQ, and DBAQ have shown good long-term
stability with a capacity fade rate in the range of 8 � 10�3

to 4 � 10�2%/day (Figure 2), and the fade rate has even
been reported as low as 1.8 � 10�3%/day when DPivO-
HAQ was cycled against ferrocyanide.44 Despite the good
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FIGURE 1 Schematic of a redox flow battery cell, containing

an electrochemical cell and two separate reservoirs for the

electrolytes. The two half-cells are separated by a membrane and

the current collectors are connected to the power source/load. Solid

arrows indicate the charging process, while dashed arrows indicate

the discharging process. The small arrows indicate the flow

direction.
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long-term stability reported for these anthraquinones, the
high synthetic cost still hinders their use in large-scale
applications.16

Lowering the cost of the electrolyte material is of huge
importance for the scalability of quinone RFBs. Most of
the quinones tested as electrolytes in RFBs are syntheti-
cally produced from nonrenewable feedstocks and the cost
of these organic compounds mainly relates to the complex-
ity and scale of the synthesis.24,50 Crude oil is rich in
anthracene, which can be oxidized on large scale to
anthraquinone. Raw components from coal tar are also
used on large scale to synthesize naphtho- and anthraqui-
nones. But relying on the production of electrolytes from
fossil-derived hydrocarbon sources does not suit as a sus-
tainable solution due to the large volume of electrolytes
needed for energy storage.51 If RFBs with quinone electro-
lytes should be considered as the future storage technology
for renewable energy sources, the quinones should be
highly available and of low cost. Therefore, sustainable
and cheap production with the low environmental impact
of the quinones is highly preferred.3,52

3 | BIOSYNTHESIZED
QUINONES—CHALLENGES AND
PROSPECTS

A promising source of suitable cheaply produced qui-
nones is the fungal kingdom, where more than

300 quinones of fungal origin have been described.29,53-55

The biosynthesis of fungal quinones is initiated by poly-
ketide synthases (PKSs), which are multidomain enzymes
that perform iterative condensation reactions of activated
acetate and malonate units.56 The resulting products can
then be further modified by oxygenation, acylation, and
cyclization by enzymes which are encoded by genes
located adjacent to the core PKS gene in tightly packed
gene clusters (Figure 3A).58

Recently, the fungal biosynthesized bibenzoquinone
phoenicin (Figure 3B) was used as a negolyte in combina-
tion with ferrocyanide to demonstrate proof-of-concept in
an RFB.57 The resulting battery had a capacity of
11.75 Ah/L, which is at the lower end of the published
quinone RFBs (Figure 2). Furthermore, phoenicin also
seemed to be less stable than most other quinones as the
capacity decay was found to be 2.85%/day. However, one
of the most promising prospects of using fungi to bio-
synthesize quinone electrolytes is the economic costs
involved in the production. The phoenicin used to gener-
ate the first fungal battery was isolated from the filamen-
tous fungus Penicillium atrosanguineum, which was able
to produce 1.24 g/L/week in a liquid medium.57 This has
later been surpassed in other Penicillium species, where
yields of 5 g/L/week were reached in Penicillium phoeni-
ceum.59 This potent quinone production is not unique in
the fungal kingdom as an even higher yield of 6.83 g/L/
week of bikaverin was obtained in Fusarium fujikuroi.60

These studies were based on wild-type strains, which
require synthetic growth media to reach high yields. To
obtain even higher yields, the quinone biosynthetic gene
clusters can be overexpressed in the native host or moved
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to a fungal production strain for heterologous expres-
sion.61-65 These methods allow bypassing the normal
gene regulation using generic constitutive promoters, the
use of standardized production and extraction systems as
well as cheap culture media.

Genetic engineering also offers the possibility to mod-
ify the biosynthetic pathways to create quinones with
superior stability and electrochemistry. So far, the
approach of metabolic engineering has not been applied
to fungal quinones but is widely used in the pharmaceuti-
cal industry in drug development.66 Computational simu-
lations revealed a huge width in the redox potentials (E0)
of the known fungal quinones, ranging from �1.298 to
1.485 V vs the standard hydrogen electrode (exemplified
in Figure 4), which can be partly explained by differences
in side chains.50 The effect of the side chains has been
shown in a study of artificial quinones, which demon-
strated that certain side groups (–OH, –NH2, and –N
[CH3]2) effectively decrease the E0, while –COOH, –
CHO, –PO3H2, –COOCH3, –SO3H, –CF3, –CN, and –NO2

is useful in increasing the E0.67 Thus, adding some of
these side chains to fungal quinones through metabolic
engineering can be used in the future to enhance the
electrochemical properties of fungal quinones. Here,
hydroxylations and methylations are obvious candidates
as the required enzymes are widespread among the fun-
gal biosynthetic pathways.

Based on these observations we are hypothesizing
that an economically feasible production of quinone elec-
trolytes can be obtained by using genetic engineering to
create the optimal cellular metabolic fluxes to produce
optimal quinone electrolytes. When this has been
achieved, fungal quinones offer a renewable alternative

to petrochemical-derived quinones in flow batteries.68

Based on the current situation we are therefore in early
stages of this process and much more research and devel-
opment is needed to reach the goal of a commercially
available fungal RFB.
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