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A B S T R A C T   

Despite the renewed interest in Artificial Intelligence-based clinical decision support systems (AI-CDS), there is 
still a lack of empirical evidence supporting their effectiveness. This underscores the need for rigorous and 
continuous evaluation and monitoring of processes and outcomes associated with the introduction of health 
information technology. 

We illustrate how the emergence of AI-CDS has helped to bring to the fore the critical importance of evaluation 
principles and action regarding all health information technology applications, as these hitherto have received 
limited attention. Key aspects include assessment of design, implementation and adoption contexts; ensuring 
systems support and optimise human performance (which in turn requires understanding clinical and system 
logics); and ensuring that design of systems prioritises ethics, equity, effectiveness, and outcomes. 

Going forward, information technology strategy, implementation and assessment need to actively incorporate 
these dimensions. International policy makers, regulators and strategic decision makers in implementing orga-
nisations therefore need to be cognisant of these aspects and incorporate them in decision-making and in pri-
oritising investment. In particular, the emphasis needs to be on stronger and more evidence-based evaluation 
surrounding system limitations and risks as well as optimisation of outcomes, whilst ensuring learning and 
contextual review. Otherwise, there is a risk that applications will be sub-optimally embodied in health systems 
with unintended consequences and without yielding intended benefits.   
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1. Introduction 

The use of Artificial Intelligence (AI) in medicine has great potential 
to help achieve the quintuple aims of healthcare [1–3]. AI-based com-
puter systems can perform tasks that normally require elements of 
human cognitive skills such as visual perception, pattern recognition, 
speech recognition, rapid data comparisons and projections, translation 
between languages, and decision-making between set options. We here 
focus on AI-based clinical decision support (AI-CDS) systems supporting 
decisions by human healthcare professionals (e.g. through image anal-
ysis, establishing clinical diagnoses, proposing the best course of treat-
ment, or identifying key deviations in vital or other signs), and in shared 
decision making together with patients [4]. Traditional CDS is based on 
encoded human expertise or authoritative clinical guidelines, whereas 
the knowledge base in AI-CDS draws on statistical calculations or 
pattern recognition, not evidence synthesis. 

Although AI-CDS has a long history, recent years have seen an 
explosive renewal of interest in AI in medicine stimulated by advances in 
deep learning, and increased computational power [5–15]. This has 
been accompanied by heavy governmental and private sector invest-
ment in the development and implementation of AI-based systems. 

Despite intense commercialisation [16,17], there is still limited 
empirical evidence behind existing claims of improved patient out-
comes, healthcare effectiveness, and efficiency [18]. In addition, eval-
uation of AI-CDS has focused on demonstrating performance of systems 
in laboratory or trial implementation settings [19,20], and on measuring 
immediate outcomes [21,22]. There is a lack of focus on longer-term 
impacts, potential disbenefits and unintended consequences (e.g. 
de-skilling, possible increase in unnecessary referrals or tests, bias 
against specific groups or conditions) [22,23]. 

In order to inform evidence-based decision making on selection and 
implementation of AI-based systems, there is a need to assess and build 
on existing frameworks and standards to evaluate the introduction of AI- 
CDS in healthcare in everyday use [24,25]. This should go hand-in-hand 
with increased emphasis on the importance of evidence-based systems 
and policy [26,27]. 

We will here explore what evaluation dimensions the literature 
surrounding AI-CDS has highlighted and extract lessons to inform 
decision-making for health policy internationally, nationally, and 
locally. To date, most AI-based applications in healthcare have been 
developed and implemented in high-income settings, and therefore, we 
focus on these. 

1.1. The importance of contextual sensitivity 

The implementation of AI-CDS across healthcare settings has been 
difficult [28,29]. Systems cannot be dependably transferred from one 
setting to another (e.g. from a research lab into clinical use or from an 
initial adoption site to other settings). At present, measurement of per-
formance and publishing of studies is not frequently done. A review of 
measurement practices in health informatics, showed for example a lack 
of validity of instruments used in many studies [30]. Underlying reasons 
include, amongst others, differences in needs, existing work processes, 
health information infrastructures, health and care practices, 
inter-organisational and transactional relationships, socio-demographic 
and ethnic characteristics, and organisational cultures [31–33]. More-
over, many current studies of AI in healthcare do not include compo-
nents that enable clinicians to understand how algorithms may be 
incorporated effectively in their workflow, even though differences in 
work organisation between sites (and changes in practices as a result of 
the use of new tools) may impact on the performance of the algorithm 
[32]. 

A key consideration here are the characteristics of the training data 
set and how these relate to targeted patient populations [34]. For 
example, if a model was trained on data from one specific hospital with 
specific demographic characteristics, then it may not be readily 

transferable to a different hospital with different target populations. 
This is known as dataset shift. In a recent paper Finlayson and colleagues 
give an example of the decommissioning of an AI-based sepsis alert 
system due to the Coronavirus pandemic, which changed the use pat-
terns of antibiotics, meaning that the alerts were spurious and therefore 
ignored by clinicians [35]. 

Organizational, technological and user contexts need to be key 
components of evaluation studies as they can help inform the general-
isability of the results and highlight aspects that may need to be refor-
mulated when implementing systems across contexts. Formative 
approaches to evaluation have incorporated these requirements, often 
beginning with an assessment of existing systems, structures and pro-
cesses before technology implementation, and following changes 
introduced by technology through in-depth study across a range of 
settings [36,37]. It is encouraging that new reporting guidelines spe-
cifically designed for AI increasingly incorporate such approaches [38]. 

There are also recent attempts to develop integrative AI evaluation 
frameworks with attention to wider processes in healthcare settings [39, 
40]. These highlight the unique features of AI beyond the immediate 
context of implementation and the importance of wider 
macro-environmental considerations shaping technology adoption and 
use. Some have, for example, emphasised important but potentially 
perverse political and commercial drivers associated with economic 
success through big data surrounding the introduction of AI in health-
care settings [41–44]. Others have highlighted the dynamic nature of 
the market and regulatory environments surrounding AI internationally 
and their role in shaping technology implementation and use [45]. 

Unfortunately, context-related issues surrounding commercial, eco-
nomic, regulatory, market and legal issues have to date received far too 
little attention in HIT evaluation. 

1.2. System logic and assistive tools 

AI has further highlighted the importance of clinician and patient 
users’ understanding of and trust in systems [46]. There are currently 
many different assumptions and understandings of what AI is and how it 
operates [47,48]. Previous work in high-income countries has shown 
that if users of a system understand how decisions are made, then they 
are more likely to adopt it [49]. A lack of such an understanding can lead 
to limited adoption/use of a system, or to workarounds, which may in 
turn have adverse effects for the safety and quality of care. Particular 
problems may arise where users lack the information and expertise 
required to assess the model and the evidence it is based on, and adopt 
its recommendations uncritically. In these situations, patient and clini-
cian users may find it hard to compensate for known shortcomings of 
systems. Prospective users therefore need to develop AI competencies to 
understand how an application operates, and the data sets upon which it 
is based [50]. 

Unfortunately, there are enduring political and commercial pres-
sures for implementation and scale-up of AI-CDS whilst bypassing in-
vestment in evaluation [51]. Application of the Precautionary Principle 
(involving up-front risk assessment and mitigation, and continuing this 
scrutiny in an iterative ongoing manner e.g. through post-market sur-
veillance) [52–54], and Evidence-Based Health Informatics Principles 
are essential going forward [26,27]. In AI-CDS, these may help to ensure 
that advice is presented in a way that is consistent with the level of 
evidence and path of deduction behind it. Otherwise, the fast-evolving 
nature of these systems, although potentially beneficial in the ability 
to respond to changing circumstances, may have unintended conse-
quences emerging from algorithmic bias. 

AI-CDS has further highlighted issues surrounding levels of auton-
omy of systems but the issue of how machine and human capabilities 
may most effectively complement each other has to date been neglected 
[55]. For example, AI-CDS can process large volumes of data consis-
tently and at speed, but has difficulties in dealing with ambiguous set-
tings which may be readily understood by human experts. 

K. Cresswell et al.                                                                                                                                                                                                                               
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Notwithstanding that AI-based systems may have more autonomy in 
the future, work has shown that, in order to promote adoption, systems 
need to be conceptualised as assistive tools and not as autonomous en-
tities [56–58]. Here, algorithmic outputs need to be interpreted by 
humans who understand their strengths and limitations. For example, 
algorithms can help to compensate for the tendency of humans towards 
optimistic predictions (e.g. concerning life expectancy) [56]. There are 
currently different levels of autonomy for AI-CDS ranging from assistive 
devices to autonomous machine decision-making [59]. Greater reliance 
on algorithmic recommendations may depend upon the complexity of 
the clinical problem, the fit between model performance and task, the 
levels of user trust and confidence in model performance, the avail-
ability of (good quality) data relevant for the problem, the match be-
tween the training population and the target population, the 
transferability of the model to other contexts, and the degree of clinician 
review at the point of decision making. Evaluations need to take these 
dimensions into account, as their evidence can help to prevent bias and 
unintended adverse consequences and is likely to determine patterns of 
use and outcomes. 

1.3. Designing and optimising systems in the interest of ethics and equity 

Algorithmic bias, privacy/security and data drift have highlighted 
ethical complexities surrounding the implementation of systems. These 
include trustworthiness, transparency, justice, fairness, accountability, 
equity and consent [41,60-64]. For example, work has shown that sys-
tems are often designed from certain socio-economic and cultural 
viewpoints (e.g. associated with the lack of ethnic diversity in the AI 
workforce) [65,66], while other studies show that in many instances 
health and care technologies are not used by those who would benefit 
most from them, potentially inadvertently contributing to increased 
health disparities [67,68]. 

Ethical issues require consideration of complex trade-offs and should 
therefore be an essential part of any HIT evaluation. These trade-offs are 
particularly apparent when considering AI-CDS. For example, there are 
tensions between data protection, consent, and exploitation of data. 
Whilst data protection is governed in most countries through privacy 
and security law [69], it can be a potential barrier to beneficial sec-
ondary uses of data including building AI models (e.g. when models 
require data sharing for training) [70,71]. 

Internationally developed evaluation frameworks that focus on 
ethical considerations surrounding AI in healthcare exist, but are not 
widely adopted [72]. Emphasis should be on increasing patient 
engagement and for widespread community-based participatory 
research to understand views on using systems and data. Co-creation 
approaches have significant potential in this respect and can help to 
negotiate complex ethical tensions [73]. The use of synthetic data gen-
eration techniques to preserve data privacy and increase the volume of 
data is promising [74]. 

Unintended consequences caused by HIT include issues due to 
algorithmic bias, data incongruent provenance, and inadequate data 
quality [75–80]. In many instances, AI systems trained on specific 
datasets do not perform well when applied to other datasets and in 
different contexts, diminishing the transportability of the model. This 
may then lead to loss of predictive capability/reliability for 
under-represented segments and algorithmic bias. A classic example is 
Google’s dermatology app, which was trained on Caucasian skin and did 
not detect melanoma in darker skin [81]. For evaluation, this means that 
it is critically important to evaluate how a system performs on local data 
used for ‘training’ and construction [82], ascertain that such perfor-
mance has been validated, and match training populations (and treat-
ment options) to the characteristics of the potential transfer site [83]. 

There are existing international frameworks accounting for algo-
rithmic bias in healthcare settings [84,85], and increasing efforts to 
utilise incident reporting systems of AI aiming to learn from adverse 
events [86–88]. These highlight the large untapped potential of 

automated approaches for incident analysis and quantification. How-
ever, their application has to date been limited and each must itself be 
validated. Routine evaluation practices now need to incorporate such 
approaches in order to proactively mitigate for potential biases and 
ethical risks. 

2. Conclusions 

Considering the rapid proliferation of AI in healthcare, and the 
multiple pressures for roll-out, there is an urgent need for rigorous 
evaluation. This calls in turn for establishing networks of experience in 
effective application of evaluation tools, and for building an accessible 
verified evidence base. These will help to ensure that procurement and 
implementation decisions are evidence informed. 

As health systems and contexts are constantly evolving - through the 
introduction of novel HIT, including AI-CDS, as well as better under-
standing of illness, new treatments, and treatment responses - it is vital 
that evaluations include a longitudinal component that accounts for 
these changes and surfaces emerging risks (e.g. degradation of model 
performance) over time. Such continuous systemic evaluation can pro-
mote learning health systems [89,90], but is lacking in evaluation 
practice [91,92]. The emergence of AI-CDS has also helped to illustrate 
the need for continuous post-market surveillance [93,94]. 

There are many well-established frameworks relevant for AI-CDS, 
but routine evaluation practices now need to take these into account. 
Key considerations include attention to contexts, focusing on helping 
users to understand system logics and designing assistive tools, 
designing and optimising systems in the interest of ethics and equity, 
and continuous evaluation and monitoring of processes and outcomes. 
These dimensions are likely to be important irrespective of health sys-
tems and existing health information technology infrastructures. We 
summarise implications of this work for international health policy in 
high-income countries in Table 1. 
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