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Design and analytical evaluation of an impact-based four-point bending 
configuration for piezoelectric energy harvesting 

Milad Hasani a, Majid Khazaee a, John E. Huber b, Lasse Rosendahl a, Alireza Rezania a,* 

a Department of Energy Technology, Aalborg University, Pontopidanstraede 111, 9220 Aalborg, Denmark 
b Department of Engineerings Science, University of Oxford, Parks Rd, Oxford OX1 3PJ, United Kingdom   

H I G H L I G H T S  

• Electromechanical model with novel four-point bending configuration is derived. 
• The model is validated by a finite element model and experimental results. 
• This harvester significantly improves energy conversion efficiency by 322%. 
• Modified stress distribution enhances normalized output energy by 638%. 
• The configuration fulfils fatigue endurance and high energy conversion efficiency.  

A R T I C L E  I N F O   
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A B S T R A C T   

Aiming toward improved energy conversion in piezoelectric energy harvesters, this study investigates four-point 
bending (FPB) energy harvesters (FPB-EH) to explore their prominent features and characteristics. The FPB 
configuration innovatively extends energy harvesting capabilities relative to conventional cantilever beams. The 
FPB-EH comprises a composite piezoelectric beam that rests on two supports of a fixed clamp, excited by contact 
force applied at two contact lines on a moving clamp. A comprehensive analytical electromechanical model for 
the vibrating energy harvester is presented with unique modeling features, including multi-beam sections and 
multi-mode-shape functions. Solutions of the analytical model are presented for a wide range of contact force 
types, including steady-state solutions for harmonic forces, impact forces, periodic and non-periodic arbitrary 
forces. This comprehensive model progresses the state-of-the-art piezoelectric modeling knowledge and is readily 
applicable to various energy harvesting configurations. The model is validated against experimental results and 
finite element analysis. Next, a parametric study was performed to evaluate the effects of various FPB charac-
teristics, including the fixed and moving clamp spans, the waveform, and the period-time of contact force. The 
results indicate that the FPB configuration can enhance energy conversion efficiency and normalized output 
energy by factors of over 3 and 6, respectively. Finally, guidance is given for selecting between cantilever and 
four-point bending configurations.   

1. Introduction 

The development of electronics technologies has decreased the en-
ergy consumption of electronic devices, enabling us to supply the 
required energy for low-powered devices in inaccessible areas through 
energy harvesting methods from environmental energy sources rather 
than conventional batteries [1]. The literature has explored several 
ambient energy sources for energy harvesting, including electromag-
netic radiation, temperature difference, and mechanical vibration. 

Mechanical vibration has been realized as a sustainable ambient power 
source because of its accessibility in various environments and easy 
system integration [2]. In this way, various approaches based on me-
chanical vibration have been introduced, including electromagnetics 
[3,4], triboelectric [5,6], and piezoelectric [7,8]. 

The piezoelectric cantilever beams under base displacement excita-
tion have been studied comprehensively in previous investigations as a 
prominent configuration in piezoelectric energy harvesting systems 
(PEHS). The strengths and weaknesses of this configuration were dis-
cussed frequently in the literature. The low power bandwidth of the 
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cantilever configuration leads to a narrow frequency band for matching 
base excitation with the harvester’s principle natural frequency [3]. In 
this regard, nonlinearity characteristics have been used to address the 
drawback of narrow frequency bandwidth in linear PEHS [9,10]. 
Consequently, novel configurations of nonlinear PEHS were proposed to 
evaluate the effect of nonlinear dynamics with bi-stability and internal 
resonance characteristics [7,11,12]. Indeed, the nonlinear behavior 
improves bandwidth, which enables PEHS to generate more power from 
non-matched frequencies. In addition to nonlinear characteristics, some 
studies [9,13] have examined the PEHS under impact forces rather than 
harmonic excitation to deal with the bandwidth limitation. Indeed, 
impact excitation tackles the frequency matching limitation, providing 
an initial condition to PEHS with a short impact time [14], followed by 
free vibration for the rest of the motion time. This remarkable potential 
has encouraged the researcher to evaluate the impact of dissipation on 
PEHS based on Hertzian contact theory and the Hunt-Crossley model 
[9]. 

In addition to bandwidth restriction, the stress distribution over the 
length of a cantilever piezoelectric beam is not uniform; the strain is 
maximum around the clamped boundary and becomes zero at the free 
end [15]. Thus, the clamped areas generate the most power, leaving the 
majority of the harvesting beam volume ineffective. The high-stress zone 
around clamped boundary can threaten the operation of a harvester for 

long-term employment due to fatigue. Therefore, two approaches can be 
taken for stress distribution improvement: the material/structural 
approach and the boundary condition approach. Tailoring the harvester 
stiffness by fiber orientation has been proposed for composite piezo-
electric harvesters [16]. Other options include tailoring the location of 
the piezoelectric material [17], strain-engineered material, auxetic 
multiple-rotating-cube substrate [18], and auxetic properties of the 
piezoelectric material [19]. For the boundary condition approach, 
poling direction [20], bistable [21,22], and clamped–clamped beams 
with a center mass [18,23] have also proven effective. 

Much energy harvesting literature for power generation improve-
ments is devoted to material advancements or PEHS structure modifi-
cations. The resulting materials and designs are complex and not 
commercially available. Finding a straightforward approach to enhance 
PEHS energy generation remains a critical unmet goal. Thus, this 
research emphasizes the use of an alternative boundary condition as a 
route to better PEHS performance, not requiring sophisticated material 
development. This study proposes and explores the four-point bending 
boundary condition (FPB-BC) for PEHs. The FPB-BC facilitates the 
relative uniformity of stress/strain distribution over the harvester’s 
surface, which enhances the harvester’s performance. Thus, the FPB-BC 
has potential for better power generation, material usage, and longer 
fatigue life. 

Nomenclature 

a0 Mass proportional damping coefficient 
a1 Stiffness proportional damping coefficient 
b Beam width (m) 
β Dimensional variable regarding natural frequencies 
c1, c2, …,c8 Constants of mode shape function 
c9,c10 Constants of the temporal function 
cE

11 Young’s modulus of the piezoceramic layer at constant 
electric field (GPa) 

CP Equivalent capacitance of piezoelectric layer (F) 
D33 33-component of electric displacement matrix 
E Electric field on the piezoelectric layer (V/m) 
Einput Mechanical input energy 
Eoutput Electrical output energy 
ε33

s Permittivity constant (nF/m) 
e31 Effective piezoelectric stress constant (C/m2) 
F Amplitude of harmonic force (N) 
Fc Equivalent generalized force 
Ftrans Measured applied force to the force transducer (N) 
Finertia Inertia force of the upper clamp (N) 
Fcont Contact force (N) 
F cont Laplace transform of Fcont 
fL Lower frequency regarding bandwidth (Hz) 
fP Peak frequency regarding bandwidth (Hz) 
fH Higher frequency regarding bandwidth (Hz) 
h Layer thickness (m) 
I Second moment of area (m4) 
j Unit imaginary number 
jP Backward coupling term 
K Equivalent modal stiffness 
Lb Beam length (m) 
Ld Bottom clamp length (m) 
Lup Upper clamp length (m) 
M Equivalent modal mass 
N Number of harmonic pairs in Fourier series 
qi Temporal part on separation of variables 
qsi Steady-state of temporal part expression 
Qi Amplitude of the temporal part’s harmonic response 

Q Electric charge output of piezoelectric layer (C) 
Q Laplace transform of Q 
Q Quality factor 
RMS Root mean square 
s Laplace variable 
S Mechanical strain (1) 
T Kinetic energy (J) 
t Time (s) 
T Period-time of contact force 
U Strain potential energy (J) 
vs Steady-state voltage expression 
v Output voltage of piezoelectric patch (V) 
v0 Initial condition of v 
vimp Voltage expression per ideal impulse excitation 
V Laplace transform of v 
V Amplitude of the voltage’s harmonic response 
V Material Volume (m3) 
w Transversal displacement (m) 
w0 Initial value of displacement w 
ẇ0 Initial value of velocity ẇ 
ws Steady-state displacement expression 
W Amplitude of the displacement’s harmonic response 
Wi.e Internal electrical energy (J) 
Wnc Virtual work of non-conservative forces (J) 
x Longitudinal direction in cartesian coordinate system xyz 
X i State space variables 
y Lateral direction in cartesian coordinate system xyz 
Y Young’s modulus 
z Transverse direction in cartesian coordinate system xyz 
γ A positive constant parameter 
δ Variation operator 
δ Ideal unit impulse (Dirac delta function) 
μi Elements of the coefficient matrix 
θ Electromechanical coupling 
ρ Density (kg/m3) 
σ Mechanical/electromechanical stress (Pa) 
ϕ Mode shape functions 
ω Natural frequency (rad/s) 
ξ Damping ratio  
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The current research develops a comprehensive analytical model for 
piezoelectric beams under the FPB-BC. The advanced multi-sectional 
beam model considers harmonic, impact, periodic, and non-periodic 
excitation forces. The proposed model extends the current single 
continuous piezoelectric beam model to advanced multi-sectional FPB- 
BC. Hamiltonian and Euler–Bernoulli beam theories are utilized to 
implement a powerful and flexible analytical framework. The proposed 
model considers a multi-sectional harvester; a robust multi-sectional 
modal analysis is accomplished by two independent model shape func-
tions and eigenvalue relations, which enable us to predict the harvester’s 
response once the beam length is higher than the fixed clamp span. The 
electromechanical model is employed in a parameter study to find the 
optimal conditions. The best performance of FPB-EH is evaluated in 
terms of force waveform and the geometrical parameters, indicating its 
capabilities regarding enhanced frequency bandwidth and power gen-
eration level. Moreover, the FPB-EH’s weaknesses and strengths are 
compared against cantilever PEHs. From a practical point of view, this 
study provides guidelines to determine which configuration type (be-
tween FPB and cantilevered harvester ones) is appropriate for a specific 
application. 

The key contribution of this study is the enhancement of energy 
generation, improving the long-term working of PEHS, and efficient 
material usage. The study indicates guidelines for more efficient har-
vesting systems. The work of this paper is organized as follows. Section 2 
introduces the design configuration of an FPB-EH, which includes two 
clamps and a piezoelectric beam. Section 3 develops an electrome-
chanical model to predict the harvester output. In addition, the gov-
erning differential equations are solved through the Laplace Transform, 
and a Fourier series solution is implemented into Frequency Response 
Functions (FRFs) to find the steady-state response for an arbitrary pe-
riodic excitation. Section 4 describes the experimental setup of an FPB- 
EH, and Section 5 validates the proposed model against both experi-
mental results and FEM outputs (COMSOL Multiphysics) based on the 
transient and steady-state responses. Moreover, a parametric study ex-
plores the effects of different harvester characteristics on performance. 
Conclusions are given in Section 6. 

2. Design configuration 

The configuration of an FPB-EH is illustrated in Fig. 1. This config-
uration consists of a multilayer piezoelectric beam (MPB) and two clamp 

clips on the upper and lower sides of the MPB. The MPB comprises two 
active piezoelectric layers (PZT-5A) and a middle substrate layer (brass), 
which are bonded together. The MPB is constrained through the bottom 
clamp clip, which can be considered as a roller support, provided the slip 
friction is negligible. The upper clamp clip is connected to the force 
transducer of an impact hammer for applying an impulse excitation to 
the MPB through two contacts. It should be noted that the centerlines of 
the MPB, upper and lower clamps are aligned. Therefore, the applied 
forces through the two legs are identical due to the system symmetry 
relative to the y-z plane, as shown in Fig. 3. Besides, this symmetry 
enables us to study half of the harvester instead of the whole in section 3. 

The piezoelectric layers are poled along the z-axis, as shown in Fig. 2- 
a. The longitudinal stress/strain of the upper and lower piezoelectric 
layers have opposite directions during a pure bending motion due to 
their position relative to the neutral axis. As a result, the generated 
electric field of two active layers and parallel electrical connection can 
be shown in Fig. 2-b. 

3. Analytical model 

The Hamiltonian method and Euler–Bernoulli beam theory are 
employed to develop an electromechanical analytical model for the FPB 
configuration. The length-to-thickness ratio is assumed to be relatively 
large, so shear deformation and rotary inertia effects are negligible. 
Nonlinearity can be significant under high-level impact force, which 
leads to large deformation and geometric nonlinearity. In addition, the 
contact region extends from single point to the surface (within contact 
time) based on Hertz’s contact theory, consequently, the contact stiff-
ness (contact elasticity) is nonlinear and contact-surface dependent 
[24]. To focus mainly on the energy harvesting performance of this new 
piezoelectric setup, this study focuses on conditions that are not affected 
by geometric nonlinearity due to low impact force. This simplification 
enables us to provide a comprehensive analytical model of FPB-EH 
under impact excitation in the following. 

The extended Hamilton’s principle for an electromechanical system 
can be written as Eq. (1). 

∫t2

t1

(δT − δU + δWi.e + δWnc) dt = 0 (1) 

In the following, the total kinetic, potential, and internal electrical 
energies and the virtual work of non-conservative forces (mechanical 
and electric charge components) are expressed to develop the consti-
tutive equations. The longitudinal stress based on the Euler-Bernoulli 
theory and plane-stress assumption is given by: 

Sx(x, t) = − zw(x)˝ (2) 

In this article, the superscripts Ấ and ˙ denote the spatial and time 
derivatives, respectively. The longitudinal stress on the substrate and 
piezoelectric layers is expressed as: 

σsx(x, t) = YsSx(x, t) (3)  

σPx(x, t) = cE
11Sx(x, t) − e31Ez(t) (4) 

The subscripts P and s present that this parameter is associated with 
piezoelectric and substrate layers, respectively. It is assumed that the 
electric field on the piezoelectric layers along the z-direction is uniform, 
which is described as: 

Ez(t) =
v(t)
hp

(5) 

The strain potential energy of the substrate layer and electrome-
chanical energy of piezoelectric layers are calculated as Eq. (6) and Eq. 
(7), respectively. 

Fig. 1. The schematic of the FPB configuration.  

M. Hasani et al.                                                                                                                                                                                                                                 



Applied Energy 347 (2023) 121461

4

Us =
1
2

∫̇

Vs

σsx SxdVs =
YsIs

2

∫
Lb
2

−
Lb
2

w(x)˝
2
dx (6)  

UP =
1
2

∫̇

VP

σPx SxdVP =
1
2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cE
11IP

∫
Lb
2

−
Lb
2

w(x)˝
2
dx − jP

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∫
Lb
2

−
Lb
2

w(x)˝dx

⎞

⎟
⎟
⎟
⎟
⎟
⎠

v(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(7)  

where the backward coupling term is presented as 

jP =
e31

hP
b

((
hs

2
+ hP

)2

−

(
hs

2

)2
)

(8) 

The piezoelectric layers’ area moment of inertia can be written as 

IP =
2
3

b

((
hs

2
+ hP

)3

−

(
hs

2

)3
)

(9) 

In addition, the total kinetic energy comprises the kinetic energy of 
the substrate and piezoelectric layers, which are stated as: 

Ts =
1
2

∫̇

Vs

ρsẇ(x)
2dVs =

1
2
ρsbhs

∫
Lb
2

−
Lb
2

ẇ(x)2dx (10)  

TP =
1
2

∫̇

VP

ρPẇ(x)2dVP = ρPbhs

∫
Lb
2

−
Lb
2

ẇ(x)2dx (11) 

The total internal electrical energy of the piezoelectric layers is 
represented as: 

Wi.e =
1
2

∫̇

V
EzD33dV (12) 

The 3-component of the electric displacement vector is expressed as: 

D33 = e31σPx + ε33
sEz (13) 

Separation of variables is utilized to separate the presented equations 
into spatial and temporal parts, with the transversal displacement 
expressed by 

w(x, t) =
∑∞

i=1
ϕi(x)qi(t) (14) 

So, the total kinetic, potential, and internal electrical energies are 
rewritten as Eqs. (15), (16), and (17), respectively: 

T =
1
2
(ρbhb + 2ρPhP)b

∑∞

i=1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∫
Lb
2

−
Lb
2

ϕ2
i (x)dxq̇2

i (t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(15)  

Fig. 2. The direction of (a) poling and (b) the electric field of MPB.  

Fig. 3. The schematic of the contact force applied on MPB.  
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U=
1
2
(
YsIs+CE

11IP
)∑∞

i=1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∫
Lb
2

−
Lb
2

ϕ˝
i (x)

2dxq2
i (t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+
∑∞

i=1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− 1
2

∫−
Lb
2

−
Lb
2

jp(x)ϕ˝
i (x)dx

⎤

⎥
⎥
⎥
⎥
⎥
⎦

v(t)qi(t)

(16)  

Wi.e =
1
2
jP

∑∞

i=1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∫
Lb
2

−
Lb
2

ϕ˝
i (x)dxqi(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

v(t)+
1
2
CPv2(t) (17)  

where the MPB’s equivalent capacitance CP is given by 

CP =
2ε33

s

hp
bLb (18) 

The mechanical contact force is considered a non-conservative force, 
which is shown in Fig. 3 in more detail. 

The variation of non-conservative virtual work due to contact force is 
then given by: 

δWn.c.m =
∑∞

i=1
Fcont(t)ϕi(x)|x=Lup

2
δqi(t) (19) 

In addition, the variation of non-conservative virtual work of electric 
charge output Q(t) is given by Eq. (20). 

δWn.c.e = Q(t)δv(t) (20) 

By substituting these expressions in Eq. (1), the extended Hamilton’s 
principle leads to the following electromechanical Lagrange equations. 

d
dt

⎛

⎝∂T
∂q̇i

⎞

⎠ −
∂T
∂qi

+
∂U
∂qi

−
∂Wie

∂qi
= Fcont(t)ϕi(x)|x=Lup

2
(21)  

d
dt

(
∂T
∂v̇

)

−
∂T
∂v

+
∂U
∂v

−
∂Wie

∂v
= Q(t) (22) 

The first electromechanical equation can be derived from Eq. (21) as: 

Miq̈i(t)+ kiqi(t) − θiv(t) = Fci(t) (23) 

The equivalent modal mass, stiffness, electromechanical coupling, 
and generalized force are introduced as follows: 

Mi =
(
ρbhb + ρphp

)
b
∫

Lb
2

−
Lb
2

ϕ2
i (x)dx (24)  

Ki =
(
YsIs + cE

11IP
)
∫

Lb
2

−
Lb
2

ϕ˝
i (x) dx = 2

(
YsIs + cE

11IP
)

⎛

⎝ϕ′
i(x)

⃒
⃒

x=Lb
2

⎞

⎠ (25)  

θi = jp

∫
Lb
2

−
Lb
2

ϕ˝
i (x) dx = 2jp

⎛

⎝ϕ′
i(x)

⃒
⃒

x=Lb
2

⎞

⎠ (26)  

Fci(t) = Fcont(t)ϕi(x)|x=Lup
2

(27) 

The first electromechanical equation is rewritten by normalization 
with respect to equivalent modal mass and adding Rayleigh damping as 

q̈i(t) + 2ξiωiq̇i(t) +ω2
i qi(t) − θiv(t) = fci(t) (28) 

In addition, the second electromechanical equation is developed 
based on Eq. (22) as 

CPv̇(t)+
v(t)
R

+
∑∞

i=1
θiq̇i(t) = 0 (29) 

The following section investigates the modal analysis for an MPB 
with roller boundary conditions. 

3.1. Modal analysis 

The modal analysis for linear transverse vibration is performed based 
on the described roller boundary condition regardless of piezoelectric 
effect and damping. The governing equation of an Euler-Bernoulli beam 
with uniform width under undamped free vibration can be expressed as 
[14] 

∂4w(x, t)
∂x4 +

m
YI

∂2w(x, t)
∂t2 = 0 (30) 

Using separation of variables, based on spatial and temporal func-
tions [25], 

d4ϕ(x)
dx4 − γ

m
YI

ϕ(x) = 0 (31)  

d2η(t)
dt2 + γη(t) = 0 (32)  

Where γ is a positive constant parameter. Moreover, the boundary 
conditions for a symmetric beam (as shown in Fig. 1) can be written as 

∂ϕ(x, t)
∂x

⃒
⃒
⃒
⃒

x=0
= 0 (33)  

∂3ϕ(x, t)
∂x3

⃒
⃒
⃒
⃒

x=0
= 0 (34)  

ϕ
(

x =
Ld

2
, t
)

= 0 (35)  

∂2ϕ(x, t)
∂x2

⃒
⃒
⃒
⃒

x=Lb
2

= 0 (36)  

∂3ϕ(x, t)
∂x3

⃒
⃒
⃒
⃒

x=Lb
2

= 0 (37) 

Besides, the beam slope and curvature are identical at roller sup-
ports, which leads to two additional rational boundary conditions: 

∂2ϕin(x)
∂x2

⃒
⃒
⃒
⃒

x=Ld
2

=
∂2ϕout(x)

∂x2

⃒
⃒
⃒
⃒

x=Ld
2

(38)  

∂ϕin(x)
∂x

⃒
⃒
⃒
⃒

x=Ld
2

=
∂ϕout(x)

∂x

⃒
⃒
⃒
⃒

x=Ld
2

(39) 

These distinct boundary condition expressions correspond to two 
separate internal and external sections shown in Fig. 4. 

As a result, two shape functions are considered for the solution of the 
ordinary differential equation (ODE) expressed in Eq. (31) as:   
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In addition, the solution of ODE regarding temporal function is given 
by: 

η(t) = c9sin(ωt)+ c10cos(ωt) (41) 

The ω is the natural frequency, which is defined as follows. 

ω = β2

̅̅̅̅̅
YI
m

√

(42) 

By applying the boundary conditions Eq. (33) and Eq. (34) 

c1 = c3 = 0 (43) 

In addition, the remaining boundary conditions lead to a homoge-
neous system of linear equations represented in the matrix form as 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

μ7 μ5 0 0 0 0
0 0 μ6 μ7 μ8 μ5
μ6 − μ8 μ7 − μ6 μ5 μ8
μ7 − μ5 − μ6 − μ7 μ8 μ5
0 0 − μ2 − μ4 μ1 μ3
0 0 − μ4 μ2 μ3 μ1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c2
c4
c5
c6
c7
c8

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0
0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(44)  

Where 

μ1 = sinh
(

βLb

2

)

, μ2 = sin
(

βLb

2

)

μ3 = cosh
(

βLb

2

)

, μ4 = cos
(

βLb

2

)

(45)  

μ5 = cosh
(

βLd

2

)

, μ6 = sin
(

βLd

2

)

μ7 = cos
(

βLd

2

)

, μ8 = sinh
(

βLd

2

)

The coefficient matrix should be singular in order to derive non- 
trivial solutions for this system. Therefore, the characteristic equation 
of this eigenvalue problem is given by the coefficient matrix’s deter-
minant as follows. 

(2μ2μ1 − 2μ4μ3)μ7
2 +( − 4μ5 − 2μ4μ6μ1 − 2μ3μ6μ2)μ7 − 2μ5(μ5(μ4μ3

+ μ2μ1) − μ8(μ4μ1 + μ3μ2) )

= 0 (46) 

The characteristic equation has infinite positive roots representing 
eigenfrequencies of the harvester. Let βn indicate the eigenvalue of the 
nth vibration mode associated with nth non-trivial eigenfunction:  

Where 

κ42,n =
− μ7,n

μ5,n  

κ82,n = −
μ2,nμ2

7,n +
(
μ1,nμ5,n − μ4,nμ6,n

)
μ7,n + μ4,nμ8,nμ5,n

μ5,n
(
μ1,nμ5,n − μ4,nμ6,n + μ2,nμ7,n − μ3,nμ8,n

)

κ72,n = −
μ5,nκ82,n + μ7,n

μ8,n
(48)  

κ62,n =
1

μ5,n

((
κ72,nμ6,n − κ82,n

)
μ2

5,n +
(
− κ72,nμ7,nμ8,n + κ82,nμ6,nμ8,n − μ2

7,n

+ 1
)

μ5,n + μ7,nμ8,nμ6,n

)

Fig. 4. The internal and external sections of MPB.  

ϕ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕin(x) = c1sin(βx) + c2cos(βx) + c3sinh(βx) + c4cosh(βx), −
Ld

2
≤ x ≤

Ld

2

ϕex(x) = c5sin(βx) + c6cos(βx) + c7sinh(βx) + c8cosh(βx),
Ld

2
< |x| <

Lb

2

(40)   

ϕn(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c2,n
[
cos(βnx) + κ42,ncosh(βnx)

]
, −

Ld

2
≤ x ≤

Ld

2

c2,n
[
κ52,nsin(βnx) + κ62,n cos(βnx) + κ72,nsinh(βnx) + κ82,n cosh(βnx)

]
,

Ld

2
< |x| <

Lb

2

(47)   
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κ52,n = −
μ7,n κ62,n + μ8,n κ72,n + μ5,n κ82,n

μ6,n 

Moreover, 

μ1,n = sinh
(

βnLb

2

)

, μ2,n = sin
(

βnLb

2

)

μ3,n = cosh
(

βnLb

2

)

, μ4,n = cos
(

βnLb

2

)

(49)  

μ5,n = cosh
(

βnLd

2

)

, μ6,n = sin
(

βnLd

2

)

μ7,n = cos
(

βnLd

2

)

, μ8,n = sinh
(

βnLd

2

)

Due to the orthogonality of the eigenfunctions, the coefficient c2,n 

can be determined through the mass normalization procedure described 
as 

∫
Lb
2

−
Lb
2

ϕn(x)mϕm(x)dx = δnm (50) 

It should be mentioned that the expression of natural frequency in 
Eq. (42) can be extended for different vibration modes as follows 

ωn = β2
n

̅̅̅̅̅
YI
m

√

(51) 

Even though the analytical equations of the developed model are 
relatively complicated, the characteristic and eigenfunctions expres-
sions can be simplified regarding the specific condition Ld = Lb as 
follows. 

cos
(

βnLd

2

)

= 0 , so βn =
(2n − 1)π

Ld
n = 1, 2, 3,⋯ (52)  

ϕn(x) = c2,n
[
cos(βnx)+ κ42,ncosh(βnx)

]
(53) 

Therefore, the presented expressions for eigenvalue (Eq. (46)) and 
eigenfunction (Eq. (47)) can be utilized for solving differential equations 
Eq. (28) and Eq. (29) in the following section. 

3.2. The electromechanical response under different excitation types 

This section provides the electromechanical response of an MPB by 
solving the differential equations for various excitation types in the 

frequency and time domains. 

3.2.1. The steady-state response for harmonic excitation in frequency space 
In the first step, the harvester’s steady-state response is investigated 

under harmonic excitation. In this way, the Laplace transform is applied 
to Eq. (28) and Eq. (29) as 

Q i(s)
[
s2 + 2ξiωis+ω2

i

]
− V (s)[θi] = F cont(s)ϕi(x)|x=Lup

2
(54)  

V (s)
[

Cps+
1
R

]

+ s
∑∞

i=1
θiQ i(s) = 0 (55) 

The variables Q i(s) and V (s) can be extracted as 

Q i(s) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ϕi(x)|x=Lup
2
+ θi

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
∑∞

i=1

θi sϕi(x)|x=Lup
2

s2+2ξiωis+ω2
i

Cps + 1
R +

∑∞
i=1

θ2
i s

s2+2ξiωis+ω2
i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

F cont(s)
s2 + 2ξiωis + ω2

i

(56)  

V (s) = F cont(s)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
∑∞

i=1

θi sϕi(x)|x=Lup
2

s2+2ξiωis+ω2
i

Cps + 1
R +

∑∞
i=1

θ2
i s

s2+2ξiωis+ω2
i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(57) 

The harmonic contact force Fcont(t) = Fejωt leads to the steady-state 
harmonic response qi(t) = Qiejωt and v(t) = Vejωt. For this aim, the 
steady-state responses can be given by qsi(t) = Q i(jω)ejωt and vs(t) =
V (jω)ejωt as [26]    

vs(ω, t) = F

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
∑∞

i=1

jθiωϕi(x)|x=Lup
2

− ω2+2jξiωiω+ω2
i

jωCp +
1
R +

∑∞
i=1

jθ2
i ω

− ω2+2jξiωiω+ω2
i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ejωt (59) 

In addition, the steady-state displacement expression is presented as 
ws(x, t) =

∑∞
i=1Wi(x, t), where can be rewritten as     

qsi(ω, t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ϕi(x)|x=Lup
2
+ θi

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
∑∞

i=1

jθiωϕi(x)|x=Lup
2

− ω2+2jξiωiω+ω2
i

jCpω + 1
R +

∑∞
i=1

jθ2
i ω

− ω2+2jξiωiω+ω2
i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

F

− ω2 + 2jξiωiω + ω2
i
ejωt (58)   
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This steady-state response is applicable to harmonic excitations but 
not to the analysis of system behavior under arbitrary inputs. In addi-
tion, the contact force may generally have an arbitrary form. Therefore, 
the following section focuses on a time-domain solution for an arbitrary 
excitation. 

3.2.2. The time-dependent response for ideal impulse excitation 
The derived transfer functions Eq. (56) and Eq. (57) can be employed 

to study the system’s time-dependent response under various excitations 
with zero initial values. It is evident that the prediction of the time- 
dependent response is more complicated than the steady-state one. So, 
firstly, we evaluate the harvester’s response under an ideal unit impulse 
excitation as given by Eq. (61) to determine the system response for 
more complicated input functions [14]. 

(t − a) = 0 for t ∕= a (61)  

∫t=+∞

t=− ∞

Î́(t − a) dt = 1 

As a result, the Laplace transform of ideal impulse force δ(t) becomes 
F cont(s) = 1. The Laplace inverse of Eq. (57) should be derived for the 
representation of voltage expression in the time domain as follows. 

vimp(t) = L
− 1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
∑∞

i=1

θi sϕi(x)|x=Lup
2

s2+2ξiωis+ω2
i

Cps + 1
R +

∑∞
i=1

θ2
i s

s2+2ξiωis+ω2
i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(62) 

It should be mentioned that the parametric presentation regarding 
the Laplace inverse of this transfer function is not straightforward due to 
the series expansions. Therefore, it is expedient to perform the Laplace 
inverse only after substituting specific values into the variables of Eq. 
(62). Additionally, a numerical framework based on the state-space 
representation is provided in Section 3.2.4. 

3.2.3. The steady-state response for arbitrary periodic excitation (Fourier 
expansion method) 

In the following, the voltage and displacement solutions for arbitrary 
periodic excitation are parametrically represented based on the Fourier 
series. The general periodic excitation force with period-time T is 
defined as: 

Fcont(t+T ) = Fcont(t) (63) 

The periodic force can be represented by the Fourier series 

Fcont(t) =
∑∞

k=− ∞

[
Cke

(
2jkπt
T

)

]
(64)  

where, 

Ck =
1

T

∫T

0

Fcont(t)e

(
− 2jkπt

T

)

dt (65) 

The linear system assumption indicates that the response of one 
linear system under a summation set of harmonics equals the summation 
of its response to each harmonic individually [25]. In this way, the 
electromechanical response of MPB for harmonic excitation in Eq. (58) 
and Eq. (59) is used to predict the harvester’s response to individual 
harmonics. So, the normalized steady-state voltage expression for the 
case of harmonic excitation force is given by 

Vs(ω) =
vs(ω, t)

Fejωt =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
∑∞

i=1

jθiωϕi(x)|x=Lup
2

− ω2+2jξiωiω+ω2
i

jωCp +
1
R +

∑∞
i=1

jθ2
i ω

− ω2+2jξiωiω+ω2
i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(66) 

The absolute steady-state periodic voltage based on the truncated 
Fourier series, taking N harmonic pairs, can be expressed as 

|v(t)| ≅
∑N

k=− N

⃒
⃒
⃒
⃒Vs

(
2kπ
T

)

e

(
2jkπt
T

)

Ck

⃒
⃒
⃒
⃒ (67) 

In Section 5.2, specific instruction is provided for determining the 
appropriate number of harmonic pairs (N). 

The calculated steady-state voltage and displacement expressions 
can be utilized to define the input mechanical energy and the generated 
electrical output energy within each period: 

Einput =

∫T

0

Fcont(t).dw|x=Lup/2(t) (68)  

Eoutput =

∫T

0

v(t)2

Rl
dt (69) 

Here, w|x=Lup/2(t) denotes the transverse displacement of the MPB at 
x = Lup/2. Note that the input energy in Eq. (68) includes two factors: 
the contact force function, and the displacement of the applied force 
point. Moreover, energy conversion efficiency (ECE) is defined in Eq. 
(70) to represent the conversion efficiency from input mechanical 

ws(x, t) =
∑∞

i=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ϕi(x)|x=Lup
2
+ θi

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
∑∞

i=1

jθiωϕi(x)|x=Lup
2

− ω2+2jξiωiω+ω2
i

jCpω + 1
R +

∑∞
i=1

jθ2
i ω

− ω2+2jξiωiω+ω2
i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fϕi(x)
− ω2 + 2jξiωiω + ω2

i
ejωt (60)   
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energy to output electrical energy. 

ECE =
Eoutput

Einput
× 100% (70)  

3.2.4. The time-dependent response for arbitrary non-periodic excitation 
(numerical analysis) 

In addition to the Laplace method described in section 3.2.2, 

numerical methods (e.g., Runge–Kutta) are extensively used for solving 
ODEs. In this regard, Eq. (28) and Eq. (29) can be transformed into first- 
order differential equations for the application of numerical methods in 
a state-space representation. Although continuous vibration systems 
have infinite eigenfrequency, the expansions may be truncated to 
consider only effective modes. This work takes into account the four 
primary vibration modes as 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X 1(t)
X 2(t)
X 3(t)
X 4(t)
X 5(t)
X 6(t)
X 7(t)
X 8(t)
X 9(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q1(t)
q̇1(t)
q2(t)
q̇2(t)
q3(t)
q̇3(t)
q4(t)
q̇4(t)
v(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(71) 

According to Eq. (28) and Eq. (29), it can be rewritten as 

Fig. 5. The experimental setup for the four-point bending test: (1) piezoelectric patch, (2) bottom clamp, (3) upper clamp, (4) accelerometer sensor, and (5) force 
transducer sensor. 

Table 1 
The electromechanical characteristics of the MPB.  

Characteristics  Substrate 
(Brass)  

Piezoceramic (PZT- 
5A) 

Mass density [kg/m3]  ρs = 8300  ρp = 7750 
Elastic modulus [GPa]  Es = 105  cE

11 = 61 
Substrate thickness [mm]  hs = 0.13  hp = 0.19 (each) 
Piezoelectric constant [C/ 

m2]  

____  e31 = − 10.4 

Permittivity constant [nF/ 
m]  

____  ε33s = 13.3 

Beam length [mm]  Lb = 63.5 
Beam width [mm]  b = 31.8  

Table 2 
The comparison of predicted natural frequencies by the developed model against COMSOL Multiphysics.  

Natural Frequency  Developed model (Hz)  COMSOL Multiphysics 

Without electrostatic effect (Hz) Error 
(%)  

With electrostatic effect (Hz) Error 
(%) 

First   160.31   160.26  0.03   161.36  0.65 
Second   1442.8   1441.2  0.11   1451.1  0.57 
Third   4007.7   3997.4  0.26   4024.9  0.43 
Forth   7855.2   7817.0  0.49   7871.3  0.20  

M. Hasani et al.                                                                                                                                                                                                                                 



Applied Energy 347 (2023) 121461

10

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ẋ 1(t)
Ẋ 2(t)
Ẋ 3(t)
Ẋ 4(t)
Ẋ 5(t)
Ẋ 6(t)
Ẋ 7(t)
Ẋ 8(t)
Ẋ 9(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X 2(t)
fc1(t)− 2ξ1ω1X 2(t)− ω2

1X 1(t)+θ1X 9(t)
X 4(t)

fc2(t)− 2ξ2ω2X 4(t)− ω2
2X 3(t)+θ2X 9(t)

X 6(t)
fc3(t)− 2ξ3ω3X 6(t)− ω2

3X 5(t)+θ3X 9(t)
X 8(t)

fc4(t)− 2ξ4ω4X 8(t)− ω2
4X 7(t)+θ4X 9(t)

1/Cp[− X 9(t)/R− (θ1Ẋ 2(t)+θ2Ẋ 4(t)+θ3Ẋ 6(t)+θ4Ẋ 8(t))]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(72) 

In contrast to steady-state response FRFs, the numerical method 
considers the initial conditions w(x,0)= w0(x), ẇ(x,0)= ẇ0(x), and 

v(0)= v0. Hence, these initial conditions in modal coordinates can be 
given as 

qi(t = 0) =
∫Lb/2

− Lb/2

w0(x)mϕi(x)dx (73)  

q̇i(t = 0) =
∫Lb/2

− Lb/2

ẇ0(x)mϕi(x)dx (74)  

v(t = 0) = v0 (75) 

The result of the implemented state-space is presented in section 
5.1.1. 

Fig. 6. The voltage and beam middle point’s displacement – developed model and COMSOL Multiphysics.  

Fig. 7. The voltage response in terms of different damping ratios.  
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4. Experimental setup 

Experimental measurements are used for validation of the developed 
model, with the setup shown in Fig. 5. The upper clamp is placed on the 
tip of an impulse hammer so that the force transducer (Bruel and Kjaer, 
type 8230–001) measures the real-time hammer force. The measured 
force comprises the applied contact force to MPB and the inertia force of 
the upper clamp. Therefore, an accelerometer (Bruel and Kjaer, type 
4517–002) is mounted on the upper clamp to assess the clamp’s inertia 
force for the determination of contact force as 

F→cont(t) = F→trans(t) − F→inertia(t) (76) 

The piezoelectric patch’s output is connected to an electrical 
impedance, here a purely resistive load. The impedance voltage, accel-
erometer, and force transducer signals are transmitted into a data 
analyzer (Bruel and Kjaer, type 3677-A-041). 

As shown in Fig. 5, the bottom clamp is fixed to a flat surface while it 
holds the MPB on two supports. A lubricant is employed to minimize 
coulomb friction between MPB and clamps so that the constraint can be 
considered as a roller support approximately. The electromechanical 
characteristics of the MPB are presented in Table 1. 

5. Results and discussions 

|In first, the developed model is validated against experimental and 
FEM results. Then, the validated model is studied to observe the effects 
of parameters under different excitations, including single impact and 
periodic excitation. In addition, it is discussed regarding optimal 
parameter arrangement for providing the best performances. Finally, the 
FPB-EH is compared with the cantilever configuration. 

5.1. Validation of the developed model 

The model verification is accomplished by extensive comparisons of 
the developed analytical model’s results with outputs from commercial 
finite element software and various experimental data points at different 
force levels and boundary conditions. Since the piezoelectric energy 
harvester is an electromechanical Multiphysics model, the validating 
parameters cover both the mechanical/vibration parameters and the 
electrical outputs, ensuring that the model is valid for energy harvester 
mechanical design and also the performance evaluation. 

5.1.1. Validation of the developed model with FEM model 
According to Fig. 4, the FEM model is set up in COMSOL Multiphysics 

to compare the natural frequencies and the transient response of the 
MPB under a single impact. The FEM geometric and material properties 
are given in Table 1. 

Regarding the mechanical parameter validation, first, Table 2 

compares the natural frequencies of the developed model (Eq. (52)) 
against COMSOL Multiphysics. The COMSOL FEM model computes the 
natural frequencies of the FPB-EH with Ld = Lb in Table 2, with and 
without considering the piezoelectric effect. Since natural frequencies 
are the most prominent design parameter in piezoelectric harvesters, the 
natural frequencies of up to four vibration modes are compared. There is 
an excellent agreement between the developed model and FEM output, 
even with the electrostatic effect, indicating that the natural frequency 
has a negligible dependency on the electrostatic effect. The error of the 
identified natural frequency for the first four bending modes is below 
0.7%. The higher-mode natural frequency agreement ensures the multi- 
mode analysis accuracy. 

A single impact force during contact time is experimentally 
measured, as described in Fig. 5, and imported into both the developed 
model and the COMSOL FEM model. Importing experimental force data 
leads to a more realistic analysis by considering actual contact force 
even though the nonlinear contact analysis effect is not present. As an 
instance, an impact force with amplitude 1.06 N and acting time 0.025 
sec is taken from one experimental test. The state-space method studies 
the transient solution under this measured contact force in Fig. 6. 

Fig. 6 presents the mechanical response (beam’s middle-point 
displacement) and the electrical response (voltage) under the real- 
time measured impact excitation. The comparison is between the 
state-space solution of the analytical model and the commercial COM-
SOL results. There are several small-amplitude fluctuations at 0 < t <
0.02 s in voltage and displacement responses, which are due to fluctu-
ations in the recorded experimental contact force. After the impact hit, 
the piezoelectric beam starts free vibration based on its natural fre-
quencies. Overall, the deflection and voltage diminish over time due to 
the damping. The impact effect lasts for approximately 0.15 s. 

The COMSOL and state-space transient solution agree with good 
accuracy. The presented model is also in agreement with the small- 
amplitude transition fluctuations. As a result, it is concluded that the 
developed model can compute the displacement and voltage of the MPB 
without need for further FEM confirmation. 

In this study, the proportional damping coefficients of the piezo-
electric patch were determined based on the material datasheet [27] and 
experimental analysis. According to the material datasheet, the first- 
mode quality factor is Q = 80. This quality factor is used for other vi-
bration modes as suggested due to the lack of damping data [28]. Having 
the quality factors for modal modes, mass proportional damping (a0) 
and stiffness proportional damping (a1) coefficients can be calculated by 
Eq. (77) [28]. In addition, the agreement between experimental and 
model results in subsection 5.1.2 indicates that the proposed damping 
ratio leads to appropriate voltage estimations, so the damping model is 
valid. 

Fig. 8. The experimental and theoretical peak voltage variation under different contact forces corresponding to (a) Lup = 20mm, and (b) Lup = 40mm.  
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{
a0
a1

}

=
2ξ

ωm + ωn

{
ωmωn

1

}

(77) 

which ξ = 1
2Q 

and m and n are two arbitrary mode numbers 
The model solution depends on damping coefficients based on 

equations (59) and (60). Mainly, the damping ratio affects the response 

in the vicinity of natural frequencies. The effect of damping is consid-
erable in free vibration response due to the dependency of the free vi-
bration response on the natural frequencies. Moreover, the damping 
effect in forced response is noticeable if the applied contact force com-
prises considerable harmonics close to the harvester’s natural fre-
quencies [29]. Otherwise, the damping effect is not remarkable in the 
forced response of a single impact, and the force response of this FPB-EH 
is a significant part of output voltage. 

To evaluate the damping effect, Fig. 7 illustrates the system’s 
response under previous impact force with different damping co-
efficients. The response is made of a forced response (0 to 0.03 s), where 
the upper clamp is in contact with the harvester, and a free vibration 
response, after applying the impact force. The effect of damping is small 
in the forced vibration region since the harmonics in the applied impact 
force are away from the harvester’s natural frequencies. However, the 
free vibration response is considerably affected by the damping ratio. 

5.1.2. Validation of the developed model with experimental results 
The described experimental setup in section 5.1.1 is studied under 

single-impact excitations while Ld = Lb = 63 mm and the FPB-EH is 
connected to the electrical resistance of 2.3 kΩ. For this evaluation, two 
upper clamps are considered with different length Lup = 20mm and Lup =

40mm. Several arbitrary impact forces (with different amplitudes and 

Fig. 9. The variation of experimental and theoretical RMS voltage (within 1 sec) under different contact forces corresponding to (a) Lup = 20mm, and (b) Lup =

40mm. 

Fig. 10. The periodic force based on half sinusoidal pulse.  

Fig. 11. The transient and steady-state responses per the half sinusoidal periodic excitation in 7 cycles.  
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time history) were applied to the MPB. The peak voltage output corre-
sponding to two clamps with Lup = 20mm and Lup = 40mm are plotted 
against the peak impact force in Fig. 8-a and Fig. 8-b, respectively. The 
experimental data indicate an approximately linear correlation between 
peak force and peak voltage. There are some scatters due to variations in 
the duration of impact force acting time; since the hammer impact is 
controlled by hand, the impact acting time can be different. Therefore, 
impact forces with an identical peak force and different acting times 
could lead to different peak voltages. 

The counterpart measured experimental contact force was imported 
into the state-space model to compute the numerical response of 
harvester. The transient model of subsection 3.2.4 calculates the peak 
voltage associated with each contact force. Since actual force waveforms 
with different acting times are imported, the peak voltage in numerical 
solutions can also be scattered. Therefore, two trendlines are included to 
facilitate a comparison of the developed model and the experimental 

Fig. 12. The Fourier coefficients of the harmonics associated with the steady-state voltage response and the applied contact load.  

Table 3 
The Fourier coefficients of contact force and steady-state voltage at non-zero 
frequency.  

Frequency pairs 
(Hz)  

Fourier coefficients  

Contact force (N)  Steady-state voltage (V) 

50   0.5000   0.5764 
100   0.2122   0.6562 
200   0.0424   0.2417 
300   0.0182   0.0233 
400   0.0101   0.0051 
500   0.0064   0.0011  

Fig. 13. The steady-state response per the half sinusoidal based on different N.  
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data. This comparison indicates that the proposed model can evaluate 
the peak voltage under different contact forces with reasonable accu-
racy. The discrepancy between theoretical and experimental results 
emanates from statistical and random factors in applying force by the 
impact hammer. 

In addition to peak voltage, the RMS voltage is examined under 
single-impact excitations based on two mentioned different upper 
clamps. The experimental and theoretical RMS voltages corresponding 
to the clamps with Lup = 20mm and Lup = 40mm are presented in Fig. 9-a 
and Fig. 9-b, respectively. There is good agreement between the 
experimental and model results, both at data points and with the 
trendlines. The model discrepancy is slightly more significant for the 
RMS than for the peak analysis. The possible roots can be the proper 
damping estimation and the boundary condition perfectness. Note that 
the boundary condition and damping effects can be prominent in the 

transient response, as shown in Fig. 7. 
After the model verification based on single impacts, the analyses of 

FPB-EH response under more complicated force excitations are pre-
sented in the following sections. 

5.2. The steady-state response under periodic contact force 

The previous section studied FPB-EH response under single impact 
force, while energy harvesters usually encounter repeated excitations in 
practice. This section explores the transient and steady-state response of 
the MPB under more general periodic excitation. For illustration, a half 
sinusoidal periodic excitation force with a period-time T = 0.02s is 
defined as an instance of the contact force, as shown in Fig. 10. 

The transient voltage response represented in Eq. (72) under the 
proposed periodic force is shown in Fig. 11 while geometrical 

Fig. 14. The effect of harmonic pairs (N) on computational error within one period-time.  

Fig. 15. The effect of vibration mode number on steady-state response per the half sinusoidal contact force.  
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parameters are Ld = Lb = 63 mm and Lup = 20 mm and the electrical 
resistance is 2.3 kΩ. Note that the initial conditions were considered to 
be zero. Moreover, the steady-state response from Eq. (67) is presented 
in Fig. 11 to compare with the transient response. This comparison 
shows that the transient response converges to the steady-state response 
after about six cycles due to eliminating homogeneous response by 
damping. Note that this decaying cycle number can differ depending on 
the harvester’s damping coefficient. 

The steady-state response in Fig. 11 is for N = 200 and four bending 
vibration modes. As mentioned, two parameters significantly affect the 
Fourier Transform’s steady-state response: the number of harmonic 
pairs (N), and the number of vibration modes included in the model. A 
high number of mentioned variables guarantees a more exact solution, 
but the computational time becomes significant. Thus, selecting proper 
numbers is a trade-off between the solution exactness and computation 
time. The following paragraphs guide these parameter selections. 

The highest harmonic frequency of the Fourier expansion 
( 2Nπ

T

)

should be correlated with the applied contact force’s primary har-
monics. For a more detailed explanation, the Fourier coefficients of the 
applied load (Fig. 10) and the harvester’s steady-state voltage response 
(Fig. 11) are presented in Fig. 12. The main frequency pairs of the 
applied contact force are 50, 100, 200, 300, 400, and 500 Hz. Note that 
50-Hz corresponds to the input force period (0.02 s). Moreover, the 
principal Fourier coefficients of applied load and voltage response in 
these frequencies are summarized in 

Table 3. Note that for the half-sine case study, the contact force 
Fourier coefficients decrease with frequency while the voltage response 
Fourier coefficients are not consistently descending; for instance, the 
second pair of Fourier coefficients is the largest. 

In the following, an instruction is suggested to determine the har-
monic pairs (N) and vibration modes for a generic periodic contact force. 

1. Find the highest Fourier coefficients of contact force (FCCF) associ-
ated with the frequency ω*, which is denoted as FCCF(ω*). 

Fig. 16. The peak and RMS voltage during one period-time at different upper clamp’s length spans.  

Fig. 17. The input and output energies along with ECE during one period-time at different upper clamp’s length spans.  
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2. Find the truncating frequency (ωtru.) that FCCF(ωtru.) > FCCF(ω*)/Λ, 
where Λ is the amplitude factor for tuning the smallest value of the 
Fourier coefficients. Higher Λ passes small-valued Fourier co-
efficients in the voltage response, leading to a more accurate 
response.  

3. Determine the least natural mode (in Eq. (66)) with a frequency 
higher than ωtru. is evaluated.  

4. The number of harmonic pairs in Eq. (67) can be evaluated by 
N ≥ (T ωtru./2π).  

5. Supplementary step: In some situations, some harmonics are not 
covered due to resolution limitations in the Fourier transform [30]. 
Therefore, it is suggested that the time sample is increased to more 
than T to enhance resolution. 

For instance, this instruction is implemented into the current analysis 
as follows: Step 1- the FCCF(ω* = 50Hz × 2π) equals 0.5 N; Step 2- 
Inserting Λ = 50, the FCCF(ω*)/ Λ equals 0.01 N, so ωtru. = 400Hz × 2π; 
Step 3- the second natural mode associated with frequency 1442.8 Hz is 
selected. Step 4- Finally, it is determined that N = 8. 

In this regard, the shown periodic voltage response in Fig. 11 is re- 
evaluated based on the different values of N in Fig. 13 to observe the 
effect of this parameter. This figure implies that the voltage response is 
converged with N = 8. 

For a more detailed and quantitative observation, an error factor is 
defined as follows. 

Errori(t) =
|VN=i(t) − VN=M (t)|

|RMS(VN=M )|
× 100(%) (78) 

The parameter M represents the number of harmonic pairs associ-
ated with a high-order model as a reference case to present the relative 
error bound. The defined error factor is computed for described cases N 
= 1 ~ 9 (in Fig. 13) with M = 10, which is illustrated in Fig. 14. In this 
figure, the maximum allowed error level is considered 1%, which sep-
arates the error axis into two regions to distinguish desirable error levels 
(in green) from desirable error levels (in red). Therefore, the results 
indicate that the selected truncation number through the above-
mentioned instruction (N = 8) is sufficient for errors lower than 0.8%. 
Nevertheless, the higher values for N can lead to better accuracy but 
with higher computation time. 

The effect of the number of vibration modes is presented in Fig. 15 to 
test the effect of mode numbers. The voltage comparisons prove that the 

voltage response does not change significantly for more than two 
bending modes. The remaining results presented in this article consider 
five primary vibration modes to encompass comprehensive conditions. 

This subsection also demonstrates the instruction for time-efficient 
and accurate calculation of the harvester’s output. The computation 
time with N = 8 and two primary vibration modes (in Fig. 15) is 
remarkably faster than the manually setting with N = 200 and five 
primary vibration modes. This setting is used for future numerical 
studies because of its time efficiency and accuracy. 

5.3. Parametric study 

This section examines the steady-state response to investigate the 
effect of parameters associated with the contact force and the harvester’s 
geometry. This parameter study is accomplished in several steps, and 
each step is complementary to the previous step(s). At first, the har-
vester’s output is evaluated per different upper clamp’s span (subsection 
5.3.1). It is expected that the harvester’s outputs are affected drastically 
by variation of this parameter due to the dependency location of 
applying contact force to this parameter. Later, the proposed harvester is 
studied under contact forces with different waveforms to be determined 
the best waveform based on different aspects (subsection 5.3.2). Next, 
the effect of the best force waveform’s period time is investigated to 
study the harvester’s outputs per different excitation frequencies, 
especially frequency bandwidth (subsection 5.3.3). The following steps 
determine the optimal condition for FPB-EH, leading to the best output 
power and energy conversion efficiency. 

5.3.1. The effect of upper clamp’s span on MPB output 
The half sinusoidal contact force represented in Fig. 10 is applied 

with different upper clamp spans to evaluate peak and RMS voltages, as 
shown in Fig. 16. In this study, the geometrical parameters are Ld = Lb =

63 mm and the electrical resistance is 2.3 kΩ. Decreasing the Lup value 
increases the peak and RMS voltages, e.g., the maximum peak and RMS 
voltage outputs occur atLup = 0, which are 2.06 V and 1.1 V, respec-
tively. Note thatLup = 0 is the special case that the contact force is 
applied on the harvester middle line, where four-point bending becomes 
three-point bending. 

In addition to the peak and RMS voltages, the ECE is an essential 
factor that specifies the harvester’s performance. In this regard, the 
input energy, output energy, and ECE versus the nondimensional upper 

Fig. 18. The different waveforms of contact force with a constant period-time 0.02 s.  
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clamp span are shown in Fig. 17. As discussed in subsection 3.2.3, in 
addition to the output energy, the input energy also depends on the 
input force function and harvester system response. The results indicate 
that even though output energy for Lup/Lb = 0 is maximum, this con-
dition presents the lowest ECE. Note that the contact force is directly 
resisted by the bottom clamp when Lup/Lb = 1, and no mechanical 
deformation and energy are applied to the harvester, e.g., Einput=0. In 
this regard, the presented results throughout this paper consider that 
Lup/Lb approaches to unit value, and the Lup/Lb = 1 condition is 
neglected. 

In summary, as the location of applying contact force becomes closer 
to the beam’s end edge, the ECE improves from 67% to 72%. As the 
property Lup→0 the harvester’s vibration amplitude increases. As a 
result, the higher amplitude vibration can increase dissipated energy by 
damping, which underlies decreasing ECE. 

5.3.2. The effect of contact force’s waveform 
The contact force can be considered based on different waveforms. 

This section evaluates the waveform of contact force for the energy 
harvester with the geometrical and electrical configuration in the pre-
vious subsection. Practically, the contact force is dictated by the vibra-
tion source, but the contact force can be tuned by the design and 
integration of the energy harvester to the vibration source. 

A half-cycle unit force function with period-time T given by Eq. (79) 
is defined to mimic a periodic impact contact force. 

Fcont(t) =

⎧
⎪⎨

⎪⎩

1 −

⃒
⃒
⃒
⃒
t − T /4

T /4

⃒
⃒
⃒
⃒

2nf

0 < t ≤ T /2

0 T /2 < t ≤ T

(79) 

The proposed force function is illustrated in Fig. 18 for various nf 

values. The contact waveform aroundnf = 1 resembles the half-sine 
impact. Positive nf waveforms approach to the square-wave impact 
force, while the negative nf waveforms approach to the ideal Dirac 
impact waveform. 

The Peak and RMS voltages versus force waveforms and upper clamp 
span are shown in Fig. 19. The RMS voltage variation is similar to the 

Fig. 19. The variation of Peak voltage and RMS voltage per different nf and Lup/Lb.  

Fig. 20. The variation of (a) input and (b) output energies versus nf and Lup/Lb.  
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input energy pattern. The results indicate that as nf and Lup/Lb approach 
∞ and 0, respectively, the Peak and RMS voltages increase to their 
global maximum values. Indeed, the Peak and RMS voltages on the line 
Lup/Lb = 0 converge for nf ≥ 5. This result can be linked to the higher 
impact force power for higher nf . Overall, the highest Peak and RMS 
voltages among the accomplished analyses are 7.4 V and 4.38 V, 
respectively. 

In addition to the global extremum, local extrema can be of interest 
as they relate to the contact force waveform. There are local extrema 
between − 1<nf < 1, e.g., the relative minimum Peak and RMS voltages 
appear at nf = 1 and nf = 0.69, which equals 1.785 V and 1.062 V, 
respectively. Moreover, the relative maximum Peak and RMS voltages 

are 3.233 V and 1.494 V, which appear at nf = − 0.6 and nf = − 0.77, 
respectively. 

Similarly, the input and output energies versus force waveforms and 
upper clamp span are shown in Fig. 20-a and -b. These energies are 
derived from one period-time in the steady-state condition, as repre-
sented in Eq. (68) and (69). The overall patterns are similar to those of 
peak and RMS voltages. 

Furthermore, some local extremums exist within − 1<nf < 1. The 
relative maximum and minimum of input energy in line Lup/Lb = 0 occur 
at nf = − 0.78 and nf = + 0.69, which are equal to 3.016 × 10− 5 J and 
1.463 × 10− 5 J, respectively. However, the locations of relative 
maximum and minimum output energy are in compliance with RMS 

Fig. 21. The variation ECE versus nf and Lup/Lb along with comparison between the optimal force with nf = 0.68 and half-sine one.  

Fig. 22. The input and output energies along with ECE during one period-time at different contact force frequencies.  

Table 4 
The comparison of bandwidth of MPB under harmonic and half-sine excitations.  

Excitation type  fL(Hz)  fP(Hz)  fH(Hz)  ABW (Hz)  FBW (%) 

Harmonic   160.52   162.55   164.58   4.06   2.5 
Half-sine  157.15  162.55  167.95  10.8  6.65  
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voltage, and their values are equal to 1.944 × 10− 5 J and 9.822 × 10− 6 J, 
respectively. 

As mentioned, the ECE expression helps to find the best condition for 
conversion efficiency. Although the pattern of input and output energies 
are similar, the ECE evaluates the relative variation of these energies in 

detail, as shown in Fig. 21. The absolute maximum ECE occurs in the line 
with nf = 0.68. The ratio Lup/Lb also affects the ECE so that the 
maximum ECE is 72.3% in the condition Lup/Lb = 1 and nf = 0.68. 

The resemblance between the optimal waveform setting nf = 0.68 
and the half-sine waveform is also shown in Fig. 21. This suggests that 

Fig. 23. The variation of FPB configuration’s outputs under different ratios Ld/Lb and Lup/Lb: (a) input energy, (b) output energy, (c) ECE, (d) principal natural 
frequency, (e) maximum stress, and (f) normalized output energy. 
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the half-sine waveform is the best periodic half waveform in terms of 
energy conversion efficiency. 

5.3.3. The effect of contact force’s period-time 
In the previous sections, the proposed impact force’s period-time was 

considered as the constant value 0.02 s. This section explores the effect 
of contact force’s period-time on MPB’s performance. It was shown that 
the optimal periodic waveform force is in accordance with nf = 0.68; 
this can also be approximated by the half-sine waveform. The excitation 
frequency for general periodic forces can be defined as Fre = 1/T . 

The MPB configuration has Lup/Lb = 0 and is subjected to an impact 
force with nf = 0.68 and different Fre. The input energy, output energy, 
and ECE versus half-sine impact excitation frequency are presented in 
Fig. 22. The bending resonant frequencies are shown in boxes in Fig. 22. 
The first four bending natural frequencies considering electrostatic and 
electrical load effects become 162.55, 1449.28, 4000, and 7812.5 Hz. 
The input and output energies have extrema when the frequency of half- 
sine impact force is equal to each resonant frequency. The maximum 
input and output energies appear at the MPB’s 1st natural frequency, 
Fre = ω1, and the energy conversion efficiency below the 1st natural 
frequency remains high. However, the energy conversion efficiency in 
higher modes decreases significantly due to the cancelation voltage 
phenomenon. 

In addition to the bending modes, there are four peaks before the first 
natural frequency. These frequencies are at ω1/9, ω1/7, ω1/5, and ω1/3, 
fractions of the first natural frequency (162.55 Hz). Indeed, the pro-
posed contact force comprises harmonics with frequencies higher than 
Fre (as Table 3), so these harmonics can be matched with the principal 
natural frequency, which leads to significant power generation. Simi-
larly, there are four peak points between the first and second natural 
frequencies, including 290.023 Hz (ω2/ 5), 483.092 Hz (ω2/3), 572.082 
Hz (ω3/7) and 802.568 Hz (ω3/5). Note that this phenomenon does not 
exist for pure harmonic excitation. The low-frequency peaks are of great 
interest for low-frequency energy harvesting, enabling effective elec-
trical energy generation at frequencies below the 1st natural frequency. 

Furthermore, the frequency bandwidth is calculated in Table 4 based 
on Fig. 22. In addition to conventional absolute frequency bandwidth 
(ABW), the fractional bandwidth (FBW) expresses relative frequency 
bandwidth in dimensionless form as [3] 

FBW =
fH − fL

fP
× 100 (80) 

Table 4 indicates that the half-sine impact excitation improves the 
ABW and FBW of the harvester by 166% compared to the harmonic 

excitation by exciting a broader range of frequencies. Therefore, 
regarding the broadband energy conversion, the impact type force is 
preferable since the half-sine impact force gives 6.65% fractional 
bandwidth. This conclusion is regardless of the boundary condition; 
thus, it is valid for the cantilever or four-point bending beams. Never-
theless, the half-sine impact force is easier to apply using the FPB 
configuration; by tuning the upper clamp to any vibration source, 
impact force can be applied to the MPB. 

5.4. Comparison with traditional cantilever configuration in the aspect of 
normalized energy 

The presented results in the previous section considered the simpli-
fied condition Lb = Ld. This section considers the variation of Ld/Lb to 
produce a range of behavior between FPB and cantilever configurations. 
Note that, unlike the cantilever configuration, the FPB configuration 
provides a flexible boundary condition so that the harvester’s natural 
frequency can be tuned by controlling the roller support locations (Ld). 
However, the cantilever configuration is fixed and ineffective for natural 
frequency tuning for specific harvester shapes and geometry. Thus, the 
FPB configuration is tunable for a wide range of excitation forces. 

A specific MPB (as described in Fig. 2 and Table 1) with length Lb =

10 cm is used to fairly compare an FPB-EH with a cantilever harvester. 
The both configurations are studied under half-sine excitation with force 
amplitude 0.1 N and the period T = 2π/ω1 (where ω1 is the first natural 
frequency in either FPB or cantilever beams). This eliminates the non- 
matching effect of contact force frequency with the principal natural 
frequency of the harvester. 

The energies, mechanical and electrical outputs of the FPB-EH under 
different ratios Ld/Lb and Lup/Lb are shown in Fig. 23. Fig. 23-a and 
Fig. 23-b indicate that the input and output energies within one period 
have two extremum situations: (I) when Ld/Lb = 1 and Lup/Lb 0

→
(the 

impact force is on the middle line of the harvester while beam length 
equals bottom clamp length), and (II) Ld/Lb 0

→
and Lup/Lb = 1 (the bot-

tom clamp is in the harvester middle line and upper clamps at the 
harvester outer edges). The extremum situation II provides absolute 
maximum output energy, which is 0.040 J per 0.1 N half-sine impact. 
The variation of ECE is represented in Fig. 23-c, which shows that the 
ECE is maximized (59.86%) on Ld/Lb = 0.52 regardless of Lup/Lb. 
Similarly, Fig. 23-d reveals that the principal natural frequency of the 
harvester becomes maximal around this line, which indicates a direct 
relation between ECE and principal natural frequency. Indeed, this 
conformity implies that the maximum ECE occurs approximately when 
the harvester’s principal natural frequency is maximized. 

Fig. 24. The cantilever configuration’s outputs under different ratios Lup/Lb: (a) input and output energies along with ECE, (b) normalized energy and 
maximum stress. 

M. Hasani et al.                                                                                                                                                                                                                                 



Applied Energy 347 (2023) 121461

21

In addition, the maximum longitudinal stress (MLS) over one force 
period time is depicted in Fig. 23-e. The MLS correlates closely with the 
trend of input and output energies. Two extremum situations of MLS are 
according to the input/output energies. The harvester’s fatigue life, 
especially due to the piezoelectric layer’s brittleness, is expected to be 
sensitive to the applied maximum stress [31]. Thus, a harvester per-
formance criterion, the normalized output energy (NOE), is defined as 
the output energy per squared maximum stress, given by: 

NOE =
Eoutput

MLS2 (81) 

The NOE is a durability parameter of the energy harvester; higher 
NOE means higher energy harvester performance per unit of stress. The 
NOE is illustrated in Fig. 23-f. The maximum NOE occurs for Ld/Lb =

0.42 and Lup/Lb = 0.47, so this configuration can be interpreted as the 
best condition for a trade-off between the harvester’s performance and 
durability. Note that the best durability configuration demonstrates a 
reasonably good ECE (see Fig. 23-c). Generally, a good balance of energy 
efficiency and durability can be achieved by 0.42 < Ld/Lb < 0.52 and 
Lup/Lb = 0.47. 

Similarly, the cantilever configuration is examined, and the input/ 
output energies and ECE are shown in Fig. 24-a. Moreover, the 
maximum stress and normalized output energy (NOE) are shown in 
Fig. 24 (b). Note that the Ld/Lb parameter is not applicable for the 
cantilever configuration, and Lup is the distance of the applied load from 
the fully clamped line. These results indicate the peak values of stress, 
ECE, input, output, and normalized energies appear at Lup/Lb = 1. 

The foremost results for the cantilever and FPB configurations are 
summarized in Table 5. The cantilever harvester generates 0.737 mJ 
energy, providing considerably higher output energy than the FPB with 
0.04 mJ. However, the FPB configuration presents remarkable ECE and 
normalized output energy, which are 322.1% and 751.6% more than the 
cantilever type, respectively. By combining the output energy and ECE 
comparisons, the cantilever generates higher energy but with low ECE, 
meaning that the material is inefficiently employed. 

The weaknesses and strengths of each configuration were explored 
comprehensively. In summary, the cantilever configuration is preferable 
in certain conditions: (I) when the mechanical input energy is ample, in 
other words, the ECE is not critical, and (II) when the period time of the 
excitation is constant, which allows frequency matching. However, the 
FPB configuration is desirable in the following conditions: (I) when the 
mechanical input energy is scarce or the allocated space for the har-
vesting system is limited, so ECE becomes a consideration, and (II) when 
the harvester’s fatigue life is of great importance, for instance, in remote 
locations where maintenance is not straightforward, and (III) when the 
excitation force period is variable; then the FPB-BC flexibility by roller- 
supports is applicable for matching the harvester’s principal frequency 
to the variable excitation frequency through an active controller 
mechanism. 

6. Conclusion and future works 

This research comprehensively investigated the four-point bending 
(FPB) configuration for piezoelectric energy harvesting, contrasting it to 
the conventional cantilever type. First, an electromechanical model was 

developed to present frequency response functions (FRFs) for the FPB 
energy harvester (FPB-EH). This model considers two mode-shape 
functions for internal and external sections, extending the model’s 
applicability to a wide range of cases. The governing ordinary differ-
ential equations were transformed into a state-space representation to 
study the transient system response for non-periodic excitation. In 
addition, the developed FRFs and Fourier series method were utilized to 
present the steady-state response of FPB-EH under arbitrary periodic 
excitations. The model was validated against COMSOL and experimental 
results under various excitations. After validation, a parametric study 
was performed to investigate the effects of clamps span, force waveform, 
and period-time of contact force. As a result, it was shown that the FPB- 
EH under the periodic half-impact excitation with nf = 0.68 provides 
the maximum ECE (72.3%) with Lup/Lb = 1, which is optimal for situ-
ations with low mechanical input energy. Furthermore, the half-sine 
impact improved the bandwidth ABW and FBW of the harvester by 
166% more than the harmonic sinusoidal force. The results indicate that 
the FPB configuration significantly enhances both energy conversion 
efficiency and normalized output energy by 322% and 638%, respec-
tively. Lastly, the FPB configuration was compared with the cantilever 
energy harvester to reveal the weaknesses and strengths of both con-
figurations. The cantilever type is favorable for working conditions with 
constant force period-time, no limitation regarding input energy, and 
low priority of the harvester’s fatigue life. However, the FPB configu-
ration is suitable for high priority for the harvester’s fatigue life, high 
ECE, and possible changes in the period-time of excitation force. 

These future works are recommended for further investigations in 
this research field: The clamp surface shape might play a significant role 
in the contact force, while the flat clamp shape is exclusively used in this 
research. Moreover, the material of the upper clamp affects the fre-
quency and waveform of applied force, which can be considered an 
effective factor in adapting the harvester for different situations. In 
addition, the geometric nonlinearity effects due to large deformations 
and prestressed situations can be a noticeable phenomenon that changes 
the harvester’s response. 
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Table 5 
The outputs of cantilever and four-point bending configurations based on a specific MPB.  

Configuration  Critical cases  Output energy 
(mJ)  

ECE (%)  NOE 
(J/MPa2) 

Ld/Lb  Lup/Lb 

Cantilever  N.A*  1   0.737   14.18  0.546e− 7 
FPB 0.06 0.97  0.040  44.53 2.28e− 7 

0.52 0.97  0.025  59.86 4.03e− 7 
0.42 0.47  0.002  57.07 4.65e¡7  

* Not applicable. 

M. Hasani et al.                                                                                                                                                                                                                                 



Applied Energy 347 (2023) 121461

22

Acknowledgments 

This work is supported by a research grant from the Lundbeck, LF- 
Experiment grant, under grant number R324-2019-1747. Moreover, 
this research is partially financed by the Independent Research Fund 
Denmark International Post-doc grant under grant number 1031- 
00001B, and Danish Cardiovascular Academy, which is funded by the 
Novo Nordisk Foundation, grant number NNF20SA0067242, and Danish 
Heart Foundation. 

References 

[1] Tang X, Wang X, Cattley R, Gu F, Ball AD. Energy harvesting technologies for 
achieving self-powered wireless sensor networks in machine condition monitoring: 
a review. Sensors (Basel) 2018;18. 10.3390/s18124113. 

[2] Khazaee M, Rosendahl L, Rezania A. Online condition monitoring of rotating 
machines by self-powered piezoelectric transducer from real-time experimental 
investigations. Sensors 2022;22:3395. 

[3] Hasani M, Irani RM. The optimization of an electromagnetic vibration energy 
harvester based on developed electromagnetic damping models. Energy Convers 
Manag 2022;254:115271. https://doi.org/10.1016/j.enconman.2022.115271. 

[4] Pan Y, Zuo L, Ahmadian M. A half-wave electromagnetic energy-harvesting tie 
towards safe and intelligent rail transportation. Appl Energy 2022;313:118844. 
https://doi.org/10.1016/j.apenergy.2022.118844. 

[5] Zargari S, Rezania A, Daie Z, Veladi H, Sobhi J. Nano energy effect of the inherent 
capacitance optimization on the output performance of triboelectric 
nanogenerators. Nano Energy 2022;92:106740. https://doi.org/10.1016/j. 
nanoen.2021.106740. 

[6] Zhu M, Zhang J, Wang Z, Yu X, Zhang Y, Zhu J, et al. Double-blade structured 
triboelectric–electromagnetic hybrid generator with aerodynamic enhancement for 
breeze energy harvesting. Appl Energy 2022;326:119970. https://doi.org/ 
10.1016/j.apenergy.2022.119970. 

[7] Daqaq MF, Masana R, Erturk A, Dane QD. On the role of nonlinearities in vibratory 
energy harvesting: a critical review and discussion. Appl Mech Rev 2014;66: 
040801. https://doi.org/10.1115/1.4026278. 

[8] Salmani H, Rahimi G, Saraygord Afshari S. Optimization of the shaping function of 
a tapered piezoelectric energy harvester using tabu continuous ant colony system. J 
Intell Mater Syst Struct 2019:1045389X1987339. 10.1177/1045389X19873391. 

[9] Fu X, Liao W-H. Nondimensional model and parametric studies of impact 
piezoelectric energy harvesting with dissipation. J Sound Vib 2018;429:78–95. 
https://doi.org/10.1016/j.jsv.2018.05.013. 

[10] Abdelkefi A, Barsallo N. Nonlinear analysis and power improvement of broadband 
low-frequency piezomagnetoelastic energy harvesters. Nonlinear Dyn 2016;83: 
41–56. https://doi.org/10.1007/s11071-015-2306-8. 

[11] Nie X, Tan T, Yan Z, Yan Z, Hajj MR. Broadband and high-efficient L-shaped 
piezoelectric energy harvester based on internal resonance. Int J Mech Sci 2019; 
159:287–305. https://doi.org/10.1016/j.ijmecsci.2019.06.009. 

[12] Fan Y, Ghayesh MH, Lu T-F. A broadband magnetically coupled bistable energy 
harvester via parametric excitation. Energy Convers Manag 2021;244:114505. 
https://doi.org/10.1016/j.enconman.2021.114505. 

[13] Harne RL, Zhang C, Li B, Wang KW. An analytical approach for predicting the 
energy capture and conversion by impulsively-excited bistable vibration energy 
harvesters. J Sound Vib 2016;373:205–22. https://doi.org/10.1016/j. 
jsv.2016.03.012. 

[14] Meirovitch L. Fundamentals of vibrations. McGraw-Hill; 2001. 
[15] Khazaee M, Huber JE, Rosendahl L, Rezania A. Four-point bending piezoelectric 

energy harvester with uniform surface strain toward better energy conversion 
performance and material usage. J. Sound Vib. Mar. 2023;548:117492. https:// 
doi.org/10.1016/j.jsv.2022.117492. 

[16] Khazaee M, Rezaniakolaei A, Rosendahl L. A broadband Macro-Fiber-Composite 
piezoelectric energy harvester for higher energy conversion from practical 
wideband vibrations. Nano Energy 2020;76:104978. 

[17] Kim S-W, Lee T-G, Kim D-H, Lee K-T, Jung I, Kang C-Y, et al. Determination of the 
appropriate piezoelectric materials for various types of piezoelectric energy 
harvesters with high output power. Nano Energy 2019;57:581–91. 

[18] Chen K, Fang S, Gao Q, Zou D, Cao J, Liao WH. An enhanced nonlinear 
piezoelectric energy harvester with multiple rotating square unit cells. Mech Syst 
Signal Process 2022;173:109065. https://doi.org/10.1016/j.ymssp.2022.109065. 

[19] Chen K, Fang S, Gao Q, Zou D, Cao J, Liao WH. Enhancing power output of 
piezoelectric energy harvesting by gradient auxetic structures. Appl Phys Lett 
2022;120. https://doi.org/10.1063/5.0082015. 

[20] Yeo HG, Trolier-McKinstry S. Effect of piezoelectric layer thickness and poling 
conditions on the performance of cantilever piezoelectric energy harvesters on Ni 
foils. Sensors Actuators, A Phys 2018;273:90–7. https://doi.org/10.1016/j. 
sna.2018.02.019. 

[21] Zhou S, Lallart M, Erturk A. Multistable vibration energy harvesters: Principle, 
progress, and perspectives. J Sound Vib 2022;528. https://doi.org/10.1016/j. 
jsv.2022.116886. 

[22] Chen L, Liao X, Sun B, Zhang N, Wu J. A numerical-experimental dynamic analysis 
of high-efficiency and broadband bistable energy harvester with self-decreasing 
potential barrier effect. Appl Energy 2022;317:119161. https://doi.org/10.1016/j. 
apenergy.2022.119161. 

[23] Chen K, Gao F, Liu Z, Liao WH. A nonlinear M-shaped tri-directional piezoelectric 
energy harvester. Smart Mater Struct 2021;30. https://doi.org/10.1088/1361- 
665X/abe87e. 

[24] Xia Y, Pang J, Yang L, Chu Z. Investigation on clearance-induced vibro-impacts of 
torsional system based on Hertz contact nonlinearity. Mech Mach Theory 2021; 
162:104342. https://doi.org/10.1016/j.mechmachtheory.2021.104342. 

[25] Erturk A, Inman DJ. Piezoelectric energy harvesting. Wiley; 2011. 
[26] Ogata K. Modern control engineering. 5th ed. Pearson; 2010. 
[27] Richard Kensley (www.piezo.com). PSI catalog; 2012. 
[28] Clough RW, Penzien J. Dynamics of structures 2015. 
[29] He J, Fu Z-F. Modal analysis. 1st ed. Butterworth-Heinemann; 2001. 
[30] Kanatov I, Kaplun D, Butusov D, Gulvanskii V, Sinitca A. One technique to enhance 

the resolution of discrete fourier transform. Electronics 2019;8:330. https://doi. 
org/10.3390/electronics8030330. 

[31] Salazar R, Serrano M, Abdelkefi A. Fatigue in piezoelectric ceramic vibrational 
energy harvesting: a review. Appl Energy 2020;270:115161. https://doi.org/ 
10.1016/j.apenergy.2020.115161. 

M. Hasani et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0306-2619(23)00825-5/h0010
http://refhub.elsevier.com/S0306-2619(23)00825-5/h0010
http://refhub.elsevier.com/S0306-2619(23)00825-5/h0010
https://doi.org/10.1016/j.enconman.2022.115271
https://doi.org/10.1016/j.apenergy.2022.118844
https://doi.org/10.1016/j.nanoen.2021.106740
https://doi.org/10.1016/j.nanoen.2021.106740
https://doi.org/10.1016/j.apenergy.2022.119970
https://doi.org/10.1016/j.apenergy.2022.119970
https://doi.org/10.1115/1.4026278
https://doi.org/10.1016/j.jsv.2018.05.013
https://doi.org/10.1007/s11071-015-2306-8
https://doi.org/10.1016/j.ijmecsci.2019.06.009
https://doi.org/10.1016/j.enconman.2021.114505
https://doi.org/10.1016/j.jsv.2016.03.012
https://doi.org/10.1016/j.jsv.2016.03.012
http://refhub.elsevier.com/S0306-2619(23)00825-5/h0070
https://doi.org/10.1016/j.jsv.2022.117492
https://doi.org/10.1016/j.jsv.2022.117492
http://refhub.elsevier.com/S0306-2619(23)00825-5/h0080
http://refhub.elsevier.com/S0306-2619(23)00825-5/h0080
http://refhub.elsevier.com/S0306-2619(23)00825-5/h0080
http://refhub.elsevier.com/S0306-2619(23)00825-5/h0085
http://refhub.elsevier.com/S0306-2619(23)00825-5/h0085
http://refhub.elsevier.com/S0306-2619(23)00825-5/h0085
https://doi.org/10.1016/j.ymssp.2022.109065
https://doi.org/10.1063/5.0082015
https://doi.org/10.1016/j.sna.2018.02.019
https://doi.org/10.1016/j.sna.2018.02.019
https://doi.org/10.1016/j.jsv.2022.116886
https://doi.org/10.1016/j.jsv.2022.116886
https://doi.org/10.1016/j.apenergy.2022.119161
https://doi.org/10.1016/j.apenergy.2022.119161
https://doi.org/10.1088/1361-665X/abe87e
https://doi.org/10.1088/1361-665X/abe87e
https://doi.org/10.1016/j.mechmachtheory.2021.104342
http://refhub.elsevier.com/S0306-2619(23)00825-5/h0125
http://refhub.elsevier.com/S0306-2619(23)00825-5/h0130
http://refhub.elsevier.com/S0306-2619(23)00825-5/h0140
http://refhub.elsevier.com/S0306-2619(23)00825-5/h0145
https://doi.org/10.3390/electronics8030330
https://doi.org/10.3390/electronics8030330
https://doi.org/10.1016/j.apenergy.2020.115161
https://doi.org/10.1016/j.apenergy.2020.115161

	Design and analytical evaluation of an impact-based four-point bending configuration for piezoelectric energy harvesting
	1 Introduction
	2 Design configuration
	3 Analytical model
	3.1 Modal analysis
	3.2 The electromechanical response under different excitation types
	3.2.1 The steady-state response for harmonic excitation in frequency space
	3.2.2 The time-dependent response for ideal impulse excitation
	3.2.3 The steady-state response for arbitrary periodic excitation (Fourier expansion method)
	3.2.4 The time-dependent response for arbitrary non-periodic excitation (numerical analysis)


	4 Experimental setup
	5 Results and discussions
	5.1 Validation of the developed model
	5.1.1 Validation of the developed model with FEM model
	5.1.2 Validation of the developed model with experimental results

	5.2 The steady-state response under periodic contact force
	5.3 Parametric study
	5.3.1 The effect of upper clamp’s span on MPB output
	5.3.2 The effect of contact force’s waveform
	5.3.3 The effect of contact force’s period-time

	5.4 Comparison with traditional cantilever configuration in the aspect of normalized energy

	6 Conclusion and future works
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


