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Rural electrification, diesel generator replacement, and resilient electrification
systems against natural disasters are among the main targets for Perusahaan
Listrik Negara (PLN) in Indonesia to achieve a universally accessible, resilient, and
environment-friendly electricity supply. Microgrids, therefore, become a popular
and available way to achieve the aforementioned targets due to their flexibility
and resiliency. This paper aims to provide a resilience-oriented planning strategy
for community microgrids in Lombok Island, Indonesia. A mixed-integer linear
program, implemented in the distributed energy resources customer adoption
model (DER-CAM), is presented in this paper to find the optimal technology
portfolio, placement, capacity, and optimal dispatch in a community microgrid.
The multinode model is adopted for the planning, and hence, power flow
constraints, N-1 contingency, and technology constraints are considered. The
results show that the placement of photovoltaic (PV) arrays, battery energy
storage systems (BESSs), and diesel generators (DGs) as backup sources in multi-
node community microgrids lead to multiple benefits, including 100% rural
electrification, over 25% cost savings, as well as over 22%, in particular CO2

emission reduction in multinode community microgrids.

KEYWORDS

community microgrid planning, resilience, CO2 reduction, rural electrification,
distributed energy resources

1 Introduction

Over recent years, about 80% of the world’s primary energy is being provided by fossil
fuels, and the energy consumption rate has increased at 2.3% per year from 2015 to 2040,
which inevitably increases the CO2 levels in the atmosphere (Martinez-Frias et al., 2008).
High level of CO2 in the atmosphere causes the rise of average global temperature, which
leads to adverse effects on global climates. Moreover, the burning of fossil fuels to gain
electrical energy causes global warming and produces environmental pollutants such as
NOx, SOx, and other volatile organic compounds. Therefore, the feasible way to shift to a
lower carbon society is to impose carbon taxes and carbon trading polices (Chu et al., 2017).

However, for remote areas without access to the existing electricity grid, locally
available resources, such as renewable energy resources (RESs), are promising to support
local loads by using microgrid technologies due to their flexibility endowed by advanced
control technologies and energy storage systems. In addition, the least cost electrification
program in Indonesia is the off-grid generation. In other words, solar battery-based
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microgrids/min–microgrids are the most suitable and cost-effective
options for achieving universal access to electricity (ESCAP, 2020).
Furthermore, in some extreme cases, for example, utility black
outages or natural disasters, microgrids can work in islanded mode
to support the local critical loads and to assist the electricity
recovery of adjacent areas, which enables the power distribution
network to be more resilient and reliable (Wang and Lu, 2020).
Based on the aforementioned arguments, the optimal planning of
microgrids is the very first essential step to achieve universal access
to electricity, energy transition of Indonesia, and CO2 emission
reduction.This is also in line with the government’s commitment to
convert conventional power plants to renewable energy generators
(PLN, 2021) and Sustainable Development Goals (SDGs) number 7
(IEA and IRENA, 2021).

The optimal portfolio, sizing, and placement of renewable
energy resources form a complicated problem because of the
features of renewable energy resources; stochastic load demand; and
large numbers of continuous and discrete variables, integers, and
parameters considered during the design of microgrids. Hence, the
optimal planning method can decrease the investment cost with full
use of technology components.

Several techno-economic studies have investigated the planning
of community microgrids with the RES and energy storage systems
(ESSs) (Mizani and Amirnaser, 2009; Hafez and Bhattacharya,
2012; Hittinger et al., 2015; Schittekatte et al., 2016; Madathil et al.,
2017; Cao et al., 2019; Borghei and Ghassemi, 2021). Hafez and
Bhattacharya (2012); Hittinger et al. (2015) designed microgrid
planning models based on the Hybrid Optimization of Multiple
Energy Resources (HOMER) software, where life cycle cost and
environmental emissions are considered. In Stadler et al. (2013),
Stadler et al. (2016), Prathapaneni and Detroja (2019), Borghei and
Ghassemi (2021), microgrid planning is modeled into a mixed-
integer linear programming (MILP) problem, where binary integers
are usually considered to find the locations of various energy
carriers. The model of power flow constraints, BESS model, and
operation costs in these references are linearized. For the non-
linear model of power flow equation, BESS model, and operation
costs, Wang et al. (2021), Wu et al. (2023) provide mixed-integer
non-linear programming (MINLP) models to solve the proposed
problems.These solutions aremore accurate than solutions obtained
fromMILP, but are much more time-consuming.

Aside from providing planning models, several software
tools are also designed and compared to analyze the electrical,
economical, and environmental performance of microgrids with
the RES and ESS, which can be seen in Mendes et al. (2011),
Bahramara et al. (2016), Khare et al. (2016), Siddaiah and Saini
(2016), Jung and Villaran (2017), Cardoso et al. (2019). Although
HOMER is one of the popular software tools, this paper adopts
theDistributed Energy Resources CustomerAdoptionModel (DER-
CAM) not only due to the flexible and robust optimization
algorithms, hourly time step, and scale considerations but also due
to the successful applications with modeling microgrids (Lee et al.,
2015; Jung and Villaran, 2017).TheDER-CAM tool was designed by
Lawrence Berkeley National Laboratory (LBNL) to provide optimal
planning and operation of distributed energy generation (DER)
either in a distribution system or in microgrids (Stadler et al., 2014).
The optimization objective in the DER-CAM contains annual costs
and CO2 emissions.

Normally, the key inputs of the model are load profiles, solar
radiation, wind speed, water speed, tariff and fuel prices, and
user-defined lists of preferred investment of technologies. The
outputs of the DER-CAM include optimal portfolios, placements,
sizing of DER and ESS, energy dispatch, CO2 emissions, and fuel
consumption. With the development, the DER-CAM tool has two
basic models, namely, single node and multi-node planning model.
In the multi-node planning model, the power flow constraints
are integrated. In addition, N-1 contingency and ancillary services
are considered (Cardoso et al., 2017; MadathilChalil et al., 2017;
Mashayekh et al., 2018). The contribution of this work lines in the
modeling of multi-node community microgrids for the Lombok
Island based on the native practical data, also in providing strategies
for rural electrification in Indonesia. Compared with the HOMER-
based strategies, the provided strategy includes the power line flow
in the planning. In addition, the sensitivity analysis demonstrates
that the proposed planningmodel is robust to capital cost variations.

This paper presents a technique for optimal planning and
operation of microgrids with the RES and ESS in the multi-
node model in the context of Lombok Island, Indonesia. The
rest of the paper is organized as follows. Section 2 introduces the
model of a multi-node microgrid. Section 3 proposes the planning
objectives and constraints for community microgrids. Data inputs
and parameter setup are presented in Section 4. Section 5 introduces
the planning results for multi-node (networked) microgrids. The
conclusion of the paper is presented in Section 6.

2 The model of community microgrids

Figure 1 shows the model of a multi-node microgrid. The
microgrid has two operation modes—islanded mode and grid-
connectedmode. Each node is composed of various loads, including
electricity loads (household electricity equipment, air conditioner,
washing machine, and refrigerator). The objective function of
planning is to determine the capacity and placement of various
DER technologies with minimized cost and carbon dioxide (CO2)
emissions subject to constraints such as capacity constraints
and operation constraints (electricity and thermal) of various
technologies.

3 Planning model of community
microgrid headings

3.1 Objective function

Three typical load profiles are adopted in the planning, namely,
weekday profile, weekend day profile, and peak day profile. For a
typical year characterized by the three load profiles, the time step
equals theNumber ofMonths ×Hours ×Types of load profile, which
is 12 × 24 × 3 = 864.

The objective function of planning is to minimize the overall
microgrid investment and operation cost including emission cost
in the typical year aforementioned. The objective function is
formulated as follows (Eq. 1):

C = CInv +CPur +CDe +CEx

+CG +CFM +CCO2 +CCur, (1)
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FIGURE 1
Multi-node community microgrids.

whereCInv is the annualized investment cost of various technologies,
CPur is the total cost of electricity purchase with CO2 taxation, CDe
is the demand charge fee, CEx is the electricity export revenue, CG
is the generation cost of various technologies including variable
maintenance costs, CFM is the fixed maintenance cost, CCO2 is the
CO2 taxation on local generations, and CCur is the load curtailment
costs.

The annualized investment cost, including the capital cost of
discrete technology (Diesel Generator, DG) and capital cost of
continuous technology (BESS and PV), is formulated as follows:

CInv =∑
n,g

Invn,g ⋅ PRate,g ⋅CTurn,g ⋅ rAnn,g

+∑
n,k
(CFX,k ⋅ Purn,k +CVar,k ⋅Capn,k) ⋅ rAnn,k, (2)

where Invn,g is the integer units of discrete generation technology
g at node n, PRate,g is the power rating of discrete generation
technology g (kW), and CTurn,g is the turnkey capital cost of discrete
generation technology g ($/kW). CFX,k is the fixed capital cost of
continuous technology k ($), Cvar,k is the variable capital cost of
continuous technology k ($/kW), Purn,k is the binary installation
decision for continuous technology k,Capn,k is the installed capacity
of continuous technology k at node n, and rAnn,i is the annuity rate
for the technology i at node n. As observed, the investment costs are
decided by the investment decisions of technology, which are Invn,g ,
Purn,k and the installed capacity Capn,k.

The purchase cost of microgrids is shown in (Eq. 3)

CPur =∑
n,t

Putn,t ⋅ (Pgt +CTax ⋅MCRTt), (3)

where Pgt is the utility electricity purchasing price at time t, CTax is
the tax on CO2 emissions, MCRTt is the marginal carbon emissions
frommarketplace generation, and Putn,t is the electricity purchased
from the utility.

The demand charge cost is as follows:

CDe = ∑
n,m,p

DRtm,p ⋅MPurn,m,p, (4)

where DRtm,p is the power demand charge for month m and period
p, ($/kW) andMPurn,m,p is the maximal electricity purchased from
the utility during period p of month m at node n.

The electricity export revenues are as follows:

CEx = −∑
n,t

ExRtt ⋅ExPn,t, (5)

where ExRtt is the energy rate for electricity export ($/kWh) and
ExPn,t is the electricity exported to the utility at node n.

CG = ∑
n,j,t

Genn,j,t(GCstj +Mvar,j), (6)

where Genn,j,t is the output of technology j to meet energy use u at
node n and GCstj and Mvar,j are the generation cost of technology
j ($/kWh) and variable annual operation and maintenance cost of
technology j ($/kWh), respectively.

CFM =∑
n,g

Invn,g ⋅ PRate,g ⋅MFg +∑
n,k

Capn,k ⋅MFk, (7)

where MFg is the fixed annual operation and maintenance cost of
technology g, $/kW capacity.

In addition, the carbon taxation on local generation is
formulated as follows:

CCO2 = ∑
n,j,t

Genn,j,t ⋅
1
ηj
⋅GCRtj ⋅CTax, (8)

whereGCRtj is the carbon emission rate fromgeneration technology
j (kg/kWh) and ηj is the electrical efficiency of generation technology
j.

CCur = ∑
n,u,t

PLcurn,u,t ⋅CurPrn,u, (9)
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FIGURE 2
Diagram of the planning of community microgrids.

FIGURE 3
Load profiles of community microgrids in 2020. (A) Electricity load of node 2, (B) electricity load of node 3, and (C) electricity load of node 4.

FIGURE 4
PV radiations and Time-of-Use (ToU) rates for community microgrids. (A) Solar radiations and (B) ToU rates and hours.
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TABLE 1 Parameters of battery energy storage systems (lithium-ion batteries).

ηch/ηdis Decay rate Discharge rate SoCmin (%) Temperature (°C) Maximum number of cycles

0.9 0.001 0.3 30 25 200

TABLE 2 Unit of items such as maxp (kW), lifetime (year), efficiency (%), and ramp rate (%).

Technology maxp maxS Lifetime Cap cost NOxRate Efficiency Ramp rate

DGTech01 65 65 15 6,440 0.0001 0.0073 65

DGTech02 75 75 15 5761.407 0.0068 0.0128 75

DGTech03 200 200 15 6,300 0.0001 0.0085 200

TABLE 3 Costs of load-shedding for themulti-nodemicrogrids.

Variable costs Max-curtailment Max-hours

Node 2 LowCR 0.15 0.2 24

Node 4 LowCR 0.15 0.2 24

where PLcurn,u,t is the customer load not met in energy
consumption u at node n (kW) and CurPrn,u is the load curtailment
cost for energy use u at node n ($/kWh).

As described in Eqs 2–9, the total cost objective function
includes 1) annualized investment costs of discrete and continuous
technologies; 2) total cost of electricity purchase inclusive of carbon
taxation; 3) demand charges; 4) electricity export revenues; 5)
generation cost for electrical, heating, or cooling technologies
inclusive of their variable maintenance costs; 6) fixed maintenance
cost of discrete and continuous technologies; 7) carbon taxation on
local generation; and 8) load curtailment costs. The optimization
variables include X = [Invn,g, Purn,k, Capn,k, Putn,t , MPurn,m,p,
ExPn,t , Genn,j,t, and PLcurn,u,t], which are composed of continuous
and binary variables. Parameter Y = [ PRate,g, CTurn,g, CFX,k, Cvar,k,
rAnn,i, Pgt, CTax, MCRTt, DRtm,p, ExRtt , GCstj, MFg, GCRtj, ηj, and
CurPrn,u] is the constant associated with the planning, which should
be determined before solving the optimization objective.

The constraints include energy balance constraints, power
flow constraints, storage constraints, cable current constraints, and
energy import/export constraints.

The power flow constraints include current and voltage
constraints for multi-node microgrids. However, for single-node
microgrids, power flow constraints can be ignored. In this paper,
a linear power flow model is considered for a balanced multi-node
microgrid. It is assumed that the slack bus of microgrids is denoted
by N, which means that the voltage of node N is VN = V0∠0.

3.2 Electricity balance constraints

The power flow is represented as follows:

Pgn,t = Putn,t −ExPn,t + ∑
j∈{PV,ICE,MT,FC,WT}

Genn,j,t

− (PLn,u=EL,t − PLcurn,u=EL,t) + Pdis,n,s=ES,t ⋅ ηdi,s=ES

− 1
ηch,s=ES
⋅ Pch,n,S=ES,t −

1
co1
⋅Genn,c=EC,t, (10)

Qgn,t = Pgn,t ⋅ tan(acos ϕ); n ≠ N, (11)

{{{{{{
{{{{{{
{

reVn,t = V0 +
1
V0
∑(Zrn,n′ ⋅ Pgn,t +Zin,n′ ⋅Qgn,t); n,n

′ ≠N

ImVn,t = V0 +
1
V0
∑(Zinn,n′ ⋅ Pgn,t −Zrn,n′ ⋅Qgn,t); n,n

′ ≠ N

reVn,t = V0, ImVn,t = 0; n = N,
(12)

{{{
{{{
{

Plosst =
1
2
∑
n,n′

rn,n′ ⋅ (|Irn,n′,t|
2 + |Iin,n′,t|

2) ≈ 1
2
∑
n,n′

rn,n′ ⋅ (eIrn,n′,t + eIin,n′,t)

Qlosst =
1
2
∑
n,n′

xn,n′ ⋅ (|Irn,n′,t|
2 + |Iin,n′,t|

2) ≈ 1
2
∑
n,n′

xn,n′ ⋅ (eIrn,n′,t + eIin,n′,t),

(13)

where active power outputs from node n Pgn,t are related to the
exported/imported power to/from the utility, power generated from
the installed energy resources (PV, DG, FC, andWT), load demand
and curtailed loads, consumed power by electric chiller, and the
discharged/charged power from energy storage systems. Parameter
co1 is the coefficient of the electric chiller, and ηdis/ηch is the
discharge/charge efficiency of BESSs. Moreover, each node has the
constant power factor ϕ. The nodal voltages Vn,t shown in Eqs 11,
12 are calculated by the nodal active/reactive power injection and
network impedancematrixZ without the slack bus row and column.
Equation 13 is the power loss of the network, which is used to
decide the placements of DERs. In addition, rn,n′ and x n,n′ are the
resistance and inductance of line impedance between nodes n and
n′, respectively; eIrn,n′t and eIin,n′t are the linearized real current
Ir2 and image current Ii2 of line (n, n′) (Mashayekh et al., 2017),
respectively; and reVn,t and ImVn,t are the real and imaginary part
of the voltage amplitude of node n at time t, respectively.

3.3 Operational constraints

The operation constraints contain the nodal voltage constraints,
generation capacity constraints, storage constraints, and energy
import/export constraints. The constraints of energy storage are
formulated as follows:

{{{{{{{
{{{{{{{
{

SoCn,s,t = (1−ϕs) ⋅ SoCn,t−t + Pch,n,s,t − Pdis,n,s,t
SoCmin ≤ SoCn,s,t ≤ SoCmax

Pch,n,s,t ≤ Pch,max ,n,s

Pdis,n,s,t ≤ Pdis,max ,n,s.

(14)
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FIGURE 5
Topology of the four-node community microgrid (MG). (A) Topology of four-node MG in the DER-CAM and (B) geographical topology of the MG.

TABLE 4 Planning results of multi-nodeMG.

Node Optimized value Reference value Total savings (%)

Total annual energy costs (k$) 789 1,013 22.12

Total annual CO2 emissions (tons) 1,420 1,900 25.25

FIGURE 6
Four-node community MG with installed PV and BESS. (A) Four-node MG and (B) costs of DGs at nodes 2 and 3.

The generation constraints are formulated as follows

{{{{{{{
{{{{{{{
{

Genn,c,t ⩽ Capn,c ⋅ ηe f f ⋅ Solart; c ∈ {PV,ST}

Genn,g,t ⩽ Invn,g ⋅ PRate,g
Capn,k ⩽ Purn,k ⋅M

Genn,c,t ⩽ Capn,c,

(15)

where ηeff is the solar radiation conversion efficiency of generation
technology c ϵ (PV, ST), Solart is the average fraction of maximum
solar insolation received during time t (%), and Purn,k is the binary
purchase decision for continuous technology k at node n.M is a very
large positive constant which decides the upper limits of the capacity
of the continuous technology. Genn,g,t is the DG power generation
of node n at time t. Genn,c,t is the power generation of continuous

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1209875
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Kang et al. 10.3389/fenrg.2023.1209875

technology of node n at time t. Capn,k is the capacity of technology
k of node n.

For the gird-connected mode, microgrids may import or export
energy from/to the utility by the point of common coupling (PCC)
node. However, the energy transferred by the PCC node is normally
limited, which is as follows:

{
{
{

Putn,t ⩽ psbn,t ⋅ grd ⋅M,n =N, (slack bus)

ExPn,t ⩽ (1− psbn,t) ⋅ grd ⋅mExP,n =N (slack bus),
(16)

where psbn,t is the binary electricity purchase/sell decision at node
n, M is the maximal energy purchased from the utility, andmExP is
the maximal energy exported to the grid.

4 Planning configuration

4.1 Diagram of community microgrid
planning

The planning model of community microgrids is described by
Eqs 1–16, where the total investment cost, operation cost, emission
cost, energy balance, and operation constraints are introduced.
The aforementioned optimization problem is a mixed-integer linear
optimization problem, which is an NP-hard problem, but can be
solved by mature optimization solvers such as Gurobi and Cplex.
Before solving the planning problem, one should first initialize the
parameters of the problem, such as to define the value of vector Y =
[PRate,g, CTurn,g, CFX,k, Cvar,k, rAnn,i, Pgt, CTax, MCRTt, DRtm,p, ExRtt ,
GCstj, MFg, GCRtj, ηj, and CurPrn,u] according to the demand,
energy policy, specific technologies, and tariffs.

Second, the basic load profile of the microgrids should be
collected and input into the optimization problem. In addition,
solar radiations and wind speed data should also be collected for
the planning. Then, with the given parameters and data input,
the proposed optimization problem can be solved. In addition,
the optimization variables X = [Invn,g, Purn,k, Capn,k, Putn,t ,
MPurn,m,p, ExPn,t ,Genn,j,t, and PLcurn,u,t] will be obtained. Finally,
with the optimal solutions, the capacities and placements of energy
resources will be given. The diagram of the planning of community
microgrids is illustrated in Figure 2.

4.1 Data input

The basic data needed for the planning include the load demand
for peak day, solar radiations, and electricity rates. The yearly load
profiles for nodes 2, 3, and 4 are shown in Figures 3A–C, which are
based on the real measured load profile of community microgrids
(MGs) in Lombok, Indonesia. Figure 3 shows that the load demand
varies from about 200–550 kW from 0 h to 24th hour for node 2. In
addition, the load valley is around noon. For node 3, the load peak
appears at 18:00, reaching 430 kW for node 3, and the load valley
is about 180 kW. For village 1, the load peak comes at 18–19:00,
reaching 330 kW. These load profiles are obtained by transferring
the practical 5-min loads into a yearly load profile using the DER-
CAM. It can be seen the maximal load deviation among months is
larger than 100 kW for each node. However, the basic load profiles

FIGURE 7
Electricity dispatch of the four-node community MG (July). (A) Peak
day and (B) emergent day.

are similar because Indonesia’s climate is almost entirely tropical,
and the temperatures do not vary much from season to season.

The solar radiation data of Lombok (Indonesia) Island are
obtained from the photovoltaic geographical information system.
The solar radiation is shown in Figure 4A, from which it can be
observed that the maximal power generated is about 0.68 kW/m2.
Generally, the PV power output is higher in summer days than
in winter days. The electricity price of community microgrids,
estimated by the real price in Indonesia, is shown in Figure 4B,where
the peak price is 0.4 $/kWh and off-peak price is 0.11 $/kWh. The
hours of Time of Use (ToU) rates for summer days are from 12:00
to 18:00 during a day. The PV power sale price is the same as the
purchase price in the planning parameter setup.

4.2 System parameters

For the single-node case, the power flow equation is not
considered; therefore, the corresponding constraints, such as current
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FIGURE 8
Electricity dispatch for each node in the four-node community MG. (A) DG power outputs, (B) load curtailment, (C) PV power outputs and load profiles,
and (D) BESS power and SoC.

FIGURE 9
Electricity in the four-node MG. (A) Monthly electricity purchase from the utility; (B) monthly PV generation; (C) monthly electricity sales from PV
generation.

constraints and voltage constraints, are neglected in the planning.
However, for multiple-node microgrids, the power constraints need
to be considered.The planning objectives contain cost minimization
andCO2 emission reductionwith the sameweights, namely, equal to
0.5. The discount rate is set as 3%, and the maximal payback period
of microgrids is 20 years.The voltage level is 12 kV, and themaximal
capacity of the transformer connected to the upper grid is set as
5 MVA.

The investment cost of PV systems includes fixed investment
cost, variable cost, maintenance cost, and inverter cost. In this work,
the fixed cost is 2,500 $, and the variable cost is 2,500 $/kW. The
lifetime is assumed to be 30 years, and the maintenance cost is 0.005
$/(kW × month). The inverter cost is 500 $/kW-cap for an inverter
with a capacity of 100 kW.The investment cost of the BESS includes
the fixed cost, variable cost, maintenance cost, and inverter cost.The
investment cost is estimated according to the following equation:
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FIGURE 10
Nodal voltages on the emergent day. (A) Nodal voltages on the emergent day and (B) nodal voltages on the peak day.

Investment Cost = (FixedCost + VariableCost × Capacity) ×
Investment Decision. In this study, the fixed cost is set as 500 $,
variable cost is set as 300 $/kW-cap, and variable maintenance cost
is set as 0.005 $/(kW × month). The inverter cost of the BESS is set
as 200 $/kW-cap for the 100 kVA capacity. The lifetime of the BESS
is set as 15 years, while the lifetime of the inverter is 20 years. The
battery degradation parameters are shown in Table 1. The cost of
diesel generators includes the variable cost and maintenance cost.
The variable cost is set as 5761.4074 $/kW.The variable maintenance
cost is set as 0.0128 $/kWh, which is dependent on its energy
production. Its maximal capacity is 75 kW, with efficiency 0.0238.
The other two kinds of DGs are listed in Table 2. The NoXRate is
0.0001 kgNOx/kWh, where NOx emissions are resulted from fuel
usage. Itsmaximum ramp up and ramp down rate is 0.5.The starting
time is 20 min, and the time needed to ramp up the generation
facility to full capacity is 10 min, which are default parameters in
DER-CAM software (Phase, 2018; Heleno et al., 2017).

The utility outages contain scheduled outages for scheduled
maintenance and unscheduled outages caused by natural disasters
or faults. The scheduled outage is defined to occur on the peak day
of June of each year, and its duration is 24 h.The unscheduled outage
is assumed to occur on theweekdays ofDecember for 24 h.There are
three types of loads for load shedding. The first type is low critical
loads, which can be cut down for 20% of total loads for 24 h with the
cost 0.15 $/kWh. The second type is the middle critical load. In the
planning part, middle critical and high critical loads are not chosen
to be cut down. The costs of curtailing load are shown in Table 3.

5 Planning of multi-node networked
microgrids

5.1 Costs and capacities

This case study focuses on the multi-node community MG, in
which the topology constraints, namely, the power flow equations,
are considered. In this case, the community MG has four nodes.

Node 1 is Tanjung station, node 2 is Mina Hotel, node 3 is RSUD
(hospital), and node 4 is a village nearby. The topology of this
community MG is shown in Figure 5, Figure 5A shows the topology
in the DER-CAM, and Figure 5B shows the geographical positions
of various nodes.

This case study aims to investigate the capacities and locations
of DER for the four-node community MG. The main procedure of
this planningwork is similarwith that of the single-node community
MG.Thedifference between the single-nodeMGand themulti-node
MGplanning is that in themulti-nodeMGplanning, the power flow
equations and the constraints of voltage and current magnitudes
should be considered. During the planning, the N-1 contingency is
also considered.

The utility outages for multi-node MG include scheduled
outages for scheduledmaintenance and unscheduled outages caused
by natural disasters or faults. The scheduled outage is defined to
occur on the weekdays of July of each year. Its duration is 24 h.
In addition, the unscheduled outage occurs on the weekends of
December for 24 h. There are three types of loads for load shedding
in theDER-CAM.Thefirst type is low critical loads, which can be cut
down by 20% of the total consumption for 24 h and the cost is 0.15
$/kWh. The second type is the middle critical load. In the planning
part, middle critical and high critical loads are not chosen to be cut
down.

With the input data and system setup, the planning results can
be obtained with the optimized capacities and locations of various
energy sources, costs and revenues, and CO2 emissions. Table 4
shows the costs of four-node community MG. With the installation
of the PV, DG, and BESS, the total annual energy cost for the MG
is 789 k$, which means that the MG earns money by selling energy
to the utility each year. Compared with the original case (reference
case), the total savings are 22.12%. The CO2 emissions decreased to
1,420 tons per year, with a reduction rate of 25.25%.

The optimal placement and combination of technologies are
shown in Figure 6A, where node 2 installs two kinds of DG with
capacities being 130 and 150 kW, respectively, and one PV with
120 kW capacity, as well as a BESS with 4,539 kWh. For node 3,
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FIGURE 11
Sensitivity analysis with various interest rates. (A) Sensitivity analysis with discrete technology capital cost variations (−10%), (B) sensitivity analysis with
discrete technology capital cost variations (−5%), (C) sensitivity analysis with discrete technology capital cost variations (5%), and (D) Sensitivity analysis
with discrete technology capital cost variations (10%).

two DGs with capacities being 65 and 75 kW and 180 kW PV and
3,581 kWh BESS are installed, respectively. Meanwhile, for node 4,
only a PVwith capacity 748 kW is installed. In the planning, the area
constraints for installing PV panels are considered for each node,

which are, respectively, 800, 1,200, and 5,000 m2. Therefore, node
2 connects only 120 kW PV. The capital and annualized investment
costs of two kinds of DGs are shown in Figure 6B for various
capacities.
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5.2 Energy dispatch

The electricity dispatch in July of each year is obtained in
Figure 7, where on a peak day, the surplus PV power is exported
to the utility, as shown by a gray curve in Figure 7A. In addition,
the BESS also discharges during the daylight, shown by dark red
area, and during the nights, the BESS is charged by the utility,
shown by blue areas. Because during the daylight (from 12:00 to
18:00), the utility price is using on-peak price, shown in Figure 4B,
PV sells power to the utility to gain the revenue. In addition, the
BESS discharges for local load consumption and during the night,
when electricity price is low, the BESS purchases power from utility.
During utility outages, the PV and BESS can also provide electricity
to the local consumers, as shown in Figure 7B. At most 20% of low
critical loads are curtailed in order to keep the system power balance
during the utility outages, shown by a red curve.

For the electricity power interaction among nodes in July on the
emergent day, the results are shown in Figure 8. From Figure 8A,
it can be observed that the DGs at nodes 2 and 3 start generating
power to the MG during the utility outages, where the maximal DG
output power at nodes 2 and 3 is 280 and 130 kW, and the minimal
output power at nodes 2 and 3 is 75 and 0 kW, respectively. The low
critical loads at nodes 2 and 4 also curtail their demand during the
outages. The maximal curtailed power of nodes 2 and 4 is 95 and
43 kW, respectively, shown in Figure 8B. The PV outputs and load
demands are shown in Figure 8C, where PV power outputs are all
consumed by local loads.The BESSs at nodes 2 and 3 provide power
to the MG when the PV radiation is low (nights) and absorb power
from the MG when the PV output power is high, which is shown in
Figure 8D.

Figure 9A shows the electricity purchased from the utility during
the normal operation, where the peak electricity purchase happens
in October and that of valley electricity in March. The difference
between peak and valley value is 180,703 kWh. In summer days,
solar radiation is high such that the peak PV power is in May,
reaching 230,534 kWh/month, while the valley PV power is in
February in winter days, shown in Figure 9B. Accordingly, as shown
in Figure 9C, during summer days, the PV sources sell power to the
utility according to the ToU price illustrated in Figure 4.

The nodal voltages of community MG during the utility outages
are shown in Figure 10A.With the power flow constraints, the nodal
voltages are all varying in the normal range, i.e., [0.95 1.05] p.u.,
evenwith the fluctuation of PV power generation and outages. In the
planning, node 2 becomes the slack bus providing voltage support.
However, during the peak day, the nodal voltages are varying in the
normal time, most of the time, except in conditions of heavy load
demand. However, the nodal voltages are very close to the lower
voltage limit. In the planning, only the active power dispatch is
considered, and the voltage will be recovered into the normal range
if reactive power dispatch is taken into account.

5.3 Sensitivity analysis

This section elaborates on the sensitivity analysis when different
discrete capital costs are considered. As shown in Figure 11, the
optimal operation costs vary from768 to 800 k$, and the total annual
CO2 reduction emission costs vary from 1,420 to 1,422 tons with

the variation of capital costs. In addition, the total cost saving is at
least above 20% and CO2 emission reduction is at least above 25%.
Even with the variation of capital costs, the capacity of PV panels
remains unchanged as 1,048 kW. However, the total DER capacity
of each node varies due to different combinations of technologies.
Interestingly, the total capacity of the BESS varies in a very small
range, e.g., from 8,102 to 8,119 kWh. The total capacity of DG
remains unchanged (420 kW) evenwith the variation of capital costs
because the discrete technology is insensitive to the planning results.

6 Conclusion

This paper investigated the optimal planning and operation
of community MGs with the RES and ESS for Lombok Island of
Indonesia as a response to the rural electrification program. First,
the optimization and constraints for MG planning are presented,
which are integrated into the DER-CAM. This study also analyzes
the economic benefits and environmental emissions of the optimal
sizing and location of the RES and ESS within the MGs. The
results of the analyses validate that the DER-CAM can provide
the optimal capacities, type, location of various technologies, and
optimal energy dispatch for multi-node MGs with optimized total
annual costs and total annual CO2 emissions. The planning results
demonstrate that the MGs with the RES and ESS contribute to the
rural electrification and energy transition of Indonesia, leading to
over 100% electrification, 20% cost savings, and 25%CO2 reduction,
with interest rates varying from −10% to 10%.
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