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A B S T R A C T   

Background and Objective: Fast and correct classification of bacterial samples are important for accurate di-
agnostics and treatment. Manual microscopic interpretation of Gram stain samples is both time consuming and 
operator dependent. The aim of this study was to investigate the potential for developing an automated algo-
rithm for the classification of microscopic Gram stain images. 
Methods: We developed and tested two algorithms (using image processing an Casual Probabilistic Network 
(CPN) and a Random Forest (RF) classification) for the automated classification of Gram stain images. A dataset 
of 660 images including 33 microbial species (32 bacteria and one fungus) was split into training, validation, and 
test sets. The algorithms were evaluated based on their ability to correctly classify samples and general char-
acteristics such as aggregation and morphology. 
Results: The CPN correctly classified 633/792 images to achieve an overall accuracy of 80% compared to the RF 
which correctly classified 782/792 images to achieve an overall accuracy of 99% (p < 0.001). The CPN per-
formed well when distinguishing between GN and GP, with an accuracy of 95% (731/768). The RF also per-
formed well in distinguishing between GN and GP, achieving an accuracy of 99% (767/768) (p < 0.001). 
Conclusions: The findings from this study show promising results regarding the potential for an automated al-
gorithm for the classification of microscopic Gram stain images.   

1. Introduction 

Infectious diseases are a major cause of public health concern. In-
fections account for more than 11% of all deaths worldwide, corre-
sponding to 6.7 million deaths each year [1]. Antibiotics are used as 
medical treatment for bacterial and fungal infections, which has saved 
countless lives since their discovery in 1928 [2]. Over time, pathogens 
develop resistance to antibiotic treatment, with some resistant strains 
becoming increasingly difficult or almost impossible to treat [3,4]. 
Resistant pathogens are a major threat to global health [5]. A total of 2.8 
million Americans are affected by resistant pathogens each year. The 
resistant pathogens cause 35,000 deaths in the USA and 33,000 in 
Europe annually [6,7]. 

The leading cause of bacterial resistance is the unnecessary use of 
broad-spectrum antibiotics [8]. Broad-spectrum refers to the activity of 
the drugs across a range of bacterial species, and because of this, these 
drugs are often used for empirical antibiotic therapy before the causative 
pathogen has been identified. In contrast, narrow-spectrum antibiotics 

do not stimulate the growth of antibiotic resistance connected with the 
use of broad-spectrum antibiotics. However, before using 
narrow-spectrum antibiotics, identification of the bacterial species is 
required to ensure that the correct drug is selected to cover the specific 
causative pathogen [9]. 

The standard method of identifying bacterial species is a sequential 
procedure including extraction of blood cultures, incubation, Gram 
staining, microscopic examination and sometimes gene-sequencing and 
susceptibility testing [9]. The second part of the procedure relies 
exclusively upon manual labor, which can cause both increased 
time-to-result and errors [10]. 

In microbiology, Gram staining is a method of staining used to 
classify bacterial species into two large groups: (A) gram-positive bac-
teria and (B) gram-negative bacteria. Gram staining distinguishes bac-
teria by the chemical and physical properties of their cell walls. gram- 
positive bacteria have a thicker layer of peptidoglycan (a poly-
saccharide) in the cell wall that preserves the primary stain, crystal vi-
olet. gram-negative cells have a thin layer that allows the color to wash 
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out upon addition of ethanol in the staining procedure. gram-negative 
cells are stained pink or red by the counterstain. The interpretation of 
the Gram stain color is manually examined under a microscope; in 
addition to the Gram stain color, several bacterial characteristics are 
assessed (such as aggregation of bacteria, morphology, and size) to 
classify the sample [11]. 

Gene sequencing is becoming a widely used technique in clinical 
diagnosis. It enables the precise characterization of bacteria in terms of 
its properties, including antibiotic resistance, molecular epidemiology, 
and virulence [12]. 

Examples of these time-consuming aspects can be numerous. A nat-
ural reason for time delay can be that samples are postponed until a 
batch of the sample is ready [10]. Other reasons could be working 
schedules, i.e., closed laboratory at night or specific microbiologists are 
on break. Despite experienced staff, manual labor still contributes 
significantly to additional time to result [13]. Furthermore, in addition 
to the time-consuming aspects of manual labor, classification errors also 
occur [13]. A study by Guarner et al. [13] tested 23 medical laboratory 
scientists in the classification of Gram stain samples. The scientists 
classified 71–77% of the samples correctly in relation to Gram stain 
color and 53–66% correctly in relation to morphology and aggregation. 
A solution to decrease the time-to-result and reduce the number of errors 
during the identification procedure could be to eliminate 
time-consuming manual labor by automating the classification process 
[14]. In other medical domains, image analysis and machine learning 
algorithms have shown great potential for improving diagnostics and 
treatment [15–19]. 

The aim of this study was to investigate the potential for developing 
an automated algorithm for the classification of microscopic Gram stain 
images. 

2. Methods 

To investigate the potential for an automated classification of 
microscopic Gram stain images, we developed and tested two algorithms 
based on image analysis and machine learning. Both algorithms utilized 
the same image processing, but different machine learning models were 
assessed for their ability to correctly classify the images. The 

development process for the two algorithms is illustrated in Fig. 1. 
The first machine learning model chosen was a causal probabilistic 

network (CPN) that utilizes conditional probabilities in the classifica-
tion. By using conditional probabilities, this method includes a high 
level of transparency and self-explanatory to the user[20]. 

The second machine learning method was a data-driven machine 
learning approach called random forest. The random forest model 
typically operates with higher accuracy than simpler models. The 
disadvantage of random forest is that the reasoning behind the result is 
more complex to interpret [21]. 

All image processing and the random forest were implemented using 
MATLAB R2020b (The Mathworks Inc., Natick, Massachusetts), and the 
CPN was implemented using Hugin (Hugin Expert A/S, Gasværksvej 5, 
DK-9000 Aalborg, Denmark). 

2.1. Data acquisition and preparation 

We utilized data from the Digital Images of Bacteria Species dataset 
(DIBaS) [22]. DIBaS is a publicly available database and contains 660 
microscopic Gram stain images. The 660 images are distributed evenly 
between 33 microbial species (32 bacteria and one fungus). All images 
were collected by Jagiellonian University in Krakow, Poland. All images 
were stained by Gram’s method [23] using the same equipment under 
equal conditions. The equipment used was an Olympus CX31 Upright 
Biological Microscope equipped with an SC30 camera (Olympus Cor-
poration, Japan). They were evaluated using a 100 times objective under 
oil immersion (Nikon50, Japan)[23]. Photo example of different species 
are presented in the supplementary material table s2. 

The 660 images in DIBaS were split into training (50%), validation 
(20%) and test (30%) sets, stratifying the split according to the 33 
species to ensure that the same class balance was maintained across the 
splits. 

All images in DIBaS have the same dimensions of 1532 × 2048 pixels. 
The images are of high quality, and they contain sufficient detail that 
information is retained on division into smaller images. The images were 
divided into four equal quarters of 766 × 1024 pixels to increase the 
number of images for training and test purposes[23] without compro-
mising the quality of the images. The division of images resulted in a 
training set of 1320 images with an even distribution across the 33 
species; likewise, there was a validation set of 528 images and a test set 
of 792 images. 

The training and validation datasets were used to train the two 
machine learning models and optimize the performance, while the test 
dataset was used for the final evaluation of the models’ performance. 
This procedure ensured that the results were not prone to overfitting and 
would be transferable to a similar cohort using the same type of images 
[24]. 

2.2. Background removal 

We used Otsu’s method to remove the background of each image 
after transforming the images to grayscale. The strength of Otsu’s 
method in simple images is the use of a global threshold. OTSU’s method 
uses interclass variance between the foreground and background to 
determine the best threshold to distinguish foreground and background 
[25]. An example of the use of this method to remove the background of 
the images is shown in Fig. 2. 

2.3. Feature extraction 

When classifying Gram stain images, microbiologists look for 
different bacterial characteristics, such as Gram stain color, 
morphology, sizes, and aggregation. The characteristics are used to 
classify samples into broad categories: gram-negative (GN), gram- 
positive (GP) (with subcategories: Staphylococcus, Streptococcus, 
other GP) and fungi[26]. The same characteristics are used in the 

Fig. 1. Flowchart of steps involved in the development of the algorithms for 
classification of Gram stain images. 
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algorithms to classify the images. These image features are extracted in 
several steps. An overview of all features is presented in supplementary 
material table s1. 

2.3.1. Gram stain and fungal features (color features) 
Gram stain color features were extracted from the images after 

removal of the background. A total of 12 features were extracted from 
each image to help determine whether the bacteria were gram-positive 
or gram-negative. The color features are important to separate bacterial 
samples from samples with fungi. 

Each image pixel consists of red, green, and blue color intensities in 
the range 0 to 255. A median value of these intensities is calculated, 
resulting in one feature for each of the three colors. Furthermore, color 
spectra of the images are used to calculate features. An example of the 
color spectra for gram-negative and gram-positive bacteria is presented 
in supplement material figure s1. 

The highest color intensity peak is used for red, green, and blue color. 
Another feature from the color spectrum extracted is the magnitude of 
the colors below an intensity of 200; the threshold chosen by visual 
inspection of the color spectrum. The final set of color features used 
enhancement of the colors in the images as described by Zuiderveld 
[27]. The enhanced median colors (red, green, and blue) were extracted 
as features. 

2.3.2. Morphology features 
Morphology features were extracted to distinguish between different 

bacterial species. In this study, two shapes were used to distinguish the 
morphology of bacteria: cocci and bacilli. Cocci have a round shape, and 
bacilli have a rod shape[26]. An example of a bacillus and a coccus is 
illustrated in Fig. 3. To classify whether a bacterium is round or rod 
shaped, the individual bacteria must be isolated. Isolated bacteria were 
defined by an 8-connectivity method. 8-connectivity defines clusters if 
pixels are connected in any direction. An erosion operation followed by 
a dilation was used on the binary images after background removal and 
prior to the individual bacterial extraction. Erosion shrinks the isolated 

bacteria, and dilation dilates the isolated bacteria. A combination of 
these operations results in smoother edges of the isolated bacteria and 
removes small pixel groups [28]. A comparison between the original 
image and the processed image used for the isolation of bacteria is 
presented in Supplemental Figure s2. The individual segmentation of 
bacteria was not perfect but provided an average estimate of the 
morphology in the Gram-stained images. 

After the isolation of the bacteria, features describing the shape were 
extracted. The extracted features were circularity, eccentricity, and 
roundness. 

Circularity is calculated as (A = area; P = perimeter): 

Circularity =
4⋅A⋅π

P2 

The eccentricity is calculated as a ratio of the distance between the 
major axis of the ellipse and the center of the bacteria (a = major axis 
length of ellipse; b = minor axis length of ellipse). This formula is an 
expression of eccentricity, which describes how elongated the isolated 
bacteria were. An eccentricity of 0 equals a circle, while an eccentricity 
of 1 equals a straight line: 

Eccentricity =
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
a
2

)2
−
(

b
2

)2
√

a 

The last feature used to express the shape is a roundness feature, 
expressed by the ratio between the length and the width of the bacteria. 
A perfect circle would have the same length and width and thereby 
result in a ratio of 1, whereas bacilli would have a longer length than 
width, and the ratio tends toward 0: 

Roundness =
w
l 

These morphological features are calculated for every isolated bac-
terium in the image. The image is then described using the mean of each 
feature across all the isolated bacteria. 

Fig. 2. Illustrations of how the original image (a) is binarized (b) and then multiplied with the original images, resulting in background removal (c).  

Fig. 3. Illustrations of the shape difference between bacilli (a) and cocci (b) bacteria.  
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2.3.3. Aggregation features 
Aggregation is particularly relevant for GP cocci, which can be 

aggregated in three different ways. The aggregation is either in chains, 
in grape-like groups, or in singles[26]. In Fig. 4, the three GP cocci ag-
gregations are shown. To extract aggregation features, the images are 
preprocessed further. The preprocessing includes background removal, 
finding bacteria and defining clusters. Figure s3 in the Supplementary 
material illustrates the transformation of the original image into a binary 
image of clusters. 

After background removal, an image processing technique named 
watershed was used to separate the connected bacteria [29]. After 
separation of the bacteria, the centers of the bacteria were found. The 
Euclidean distance between all centers was calculated and gathered in a 
distance matrix. The distances were used to define aggregated bacteria. 
Bacteria with a Euclidean distance shorter than a threshold of 20 pixels 
were defined as aggregated. The threshold was determined empirically 
from the training data. The aggregated bacteria were then merged into 
clusters. The features used to define the type of aggregation were 
extracted from these clusters. For every cluster, ten features were 
extracted: mean cluster area, number of aggregated bacteria within each 
cluster, cluster density (number of aggregated bacteria divided by area), 
mean circularity of cluster, mean eccentricity of cluster, mean length of 
cluster, mean width of cluster, mean length divided by width, mean 
distance between clusters, and number of clusters containing three or 
fewer bacteria. 

2.4. Classification models 

Two classification models (CPN and random forest) were trained and 
optimized on the training and validation datasets. The test dataset was 
applied to the finalized models. 

2.4.1. Causal probabilistic network 
CPNs are a family of graphical models that can be drawn as directed 

acyclic graphs and consist of two main elements, nodes representing 
variables and arrows representing the causal links between the vari-
ables. The structure of the graph defines a set of conditional probability 
tables that describe the relationships between variables. The relation-
ship between parent and child nodes is represented as conditional 
probability [30]. Conditional probability can be calculated using the 
formula: 

P(A|B) =
P(A|B)⋅P(A)

P(B)

P(A|B) = posterior probability 
P(B|A) = likelihood probability 
P(A) = prior probability 
The probabilistic network approach was chosen due to the trans-

parency of the network, as it can be designed to imitate the current 
workflow of microbiologists [31]. In this way, the model and the clas-
sification could be easier to understand for microbiologists compared to 

more complex classification models. 
In this study, the CPN structure was specified manually. The struc-

ture consisted of three levels of nodes: a set of leaf nodes (level 3) rep-
resenting the features extracted from the images; a set of nodes 
representing latent variables (level 2) gram stain, fungi, morphology, 
and aggregation; and the classification node (level 1) named result. 
Hugin (Hugin Expert A/S, Gasværksvej 5, DK-9000 Aalborg, Denmark) 
was used to specify the CPN structure. The conditional probability tables 
were learned from the training data using Hugin’s EM learning algo-
rithm. EM (expectation maximization) is a maximum-likelihood method 
that iteratively adjusts the conditional probability tables to maximize 
the joint probability of the evidence across all learning cases. The 
graphical representation of the implemented CPN is presented in sup-
plementary material figure s4. 

2.4.2. Random forest 
In contrast to the transparency of the probabilistic network, we also 

trained and tested a model based on random forest. The idea was to test 
whether performance could be increased by using a data-driven classi-
fication approach. The hyperparameters were optimized regarding 
performance and transferability using the training/validation split of the 
data. The random forest was optimized using the training/validation 
dataset to find the best number of trees in the range of 1–100. The 
number of learning cycles and the leaf size were chosen empirically. 

2.5. Model evaluation 

Both classification models were evaluated using confusion matrices 
with precision and accuracy. Images were classified as the class with the 
highest probability output from the models. Differences in accuracy 
were assessed using the chi-squared test. 

3. Results 

The confusion matrix for the model’s performance is shown in 
Table 1. The samples were classified as GN (216), GP-other (408), GP- 
Strep (72), GP-Staph (72), or fungi (24). A total of 792 images were 
tested. 

The CPN correctly classified 633/792 images to achieve an overall 
accuracy of 80% on the test set. However, only 13/72 (18%) of GP-Staph 
samples and 11/72 (15%) of GP-Strep samples were classified correctly, 
with the remainder classified as GP-other. 

The CPN performed better when distinguishing between GN and GP, 
with an accuracy of 95% (731/768). 

The random forest model performed significantly better than the 
CPN, correctly classifying 782/792 images to achieve an overall accu-
racy of 99% on the test set. Notably, the RF correctly classified 65/72 
(89%) of GP-Staph samples and 72/72 (100%) of GP-Strep. 

The RF performed well in distinguishing between GN and GP, 
achieving an accuracy of 99% (767/768). All accuracies were signifi-
cantly[32] higher than those of the Casual Probabilistic Network (p <

Fig. 4. Illustration of the different types of aggregation considered: single aggregation (a), chain aggregation (b) and group aggregation (c).  
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0.001). 

4. Discussion 

The aim of this study was to investigate the potential for developing 
an automated algorithm for the classification of microscopic Gram stain 
images. Two algorithms were presented, one with high transparency 
(Casual Probabilistic Network) and one focused on high performance 
(Random Forest). The overall accuracy for the causal probabilistic 
network was 80%, and for the random forest model, the accuracy was 
99%. These accuracies are considered strong and indicate that a high 
percentage of images are classified correctly. 

These results should be compared to manual interpretation, which is 
currently the standard for assessing Gram stain samples. Two studies by 
Sandle and Samuel et al. [33,34] evaluated the performance of micro-
biologists in determining Gram stain color. The microbiologists suc-
cessfully classified the Gram stain color correctly in 92–97% [33,34]. In 
this study, the causal probabilistic network and the random forest per-
formed similarly on this task, with accuracies of 95% and 99%, 
respectively. 

A study by Guarner et al. [35] tested the ability of hospital personnel 
to determine the aggregation of samples. Laboratory scientists at the 
hospital trained in microbiology had a success rate of 53–66% without 
routine practice. After training and routine practice, the success rate 
increased to 73–96% [35]. The causal probabilistic network performed 
poorly in distinguishing between aggregations, as evidenced by the high 
rate of misclassification within the wider GP group, with GP-Strep and 
GP-Staph wrongly classified as GP-other. However, our results indicate 
that the random forest model may outperform laboratory scientists, 
achieving an accuracy of 97% in the present study. 

Several articles on automated bacterial classifications using machine 
learning have been published in the last decade [36]. The results are 
promising on different aspects of automated classification [36–39]. 

Zieliński et al. [22] reported on the usage of deep convolutional 
neural networks to obtain image descriptors, with subsequent encoding 
and classification with support vector machine or random forest. The 
approach was based on the DIBaS dataset and had an accuracy of up to 
97%. 

In a similar study of automated models, Smith et al. [35] used a 
similar methodical approach that was comparable to ours. The study by 
Smith et al. used a deep convolutional neural network to classify 
microscopic Gram stain images into gram-negative, gram-positive, 
gram-positive chains and gram-positive clusters, which are equivalent to 
the labels used in this study. The deep convolutional neural network 
showed an overall accuracy of 93%. 

Additionally, Zawadzki et al. [40] presented several deep learning 
approaches to the classification of selected fungi and bacteria with ac-
curacies between 96–100% in three datasets. Zieliński et al. [41] also 

recently reported a deep learning approach to describe and classify 
microscopic fungal images. Another approach was reported by Yang 
et al. on a method on automated tuberculosis classification in 
Ziehl-Neelsen stained slides [39]. 

Both models proposed in this study showed promising results 
compared to manual classification and existing models. Compared to 
previous studies the results show that a feature-based learning approach 
could also be used with high accuracy in classifying bacteria from gram- 
stain images compared to a deep learning approach reported by previous 
studies. Feature-based learning could potentially have an advantage in 
designing a transparent decision-support system for aiding microbiolo-
gists in microbial classification. Appropriate prescription of antibiotics is 
important to reduce one of the main drivers behind bacterial resistance. 
The results show that automated classification algorithms could poten-
tially decrease the number of interpretation errors made by manual 
interpretation. In addition to minimizing errors, the operational time 
can also be decreased. The time delay caused by manual work [10,13] 
could be reduced by an automated system, which could potentially lead 
to faster diagnostics and treatment. 

The proposed causal probabilistic network performed with signifi-
cantly lower accuracy than the random forest model. However, with its 
high accuracy on the test set, the random forest model proved that the 
information is captured by the features. From a future perspective, it 
could be interesting to further investigate whether it is possible to 
optimize or reconstruct the causal probabilistic network to match the 
performance of the random forest model. An optimized causal proba-
bilistic network could enable both high performance and high 
transparency. 

4.1. Strengths and limitations 

One advantage of the data used in this study is that all bacterial 
samples are stained with the same method, and the images are taken 
under the same conditions with the same type of equipment. Along with 
the many images comes significant diversity. The dataset includes 33 
different bacterial species, which are representative of the most common 
bacterial species. In addition, the amount and quality of the data 
contribute to model robustness. The sample includes bacterial shapes 
classified as either cocci or bacilli. However, in clinical practice, several 
other shapes would need to be considered to cover a broader range of 
different species. 

However, the robustness of the models is not tested under different 
settings, as all image samples are collected at the same hospital. Other 
hospitals might use other techniques, with different color intensities and 
image zoom levels. For instance, part of the proposed image analysis 
feature extraction is reliant on pixel-based distances, which are sensitive 
to the zoom level of the image. 

Technical setup aspects relating to the image capture equipment 

Table 1 
Confusion matrix of the model performance. (Top) Casual Probabilistic Network and (bottom) Random Forest for the test dataset.  

Casual Probabilistic Network Predicted   
Gram neg Gram pos Streptococcus Staphylococcus Fungi Sensitivity [%] 

True Gram neg 194 22 0 0 0 90 
Gram pos 15 393 0 0 0 96 
Streptococcus 0 61 11 0 0 15 
Staphylococcus 0 59 0 13 0 18 
Fungi 0 2 0 0 22 92  
Precision [%] 93 73 100 100 100 Accuracy [%] 80 

Random Forest Predicted   
Gram neg Gram pos Streptococcus Staphylococcus Fungi Sensitivity [%] 

True Gram neg 215 1 0 0 0 100 
Gram pos 0 407 1 0 0 100 
Streptococcus 0 0 72 0 0 100 
Staphylococcus 0 5 3 64 0 89 
Fungi 0 0 0 0 24 100  
Precision [%] 100 99 95 100 100 Accuracy [%] 99  
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have not been included in this study. However, this is a pragmatic 
limitation only, as implementation of a fully automated system could 
potentially determine the specification for the equipment and procedure 
that should be used to obtain the Gram stain images. 

Another limitation of the data is the low representation of fungi. Of 
the 33 microbial species, only a single fungal species was represented. 
The low representation of fungi creates uncertainty in the model’s per-
formance in the classification of fungi. The models classify fungi by their 
color difference in relation to bacteria. Different fungal species could 
mean different colors or other characteristics, causing the model to 
potentially struggle in classifying these other species. This limitation of 
species representation in the dataset also transfers to bacterial species. In 
future work, inclusion of a wider range of relevant bacterial species 
should be a priority. Additionally, including an “unknown” outcome 
prediction in the models could be of clinical relevance for a decision 
support system, where expert microbiologists could be involved in 
difficult cases where the automated system is unsure. 

5. Conclusions 

The findings from this study show promising results regarding the 
potential for an automated algorithm for the classification of micro-
scopic Gram stain images. However, the algorithms proposed in this 
study need to be validated on a large dataset of heterogeneous samples 
to ensure robustness. 
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