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Abstract

Data has always been a key asset for a variety of industries and businesses
but lately it is giving data owners a true competitive advantage over oth-
ers. Nowadays companies collect big volumes of data and store them in
large multidimensional databases called data warehouses. A data warehouse
presents aggregated data as a cube where cells of the cube contain facts and
contextual information such as dates, locations, customer and supplier info,
etc. Data warehouse solutions successfully employ Online Analytical Pro-
cessing (OLAP) to analyze these large sets of data, e.g., sales data can be
aggregated along the location and/or time dimension. Currently, new chal-
lenges are set by recent trends in technology and the Web. Much information
is available on the Web in a machine-processable form (Semantic Web) and
Business Intelligence (BI) tools need to be able to discover and retrieve rel-
evant information and present it to users to aid in proper analysis of the
situation. Many government and other organizations make their data openly
available, identify their data with Uniform Resource Identifiers (URI), and
interlink data to other data. This collection of interrelated datasets on the
Web is called Linked Data [1]. These datasets are based on the Resource De-
scription Framework (RDF) — a standard format for data interchange on the
Web [2]. SPARQL, a query language and protocol for RDF [3], is used to
query and manipulate RDF datasets stored in SPARQL endpoints. SPARQL
1.1 Federated Query [4] also defines an extension for executing queries dis-
tributed over several SPARQL endpoints. Thus, current standards enable
complex analytical queries over multiple data sources and integrating these
data into the analysis process becomes a necessity for BI tools. However, due
to the amount and complexity of data available on the Web, incorporation
and utilization of these data are not easy and straightforward. Therefore, an
efficient OLAP solution over Semantic Web sources is needed to improve Bl
tools.

This PhD thesis focuses on the challenges related to the optimization of
analytical queries that retrieve data from multiple SPARQL endpoints. First,
the thesis proposes a framework for the discovery, integration, and analyt-
ical querying of Linked Data — this type of OLAP was termed Exploratory
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OLAP [5]. The framework is designed to use a multidimensional schema
of the OLAP cube expressed in RDF vocabularies to be able to query data
sources, extract and aggregate data, and build a data cube. We also propose
a computer-aided process for discovering previously unknown data sources
and building a multidimensional schema of the cube. Second, due to the in-
efficient execution of analytical federated SPARQL queries by state-of-the-art
SPARQL endpoints, this thesis proposes a set of query processing strategies
and the associated Cost-based Optimizer for Distributed Aggregate queries
(CoDA) for optimizing the execution of such analytical SPARQL queries.
Third, to overcome the challenges for aggregate SPARQL query processing
techniques on a single endpoint, we propose MARVEL (MAterialized Rdf
Views with Entailment and incompLetness) — an approach that uses RDF spe-
cific materialized view techniques to process complex aggregate queries. The
approach consists of a view selection algorithm based on an associated RDEF-
specific cost model, a view definition syntax, and an algorithm for rewriting
SPARQL queries using materialized RDF views. Lastly, we focus on tech-
niques to support analytical SPARQL queries over related data located at
multiple endpoints which enable interesting insights and analyses at a large
scale. In particular, the proposed technique is able to integrate the diverse
schemas of SPARQL endpoints and provide access to the data via OLAP-
style hierarchies to enable uniform, efficient, and powerful analytics. Finally,
the developed techniques advocate for a greater attention to analytical query
processing in distributed RDF data systems.



Resumé

Data har altid veeret essentielt for en bred vifte af virksomheder, endvidere
giver det i hojere og hejere grad virksomheder en mélbar fordel over deres
konkurrenter. Moderne virksomheder indsamler og opbevarer deres data i
multidimensionelle databaser kaldet datavarehuse. Et datavarehus repraesen-
terer dets data som en kube, hvor cellerne indeholder fakta og kontekstuel
information sdsom tid, lokation, kunder, leveranderer etc., som dimensioner.
Datavarehuse bruger Online Analytisk Processering (OLAP) til at analysere
store datameengder. For eksempel salgsdata kan blive aggregeret over lokation-
og/eller tids -dimensionerne. Nye teknologiske trends skaber nye udfor-
dringer. Mere og mere data er tilgeengeligt péd internettet i maskinforstaeligt
format (Semantisk Web). Business Intelligence (BI) veerktojer er dog endnu
ikke i stand til at indsamle og praesentere dette data til brugere s det kan
blive analyseret. Flere og flere organisationer har gjort deres data frit tilgeen-
gelige pa internettet, heriblandt mange offentlige institutioner, ved blandt an-
det at gore deres data identificerbart via Uniform Resource Identifiers (URIs)
og skabe referencer til andre relevante datasamlinger. Dette seet af datasam-
linger der er bundet sammen med referencer hedder Linked Data [1]. Disse
datasamlinger er alle baseret pa Resource Description Framework (RDF) -
et standard format til udveksling af data péd internettet [2]. SPARQL, et
forespergsels-sprog og -protokol til RDF [3], bruges til at lave foresporgsler
og manipulere RDF datasamlinger som er lagret i SPARQL endepunkter.
SPARQL 1.1 fodererede foresporgsler [4] er en udvidelse der gor det muligt
at eksekvere foresporgsler over flere SPARQL endepunkter. Det betyder at
aktuelle standarder gor det muligt at foretage komplekse analytiske fore-
sporgsler over flere datakilder og dermed integrere disse datasamlinger i
BI verktgjer. Dog, pa grund af meengden af data og dets kompleksitet er
inkorporering og brug hverken nemt eller ligetil. Derfor er effektive OLAP
losninger til det Semantiske Web nedvendigt for at forbedre de eksisterende
BI veerktgijer.

Denne PhD afhandling fokuserer pa udfordringerne relateret til optimer-
ing af analytiske foresporgsler over flere SPARQL endepunkter. For det
forste foresldr denne afhandling et system til opdagelse, integration og ek-



sekvering af analytiske forespergsler over Linked Data - denne type af OLAP
kaldes Exploratory OLAP [5]. Systemet er designet til at bruge et multidi-
mensionelt skema for en OLAP kube, udtrykt med RDF vokabularier, til ek-
sekvering af foresporgsler over datakilder, udtreekke og aggregere data, og
konstruere en datakube. Endvidere, foresldr vi en computerstottet proces
til at opdage ukendte datakilder og konstruktion af det tilsvarende multidi-
mensionelle skema. For det andet, pa grund af ineffektiv eksekvering af ana-
lytiske fodererede SPARQL foresporgsler over forende SPARQL endepunkter,
foreslar denne afhandling, et seet af forespergselsprocesseringsstrategier og
de tilherende pris-baserede optimeringer for distribuerede aggregeringsfore-
sporgsler (CoDA) for optimering af sidanne forespergsler. For det tredje,
for at overkomme udfordringerne associeret med processeringsteknikker for
SPARQL aggregeringsforesporgsler over et enkelt endepunkt, foreslar vi MAR-
VEL (MAterialized Rdf Views with Entailment and incompLetness), som
bruger RDF-specifikke view materialiseringsteknikker til at processere kom-
plekse aggregeringsforesporgsler. Dette system bestar af en view-udveelgelses
algoritme baseret pa en RDF-specifik pris-baseret model, en syntaks for def-
inition af views og en algoritme til at omskrive SPARQL foresporgsler til at
bruge de materialiserede views. For det fierde, fokuserer vi pa teknikker til at
understotte analytiske SPARQL foresporgsler over data der eksisterer spredt
over flere forskellige endepunkter. Dette gor det muligt at skabe forstaelse og
analyse af store datasamlinger. Den foreslaede teknik gor det muligt at inte-
grere forskellige skemaer, dette gor det muligt at tilga data samlingerne via
et OLAP-lignende hierarki, og skaber mulighed for at foretage ensartede, ef-
fektive og vigtige analyser. Overordnet skaber de udviklede teknikker storre
mulighed for analytiske foresporgsler over distribuerede RDF datasystemer.



Résumé

Les données ont toujours été un atout clé pour beaucoup d’industries et
d’entreprises ; cependant, ces derniers temps les possesseurs de données
jouissent d’un véritable avantage compétitif sur les autres. De nos jours, les
compagnies collectent de gros volumes de données et les stockent dans de
grandes bases de données multidimensionnelles appelées entrepots de don-
nées. Un entrepdt de données présente les données agrégées sous la forme
d’un cube dont les cellules contiennent des faits et des informations con-
textuelles telles que des dates, des lieux, des informations sur les clients et
fournisseurs, etc. Les solutions d’entreposage de données utilisent avec suc-
ces OLAP (Traitement Analytique En Ligne — en anglais Online Analytical
Processing) afin d’analyser ces grands ensembles de données ; par exem-
ple, les informations des ventes peuvent étre agrégées selon le lieu et/ou la
dimension temporelle. Les tendances récentes des technologies et du Web
posent actuellement de nouveaux défis. Une bonne quantité de l'information
disponible sur le Web s’y trouve sous une forme qui se préte au traite-
ment par machine (Web Sémantique) ; les outils de veille économique (en
anglais Business Intelligence ou BI) doivent étre capables de découvrir et
récupérer les informations pertinentes, et les présenter aux utilisateurs afin
de les assister dans une bonne analyse de la situation. De nombreux gou-
vernements et organisations rendent leurs données publiquement accessi-
ble, identifiables avec des URI (Unified Resource Identifiers), et les lient a
d’autres données. Cette collection de jeux de données interconnectés sur le
Web s’appelle Linked Data [1]. Ces jeux de données sont basés sur le modele
RDF (Resource Description Framework) — un format standard pour 1’échange
de données sur le Web [2]. SPARQL, un protocole et un langage de requétes
pour RDF [4], est utilisé pour interroger et manipuler les jeux de données
RDF stockés dans des triplestores SPARQL. SPARQL 1.1 Federated Query
[6] définit également une extension pour exécuter des requétes distribuées
sur plusieurs triplestores. Le standard actuel permet donc des requétes an-
alytiques complexes sur de multiples sources de données, et 'intégration de
ces données dans le processus d’analyse devient une nécessité pour les outils
de BL Cependant, en raison de la quantité et de la complexité des données
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disponibles sur le Web, leur incorporation et leur utilisation ne sont pas tou-
jours évidentes. Par conséquent, une solution OLAP efficace sur des source
Web Sémantiques est nécessaire pour améliorer les outils de BL.

Cette these de doctorat se concentre sur les défis liés a 1’optimisation des
requétes analytiques qui utilisent des données provenant de plusieurs triple-
stores SPARQL. Premiérement, cette these propose un framework pour la
découverte, l'intégration et l'interrogation analytique des Linked Data — ce
type d’'OLAP a été nommé OLAP Exploratoire [21]. Ce framework est congu
pour utiliser un schéma multidimensionnel du cube OLAP exprimé dans des
vocabulaires RDF, afin de pouvoir interroger des sources de données, extraire
et agréger des données, et construire un cube de données. Nous proposons
également un processus assisté par ordinateur pour découvrir des sources
de données précédemment inconnues et construire un schéma multidimen-
sionnel du cube. Deuxiémement, vu l'inefficacité actuelle des triplestores
SPARQL pour I'exécution des requétes analytiques fédérées, cette these pro-
pose un ensemble de stratégies pour le traitement de ces requétes ainsi qu'un
module (appelé Cost-based Optimizer for Distributed Aggregate ou CoDA)
pour optimiser leur exécution. Troisiemement, afin de surmonter les défis
liés aux techniques de traitement des requétes SPARQL agrégées sur un seul
triplestore, nous proposons MARVEL (MAterialized Rdf Views with Entail-
ment and incompLeteness) — une approche qui utilise des techniques de vues
matérialisées spécifiques a RDF pour traiter les requétes agrégées complexes.
Notre approche consiste en un algorithme de sélection de vues selon un mod-
ele de cofit associé spécifique a RDFE, une syntaxe pour la définition des vues
et un algorithme pour la réécriture des requétes SPARQL en utilisant les vues
matérialisées RDE. Finalement, nous nous concentrons sur les techniques rel-
atives au support des requétes analytiques SPARQL sur des données liées
situées en de multiples triplestores, qui nous conduisent a d’intéressantes
analyses et constatations a grande échelle. En particulier, la technique pro-
posée est capable d’intégrer les schémas divers des endpoints SPARQL, don-
nant acces aux données via des hiérarchies dans le style d’'OLAP pour per-
mettre des analyses uniformes, efficaces et puissantes. Enfin, cette these pré-
conise une plus grande attention au traitement des requétes analytiques au
sein des systemes RDF distribués.
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Chapter 1

Introduction

1 Semantic Web

Designed initially for humans, the Web has gone through several stages of
development. Nowadays, the Web is considered to be a space for publishing
the information so that both humans and machines can effectively retrieve
and process it. The World Wide Web Consortium (W3C) came up with the
standards to promote common data formats and exchange protocols on the
Web to enable machine-to-machine communication. This set of standards is
gathered under the common umbrella term Semantic Web.

In the Semantic Web, the information is given a well-defined meaning and
machines are able to understand the information and perform sophisticated
tasks on behalf of the users. The meaning is expressed by Resource Descrip-
tion Framework (RDF) [2], which encodes it as a set of triples. An RDF triple
contains three components: the subject (a URI reference or a blank node),
the predicate, (a URI reference) and the object (a URI reference, a literal or a
blank node). Such a structure allows to assert that a particular concept (sub-
ject) has a property (predicate) with the certain value (object) and allows to
describe the vast majority of the data processed by machines.

A triple can be modeled as a directed link from the subject to the object la-
beled by the predicate. The interrelated set of triples, thus, can be represented
as a graph where vertices represent subjects or objects and the predicates are
the edges connecting the vertices. This data model has a semi-structured
nature — it is heterogeneous (resources may have different properties) and
self-describing (the structure is encoded in the data itself). These characteris-
tics make RDF a suitable format for the data interchange on the Web.

An integral part of RDF — RDF Schema (RDEFS) [6] — provides a data-
modeling vocabulary for RDF data. It defines a mechanism for describing
groups of associated resources and relationships between these resources.
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The classes and properties constitute the basic constructs of RDFS. Classes
group related resources. Properties model a relation between subject re-
sources and object resources. For example, rdfs:subClassOf models a sub-
class relationship and rdfs:subPropertyOf models a sub-property relationship
for classes and properties. The classes of the subjects and objects of the triples
with the predicate p can be defined by rdfs:domain and rdfs:range properties
of that predicate. rdfs:range identifies the class of the triples’ objects while
rdfs:domain identifies the class of the triples’ subjects.

Besides an abstract syntax that defines a data model, RDF specification
also defines semantics which provides a basis for reasoning about the mean-
ing of RDF statements. In particular, the RDF specification supports the no-
tions of entailment to provide a basis for defining inference rules in RDF data.
Based on the RDF data and the inference rules, implicit RDF triples can be
derived.

There are different types of entailment rules in RDF. The first type of rules
generalizes triples using blank nodes (blank nodes :b are variables, which
can be used as subjects and/or objects of RDF statements). For example,
RDF triple student hasSupervisor supervisor entails another RDF triple
student hasSupervisor :b. Another type of rules infers triples from the
semantics of built-in classes and properties. For instance, if s rdf:type o
then o is a class: o rdf:type rdfs:Class. Finally, the third type of rules
derives inferred triples from RDFS constraints. The rules derive inferred
triples through the transitivity of class and property inclusions and from
inheritance of domain and range types. Table 1.1 provides some examples of
the entailed triples.

RDEFS Properties Explicit Triple | Implicit Triple
(c1, rdfs:subClassOf, cy) (s, rdf:type, c1) | (s, rdf:type, c2)
(p1, rdfs:subPropertyOf, py) | (s, p1, 0) (s, p2, 0)

(p, rdfs:range, c) (s, p, o) (o, rdf:type, c)

(p, rdfs:domain, c) (s, p, o) (s, rdf:type, c)

Table 1.1: RDFS Entailment Rules

For the data represented using the RDF framework, W3C proposes to
query these data using the SPARQL [3] language. The SPARQL language is
used for RDF graph pattern matching to extract tabular information from a
graph or to construct new RDF graphs. SPARQL has 4 query forms which use
the solutions from pattern matching to represent result sets or RDF graphs.
They are SELECT, CONSTRUCT, ASK and DESCRIBE. The SELECT query
form returns a subset of the variables bound in a query pattern match. The
CONSTRUCT query form returns a new RDF graph constructed using the
triple patterns and variables from a graph pattern. The ASK query form

2



1. Semantic Web

returns a boolean indicating whether a specific query pattern match is found
in the graph or not. The DESCRIBE query form returns an RDF graph that
describes the specific resource.

The latest version of SPARQL 1.1 [7] introduced a new set of features
in comparison with SPARQL 1.0 like the aggregate functions, subqueries,
negation, update queries and federated queries. Aggregates, for example,
calculate values over groups of solutions. Grouping is defined by the GROUP
BY syntax and is defaulted to a single group containing all solutions on the
absence of the GROUP BY statement. Version SPARQL 1.1 defines COUNT,
SUM, MIN, MAX, AVG, GROUP_CONCAT, and SAMPLE aggregates.

SPARQL 1.1 Federated Query W3C Recommendation [4] defines the syn-
tax and semantics of SPARQL 1.1 Federated Query extension for executing
queries distributed over several SPARQL endpoints. The queries are ex-
tended using the SERVICE keyword in SPARQL 1.1 which directs a portion
of the query to another SPARQL endpoint. The results are then combined
with the results from the other portion of the query.

To enable the exploration of the data by persons and/or machines, Tim
Berners-Lee suggested to link data resources on the Web using RDF [8]. He
suggested the following principles for Linked Data:

1. URIs should be used as object identifiers
2. HTTP URIs should be used to look up referenced objects

3. When someone looks up a URI, useful information should be provided
using standards (RDF, SPARQL)

4. Semantic links to other URIs should lead to the discovery of more in-
formation

These 4 principles became recommended best practices for exposing, sharing,
and connecting data, information, and knowledge on the Semantic Web. To
facilitate even greater use of the Linked Data on the Web, it is suggested to
release the data under an open license. Such data is called Linked Open Data
(LOD).

Figure 1.1 represents the latest state of the LOD cloud. This figure depicts
all known RDF datasets that have been published in Linked Data format. As
can be seen, the datasets are highly interconnected. Thus, it is possible to
discover new data or analyze data from different perspective by using the
links between the datasets.

With more and more data available as LOD, companies see the bene-
fit of integrating these data with the data from their proprietary systems
or querying these data to retrieve the information useful in the decision
making process. Typically, the solutions involving the use of external data
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Fig. 1.1: Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae,
Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/

employed semi-automatic methods for on-demand extracting and combin-
ing large amounts of semantic data expressed in RDF into multidimensional
structures suitable for BI analysis. The common architecture of such BI sys-
tems contains an ETL (Extract, Transform and Load) pipeline that extracts,
transforms, and loads data from the external sources into a relational /multi-
dimensional database. Then, Bl systems use OLAP tools in these databases
to analyze the loaded data. However, such an approach has some drawbacks.

First of all, changes in the external data sources may lead to changes in
the structure of a relational database (changes in the schema) and will impact
the entire Extract-Transform-Load process to have the changes propagated.
Second, RDF systems support triples with blank nodes (triples with unknown
components) whereas relational systems require that all attributes either have
some value or null. Third, in comparison to relational systems, native RDF
systems are better at handling the graph-structured RDF model and other
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RDF specifics like entailment, when new information can be derived from
the data using RDF semantics (standard relational databases are limited to
explicit data only). Thus, using relational databases that have been developed
over the decades for manipulating plain, structural data is inappropriate for
storing and processing massive unstructured and semantic rich datasets.

Given the complexity of information needs for BI applications, some
queries can only be answered by retrieving the results stored across different
data sources. With the recent SPARQL 1.1 standard, users may formulate a
single query that accesses data from federated web sources to conduct com-
plex analysis tasks involving grouping, aggregation and retrieval of data from
multiple sources. However, as both aggregate and federated queries have be-
come available only recently, the performance of state-of-the-art triple stores
during the execution of such queries is unacceptable — the queries often time
out or take unjustifiably long to execute. Thus, the optimization of engines
that support these types of queries are desired to ensure the usability of LOD
in BI scenarios. Therefore, in this thesis, we investigate RDF data analyt-
ics over federated data sources in a context of Bl applications considering
the features that have given RDF its popularity, namely heterogeneity, rich
semantics, entailment, ease of publication, etc.

2 Thesis Overview

This section gives an overview of each chapter in this thesis and outline the
overall contributions. An overview of how the chapters build on and relate to
each other is illustrated in Figure 1.2. Chapter 1 introduces the thesis. Chap-
ters 2 to 5 present the main content and contributions of the thesis. Chapter
2 proposes a framework for Exploratory OLAP over RDF data sources and
presents a use case to demonstrate its applicability. The chapter lays the
foundation for further investigation of various aspects of the framework, thus
Chapters 3 and 5 originate from Chapter 2. In Chapter 3, we consider issues
faced by state-of-the-art systems during the execution of aggregate queries
in a federation of SPARQL endpoints, which often lead to timeouts in query
execution, and propose optimizations needed for the efficient processing of
these queries. We identify three strategies suitable for evaluating aggregate
queries in a federated setup and propose a cost model to choose between
them. However, in Chapter 3, we do not consider federations in which mul-
tiple related data sources (with similar data models) are virtually integrated
into a common single logical data source. Thus, in Chapter 4, we address
this issue and propose a solution that enables the analysis of data across mul-
tiple endpoints. Chapter 5 considers an issue of performance optimization
for aggregate SPARQL queries on a single endpoint, unlike Chapters 3 and 4,
which analyze the issue in a federated setup. Performance optimization on
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a single endpoint contributes to the overall efficiency of the framework pro-
posed in Chapter 2 thus we designate a separate chapter of the thesis to this
problem. In Chapter 6, we conclude our investigation for all chapters and de-
fine the outlook for future research. The following subsections provide more
details about Chapters 2 to 5.

\4

Chapter 3
A

Chapter 4

\ 4

\4

\ 4

Chapter 1 Chapter 2 Chapter 5 Chapter 6

Fig. 1.2: Thesis content overview

2.1 Chapter 2: Towards Exploratory OLAP over Linked Open
Data — A Case Study

For many years, BI tools provide fundamental support in analyzing big vol-
umes of information for intelligent decision making. Traditionally, companies
use large multidimensional databases called data warehouses (DW) to store
big volumes of information and Online Analytical Processing tools to analyze
it.

As more and more data sources become available on the Web in form of
LOD, companies see the opportunity to take this information into account.
BI tools should discover and retrieve relevant information and present it to
users to aid in proper analysis of the situation. However, due to the amount
and complexity of data available on the Web, incorporation and utilization of
these data are not easy and straightforward.

In Chapter 2, we introduced the conceptual model of a system for Ex-
ploratory OLAP over RDF data sources. The system builds the required mul-
tidimensional schema of the OLAP cube using such RDF vocabularies as
QB4OLAP [9] and VoID [10]. QB4OLAP is an RDF vocabulary that allows the
publication of multidimensional data. QB4OLAP can represent dimension
levels, level members, roll-up relations between levels and level members,
aggregate functions applied to the measures, etc. Thus, we use QB4OLAP
for building data cube schemas. VoID is an RDF Schema vocabulary for ex-
pressing metadata about RDF datasets. The vocabulary may specify how
RDF data can be accessed using various protocols. Combining these two vo-
cabularies allows the system to identify the endpoints that need to be queried
and build semantic queries routed to necessary data sources.

We have identified four modules needed in such systems. The Global
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Conceptual Schema module contains information about the schema of the
specified data cube expressed in QB4OLAP and VoID vocabularies. It is re-
sponsible for storing appropriate information and providing this information
to other modules of the system. The Semantic Query Processor is a module
of the system that accepts a user query as input and produces a multidimen-
sional SPARQL query using Global Conceptual Schema module for further
processing. The Source Discovery/Schema Builder module is responsible for
deriving a schema of the OLAP cube based on user requirements. This mod-
ule interacts with the user during the schema construction phase. Finally, the
Distributed Query Processing module is responsible for executing queries
over different data sources, merging and computing the final results. Follow-
ing the common approach in distributed database systems [11], we propose
that the Distributed Query Processing module contains a mediator/wrapper
for splitting the user query and executing queries over various data sources.
The results received from the wrappers will then be merged by the mediator
and passed to the user.

Discovering previously unknown data sources for the given data cube is
an important part of Exploratory OLAP systems. In our framework, we pro-
pose to have a dedicated module for the Source Discovery/Schema Building.
We elaborated on existing approaches for RDF source discovery [12-16] and
extended it. We identified three potentially interesting data source discovery
approaches for further investigation. The first approach is querying large
knowledge bases such as DBpedia, Yago, or Freebase to find relevant infor-
mation. Querying knowledge bases for the term of interest may lead to the
discovery of useful sources of data or the necessary information itself. The
second approach for source discovery is querying data management plat-
forms like Datahub which provide an API for searching the data for external
applications. The third approach we considered is querying semantic web
search engines such as Sindice, which also provides an API for searching
data sources.

In this chapter, we presented a use case to demonstrate the applicability of
the proposed framework. We defined future research directions and laid the
foundation for further investigation of various aspects aiming at the develop-
ment of a framework for an efficient Exploratory OLAP solution. In the next
chapters, we consider optimization techniques used to optimize the perfor-
mance of aggregate SPARQL queries in a federated setup and on standalone
endpoints.

2.2 Chapter 3: Processing Aggregate Queries in a Federation
of SPARQL Endpoints

SPARQL 1.1 allows users to formulate a single complex query that involves
grouping, aggregation, and retrieval of data from multiple SPARQL end-
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points. However, state-of-the-art federation systems lack sophisticated op-
timization techniques that facilitate efficient execution of such queries over
large datasets which often ends up with a timeout of a query. Thus, Chapter
3 discusses the challenges and explores optimizations needed for the efficient
processing of aggregate queries in a federation of SPARQL endpoints.

We identify three strategies suitable for evaluating aggregate queries in a
federated setup along with the cost model to choose between them. The first
strategy is based on the mediator join technique, where the query optimizer
at the mediator splits queries into subqueries and sends these subqueries to
the target endpoints. The mediator then combines the results received from
the endpoints, groups and aggregates them, and displays the final results
to the user. The second strategy is based on the bound join or semi-join
[17,18] technique using UNION, FILTER or VALUES constructs. The main
principle of this strategy is to execute the mutually disjoint subqueries with
the smallest results first and use the retrieved results as bindings for the join
variables in other subqueries. The third strategy can be used if an original
query can be decomposed to several subqueries such that partial grouping
and aggregation can be applied to one of these subqueries. The goal is to
reduce the size of the partial results and, consequently, the size of the results
for other queries used in mediator join technique.

To identify the best executing strategy for a given query, the system needs
to estimate the execution cost of all strategies. For this purpose, we use CoDA
(Cost-based Optimizer for Distributed Aggregate Queries) — a cost-based op-
timizer that finds the best execution plan by computing query execution costs
for several alternatives. The cost in CoDA consists of two components — com-
munication and processing costs. The cost components are based on cost
factors and result size estimations retrieved using different statistics. The
cost factors are continuously calibrated using updated statistics and probing
queries.

The comprehensive experiments show that CoDA significantly improves
performance over current state-of-the-art systems. The cost-based optimizer
consistently picks the optimal strategy which results in the successful exe-
cution of the queries over all tested dataset sizes, while other federated sys-
tems often timed out at the same settings. The benefit of the system appears
clearer with the increase in the number of endpoints in the federation — the
CoDA executed all queries where the state-of-the-art systems failed even for
elementary queries.

Chapter 3 initiated our research on SPARQL query processing in a feder-
ated setup. We discussed the challenges and explored optimizations needed
for the efficient processing of aggregate queries in a federation of SPARQL
endpoints. However, in this chapter, we did not consider federations in which
multiple related data sources (with similar data models) are virtually inte-
grated into a common single logical data source to allow for the integrated

8
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reporting of the data from those multiple sources. In relational terms, this
setup is called a horizontal federation. Thus, we continued our investigation
of analytical SPARQL query processing in a federated setup in Chapter 4 by
addressing the issue of supporting analytical SPARQL queries over virtually
integrated multiple data sources with similar data models.

2.3 Chapter 4: Efficient Support of Analytical SPARQL
Queries in Federated Systems

Public data is considered to be one of the resources to put economies onto a
high and sustainable growth path. International institutions such as UN, EU,
the World Bank as well as governments of many countries openly publish
data related to geographical information, statistics, weather data, data from
publicly funded research projects, etc. Thus, we can often find related data at
multiple endpoints. Therefore, in Chapter 4, we consider federated systems
where multiple endpoints contribute data for a common “aspect” (dimen-
sions, hierarchies, facts, etc.) and propose LITE (OLAP-style AnalytIcs in
a FederaTion of SPARQL Endpoints) — a system for computing aggregate
SPARQL queries over a federation of SPARQL endpoints. As a typical sce-
nario, consider a setup when each endpoint in a federation contains statistics
or census data of a single country. In this case, LITE enables the analysis
of data across these endpoints (i.e. countries) using new dimensions or hi-
erarchies like aggregating data at the continent level. In particular, LITE is
able to integrate the diverse schemas of SPARQL endpoints and provide ac-
cess to the data via OLAP-style hierarchies to enable uniform, efficient, and
powerful analytics.

LITE is designed to provide an efficient support of analytical queries over
federations of SPARQL endpoints. It is a native RDF/SPARQL-based ap-
proach that uses a mediated (global) schema comprising (the relevant parts
of) all heterogeneous source schemas (local schemas). A user of LITE does no
longer have to be aware of the underlying federation of SPARQL endpoints
but can conveniently formulate a query on the global schema and the system
will automatically take care of all actions that are necessary to retrieve the fi-
nal result. For this purpose, LITE models source and target schemas as RDF
schema graphs that highlights the structure of the data available for the anal-
ysis. It then divides local and global schemas to meaningful fragments — the
subgraphs that reflect same core concepts in schemas, like a hierarchy step —
and maps these fragments to each other. We extend the SPARQL Inferencing
Notation (SPIN) Syntax vocabulary [20] to map schema fragments and link to
each other nodes in global and local schemas and introduce several property
names for this purpose. The extended SPIN vocabulary not only allows us
to encode and map graph patterns of arbitrary complexity, but also to repre-
sent fragments that reside on a remote endpoints to truly enable a federated

9
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setup.

With schema mappings specified, LITE can rewrite user queries defined
over the global schema to corresponding queries over local datasets. The
query rewriting algorithm identifies the global schema subgraph that corre-
sponds to the user query by matching the graph patterns of the user query
against the RDF schema graph. Then, it identifies the subset of the global
schema fragments that constitute the previously identified subgraph. Using
these schema fragments and the defined mapping among the schema frag-
ments, LITE builds a subgraph of the local schema that corresponds to the
global query for every related data source. Next, the algorithm generates the
new query over the local data source based on global query and local schema
subgraph. Afterward, LITE applies heuristics to optimize rewritten queries.
The aggregate functions in the query are rewritten accordingly. For instance,
a non-distributive function AVG will be rewritten using SUM and COUNT.
During query rewriting, LITE also applies RDFS rules to account for implic-
itly defined hierarchies in local datasets (those identified with rdfs:subClassOf
and rdfs:subPropertyOf predicates). Finally, these queries are executed and
the results from remote endpoints are merged by the mediator node.

The experimental evaluation of LITE show that it can significantly op-
timize analytical queries in a federated setup. We observed that with the
increase of the nodes in a federated system, LITE is capable of showing sta-
ble and reliable performance while state-of-the-art systems fail in the same
settings. The advantage of LITE is even more evident for queries that retrieve
hierarchical data from remote endpoints. In comparison with the tested sys-
tem, LITE was up to 7x times faster and scaled well when the data volumes
and number of endpoints grew.

In Chapter 4, we continued our research started in Chapter 3. We de-
signed a system to enable the analysis of related data across different SPARQL
endpoints by building a virtually integrated schema over heterogeneous
source schemas and rewriting a user query to corresponding local queries.
Our approach also takes into the account RDF specifics. However, when ex-
perimenting with analytical queries, we noticed that the endpoints process
and aggregate large volumes of data which leads to high response times.
Thus we decided to address the issue of performance optimization on sin-
gle endpoints to decrease the overall execution time for aggregate SPARQL
queries in a federated setup. We considered the optimization of aggregate
SPARQL query execution using materialized views in the next chapter.

2.4 Chapter 5: Optimizing Aggregate SPARQL Queries Us-
ing Materialized RDF Views

Naturally, SPARQL endpoints are publicly available and allow the execution
of the queries of any complexity. Therefore, the endpoints on the Web may be

10
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exposed to heavy workloads. Such workloads may affect the performance of
SPARQL endpoints and be the cause of their low availability [19]. To address
this problem, materialized views can be created and used as a source of
precomputed partial results during query processing, thus helping to answer
queries using less computational resources.

Chapter 5 presents MARVEL (MAterialized Rdf Views with Entailment
and incompLetness) — a materialized view selection and analytical SPARQL
query rewriting approach for RDF data. Unlike materialized view techniques
proposed for relational databases, MARVEL supports RDF specifics, such as
incompleteness and the need to support implicit (derived) information. The
approach consists of a view selection algorithm based on an associated RDF-
specific cost model, a view definition syntax, and an algorithm for rewriting
SPARQL queries using materialized RDF views.

Dependencies between all possible views are represented using a data
cube lattice — a schema with connected nodes, where a node represents an
aggregation by a given combination of dimensions. The lattice formalizes
which views (nodes) can be used to evaluate a user query — given a query
grouping (GROUP BY), the lattice node with the exact same grouping (and
its ancestors) can be used. We use the number of triples contained in the
materialized view used to answer the query as its cost. However, in the
cost model, we also account for RDF specifics, such as incomplete views
and complex and indirect hierarchies. We use QB4OLAP to describe the
schema of the dataset and extend this schema with information about the
completeness of levels, the patterns for defining hierarchy steps, the types of
hierarchy levels, etc. Before selecting the views to materialize we account for
derived triples (based on existing data and specified semantics only) as these
triples constitute the part of the graph. Our algorithm selects N views with
the maximum benefit for materialization.

Since RDF views need to be stored as RDF triples, the new triples that
constitute views must be created based on the aggregated information. View
defining queries for aggregate views are more complex than views for con-
junctive queries due to the need to group and aggregate the original data.
Additionally, aggregate queries return data in a tabular format, not triples.
Thus, the views need to define a new graph structure using the CONSTRUCT
clause. The subjects of new triples are created by combining the values for
variables in the GROUP BY clause of a SELECT query since the combination
of these values is unique.

After materialization, the views can be used to answer user queries. Our
query rewriting approach consists of two algorithms: for identifying the best
view and for rewriting the query using the selected view. To rewrite a user
query, we compare the hierarchy levels of views and the user query and
identify the views where the hierarchy levels of all dimensions defined in
the view do not exceed the needed hierarchy levels of the query and that the

11



Chapter 1. Introduction

set of aggregate expressions defined in a view can be used to compute the
aggregations defined in the query. Among appropriate views we select the
view with the minimum cost. Then, we rewrite a user query by replacing the
common roll-up path of the selected view and the user query by the triple
patterns from the CONSTRUCT clause of the view. Our algorithm also com-
pares the aggregate functions of the query and the view and identifies those
that are needed for rewriting. We also account for the type of the function —
algebraic or distributive. The triple patterns of the view are placed inside the
GRAPH statement of the rewritten query to account for the different storage
of the view triples.

The experimental results showed the advantage of using MARVEL for
improving query performance. The evaluation over adapted LUBM and SSB
benchmark datasets show that evaluating queries over materialized views is
on average 3-11 times faster than evaluating the queries over raw data.

In this thesis, we concentrated on optimizing the performance of analyti-
cal SPARQL queries. We intended to optimize the performance of aggregate
queries in a federated setup since more and more data on the Web are in-
terlinked. Thus, Chapters 3 and 4 investigated analytical query performance
optimization in federated setup. On the other hand, optimizing the perfor-
mance of aggregate SPARQL queries in a federation can not be achieved with-
out optimizing the performance of aggregate queries on a single endpoint.
Therefore, in Chapter 5, we concentrated on optimizing the performance for
aggregate queries on standalone endpoints. In Chapter 6, we conclude our
investigation and define the outlook for future research.

3 Structure of the Thesis

The thesis is organized as a collection of individual papers. Each chapter
is self-contained and can be read separately. There may be some overlap
of concepts, examples, and texts in the introduction and the section related
to used notations in Chapters 4 and 5 as they are formulated in relatively
similar kind of settings and remain in each chapter for self-containment. The
chapters have been modified during the integration to include additional ma-
terials and experiments. Additionally, the bibliographies of each chapter have
been combined into one, and references to “this paper” have been changed
to references to “this chapter”.

The papers included in this thesis are listed in the following. Chapter 2 is
based on Paper 1, Chapter 3 is based on Paper 2, Chapter 4 is based on Paper
3, and Chapter 5 is based on Paper 4.

1. Dilshod Ibragimov, Katja Hose, Torben Bach Pedersen, and Esteban
Ziméanyi. Towards Exploratory OLAP Over Linked Open Data - A Case
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Study. In International Workshops on Enabling Real-Time Business Intel-
ligence (BIRTE), Riva del Garda, Italy, 2013, and Hangzhou, China, 2014,
Revised Selected Papers, pages 114-132.

. Dilshod Ibragimov, Katja Hose, Torben Bach Pedersen, and Esteban
Ziméanyi. Processing Aggregate Queries in a Federation of SPARQL
Endpoints. In 12th European Semantic Web Conference, (ESWC 2015), Por-
toroz, Slovenia, pages 269-285, 2015

. Dilshod Ibragimov, Katja Hose, Torben Bach Pedersen, and Esteban
Ziményi. Efficient Support of Analytical SPARQL Queries in Federated
Systems. In preparation for a conference submission

. Dilshod Ibragimov, Katja Hose, Torben Bach Pedersen, and Esteban
Ziményi. Optimizing Aggregate SPARQL Queries Using Materialized
RDF Views. In 15th International Semantic Web Conference, (ISWC 2016)
Kobe, Japan, pages 341-359(1), 2016
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Chapter 2.

Abstract

Business Intelligence (BI) tools provide fundamental support for analyzing large vol-
umes of information. Data Warehouses (DW) and Online Analytical Processing
(OLAP) tools are used to store and analyze data. Nowadays more and more informa-
tion is available on the Web in the form of Resource Description Framework (RDF),
and BI tools have a huge potential of achieving better results by integrating real-
time data from web sources into the analysis process. In this chapter, we describe a
framework for so-called exploratory OLAP over RDF sources. We propose a system
that uses a multidimensional schema of the OLAP cube expressed in RDF vocabular-
ies. Based on this information the system is able to query data sources, extract and
aggqregate data, and build a cube. We also propose a computer-aided process for dis-
covering previously unknown data sources and building a multidimensional schema
of the cube. We present a use case to demonstrate the applicability of the approach.

1 Introduction

In the business domain, there is a constant need to analyze big volumes of
information for intelligent decision making. Business intelligence tools pro-
vide fundamental support in this direction. In general, companies use data
warehouses to store big volumes of information and OLAP tools to analyze
it. Data in such systems are generated by feeding operational data of en-
terprises into data warehouses. Then, OLAP queries are run over data to
generate business reports. Multidimensional Expressions (MDX) query lan-
guage is the de-facto standard for OLAP querying.

Traditionally, such analyses are performed in a “closed-world” scenario,
based only on internal data. With the advent of the Web, more and more data
became available online. These data may be related to, for example, the mar-
ket, competitors, customer opinions (e.g., tweets, forum posts), etc. Initially,
these data were not suitable for machine processing. Later, a framework that
extends the principles of the Web from documents to data converting the
Web of Documents into the Web of Data was proposed. According to the
standards, to facilitate a discovery of the published data, these data should
comply with the Linked Data principles [1]. RDF was chosen as a standard
model for data interchange on the Web [21]. With these principles in action,
the whole Internet may be considered as one huge distributed dataspace.

With data being publicly available, businesses see the benefits of incor-
porating additional, real-time data into the context of information received
from data warehouses or analyzing these data independently. Companies
may explore new data opportunities and include new data sources into busi-
ness analyses. A new type of OLAP that performs discovery, acquisition,
integration, and analytical querying of new external data is necessary. This
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type of OLAP was termed Exploratory OLAP [5].

In the past years the scientific community has been working on bringing
these new BI concepts to end-users. The main focus of research was provid-
ing an easy and flexible access to different data sources (internal and external)
for non-skilled users so that the users can express their analytical needs and
the system is able to produce data cubes on-demand. Optimally, the internal
complexity of such systems should be transparent to end-users.

In [22] a vision to new generation BI and a framework to support self-
service Bl was proposed. The process, according to this framework, is di-
vided into several steps and consists of query formulation, source discov-
ery and selection, data acquisition, data integration, and cube presentation
phases. Based on this framework, we propose our approach to performing
exploratory OLAP over Linked Open Data (LOD). For the sake of simplicity,
our scenario considers only data available in RDF format and accessible over
SPARQL endpoints [23].

The novel contribution of this chapter are:

— We define a multidimensional schema of an OLAP cube exclusively
in RDE This multidimensional schema allows to define remote data
sources for querying during the OLAP analysis phase.

— We propose a computer-aided approach to deriving the schema of the
OLAP cube from previously unknown sources.

The remainder of the chapter is structured as follows: in Section 2, we
introduce a case study for exploratory OLAP scenario where the multidi-
mensional schema and sources of data are already known. We show how we
can retrieve data and build an OLAP cube. In Section 3, we propose ideas
for sources discovery and schema generation for such cases. In Section 4, we
present a conceptual framework for achieving exploratory OLAP over LOD.
In Section 5, we discuss the related work. Finally, in Section 6, we conclude
this chapter and identify future work.

2 A Movie Case Study

This scenario is based on the dataset originating from the Linked Movie
Database! (LinkedMDB) website, which provides information about movies.
LinkedMDB publishes Linked Open Data for movies, including a large num-
ber of interlinks to several datasets on the LOD cloud and references to re-
lated webpages. Data can be queried using a SPARQL endpoint?.

Ihttp://data.linkedmdb.org
Zhttp://data.linkedmdb. org/sparql
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A typical movie record contains information about the movie, the actors
who played in the movie, the director of the movie, the genre, the initial re-
lease date, the runtime, the country where it was produced, etc. An example
record for the movie “The Order”? stored in LinkedMDB is as follows (all the

film
PK | filmid
country
title
runtime PK | country_id
language »
initial_release_date country_capital
country country_currency
FK3 | writer_writerid country_continent
FK6 [ director_directorid
FK7 |actor_actorid
FK1 [ producerid "
FK2 | film_formatid writer
FK4 gef"e',d P PK | writer_writerid
FK5 | editorid
FK8 [ country_id

writer_name

Fig. 2.1: Partial LinkedMDB logical schema

prefixes used in the chapter are listed in the appendix):

<http://data.linkedmdb.org/resource/film/1005> rdf:type movie:film ;
movie:actor <http://data.linkedmdb.org/resource/actor/32063> ;
movie:actor <http://data.linkedmdb.org/resource/actor/42288> ;
foaf :based_near <http://sws.geonames.org/2921044/> ;
movie:country <http://data.linkedmdb.org/resource/country/DE> ;

dc:date €€2003,2003-09-05°° ;

:director <http://data.linkedmdb.org/resource/director/9091> ;
:film_cut <http://data.linkedmdb.org/resource/film_cut/15031> ;
:filmid €€1005°°~~xsd:int
:genre <http://data.linkedmdb.org/resource/film_genre/28> ;
initial_release_date ¢¢2003,2003-09-05°’ ;
rdfs:label ¢‘The Order’’ ;

movie
movie
movie
movie
movie:

5

movie:language <http://www.lingvoj.org/lingvo/en> ;
foaf:page <http://www.imdb.com/title/tt0304711> ;

movie:runtime
¢¢The Order’’

dc:title

A partial logical schema of the LinkedMDB is given in Figure 2.1. Linked-
MBDB also contains links to other datasets using the property owl:sameAs. For

610277

Shttp://data.linkedmdb.org/resource/film/1005
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example, a country information is interlinked to GeoNames*. Based on the
analysis of GeoNames, the partial logical schema of GeoNames is illustrated
in Figure 2.2.

Suppose a user wants to analyze data about movies. Examples of typical
queries could be:

— Average runtime for movies by movie director and country
— Number of movies by continent and year

N.B.: She may want to do it in the context of information retrievable from
GeoNames.

For this purpose, the user may want
to construct a virtual data cube. Data will
be retrieved from two sources: Linked-
MDB and GeoNames. The data cube is
considered virtual because data are not

GeoNames

PK | rdfs:isDefinedBy

. 1. . . eo:alternateName
materialized in the local system. This geo:shormame
data cube accepts user queries, queries geosofficialName

. . . geo:name

the data sources, retrieves the information, geo:wikipediaArticle

: . geo:population
processes it, and answers user queries. wis84, posiat
The multidimensional schema of such wgs84_pos:long

. . . . rdfs:seeAlso

a data cube is given in Figure 2.3. The geo:countryCode
schema describes the dimensions: Country
(Population, Country Name), Release

Date (Year, Quarter, Month), Director,
Actor, Script Writer and the measure:
Runtime.

Knowing the structure of the cube, a
user wants to find the average runtime for movies by director and country.
She issues an MDX query as shown in Listing 2.1:

Fig. 2.2: Partial GeoNames logical
schema

WITH MEMBER Measures.AvgRuntime AS Avg(Film.Director.CurrentMember, Measures.Runtime)
SELECT NON EMPTY {Film.Director.Members} ON COLUMNS,

NON EMPTY {Film.Country.Members} ON ROWS
FROM [MoviesDataWarehouse] WHERE (Measures.AvgRuntime);

Listing 2.1: MDX Query on the Data Cube

Data on the Web are mostly stored and retrieved as RDF and not as rela-
tional data. Therefore, we propose to use a fully RDF-based approach for
exploratory OLAP over LOD sources and to analyze data without converting
them to relational data and storing them in a local data warehouse. Addi-
tionally, loading and storing highly volatile, real-time data in a local system
may not be practical.

4http://www.geonames.org/
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Actor (movie:actor) Director (movie:director)
ActorID (movie:actor_actorid) -
DirectoriD
ReleaseDate : P . .
PersonName (rdfs:label) (movie:director_directorid)
Date (movie:initial_release_date I PersonName (rdfs:label)
Calendar
Film (movie:film)
Month FilmiD (movie:filmid)
MonthNumber FilmName (rdfs:label)
MonthName Runtime (movie:runtime)
Y Language (movie:language)
Release -~
Quarter (movie:initial_release_date) Country (movie:country)
Actor (movie:actor) i :
Quarter Director (movie:director) CountryName (geo:officialName)
Y \f CountryCode (geo:countryCode)
Population (geo:population
Semester P (gec:pop )
Semester Script Writer (movie:writer)
Y ScriptWriterlD
Year (movie:writer_writerid)
PersonName (rdfs:label)
Year

Fig. 2.3: Conceptual schema of the data cube

In our case study we use RDF vocabularies such as QB4OLAP [9] and
VoID [10] to describe the multidimensional schema. QB4OLAP is an RDF
vocabulary that allows the publication of multidimensional data. QB4OLAP
can represent dimension levels, level members, rollup relations between lev-
els and level members, etc. QB4OLAP can also associate aggregate functions
to measures. VoID is an RDF Schema vocabulary for expressing metadata
about RDF datasets. The vocabulary may specify how RDF data can be ac-
cessed using various protocols. For example, the SPARQL endpoint location
can be specified by the property void:sparqlEndpoint. Based on the infor-
mation from the multidimensional schema, the system will be able to identify
the sources and query them. An excerpt of the multidimensional schema for
our running example, expressed in the QB4OLAP and VoID vocabularies, is
given in Listing 2.2.

## Data structure definition and dimensions ## Dimension Properties and Hierarchies
exqgb:FilmCube a gb:DataStructureDefinition ; exqgb:year a gb4o:LevelProperty ;
void:sparqlEndpoint skos:closeMatch db:Year ;
<http://data.linkedmdb.org/sparql> ; rdfs:comment "Film release year'"Qen ;
## Dimensions gqb4o:inDimension exqb:ReleaseDate .
gb:component [qb:dimension exqgb:Actorl; exqb:quarter a gb4o:LevelProperty ;
qb:component [gb:dimension exqb:ReleaseDatel; rdfs:comment "Film release quarter"Qen ;
qb:component [gb:dimension exgb:Director]; qb4o:inDimension exqb:ReleaseDate .
gb:component [gb:dimension exqb:Countryl; exqb:ReleaseDate a gb:DimensionProperty .
## Definition of measures exgb:Actor a gb:DimensionProperty ;
gb:component [gb:measure exgb:Runtime]; skos:mappingRelation movie:actor ;
## Attributes rdfs:seellso owl:samels ;
gb:component [gb:attribute exqgb:FilmName] . gb4o:hasAttribute exgb:PersonName .

Listing 2.2: Multidimensional Schema Expressed in QB4OLAP

20



2. A Movie Case Study

To answer the MDX query, the system needs to send SPARQL queries to
remote data endpoints for data retrieval. To do this, it first finds appropri-
ate information for the measures and the dimensions specified in the MDX
query from the multidimensional schema. The system finds the sources of
data for dimensions /measures (void:sparqlEndpoint), all the attributes
(gb4o:hasAttribute), the mapping information to map these attributes to
the source equivalents (skos:mappingRelation), etc. For instance, for the
MDX query given in Listing 2.1 the system needs to find the information
about the Runtime measure and the Director and the Country dimensions.
Then, the system sends SPARQL queries to the LinkedMBD and the GeoN-
ames SPARQL endpoints. The query that is sent to LinkedMDB to retrieve
the information regarding dimensions, attributes, and measures is given in
Listing 2.3.

### Retrieving attributes, dimensions, and measures
CONSTRUCT {
?movieUrl exgb:Runtime ?runtime . ?movielUrl exqgb:FilmName ?movieName .
?movieUrl exgb:Country ?country . Zcountry owl:sameAs ZowlCountry .
?movieUrl exgb:Director ?directorID . ?directorID exqgb:PersonName ?directorName .
} WHERE {
?movieUrl rdf:type movie:film . ?movieUrl movie:country ?country .
7country owl:sameds 7owlCountry . ?movieUrl rdfs:label ?movieName .
?movieUrl movie:runtime ?runtime . ?movieUrl movie:director ?directorID .
?directorID rdfs:label ?directorName .

Listing 2.3: SPARQL Query to LinkedMDB

This query uses the CONSTRUCT clause to automatically create triples. These
triples specify the dimension attributes and therefore can easily be copied
to the final QB4OLAP structure. An excerpt from the result returned to the
system for the query is as follows:

<rdf:Description rdf:about="http://data.linkedmdb.org/resource/film/930">
<exqb:FilmName>Godfather</exqb:FilmName>
<exgb:Director rdf:resource="http://data.linkedmdb.org/resource/director/448"/>
<exgb:Country rdf:resource="http://data.linkedmdb.org/resource/country/IN"/>
<exqgb:Runtime>158</exqgb:Runtime>

</rdf :Description>

<rdf:Description rdf:about="http://data.linkedmdb.org/resource/film/2939">
<exgb:Director rdf:resource="http://data.linkedmdb.org/resource/director/10494"/>
<exqb:Runtime>120</exqb:Runtime>
<exqb:FilmName>Raincoat</exqb:FilmName>
<exqgb:Country rdf:resource="http://data.linkedmdb.org/resource/country/IN"/>

</rdf :Description>

<rdf:Description rdf:about="http://data.linkedmdb.org/resource/director/448">
<exqgb:PersonName>K. S. Ravikumar (Director)</exqb:PersonName>

</rdf :Description>

<rdf:Description rdf:about="http://data.linkedmdb.org/resource/director/10494">
<exqgb:PersonName>Rituparno Ghosh (Director)</exqb:PersonName>

</rdf :Description>

<rdf:Description rdf:about="http://data.linkedmdb.org/resource/country/IN">
<owl:sameAs rdf:resource="http://sws.geonames.org/1269750/"/>

</rdf :Description>

21



Chapter 2.

Then, the data from GeoNames may be downloaded. In our running ex-
ample the system uses the URI received from the “owlCountry” property
and use it in the VALUES statement of the SPARQL query. We use a VALUES
statement to group several arguments together in one query. Our goal is
to send as few queries as possible. Since GeoNames does not have an
associated SPARQL endpoint, the query is sent to the mirrored endpoint
(http://1lod2.openlinksw.com/sparql):

CONSTRUCT {
?s geo:countryCode 70l . 7s geo:name 702 . 7s geo:population 703 .

} WHERE {

?s geo:countryCode 70l . 7s geo:name 702 . 7s geo:population 703 .

VALUES (?s){ (<http://sws.geonames.org/1149361/>) ... (<http://sws.geonames.org/1269750/>) }
}

Listing 2.4: SPARQL Query to GeoNames

This query returns information about the country’s population, name, and
code. A sample answer may look as follows:

<http://sws.geonames.org/1149361/> geo:countryCode "AF" ;
geo:name "Islamic Republic of Afghanistan" ;
geo:population "29121286" .

The data obtained from the two sources are merged into a QB4OLAP struc-
ture: all received facts may be stored as qb:0Observation instances (in OLAP
terminology this corresponds to facts indexed by dimensions), all dimen-
sion instances are stored as triples. The aggregated values for measures are
computed based on the gb4o:AggregateFunction function type. A sample
QB4OLAP structure is given in Listing 2.5:

<http://data.linkedmdb.org/resource/film/810> a gb:0bservation;
gb:dataSet exqb:MoviesDataWarehouse ;
exgb:Director < http://data.linkedmdb.org/resource/director/8629> ;
exgb:Runtime 188;
exgb:Country < http://data.linkedmdb.org/resource/country/IN> .
http://data.linkedmdb.org/resource/film/930> a qb:0Observation;
gb:dataSet exqgb:MoviesDataWarehouse ;
exgb:Director < http://data.linkedmdb.org/resource/director/448> ;
exgb:Runtime 158;
exqgb:Country < http://data.linkedmdb.org/resource/country/IN> .
<http://data.linkedmdb.org/resource/country/IN>
exqb:CountryName "India" ;
exqgb:CountryCode "IN" ;
exqgb:Population "1173108018" .
<http://data.linkedmdb.org/resource/director/448>
exqgb:PersonName "K. S. Ravikumar (Director)" .

Listing 2.5: Observations in QB4OLAP
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Table 2.1: Aggregated Values

Great India | United Venezuela | Pakistan | Russia Netherlands
Britain States

Sally Potter (Director) 86 96

Robert Aldrich (Director) 88

Romén Chalbaud (Director) 93

Roland Joffé (Director) 87

Gerald Thomas (Director) 78 83

In case the number of returned triples is large and cannot be handled by
a SPARQL endpoint or transferred over the Internet, the system can send
aggregate subqueries to the sources. The aggregation can be performed on
the graph patterns used for joining several federated SPARQL subqueries.
This will help to reduce the number of records for which the values from the
endpoints will be transferred. For example, the following subqueries return
aggregate values (left) and additional information (right) on the runtime of
the movies by director and country. The results can be connected via the

values of the 7owlCountry.
SELECT AVG(7runtime) ?dirName ?owlCountry

WHERE { SELECT ?owlCountry ?code ?c_name ?pop
?movUrl exqgb:Runtime ?runtime . WHERE {
?movUrl exqgb:Country 7country . ?owlCountry geo:countryCode ?code .
?cntr owl:sameAs ?owlCountry . ?owlCountry geo:name ?c_name .
?movUrl exgb:Director ?dirID . ?owlCountry geo:population ?pop
?dirID exgb:PersonlName 7dirName . }

} GROUP BY 7dirName ?owlCountry

Listing 2.6: Aggregate and Informational Subqueries

The intermediate results of the execution of the subqueries may be stored in
an in-memory table. Then, the results of the execution of the subqueries will
be merged into the QB4OLAP structure. Based on these data, the computed
aggregated values are returned back to a user of the system. A sample answer
to the previous MDX query may look as shown in Table 2.1.

3 Source Discovery and Schema Building for Ex-
ploratory OLAP

In the case study introduced in Section 2 we assume that the data sources
and the multidimensional schema of the OLAP cube are known. However,
in reality the discovery of essential data sources is not a trivial task. Despite
the fact that the publication of Linked Data has gained momentum in recent
years, there is still no single approach on how these data should be published
to be easily discoverable. We identified three potentially interesting data
source discovery approaches for further investigation. In all three approaches
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Table 2.2: Freebase Query Partial Results

?s 2l ?count
http://rdf.freebase.com/ns/m.02nsjl9 Film character 2001832
http://rdf.freebase.com/ns/film.film/character | Film character 1384754
http://rdf.freebase.com/ns/film.actor Film actor 874840
http://rdf.basekb.com/ns/m.0jsg30 Film performance | 673398
http://rdf.freebase.com/ns/film.film Film 557505
http://rdf.freebase.com/ns/m.0jsg4j Film actor 492249
http://rdf.freebase.com/ns/film.film_crew_gig | Film crew gig 456500
http://rdf.basekb.com/ns/m.02nsj19 Film character 410669
http://rdf .basekb.com/ns/m.0jsgsj Film actor 215777
http://rdf.freebase.com/ns/m.02_6znl Film crewmember | 205938

described below we show how we can derive a schema of the OLAP cube for
the scenario discussed in Section 2.

3.1 Querying Knowledge Bases

The first approach is querying large knowledge bases such as DBpedia®,
Yago®, or Freebase’ to find relevant information. Data from such knowledge
bases are usually freely accessible over SPARQL endpoints. Querying these
endpoints for the term of interest may lead to the discovery of useful sources
of data or the necessary information itself. Since the number of answers that
come from these sources may be extremely large and not always relevant,
there is a need for filtering the answers. Also, since the user entry may be
ambiguous due to the ambiguity and complexity of natural languages, the
end user needs to guide the process of source discovery by selecting most
appropriate alternatives for further investigation.

To find some relevant information about the term “Film”, we can send the
following SPARQL query to the Freebase SPARQL endpoint:
SELECT ?s 71 COUNT(?s) as ?count
WHERE {

?someobj ?p ?s . 7s rdfs:label 71 .

FILTER(CONTAINS(?71, "Film") && (lang(?1) = ’en’) && (!isLiteral(?someobj))) .
} ORDER BY DESC(?count) LIMIT 20

This query is optimized to allow sorting by relevance using the COUNT func-
tion so that the user sees the most relevant answers first. The partial result of
the query is given in Table 2.2.

By examining the returned answer, the user may find some interesting
triples and may want to explore these triples further. The system at this stage

Shttp://dbpedia.org/About
®http://www.mpi-inf.mpg.de/yago-naga/yago/
"http://www.freebase.com/
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Table 2.3: Freebase Movie Instances

?s ’p ?0

http://rdf .freebase.com/ns/m.0pj5t | rdfs:label | Falling Down
http://rdf.freebase.com/ns/m.0swhj | rdfs:label | A Charlie Brown Christmas
http://rdf .freebase.com/ns/m.0m2kd | rdfs:label | Stand by Me
http://rdf.freebase.com/ns/m.07cz2 | rdfs:label | The Matrix
http://rdf.freebase.com/ns/m.0c296 | rdfs:label | Amélie
http://rdf.freebase.com/ns/m.0prk8 | rdfs:label | Hamlet

http://rdf .freebase.com/ns/m.0j90s | rdfs:label | Guess Who's Coming to Dinner
http://rdf.freebase.com/ns/m.02yxx | rdfs:label | Fearless
http://rdf.freebase.com/ns/m.0p9rz | rdfs:label | Romeo and Juliet
http://rdf.freebase.com/ns/m.0symg | rdfs:label | Dead Man

helps the user to do so. For example, several triples should be retrieved for
further exploration. In our case, one of the triples has a subject equal to
<http://rdf.freebase.com/ns/film.film>. The following query returns
several instances related to the triple pattern of interest:

SELECT ?s ?p 7o

WHERE {

?s 7p %o . ?s ns:type.object.type ns:film.film . FILTER (lang(?o) = ’en’).
} LIMIT 10

The result of the execution of the query is given in Table 2.3.

If the user decides that the selected samples satisfy the needs, the user is
aided in building a multidimensional model of the OLAP cube. Our propo-
sition for building a graph representation of the source is based on character-
istic sets (CS) (Neumann and Moerkotte [14]), which contain the properties
of RDF data triples for triple subjects. The system should also offer possible
candidates for measures, dimensions, and dimensional attributes, identify-
ing all triples related to the instances, their data types, etc. Then the user
chooses the schema that most closely reflects the needs or directs the system
for further search. In our example, the user may encounter properties of in-
terest such as runtime, director, actors, and country by exploring the instance
properties of the class ns:film.film:

ns:m.0c296 ns:film.film.country ns:m.0345h;

ns:film.film.directed_by ns:m.0k181;

ns:film.film.edited_by ns:m.07nwly6;

ns:film.film.genre ns:m.05p553;

ns:film.film.initial_release_date "12001-04-25"""xsd:datetime;
ns:film.film.runtime..film.film_cut.runtime ns:122.0;

ns:film.film.starring..film.performance.actor ns:m.01y9t4;
ns:film.film.starring..film.performance.actor ns:m.0jtcpe;

The whole process of discovering the sources and building the multidimen-
sional schema needs to be guided by a user.
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3.2 Querying Data Management Platforms

The second approach for source discovery is querying so-called data man-
agement platforms. One such platform is the Datahub®~the platform based
on the CKAN? registry system. CKAN is an open source registry system
that allows storing, distributing, and searching of the contents for spread-
sheets and datasets. Search and faceting features allow users to browse
and find the data they need. CKAN provides an API that can be used
for searching the data by applications. For instance, CKAN’s Action API
provides functions for searching for packages or resources matching a user
query. Using the Action API, we can list all the datasets (packages) resid-
ing in the system (http://datahub.io/api/3/action/package_list), view
the dataset descriptions (http://datahub.io/api/3/action/package_show?
id=linkedmdb), or search for datasets matching the search query (http:
//datahub.io/api/3/action/package_search?q=Film). The answer is re-
turned in JSON format.

Querying the Datahub for a “Film” string returns 99 results, where
5 results have SPARQL endpoints: Prelinger Archives (http://api.
kasabi.com/dataset/prelinger-archives/apis/sparql), Linked Movie
Database (http://data.linkedmdb.org/sparql), DBpedia-Live (http://
live.dbpedia.org/sparql), Europeana Linked Open Data (http://
europeana.ontotext.com/sparql), and DBpedia (http://dbpedia.org/
sparql). By retrieving several instances of triple patterns and identifying
corresponding properties (the same process as proposed for querying knowl-
edge bases), we may define the multidimensional schema needed for the
OLAP cube.

3.3 Querying Semantic Web Search Engines

The third approach for sources discovery is querying semantic web search
engines. An example of such search engines is Sindice!'?, which also pro-
vides a Search API (http://sindice.com/developers/searchapiv3) using
a query language (http://sindice.com/developers/queryLanguage). The
Search API provides programmatic access to search capabilities of the search
engine and returns the result in one of three formats: JSON, RDF, or ATOM.
This API supports a keyword search to facilitate the discovery of relevant
documents that contain either a keyword or a URIL The query language sup-
ports filtering the search results by URL, domain, class, predicate, ontology,
etc. and grouping the search results by datasets.

Querying Sindice for the “Film” string returns many results (582,883),

8http://datahub.io
http://ckan.org/
DOhttp://sindice.com/
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4. Conceptual Framework

Fig. 2.5: Data Integration

Fig. 2.4: Functional View

mostly individual triples, but grouping the results by datasets allows identi-
fying the datasets for further exploration. The following query to Sindice re-
veals the Linked Movie Database dataset (http://data.linkedmdb.org) for
further exploration among others: http://api.sindice.com/v3/search?q=
Film&format=json&fq=format)3ARDF&page=6&facet.field=domain

After discovering a proper source of information, we should apply the
process of building the multidimensional schema of the OLAP cube.

4 Conceptual Framework

The main functionality of an exploratory OLAP system is illustrated in Fig-
ure 2.4. Here we assume that there may (optionally) exist some internal data
depicted as a cube with dotted lines. These data may serve as a foundation
for further exploration. A user may want to enrich/supplement these data by
external data from the Web. Ideally, the system should be able to retrieve data
stored in any format (HTML, XML, CSV, RDE etc.). In Figure 2.4 these data
are depicted as small colored cubes which extend the internal cube. This re-
quirement imposes additional complexity over the system, so the part of the
system that is responsible for exploratory OLAP can be further subdivided
into several subparts, each handling another data format. In this chapter
we concentrate on Linked Open Data and we describe our vision on how to
achieve exploratory OLAP over Linked Open Data.

The envisioned architecture for the exploratory OLAP over Linked Open
Data system is sketched in Figure 2.6. The system consists of four main mod-
ules. The Global Conceptual Schema module contains information about the
schema of the specified data cube. In particular, it contains information about
the measures, the dimensions and hierarchies in the dimensions, the poten-
tial aggregation functions over the measures, and pointers to data sources
where the data are located. To represent this information, we propose to
use the combination of QB4OLAP and VoID vocabularies. QB4OLAP allows
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Fig. 2.6: System Architecture

defining dimensions, measures, and aggregations. The access and linkset
metadata sections of the VolID vocabulary allow to describe data sources. An
example of the multidimensional schema expressed in QB4OLAP that is part
of the Global Conceptual Schema module can be found in Listing 2.2.

This combination of vocabularies is robust with respect to the schema
complexity, the number of data sources, and the data volume. The schema
complexity is handled by the QB4OLAP vocabulary as demonstrated in [24].
Recent changes to the QB4OLAP vocabulary [25] aid in defining complex
multidimensional schemas with different hierarchies of levels in dimensions
(balanced, recursive, ragged, many-to-many), different cardinalities between
level members (one-to-many, many-to-many, etc), levels belonging to differ-
ent hierarchies, etc. A number of data sources can be referenced in a mul-
tidimensional schema of a data cube with the help of the VoID vocabulary.
Regarding the data volume, recent experiments show that triple stores per
se are not worse for analytical queries than RDBMS [26], so we expect our
approach to be sufficiently scalable.

The Semantic Query Processor is a module of the system that accepts
an MDX query as input and produces a multidimensional SPARQL query
using the QB4OLAP vocabulary for further processing. For this purpose,
it queries the Global Conceptual Schema to find appropriate information —
the measures and the dimensions specified in the MDX query. After having
received the requested information, the Semantic Query Processor will for-
mulate SPARQL queries to all data endpoints and send these queries to the
Distributed Query Processing module for data retrieval. Examples of such
SPARQL queries can be found in Listings 2.3 and 2.4. The Distributed Query
Processor in turn queries all data endpoints, collects and merges all data, and
returns the result back to the Semantic Query Processor (Listing 2.5). The re-
turned answer is then either displayed to the user or passed to the calling
module for the integration with data from the internal data warehouse.

The integration of external dimensional data with an internal data ware-
house has been studied before. For instance, Pedersen et al. [27] present an
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approach to the logical federation of OLAP and XML data sources. Following
the same pattern, we envision that the system will have the mediator/wrap-
pers to split and translate initial MDX query to other query languages. This
is a common approach in distributed database systems [11]. The results re-
ceived from the wrappers will then be merged by the mediator and shown to
the user. The data integration architecture is depicted in Figure 2.5.

The Source Discovery/Schema Builder module is responsible for deriving
a schema of the OLAP cube based on the user requirements. This module
interacts with the user during the schema construction phase. The user spec-
ifies the domain/key concept of interest; the module searches for appropriate
data sources and proposes the most relevant of them to the user. The module
uses the approaches described in Section 3 to find interesting data sources.
We propose to use all three approaches because none of these approaches
alone guarantees full reliability. After identifying data sources, the system
proposes a list of potential facts, dimensions, and measures, constructs pos-
sible multidimensional schemas, and presents them to the user for confirma-
tion. This multidimensional schema is then used in the Global Conceptual
Schema module.

5 Related Work

In the following, we review previous research in semantic web warehousing,
source discovery, and distributed SPARQL query processing.

5.1 Semantic Web Data Warehousing

Related work for semantic web data warehousing can be divided into two
categories. In the first category of approaches, the data is loaded into a local
data warehouse that is built over a relational database management system.
The schema of the data warehouse is generally determined by an administra-
tor of the system and the data from the Linked Data sources are loaded into
the defined tables. Then, the OLAP queries are run against the data stored in
a star or snowflake schema. In the second category of approaches the OLAP
operations are executed directly over RDF stores via SPARQL.

Determining schema information for a discovered data source helps in
building a multidimensional model of a data cube. In an RDF dataset, the
subjects that share the same properties can be grouped together. The result is
a list of property sets with associated subjects. These property sets are called
Characteristic Sets. Neumann et al. [14] used the knowledge about these sets
for the estimation of the result cardinality for join operations in triple stores.
In comparison, we instead employ characteristic sets as a basis for building a
multidimensional data cube schema.
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Romero et al. [16] defined a semi-automatic general-purpose method of
building a multidimensional schema for a data warehouse from a domain
ontology. The method aims to propose meaningful multidimensional schema
candidates. The method defines main steps that lead to identifying facts,
dimensions, and dimension hierarchies. The system is semi-automatic in the
sense that it expects a user confirmation for suggested concepts proposed as
potential facts. Once the user selects a concept as a fact concept, it will give
rise to a multidimensional schema. The disadvantage of this approach is the
requirement to have a corresponding domain ontology. This may not be the
case for all data sources.

Similarly, a semi-automatic method for the identification and extraction
of data expressed in OWL is defined in [28]. OWL/DL is used to transfer
valid data into fact tables and to build dimensions. According to the pro-
posed method, an analyst defines a multidimensional star schema based on
the known ontology of the source of data. Then, the data from the sources
are loaded into the data warehouse. Overall, this method does not allow pop-
ulating a multidimensional schema with semantic web data from the newly
discovered sources with previously unknown structures.

A framework to streamline the ETL process from Linked Open Data to
a multidimensional data model is proposed in [13]. In contrast to [28], this
work does not require previous knowledge and an ontology to collect the
data. The data that are retrieved from Linked Open Data sources are first
stored in an intermediate storage, where these data are partitioned based on
the type. Then, the analyst investigates the tables and chooses measures and
dimensions for the multidimensional data model. Afterwards, the system
generates the schema for the fact table, selects dimensions, and dumps data
into relational tables for performing OLAP analysis. The disadvantage of this
method is the requirement to have a high-level analyst for intermediate result
investigation and multidimensional schema construction.

The approach proposed in [29] uses an ETL pipeline to convert statisti-
cal Linked Open Data into a format suitable for loading into an open-source
OLAP system. The data are presented using the RDF Data Cube (QB) vocab-
ulary [30] suitable for statistical data. The data that are stored in a QB file
are loaded, via an ETL process, into the data warehouse. Then, the OLAP
queries can be executed over the data. The advantage of the data stored as
QB is that the measures and dimensions are already partly defined, so the
transformation of data into the multidimensional model is easier. However,
the method is not suitable for data expressed in other RDF vocabularies.

The execution of OLAP queries directly over an RDF store is explained
in [31]. Statistical data defined with the help of on RDF Data Cube (QB)
vocabulary are used. These data are loaded to a triple store. OLAP queries
are translated to SPARQL queries and are run over the triple store. However,
the proposed approach is applicable only to the data presented in QB. More-
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over, the observations in the data should not include any aggregated values,
otherwise the computation is incorrect.

In the majority of the current approaches [13,28,29] Linked Open Data
are loaded into the relational tables of a data warehouse for further analysis.
Our approach does not require a relational database for the OLAP analysis
of web data. Additionally, our approach handles all types of RDF data unlike
the proposal of [31], where only data stored as RDF Data Cubes (QB) are
processed. Furthermore, our approach retrieves data from multiple sources
whereas other approaches work with a single source of information at a time.

5.2 RDF Source Discovery

Heim et al. [12] propose an approach that automatically reveals relationships
between two known objects in a large knowledge base such as DBpedia and
displays them as a graph. They use properties in semantically annotated
data to automatically find relationships between any pair of user-defined
objects and visualize them. Although this approach is not relevant to source
discovery the idea of searching through knowledge bases may be applicable
to it.

Exploring Linked Data principles for finding data sources is proposed
in [32]. One of these principles includes the usage of HTTP-based URIs as
identifiers, which may be understood as a data link that enables the retrieval
of data by looking up the URI on the Web. Hence, by exploring data during
the query execution process one can obtain potentially relevant data for the
system. However, this technique is less suitable for bulk retrieval of RDF
data, which is needed for OLAP processing.

The publication of Linked Data as services is investigated in [33,34]. The
use of Web Services and Service Oriented Architecture (SOA) is explored in
this work. SOA facilitates easier data exchange between parties. A key com-
ponent of SOA is the service repository, which serves the purpose of publish-
ing and discovering services for future use. Research on service repositories
for Web Services were extensive but the approach did not receive widespread
adoption and was discontinued later. The main problem was the lack of sup-
port for expressive queries to identify and automate the discovery and con-
sumption of services [33]. To address this problem, researchers propose to
semantically annotate service descriptions to aid automatic discovery. Unfor-
tunately, this technology did not receive widespread adoption either. If such
a universal registry for services that publish Linked Data is created, a discov-
ery and consumption of Linked Data from previously unknown sources will
become easier.

An architecture of creating an up-to-date database of RDF documents by
involving user participation in discovery of semantic web documents is de-
scribed in [35]. This database can be used by search engines and semantic
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web applications to provide search and user-friendly services over the discov-
ered documents. However, the service does not support discovery of SPARQL
endpoints — this part of the process is left for future work. Scalability issues
are not considered and are left for future as well.

Search engines for the semantic web [15,36] index the semantic web by
crawling RDF documents and offer a search API over these documents. Dif-
ferent search engines use different index types: some index triples/quads,
some index RDF documents. These search engines create an infrastructure
to support application developers in discovering relevant data by performing
lookup using, for example, full-text search over the literals. In this chapter
we propose to use semantic web search engines to support the discovery of
SPARQL endpoints.

In this chapter we further enhance existing approaches. We elaborate on
ideas from [13,14,16] to build a multidimensional schema from previously
unknown RDF data sources. Moreover, we extend principles from [12, 15]
for SPARQL endpoint discovery by grouping related results by datasets. For
increased reliability in source discovery, we propose to employ a combination
of approaches. Additionally, we target our approach to non-professional data
analysts.

5.3 Indexing and Distributed Query Processing

As Linked Data are scattered over the Web, efficient techniques for dis-
tributed query processing become an important part of the system. Regard-
ing distributed query processing over multiple SPARQL endpoints, several
approaches and frameworks were proposed in the past years. In contrast
to the systems for source discovery mentioned above, most systems for dis-
tributed query processing over SPARQL endpoints rely on the presence of
pre-computed indexes or statistics to identify the relevance of sources [37-41]
and only a few frameworks can avoid the need of pre-computed informa-
tion [18]. Whereas most systems specialize in one type of data access, ex-
ploratory data access or SPARQL endpoints, hybrid systems propose han-
dling different types of native access [42], often in combination with local
caching [43].

In addition to determining the relevance of sources for a given SPARQL
query based on the binary decision whether a source provides data that is
relevant to answer any part of a query, sources can be selected based on
their benefit [44]. In doing so, additional aspects are considered such as the
overlap of the data provided by available sources. As a result, the minimum
number of sources that still produce the complete answer to the query can be
selected.
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6 Conclusions and Future Work

In this chapter, we presented a framework for exploratory OLAP over LOD
sources. We introduced a system that uses a multidimensional schema of
the data cube expressed in QB4OLAP and VoID. Based on this multidimen-
sional schema, the system is able to query data sources, extract and aggregate
data, and build an OLAP cube. We proposed to store multidimensional in-
formation retrieved from external sources in a QB4OLAP structure. We also
introduced a computer-aided process for discovering previously unknown
data sources necessary for the given data cube and building a multidimen-
sional schema. We presented a use case to demonstrate the applicability of
the proposed framework. In the future, we plan to finish the prototype of the
proposed framework and test the solution on large-scale case studies.

A Prefixes Used in the Chapter

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX exqb: <http://example.org/exqb#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX movie: <http://data.linkedmdb.org/resource/movie/>
PREFIX 1mdbres: <http://data.linkedmdb.org/resource/>
PREFIX geo: <http://www.geonames.org/ontology#>

PREFIX wgs84_pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX gb: <http://purl.org/linked-data/cube#> .

PREFIX gbdo: <http://purl.org/olap#> .

PREFIX xml: <http://www.w3.org/XML/1998/namespace> .
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> .

PREFIX skos: <http://www.w3.org/2004/02/skos/core#> .
PREFIX foaf: <http://xmlns.com/foaf/0.1/> .

PREFIX dc: <http://purl.org/dc/elements/1.1/> .

PREFIX db: <http://dbpedia.org/resource/> .

PREFIX ns: <http://rdf.freebase.com/ns/> .
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Abstract

More and more RDF data is exposed on the Web via SPARQL endpoints. With the
recent SPARQL 1.1 standard, these datasets can be queried in novel and more power-
ful ways, e.g., complex analysis tasks involving grouping and aggregation, and even
data from multiple SPARQL endpoints, can now be formulated in a single query.
This enables Business Intelligence applications that access data from federated web
sources and can combine it with local data. However, as both aggregate and federated
queries have become available only recently, state-of-the-art systems lack sophisti-
cated optimization techniques that facilitate efficient execution of such queries over
large datasets. To overcome these shortcomings, we propose a set of query processing
strategies and the associated Cost-based Optimizer for Distributed Aggregate queries
(CoDA) for executing aggregate SPARQL queries over federations of SPARQL end-
points. Our comprehensive experiments show that CoDA significantly improves
performance over current state-of-the-art systems.

1 Introduction

In recent years, we have witnessed the growing popularity of the Semantic
Web and the Open Data movement. Today, there are still many open issues
but we are constantly getting closer to making Tim Berners-Lee’s vision of
the Web of Data [45,46] become a reality that a broad spectrum of people can
benefit from. The status of a major component of this vision is described by
the Linked Open Data cloud!, which has been growing rapidly and has now
reached a size of 1014 nodes providing access to billions of triples. Hence,
a plethora of data is available in RDF format [2], published as Linked Open
Data [1], accessible free of charge, and often queryable via SPARQL [3] end-
points. Although much more data is available in plain RDF, the design is-
sues [8] according to which Linked Open Data is published and especially
the contained links to other datasets give these datasets great potential.
Building upon these standards in combination with the SPARQL 1.1 stan-
dard [47], novel applications can be built that are interesting to a broad range
of users, including companies. With the data being publicly available, com-
panies can integrate their private data with RDF datasets from the Web and
enable analyses that were not possible before. A company might, for in-
stance, be interested in analyzing its revenue in different countries against
macro-economic indicators of these countries. As companies usually do not
maintain such information locally, the missing information can be obtained
from the World Bank? when needed. This data can even be accessed as

Ihttp://lod-cloud.net/
’http://wuw.worldbank.org/
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Linked Open Data (World Bank Linked Data®) and queried via a SPARQL
endpoint. In doing so, the company has efficient access to up-to-date infor-
mation without increasing costs of local maintenance. Furthermore, as the
company is accessing Linked Data, obtaining more information (geographi-
cal, census, etc.) for further analyses can efficiently be retrieved from linked
sources, such as GeoNames [48] and DBpedia [49].

Such analyses that companies are interested in, however, are based on
complex queries that involve grouping and aggregation. Whereas these con-
cepts have been available in SQL for a long time, it has only recently become
possible to formulate such queries on RDF data using the extensions offered
by the SPARQL 1.1 query language [7]. In addition, SPARQL 1.1 also stan-
dardizes Federated Queries [4] and thus facilitates the formulation of queries
that involve multiple sources. Without this extension such queries need to be
split up into subqueries that can be executed on the remote sources. Com-
puting the final result needs to be done by the local system, e.g., computing
an additional join that combines the partial results. With Federated Queries,
the complete query can be formulated as a single SPARQL statement that a
query processor can optimize before execution. Hence, all these extensions in
combination make it finally possible to formulate, optimize, and execute an-
alytical queries over federations of SPARQL endpoints automatically so that
the user does not need to implement pre-processing of partial results locally
but can concentrate on formulating the query.

But being able to formulate such queries is not enough, we also need
sophisticated query optimization techniques that allow for evaluating such
queries efficiently. The literature proposes techniques for subproblems, such
as semantics and completeness of federated queries [17, 18, 50-52], source
quality and selection [44, 53], etc. As the SPARQL 1.1 standard is not yet
completely supported by all SPARQL endpoints [19], there is only little re-
search regarding the evaluation of queries involving aggregation and group-
ing. To the best of our knowledge, this is the first work to investigate ag-
gregate queries in the context of federations of SPARQL endpoints and their
optimization. In summary, the contributions of this chapter are:

¢ the Mediator Join, SemiJoin, and Partial Aggregation query processing
strategies for this scenario

* a cost model and techniques for estimating constants and result sizes
for triple patterns, joins, grouping and aggregation

¢ the combination of these with the processing strategies into the Cost-
based Optimizer for Distributed Aggregate queries (CoDA) approach
for aggregate queries in federated setups that is generally able to choose
the best execution strategy among a number of alternatives

Shttp://worldbank.270a.info/
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* a comprehensive experimental evaluation showing that CoDA is effi-
cient, scalable, and robust over different scenarios, and significantly
faster than state-of-the-art triple stores

The remainder of the chapter is structured as follows. Section 2 discusses a
motivating example and a preliminary analysis of state-of-the-art triple stores
for aggregate queries in federations of SPARQL endpoints. Related work is
discussed in Section 3. Section 4 identifies several alternative strategies for
processing aggregated SPARQL queries in a federated setup. Section 5 intro-
duces a cost-based query optimizer for aggregate queries over federations of
SPARQL endpoints. The results of our evaluation are presented in Section 6;
Section 7 concludes the chapter.

2 Motivating Example and Preliminary Analysis

In March 2011, an earthquake in the Pacific triggered a powerful tsunami and
led to a huge devastation at the Japanese coast, which eventually caused a nu-
clear accident*. After these events had happened, the Ministry of Education,
Sports, Culture, Science and Technology of Japan made daily announcements
of radioactivity statistics observed hourly at 47 prefectures. These observa-
tions from March 16, 2011 to March 15, 2012 were converted to RDF data
by Masahide Kanzaki and made publicly available via a SPARQL endpoint®.
Listing 3.1 shows an example observation in RDF format.

#observation
<http://www.kanzaki.com/works/2011/stat/ra/
20110414/p13/t08>
rdf : value "0.079"""ms:microsv ;
ev:place <http://sws.geonames.org/1852083/> ;
ev:time <http://www.kanzaki.com/works/2011/
stat/dim/d/20110414TO8PT1H> ;
scv:dataset <http://www.kanzaki.com/works/
2011/stat/ra/set/moe> .
#dimension - place
<http://sws.geonames.org/1852083/>
vcard:region "Tokyo'"Qen ;
vcard:locality "Shinjuku"@en ;
gn:lat "35.69355" ;
gn:long "139.70352" .
#dimension - time
<http://www.kanzaki.com/works/2011/stat/dim/d/
20110414 TO8PT1H>
rdfs:label "2011-04-14T08";
tl:at "2011-04-14T08:00:00+09:00"
~~xsd:dateTime ;

4http ://en.wikipedia.org/wiki/2011_T%C5%8Dhoku_earthquake_and_tsunami

Shttp://www.kanzaki.com/works/2011/stat/ra/ As this endpoint is not main-
tained by ourselves, we created our own SPARQL endpoint providing access to the
same dataset: http://164.15.78.105:8890/sparql
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tl:duration "PT1H"~~xsd:duration .

Listing 3.1: Radioactivity Observation Example

The places that an observation was recorded at is represented by a URI
from GeoNames [48]. Among other information, Geonames provides hi-
erarchical information, i.e., every entity has a parent entity. Towns and
villages in Japan, for example, have a district as parent. A district in
turn has a prefecture as parent, and a prefecture has a country as parent.
The following triple, for instance, encodes that the town “Nakayama” has
“Higashimurayama” as its parent: <http://sws.geonames.org/7450017/>
gn:parentFeature <http://sws.geonames.org/2112760/>

With the observations of radioactivity in multiple geographical locations
(cities in our case) and information about their upper administrative divi-
sions (prefectures in Japan) from GeoNames, interesting analyses become
possible. For instance, we can compute the average radioactivity separately
for each prefecture in Japan and use this information to find out which
prefectures were more affected than others. Or we can compute the mini-
mum and maximum radioactivity for each prefecture and hence identify the
changes in radioactivity over the one-year observations. Formulating such
queries involves grouping and aggregation (AVG, MIN, MAX, etc.) as well
as combining information from two SPARQL endpoints. Listing 3.2 shows
an example query that computes the average radioactivity for all prefec-
tures in Japan. This query could be executed at a triple store with informa-
tion about radioactivity and uses the LOD Cloud Cache SPARQL endpoint
(http://lod2.openlinksw.com/sparql) to query GeoNames data remotely.
SELECT ?regName (AVG(7floatRV) AS Zaverage)
WHERE {

?s ev:place ?placelID . ?s ev:time 7time .

?s rdf:value ?radioValue .

SERVICE http://1lod2.openlinksw.com/sparql

¢ ?placelD gn:parentFeature ?regionID .

?regionID gn:name ?regName .
;IND (xsd:float (?radioValue) as 7floatRV) .

}
GROUP BY ?regName

Listing 3.2: Aggregate Query over Radioactivity Observations

At first glance, this query does not seem very complicated. However,
current state-of-the-art triple stores, such as Virtuoso v(07.10.3207, Sesame
v2.7.11, and Jena Fuseki v1.0.0 (based on ARQ) timed out while trying to
answer this query. By analyzing the network traffic with the Wireshark® net-
work protocol analyzer, we found out that Virtuoso and Fuseki are trying to
send a query to the endpoint specified in the SERVICE clause for every single

bhttp://www.wireshark.org
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radioactivity observation, while Sesame is trying to download all triples that
match the patterns defined in the SERVICE subquery from the remote end-
point. In the first case, a triple store needs to send more than 400,000 requests
to answer the query, and in the second case it needs to download more than
7.8 million triples from the remote endpoint. These strategies are obviously
inefficient and need to be optimized.

3 Related Work

Federated query processing in database management systems (DBMS) has
been a topic of research for several decades. In contrast to well-structured
classic data models, federated RDF systems support arbitrary RDF datasets
(even without explicit schema) and allow the use of special constructs to
perform joins and express bindings (such as VALUES) not present in SQL-
based systems.

The literature proposes a number of approaches for querying federated
RDF sources. Some of these approaches require the availability of VoID [54]
statistics. SPLENDID [40], for instance, uses VolD statistics to select a query
execution plan for a federated query. For triple patterns not covered in the
VoID statistics, the system requests the information by issuing SPARQL ASK
queries. The system makes use of a cost-based model and cardinality es-
timations for selecting a query plan. However, the SPLENDID system and
its cost-model do not cover the combination of grouping, aggregation, and
SERVICE subqueries.

FedX [18] uses SPARQL ASK queries for triple patterns in a query to
collect basic information that can be used for source selection. It implements
bound joins with SPARQL UNION keyword (similar to a semi-join) to group
triple patterns related to one source and, thus, reduces the number of queries
that are sent. FedX has originally been developed based on the SPARQL 1.0
standard and does not use cost-based query optimization. Hence, it does not
provide any particular optimization techniques for our use case and would
always use a semi-join based strategy, which is only one of the options our
optimizer (CoDA) chooses from.

ANAPSID [55] uses a catalog of endpoint descriptions to decompose a
user query into subqueries that can be executed by separate endpoints. The
query engine implements a technique based on the symmetric hash join [56]
and the XJoin [57] to execute subqueries in a non-blocking fashion. SI-
HJoin [58] also uses a hash join implementation to enable pipelining in com-
bination with a lightweight cost-model with weight factors calibrated for re-
mote systems. Both approaches were not designed with regard to aggregate
queries and use a hash join implementation so that results from a join can
already be forwarded to other operators in the query execution tree. How-
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ever, pipelining is not helpful for analytical queries since the complete result
of the query is needed for the aggregation.

Avalanche [59] and WoDQA [60], on the other hand, do not maintain
data source registrations. Avalanche depends on third parties such as search
engines to find a proper data source for executing a query. Statistics about
cardinalities and data distributions are considered for breaking a query into a
set of subqueries that in combination provide a full query answer. Then, these
subqueries are executed in parallel against several endpoints. WoDQA uses
VoID directories such as CKAN (http://ckan.net) and VoIDStore (http:
//void.rbkexplorer.com) to find possible sources of data. The system uses
VoID statistics to group triple patterns into subqueries in a federated form
and executes it by Jena ARQ.

An RDF data processing system that supports simple transactional
queries as well as complex analytical queries is proposed in [61]. Aggre-
gate queries are efficiently resolved by the system by using special look-up
mechanisms. However, the system does not consider aggregate queries in a
federated environment.

SPARQL-DQP [62] on the other hand, discusses semantics of the SPARQL
1.1 federation extension on a theoretical level and introduces the notion of
well-defined patterns. It focuses on the optimization of federated queries in
the presence of OPTIONAL subqueries but it was not designed to optimize
and support analytical queries. Different strategies to implement federated
queries in SPARQL 1.1 are discussed in [52]. Several limitations that may
cause incorrect results and the potential validity restrictions are identified
and fixes are proposed.

In summary, only very few approaches consider analytical queries [61,62]
but not in the context of a federated setup. Most state-of-the-art approaches
for federated query processing are designed with a focus on SPARQL 1.0 [18,
40,55,59,60] and lack full support of the more recent SPARQL 1.1 standard
or do not offer support or particular optimizations for analytical queries. In
contrast, this chapter proposes a cost-based approach to optimize and execute
aggregate SPARQL queries over federations of endpoints.

4 Federated Processing of Aggregate Queries

In this section, we will systematically outline several strategies that can be
used to evaluate aggregated queries in federations of SPARQL endpoints.
Section 5 will then introduce a cost-based approach to choose the best strat-
egy for a query.

For ease of presentation, this section focuses on queries with a single
SERVICE subquery. But the discussed principles can be extended to the gen-
eral case of well-designed patterns with strongly bound variables [50]. The
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proposed approach can be combined with rule-based rewriting so that sub-
patterns, and especially joins, are evaluated in a cost-minimizing order. If an
endpoint imposes limits on result sizes, then additional techniques, such as
pagination [52], are used.

In the following, we use P4¢¢ to represent the original user query and P,
denotes the SERVICE subquery evaluated at SPARQL endpoint e. Py repre-
sents the subquery that is created from the original query P4g by extracting
P,, adding a join on their common variables var(P,) Nvar(Pys), and, depend-
ing on the strategy, preserving grouping and aggregation. Py is evaluated
on the same endpoint M that P45 was sent to. Note that this section fo-
cuses on the implementation of the joins combining the partial results of the
subqueries evaluated by remote endpoints. We do not make any restrictions
on the local implementations that the remote endpoints use to evaluate joins
contained in the subqueries they receive.

Mediator Join Strategy (MedJoin). The first strategy we describe is based on
the mediator join technique that is used by many approaches for federated
SPARQL query processing. The mediator/federator is the SPARQL engine
that receives a query P4 from the user. The query optimizer at the media-
tor M defines P, and Py and sends P, to endpoint e whereas Py, is processed
on the endpoint m. Parallelization can be exploited by processing Py; and P,
at the same time. The main principle is to find all solutions to P, and Py first
and then compute the remaining operations at the medjiator, including the
join (on ?placelID in the example below) that combines the partial results as
well as grouping and aggregation. Listings 3.3 and 3.5 illustrate Pys and P,
for our running example query (Listing 3.2).

SELECT “?placeID ?radioValue WHERE {
?s ev:place ?placelID; ev:time ?time.
?s rdf:value ?radioValue.

}
Listing 3.3: MedJoin: Query Py,

SELECT ?placelD ?regName WHERE {
?placelD gn:parentFeature ?regionlD.
?regionID gn:name ?regName.

}
Listing 3.4: MedJoin: Query P,

Note that due to the fact that SPARQL does not remove duplicate results,
we do not need to keep all variables in the select clauses of P, and Py;. If
duplicates were removed (like in SQL), we would have to keep all variables
in the subqueries to ensure that the number of tuples that form the result are
preserved, otherwise the average function in our example query would not
return the correct result.

In principle, constructs such as OPTIONAL and FILTER are assigned to the
subqueries that their variables refer to. If there is a complex expression,
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e.g., a FILTER is defined on a condition involving variables from different
subqueries (e.g., ?a <?b), then the FILTER is evaluated after the partial results
are combined at the mediator. The strength of this strategy is that partial
queries can be evaluated in parallel. However, it can easily become expensive
if the intermediate results are very large or when the datasets are very big.

Semi Join Strategy (SemiJoin). This strategy is based on the bound join or
semi-join technique [17,18], which was already available based on UNION or
FILTER constructs in SPARQL 1.0. The recent SPARQL 1.1 standard, however,
supports the VALUES clause, which allows for a much more elegant solution.

The main principle of this strategy is to execute the subquery with the
smallest result first and use the retrieved results as bindings for the join vari-
ables in the other subquery. The intuition is that for selective joins, sending a
few partial results to an endpoint is much faster than receiving the complete
result for the more general subquery. It is then the task of the cost optimizer
to identify the most promising order of execution of subqueries. Constructs,
such as FILTER and OPTIONAL, can be assigned to subqueries as discussed for
MedJoin. Let us consider an example query with a FILTER.

SELECT 7regName (AVG(Z?radioValue) AS ?average) WHERE {

?s ev:place ?placelD . ?s ev:time ?time . ?s rdf:value ?radioValue .
SERVICE <http://lod2.openlinksw.com/sparql>{
?placelID gn:parentFeature ?regionID . ?regionID gn:name ?regName .

} FILTER(?radioValue < 0.08) . } GROUP BY ZregName

Listing 3.5: MedJoin: Query P,

This query can be evaluated efficiently by evaluating query Py (Listing 3.6)
and then using the obtained bindings for the join variable ?placelID in the
VALUES clause of the query P, (Listing 3.8).
SELECT 7?placeID ?radioVal
WHERE {

?s rdf:value ?radioVal ;

ev:place ?placelID; ev:time ?time.
FILTER (?radioValue < 0.08) . }

Listing 3.6: SemiJoin: Query Py

SELECT ?placelD ?reglName

WHERE { ?placeID gn:parentFeature ?rgID.
?rgID gn:name ?regName.
VALUES (7placeID) {
<http://sws.geonames.org/1852083/>...} }

Listing 3.7: SemiJoin: Query P,

In contrast to MedJoin, this strategy evaluates the subqueries sequentially
and is particularly efficient for selective joins. However, as the VALUES clause
is not yet widely supported by existing endpoints [19], the SPARQL 1.0 com-
pliant alternatives of UNION (or FILTER) must often be used.
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Partial Aggregation Strategy (PartialAgg). For queries where the grouping
attributes of the original query contain a subset of the variables of the sub-
query that is executed first and the aggregate values are contained in the
subquery that is evaluated second, further optimization is possible. The Par-
tial Aggregation Strategy (PartialAgg) builds upon Med]oin by extending the
subquery executed second with a GROUP BY clause and aggregate functions.
The goal is to reduce the size of the partial result and compute partial aggre-
gate values early so that P4 can be evaluated more efficiently.

Using Partial Agg our running example query (Listing 3.2) is decomposed
into Pps (below) and P, (Listing 3.8). First, Py is computed, the result bind-
ings are fed into the VALUES clause of P., and P4gg combines the partial
results via a join and computes final grouping and aggregation.

SELECT 7?placeID (SUM(Z?radioValue) AS ?sum) (COUNT(7radioValue) AS Zcount)
WHERE { 7?s ev:place ?placelID; ev:time ?time; rdf:value ?radioValue . }
GROUP BY “?placelD

Listing 3.8: SemiJoin: Query P,

Note that Pj; here groups by 7placeID whereas the original query (Lis-
ting 3.2) groups by 7regName, this is because Pj; uses the join attributes
var(P,) Nvar(Py) in the GROUP BY clause. Whereas a particular placelD
would occur in many results for Py in the MedJoin strategy, the additional
grouping here guarantees that the result set contains only one. Hence, the
size of the intermediate result is reduced.

When performing such an optimization, however, we need to take into ac-
count whether the aggregate function in the original query is algebraic or dis-
tributive [63]. Computing aggregates for distributive functions (SUM, MIN,
MAX, COUNT) is straightforward, while for computing AVG we first need
to compute both SUM and COUNT in separate and in the final step divide
the sum of all intermediate SUMs by the sum of all intermediate COUNTs,

. YN, sum
ie., AVG = £¥  COUNT."

5 Cost-Based Query Optimization

For each user query, the query optimizer needs to decide which of the strate-
gies that we discussed in the previous section to use. In this section, we
present CoDA (Cost-based Optimizer for Distributed Aggregate Queries). A
cost-based optimizer finds the best strategy by computing query execution
costs for different alternative query execution plans and choosing the one
with minimum costs. In the remainder of this section, we first sketch how
the query optimizer works, then we introduce the cost model. Finally, we
present details of the cost model regarding cardinality estimation and pro-
cessing costs.
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51 Query Optimizer

To find the best query execution plan, we need to systematically examine al-
ternative query execution plans that produce the same result. This process,
called plan enumeration, and can easily become expensive if all possible al-
ternative query plans are examined.

We first decompose the original query into multiple subqueries as de-
scribed in Section 4. We obtain a local query P, endpoint queries P, , ..., P,,
and the P4gg that describes how to compute the aggregation and how to
connect the other subqueries.

As a first step, we optimize the subqueries in separate, e.g., reordering
the triple patterns based on a cost model for local execution so that the sizes
of intermediate results and execution costs are minimized.

Afterwards, we enumerate all possible plans that combine these sub-
queries using the strategies introduced in Section 4. For each of these al-
ternative plans, we estimate execution costs (as described in the remainder
of this section) and choose the plan with the minimum costs to execute the

query.

5.2 Cost Model

The overall costs of a distributed query execution plan Cr consist of the costs
for communication between endpoints and mediator (communiation costs)
Cc and the costs for processing the query on the data (processing costs) Cp:

Cr=Cp+Cc (3.1)

Some parts of the query are executed locally, some remotely. Hence, we esti-
mate Cr for each subquery in separate and compute the costs of the complete
query plan by adding up the costs of its subqueries.

For subqueries that are executed in parallel, as for the Med]oin strategy;,
we need to consider parallel execution in our cost model. As the subquery
that takes the longest time to execute determines the time when the result
is available, we take the maximum instead of the sum in such cases, e.g.,
Cr(S1,S2) = max(Cr(S1),Cr(S2)), where Cr(S;) denotes the costs of exe-
cuting subquery §;.

To estimate Ct, we need to define how to estimate Cc and Cj for a sub-
query. Depending on the subqueries in the query execution plan, this can
easily become complex. The communication costs for retrieving the answer
for subquery S; from an endpoint can be estimated as:

CC(Si) =Co + Cs; Cmap (3.2)

where Cp denotes the overhead to establish communication, cs, denotes the
estimated number of returned solution mappings for the subquery, and Cy,p
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denotes the costs of transferring a single solution mapping.

We can also apply Equation 3.2 to compute the costs of sending a query
containing solution mappings in the VALUES clause by using the number of
passed solution mappings as cs, .

Processing costs are determined by I/O and CPU costs and are very spe-
cific to the particular triple store and available indexes, current load, hard-
ware characteristics, implemented algorithms, etc. As such details are not
available for endpoints, we estimate processing costs based on the amount of
data that the query is evaluated on. We assume, however, that indexes are
used to access triples matching a triple pattern efficiently. We obtain:

M
CL =Y (cip-Cio) 3.3)

t=1
where ctp is the estimated number of selected solution mappings for triple
pattern f that is part of the subquery, and C;p denotes the costs of process-
ing a single triple. To evaluate aggregate subqueries, we add C4gg to the

processing costs:

Cace = caca - Cace (3:4)

where cjgg represents the number of result mappings that grouping and
aggregation are evaluated on and C,gg represents the costs for processing
one of them.

5.3 Estimating Constants

The cost estimation formulas introduced above rely on several system-specific
constants, i.e., Co, Ciap, andCygg. As the optimizer is running at the media-
tor, computing these values for the local system is much easier than for end-
points. Nevertheless, as each endpoint has different characteristics, we need
to obtain estimates. CoDA estimates these values based on several probe
queries. The estimates are reused for future queries and repeated regularly
to account for changes at the endpoints.

Cimap is estimated using queries such as: SELECT * WHERE { ?s 7p 7o }
LIMIT #L. This query is executed several times with different values for #L
and measured how long it takes to receive an answer from the endpoint.
Based on the pairwise difference between the queries’ execution times and
#L, we estimate the average time for a single result Cysp.

Co is estimated based on queries that do not retrieve data from triple
stores such as: SELECT(1 AS ?v){} or ASK{}. Multiple queries are executed
to determine an average.

Cacg is estimated based on queries such as: SELECT COUNT(*) WHERE {
?s 7p 7o } GROUP BY #g. Again, multiple queries with different valid val-
ues for #g and #c are used to build an average. By measuring the time it
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takes to receive the results and substracting the message overhead Cp and
the costs of transferring the result based con Cyzp, we can estimate Cpgg-
Note that C4¢¢ represents the costs to process a single input triple. Hence,
before computing the average over multiple queries, we need to divide by
the number of triples that the aggregate query was computed on — this can
conveniently derived from the query result (COUNT () is the number of input
triples for each group).

Note that these estimates might not be perfectly accurate but this is ac-
ceptable for our purposes because we do not aim at accurately predicting the
execution costs of a query execution plan but only to find out which execu-
tion plan is more efficient than the others.

5.4 Result Size Esimation

Another important part of the cost model is estimating the size of partial
results (result cardinality). Similar to related work [40,41], we base our esti-
mations on VoID statistics [54,64] as this is a standardized format and most
commonly used. Nevertheless, not all SPARQL endpoints offer such statis-
tics. Hence, it is somethings necessary to download a dump of the remote
data to compute the statistics or send a series of SPARQL queries with COUNT
functions to the endpoint.

VoID statistics can logically be divided into three parts: dataset statistics,
property partition, and class partition. The dataset statistics describe the com-
plete dataset: the total number of triples (void:triples, c;), the total num-
ber of distinct subjects (void:distinctSubjects, ¢;), and the total number of
distinct objects (void:distinct0Objects, ¢,). The property partition contains
such values for each property of the dataset (cp,,cp,s,Cp,0). Finally, the class
partition shows the number of entities of each class (void:entities).

Estimating Result Sizes for Basic Triple Patterns

To estimate result sizes for complex queries, we first need to estimate the
result size of basic queries that consist of a single triple pattern and optionally
a condition expressed by a FILTER.

Based on the void statistics, we can estimate the result size ¢y, of a triple
patterns as follows: (?s ?p 7o) is directly given by c;, (s 7p 7o) can be
estimated as &£, (?s ?p o) as %, and (s ?p o) as Cf—tco If the predicate is
specified in the triple pattern, we can estimate the result sizes as follows: (?s

p 7o) is directly given by cp t, (s p 7o) can be estimated as M (?s p o) as

Cpt

e and (s p o) as C
possible when the property rdf type is used [41].

We further introduce several optimizations that are often used in rela-

tional database systems [65]. As distributions are skewed, we assume a Zip-

. Tighter estimates based on VoID statistics are
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fian distribution of values and multiply c,es with the correction coefficient
of 1.1 (close to Zipfian ideal). In case a FILTER involves an inequality com-
parison (e.g. ?x >= 10), we assume that one third of the triples satisfy the
requirements and divide c; or ¢y in the above formulas by a factor of 3. If
a FILTER contains an expression with the inequality operator (e.g. ?x! = 10),
we need to replace 1 z; with G- ! because we do no longer select 1 value out of
¢ different values but all except 1. The same consideration holds for c,, ¢y s,
and ¢po.

Estimating Result Sizes for Joins

To estimate the sizes of join results, we need to distinguish between different
shapes of joins: (1) star-shaped joins are characterized by multiple triple pat-
terns joining on the same variable (e.g., 7s1 pl 7ol . ?sl p2 702)and (2)
path-shaped joins are characterized by multiple triple patterns that join on
different variables (e.g., ?s1 p1 7ol . 7ol p2 7o02).

To estimate the result size we use the cardinality estimation model pro-
posed in [41]. The model proposes formulas for different types of joins. For
example, for queries such as SELECT ?y WHERE { 7x pl ?y . 7x p2 7ol

FILTER(?701=10) } (star-shaped join) the cardinality is calculated as

Cp2t

Cp2,01
max<cp2,xr Cpl,x)

while for queries such as SELECT ?x WHERE { ?x pl 7y . 7y p2 7ol .
FILTER(701=10) } (path-shaped join) the cardinality is calculated as

CpZ,t
Cp2,01

max(cplly, sz,y)

*Cpl,t
4 (3.5)

Cres =

“Cplt
P (3.6)

Cres =

Estimating Result Sizes for Grouping and Aggregation

The number of results after evaluating grouping and aggregation depends
on the size of the input. Given a list of attributes in the GROUP BY clause, the
upper bound of tuples after grouping is the size of the input. Hence, in such
a non-restrictive case we have c,es = Cjy;.

If the GROUP BY clause contains only a subset (?x1,...?x;) of the variables
contained in the query, then ¢,,s (or more specifically c4c) is bound by the
product of the variables’ distinct bindings [/, distinct(?x;).

When solution reducers are present in the query, such as FILTER state-
ments and/or triples with literals, which are connected to grouping variables
through joins, we assume that the number of distinct values is reduced pro-
portionally:

. Cpy,x
distinct(?x) = —L22_ (3.7)
Cpyy - N
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where cp, » is the number of distinct bindings for variable ?x, ¢j, ,, number of
distinct bindings for variable ?y which is connected to ?x through star-shaped
or path-shaped joins, and N is the reduction factor, which is equal to 1 in case
of the solution reducer with equality, 1/3 in case of solution reducer with
. . pr,yfl . . . .
inequality and ey, N case of the solution reducer with negation (same as
described in Estimating Result Sizes for Basic Triple Patterns).

For example for a query of type SELECT COUNT(7x) 7y WHERE { ?x pl1 7
ol . 7?x p2 7y . FILTER(701=10) } GROUP BY 7y the number of distinct
values is equal to

Cp2
distinct(?y) = —=2— (3.8)
(?y) Gt N

where N is the number of distinct values specified by FILTER and for the
equation (?01=10) is equal to 1.

6 Evaluation

In this section, we present the results of evaluating the strategies presented
in this chapter. Our solution uses the .NET Framework 4.0 and dotNetRDF
(http://dotnetrdf.org/) to implement a mediator that accepts queries, op-
timizes their execution using the proposed strategies (SemiJoin, PartialAgg,
and MedJoin), and sends subqueries to the SPARQL endpoints, which are
using Virtuoso as local triple store.

6.1 Experimental Setup

We evaluate our strategies based on a standard benchmark originally
designed to measure the performance of aggregate queries in relational
database systems: the Star Schema Benchmark (SSB) [66]. This benchmark
is well-known in the database community and was chosen for its simple de-
sign (refined decision support benchmark TPC-H [67]) and its well-defined
testbed.

RDF Dataset. The data in SSB is generated as relational data. We used
different scale factors (1 to 5 — 6M to 30M observations) to generated multi-
ple datasets of different sizes. We translated the datasets into RDF using a
vocabulary that strongly resembles the SSB tabular structure. For example, a
lineorder tuple is represented as a star-shaped set of triples where the sub-
ject (URI) is linked via a property (e.g., rdfh:1lo_orderdate) to a an object
(e.g., rdfh:1lo_orderdate_19931201) which in turn can be subject of another
star-shaped graph. Values such as quantity and discount are connected to
lineorder entities as literals. A simplified schema of the RDF structure is il-
lustrated in Figure 3.1 while details about the generated datasets are given in
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quantity

rdfh:lo_orderdate

rdfh:lo_supplier

Fig. 3.1: Simplified Description of the SSB dataset

Table 3.1. Converted datasets contain 110,5M (scale factor 1) to 547,5M (scale
factor 5) triples.

LineOrder Parts Customers Suppliers Dates
Tuples | Triples | Tuples | Triples | Tuples | Triples | Tuples | Triples | Tuples | Triples
Scale Factor 1 6M 108M | 220,000 | 2.2M 30,000 | 270,000 | 2000 16,000 2556 48564
Scale Factor 2 | 12M | 216M | 400,000 | 4M 60,000 | 540,000 | 4000 | 32,000 | 2556 | 48564
Scale Factor 3 | 18M | 324M | 400,000 | 4M 90,000 | 810,000 | 6000 | 48,000 | 2556 | 48564
Scale Factor 4 | 24M | 432M | 600,000 6M 120,000 | 1.08M | 8000 | 64,000 | 2556 | 48564
Scale Factor 5 | 30M | 540M | 600,000 6M 150,000 | 1.35M | 10000 | 80,000 | 2556 | 48564

Table 3.1: SSB Data Size

Queries. SSB defines 13 queries. They represent 4 “prototypical” queries
with different selectivity factors. A brief description of the queries is given
in Table 5.2. We converted all 13 queries into SPARQL and used the SERVICE
keyword to query federated endpoints.

Configuration. To test the queries in a federation of SPARQL endpoints, we
partitioned the datasets as follows:

* To simulate two endpoints (one endpoint containing main observation
data and one SERVICE endpoint containing supporting data), we created
two partitions: partition 1 (lineorders, parts, customers, and suppliers)
and partition 2 (dates).

¢ To simulate three endpoints (two SERVICE endpoints containing sup-
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Query Prototypes Query | Query Parameters for Various Selectivities
No
Prototype 1. Amount of revenue | Q1.1 | Discounts 1, 2, and 3 for quantities less than 25 shipped in
increase that would have resulted 1993.

from eliminating certain company- | Q1.2 | Discounts 1, 2, and 3 for quantities less than 25 shipped in
wide discounts. 01/1993.

Q1.3 | Discounts 5, 6, and 7 for quantities less than 35 shipped in
week 6 of 1993.

Prototype 2. Revenue for some | Q2.1 | Revenue for ‘MFGR#12’ category, for suppliers in America
product classes, for suppliers in a | Q2.2 | Revenue for brands ‘MFGR#2221" to ‘MFGR#2228’, for sup-
certain region, grouped by more pliers in Asia

restrictive product classes and all | Q2.3 | Revenue for brand ‘MFGR#2239’ for suppliers in Europe
years.
Prototype 3. Revenue for some | Q3.1 | For Asian suppliers and customers in 1992-1997

product classes, for suppliers in a | Q3.2 | For US suppliers and customers in 1992-1997

certain region, grouped by more | Q3.3 | For specific UK cities suppliers and customers in 1992-1997
restrictive product classes and all | Q3.4 | For specific UK cities suppliers and customers in 12/1997
Peatstype 4.  Aggregate profit, | Q4.1 | For American suppliers and customers for manufacturers
measured by subtracting revenue ‘MFGR#1” or ‘MFGR#2" in 1992

from supply cost. Q4.2 | For American suppliers and customers for manufacturers
‘MFGR#1” or ‘MFGR#2’ in 1997-1998

Q4.3 | For American customers and US suppliers for category
‘MFGR#14’ in 1997-1998

Table 3.2: SSB Queries

porting data), we created three partitions: partition 1 (lineorders, parts,
customers), partition 2 (dates), and partition 3 (suppliers).

* To simulate four endpoints (three SERVICE endpoints containing sup-
porting data), we created four partitions: partition 1 (lineorders, parts),
partition 2 (dates), partition 3 (suppliers), and partition 4 (customers).

All the queries and the datasets used for the experiments are available at
http://extbi.cs.aau.dk/coda.

We used four different machines for our experiments depending on the
configuration. We used the most powerful machine (CPU Intel(R) Core(TM)
i7-950, RAM 24 GB, HDD 1.5TB RAIDS5, 1TB SATA, 600GB SAS RAIDO) for
partition 1. We used three identical machines (CPU AMD(R) Opteron(TM)
285 2.6GHz, RAM 8GB, HDD 80GB) for serving data of partitions 2 to 4.
64-bit Ubuntu 14.04 LTS operating system was installed on all computers.
As a mediator, we used a virtual machine with one dedicated core of Xeon
E3-1240V2 3.4 GHz (2 threads), 10 GB RAM, 100 GB HDD, and 64-bit Win-
dows Server 2008 Service Pack 1 as operating system. All machines were
located on the same LAN. All benchmark queries were executed 5 times fol-
lowing a single warm-up run. During this warm-up run, all statistics and
system measurements were obtained, stored in the system, and later used for
the subsequent query executions. Statistics were gathered with the help of
COUNT queries. Statistics collection took between 18 (scale factor 1) to 129
(scale factor 5) seconds. The execution time for each query is measured on
the mediator from the time the query is received from a user till the time
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the complete results are reported back. We used a timeout of 1 hour for the
experiments.

6.2 Experimental Results

As discussed in Section 1, we initially experimented with three systems (Vir-
tuoso, Sesame, and Jena Fuseki). Sesame is always trying to download all
triples that match the patterns defined in the SERVICE subquery from the re-
mote endpoint and is timing out even for small datasets. Jena Fuseki and
Virtuoso are using the same strategy to evaluate SERVICE subqueries with
grouping and aggregation. We chose Virtuoso v07.10.3207 as representative
for this strategy in our experiments and include results for a native Virtu-
oso setup, in which Virtuoso is optimizing the distributed execution of the
aggregate query.

In our first line of experiments, we measured the runtime for the bench-
mark queries in the configuration with one SPARQL endpoint. For the Semi-
Join strategy, due to issues with large numbers of bindings in the VALUES
clause in existing endpoints [19], we often have to partition the set of bind-
ings that we aim to pass in a VALUES statement into smaller partitions and
send a separate messages for each of the partitions.

[ Q1 [ Q2 [ Q3 | Q1 [ Q2 [ Q3 | @1 [ Q2 [ Q33 | Q4 | Q41 | Q42 | 43
Scale Factor 1
Virtuoso T/O0 T/O 760 500,3 107,8 21,3 215,8 21,2 14 14 863 969 7,3
SemiJoin 13 0,2 0,1 12,7 13,5 12,6 14,1 11,0 6,5 0,2 48 8,1 45
PartialAgg 16 14 0,8 9,4 4,5 3 17,5 2,8 0,5 0,3 4 18,5 1,0
Med]Join 249,5 2134 829 11 52 2,9 98,9 34 0,8 0,3 26,4 32 1,1
CoDA 1,3 0,2 0,1 9,4 4,5 2,9 14,1 2,8 0,5 0,2 4 8,1 1,0
Scale Factor 2
Virtuoso T/O T/O T/O 950,9 T/O 462,9 992,2 429 18 19 T/0 1054 46,5
SemiJoin 3,6 0,9 0,5 25,7 102,8 101 154 11,1 89,7 0,32 30,6 35,5 20,6
Partial Agg 17,1 16,5 7,3 16,2 9,5 59 18,4 58 0,8 0,34 77,3 374 10,5
Med]Join T/0 T/0 T/0 T/0 143,7 315 612,7 36,7 18 17 T/0 T/0 246,7
CoDA 3,6 0,9 0,5 16,2 9,5 59 15,4 58 0,8 0,33 30,6 35,5 10,5
Scale Factor 3
Virtuoso T/0 T/O T/O 1465 T/O T/O T/O 63,5 2,38 3,1 T/0 T/O 68,5
SemiJoin 46,3 54 2,2 330,7 3034 3441 20,2 14,2 250,7 0,6 454 105,3 39,8
Partial Agg 18,4 18,8 83 29,5 13,2 82 232 8,6 1,1 0,7 217,4 606 33,9
Med]Join T/O0 T/O0 T/O T/O 205,7 39,5 1312 448 2 24 T/0 T/0 305,3
CoDA 18,4 54 2,2 29,5 13,2 8,2 20,2 8,6 1,1 0,6 45,4 105,3 33,9
Scale Factor 4
Virtuoso T/O T/0 T/0 T/0 T/0 T/O T/0 86,9 4,7 4,7 T/O T/O 118,4
SemiJoin 64,2 6.9 2,4 368,5 430,3 455,4 23,7 14,5 275,6 0,7 54,2 116,2 73,5
PartialAgg 33,9 27,6 9,8 146,2 15,2 12,9 27,2 12,5 16 0,38 980,8 1017 68,3
Med]Join T/0 T/O T/O T/O 267,5 43,6 T/O 64,5 2,3 3,9 T/0 T/0 T/O
CoDA 33,9 6.9 2,4 146,2 15,2 129 23,7 12,5 1,6 0,7 54,2 116,2 68,3
Scale Factor 5
Virtuoso T/0 T/0 T/0 T/0 T/0 T/0 T/0 109,2 53 57 T/0 T/0 1434
SemiJoin 77,7 8,4 2,9 453,4 460,3 503,6 60,9 15,8 352,9 1,2 59,2 126,8 123,6
PartialAgg 37,7 29,2 184 249,5 19,8 149 78,5 14,4 2,2 17 1565 1577 105,1
Med]Join T/O T/O T/O T/O 301,2 46,3 T/O 80,4 33 58 T/0 T/O T/O
CoDA 37,7 8,4 2,9 249,5 19,8 149 60,9 14,4 2,2 1,2 59,2 126,8 105,1

Table 3.3: Benchmark Results For Scale Factor 1 to 5, in seconds
Table 3.3 shows the results for scale factors 1 to 5. CoDA clearly chooses

the best strategy for all queries. For scale factor 1, the CoDA algorithm
selected the SemiJoin strategy for queries with highly selective subqueries
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(where the number of intermediate subquery results are low) (Q1.1, Q1.2,
Q1.3,Q3.1, Q3.4, and Q4.2), the MedJoin strategy for queries with high selec-
tivity (Q2.3), and the PartialAgg strategy for the rest.

CoDA scales well with the increase in the number of triples as the re-
sults for scale factors 2 to 5 in Table 3.3 show. Due to the increased number
of triples to process, the strategy for Query 2.3 changes from MedJoin to
PatrialAgg. CoDA also changed the strategies for queries 1.1 and 4.1 due
to different estimations of Cc and Cp for various scale factors. In general,
CoDA chooses the best strategy for all queries (the difference between the
CoDA approach and the best approach for query Q3.4 in scale factor 2 is due
to the overhead of optimization, which is only 14 ms).
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Fig. 3.2: Execution Times for Queries with Low and High Selectivity, One Endpoint

Figure 3.2 shows the execution times for several queries with high selec-
tivity (Q4.3, Q3.3, Q3.4) and low selectivity (Q2.2, Q3.2, Q2.3) for different
strategies and scale factors — due to timeouts in execution, some lines end
earlier than others. MedJoin and native Virtuoso do not scale well and some
queries time out while SemiJoin and PartialAgg return answers for all the
queries. This can be explained by the internal logic behind the strategies. For
example, Virtuoso sends SPARQL requests for every aggregated observation,
while MedJoin needs to transfer much data to the mediator. Due to the result
size restrictions (the maximum result set size for Virtuoso is 1,048,576), the
system downloads all data in chunks but still times out. In contrast, Semi-
Join and PartialAgg transfer only necessary data and are thus reducing the
communication costs.

We also evaluated the influence of the number of endpoints. For this pur-
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SE - SERVICE Endpoint,
SF - Scale Factor

Fig. 3.3: Execution of Query 4.3 over Several Endpoints

pose, we chose an example query from our workload (Q4.3) that is complex
enough to be rewritten into a query with up to three SERVICE endpoints and
selective enough not to require all triples for the calculation (Figure 3.3). Go-
ing up to three endpoints, only the PartialAgg strategy was able to answer
the query. With data coming from two or three endpoints, the number of
values that needs to be passed in the SemiJoin strategy increases and system
performance quickly degrades (yellow lines in Figure 3.3). With the partition
of the dataset into more endpoints, MedJoin also needs to load much more
data into the mediator site to answer the query and for the scale factors 3 to
5 this leads to timeouts (green lines in Figure 3.3). The same reason (the need
to send more requests to answer the query) leads to the timeout in the Vir-
tuoso strategy (red lines) for queries with more than one SERVICE endpoint.
Therefore, the obvious choice of the CoDA strategy is Partial Agg (blue lines)
in these cases.

In summary, the experimental results show that CoDA is able to select
the best strategy and thus executes all queries for RDF data of all tested data
sizes.

7 Conclusions and Future Work

Motivated by the increasing availability of RDF data over SPARQL endpoints,
the new powerful aggregation functionality in SPARQL 1.1, and the desire to
perform ad-hoc analytical queries, this chapter investigated the problem of
efficiently processing aggregate queries in a federation of SPARQL endpoints.

More precisely, the chapter proposed the Mediator Join, SemiJoin, and
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Partial Aggregation query processing strategies for this scenario. The chap-
ter also proposed a cost model, and techniques for estimating constants and
result sizes for triple patterns, joins, grouping and aggregation, and the com-
bination of these with the processing strategies into the Cost-based Optimizer
for Distributed Aggregate queries (CoDA) approach for aggregate SPARQL
queries over endpoint federations. The comprehensive experimental eval-
uation, based on an RDF version of the widely used Star Schema Bench-
mark, showed that CoDA is efficient and scalable, able to pick the best query
processing plan in different situations, and significantly outperforms current
state-of-the art triple stores.

Interesting directions for future work include using more complex statis-
tics with precomputed join result sizes and correlation information to bet-
ter estimate cardinalities, optimizing the execution of more complex queries
(e.g., with optional patterns or complex aggregation functions), and investi-
gating the influence of ontological constraints and inference/reasoning in the
context of federated aggregate SPARQL queries.
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Abstract

As more and more data is becoming accessible on the Web via SPARQL endpoints,
we can often find related data at multiple endpoints. Hence, diverse query processing
strategies have been developed to overcome challenges such as links between sources,
heterogeneity of the data sources, the need to support implicit (derived) information
and reasoning, etc. However, not many of these techniques have been designed to
support analytical SPARQL queries involving grouping and aggregation, which are
an integral part of online analytical processing (OLAP) systems and enable inter-
esting insights and analyses at a large scale. Hence, in this chapter we propose
LITE (OLAP-style Analytlcs in a FederaTion of SPARQL Endpoints), a federated
system for computing aggregate SPARQL queries over a federation of SPARQL end-
points addressing the above mentioned challenges. In particular, LITE is able to
integrate the diverse schemas of SPARQL endpoints and provide access to the data
via OLAP-style hierarchies to enable uniform, efficient, and powerful analytics. The
experimental evaluation shows that LITE significantly outperforms the state of the
art.

1 Introduction

More and more organizations publish data in RDF format and make it acces-
sible via SPARQL endpoints. Yet, many users are interested not only in the
data of a single endpoint but also in complex SPARQL queries that require
combining partial results from multiple endpoints.

Consider, for example, a user who is interested in analyzing weather data
from different countries as, for instance, provided by several public SPARQL
endpoints’>3. Among other measures, each of these endpoints provides ac-
cess to information about precipitation in a single country (Australia, Spain,
USA). Let us assume that the user is interested in finding regions in each
of these countries with the highest or lowest amount of precipitation in a
given time range. Answering this query requires accessing each of these
sources. Evaluating such queries does not only require efficient query ex-
ecution strategies but also means to overcome the problem of data source
heterogeneity, i.e., each source uses a different schema (ontology) to struc-
ture and describe the local data. Such heterogeneity makes it very difficult
for a user to formulate a single query for complex information needs such as
the example mentioned above.

Another typical scenario is when several endpoints contain statistics or
census data of a single country. The user may be interested in the analysis of

Ihttp://1lab.environment.data.gov.au/weather/sparql
’http://aemet.linkeddata.es/sparql
Shttp://sonicbanana.cs.wright.edu:8890/sparql
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data across these endpoints like aggregating data at the continent level using
external hierarchies provided by other sources. The same scenario is valid for
the previous example with data about precipitations. Suppose the SPARQL
endpoints provide only information about the city where a sensor is located.
Our user, however, might want to group the readings by districts, federal
states, or continents, i.e., by information that is not present in these endpoints
directly. As many publishers link their data to well-known datasets such as
GeoNames (http://www.geonames.org/), we can use these links to retrieve
missing information and hierarchy levels from other sources.

One of the interesting aspects that is neglected by most other approaches
is entailment, i.e., deriving new information from data using RDF semantics.
RDF Schema (RDFS) entailment patterns are particularly interesting for ana-
lytical queries since RDFS encodes the domain semantics. In particular, RDFS
properties, such as rdfs:subClassOf, may define (implicit) hierarchies between
entities and should therefore be considered to ensure complete answers to
analytical queries.

To overcome the above mentioned challenges, we propose LITE, an ap-
proach that uses a mediated (global) schema comprising (the relevant parts
of) all heterogeneous source schemas (local schemas) and that takes into ac-
count externally linked hierarchies and RDF entailment. A user of LITE does
no longer have to be aware of the underlying federation of SPARQL end-
points but can conveniently formulate a query on the global schema and the
system will automatically take care of all actions that are necessary to retrieve
the final result.

In summary, the contributions of this chapter are:

* a native RDF/SPARQL-based approach for efficient support of analyti-
cal queries over federations of SPARQL endpoints,

* an extended vocabulary for specifying the mapping between the mul-
tidimensional mediated schema (global) and the local schemas of the
sources, and

* an algorithm for rewriting SPARQL queries in a federation of endpoints
that takes into account hierarchical information encoded in RDFS.

The remainder of this chapter is structured as follows. Section 2 discusses
related work and Section 3 introduces the preliminaries. While Section 4
presents how LITE facilitates the integration of local schemas into a global
schema, Section 5 presents how LITE rewrites and optimizes queries. Sec-
tion 6 discusses our experimental results and Section 7 concludes the chap-
ter.
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2 Related Work

The problem of data integration has been studied extensively in the context of
relational databases [71,88-91]. Such systems typically describe sources with
views over a global mediated schema. Queries are then defined on the global
schema and rewritten into queries over the source data. Most query rewriting
approaches apply the Local-As-View paradigm, where the local schemas are
expressed as views over the global schema, or the Global-As-View paradigm,
where the global schema is expressed as a view over the local schemas. Tech-
niques designed for relational systems cannot easily be adapted to RDF data.
Whereas the schema in relational systems, for instance, is rather stable, RDF
datasets and their schemas are much more dynamic and do not have the same
structural properties as relations. Moreover, standard relational databases are
limited to explicit data only while RDF systems support entailment.

Recently, some approaches for RDF data have been proposed. [68] pro-
poses an RDF analytics framework supporting typical OLAP operations and
analytical queries. Although hierarchies are supported by using a nextLevel
property, the proposed framework does not offer techniques to handle com-
plex or implicit hierarchies and is not intended for a federated setup. To
facilitate query rewriting over multiple datasets, [92,93] adopt mappings be-
tween source and target ontologies using either Description Logic [93] or
Ontology Alignment [92]. The SPARQL queries are rewritten using these
predefined mappings. However, these approaches do not support aggregate
queries, do not consider complex and implicit hierarchies, and do not account
for inferred triples.

In [78], an algorithm for SPARQL query rewriting over a number of vir-
tual SPARQL views is proposed; the approach removes redundant triple pat-
terns originating from the same view and eliminates rewritings with empty
results. An alternative technique to process SPARQL queries without gen-
erating rewritings is proposed in [94]. It ranks and aggregates relevant
views into an aggregate view, which is used for query execution. Both ap-
proaches [78,94] focus on conjunctive queries and do not address the issues
related to aggregation and dimensional hierarchies. [26] evaluates the perfor-
mance gain of manually constructed RDF aggregate views that fully match
the predefined set of queries. This work, however does not propose a novel
algorithm for query rewriting or view selection. [69] presents cost-based opti-
mization strategies for aggregate queries over linked data that are suitable for
a single endpoint and does not support the integration of similar data from
various endpoints. Besides, implicit triples were not considered. To speed-up
query processing on SPARQL endpoints, [95] proposes a cost model and tech-
niques for selecting a set of aggregate RDF views to materialize and an algo-
rithm for rewriting user queries given a set of materialized views. However,
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the approach in [95] is designed for single endpoints and does not address
issues related to processing queries in a federation of endpoints.

The literature also proposes several approaches for querying federated
RDF sources. FedX [18] uses SPARQL ASK queries for source selection
and implements bound joins to reduce the number of requests between
sources. ANAPSID [55] uses a catalog of endpoint descriptions to decom-
pose a user query into subqueries for the execution by separate endpoints
and pipelines the result to other operators in the query execution tree. SI-
HJoin [58] uses a hash join implementation to enable pipelining in combi-
nation with a lightweight cost-model. [96] is designed for federations using
triple pattern fragments and optimizes query execution in the presence of
replicated data by selecting useful fragments and minimizing the amount of
transferred data. DARQ [97] uses metadata (service descriptions) to identify
relevant sources for a given query and HiBISCus [98] addresses the problem
of source selection by discarding sources that are not pertinent to the final re-
sult computation. All these approaches are designed for conjunctive queries
and are not directly applicable in the context of analytical queries.

In summary, most state-of-the-art approaches for federated SPARQL
query processing are designed with a focus on conjunctive queries or do
not offer support or optimizations for multidimensional analytical queries.
In contrast, this chapter proposes a novel approach for executing analytical
queries in a federation of SPARQL endpoints over dynamic, graph-structured
multidimensional data taking into account RDF specifics.

3 RDF Graph and Queries

The notation we use in this chapter follows [99] and is based on three disjoint
sets: blank nodes B, literals L, and IRIs I (together BLI). An RDF triple
(s,p,0) € BI x I x BLI connects a subject s through property p to object
0. A subject usually denotes an entity or a class, while an object denotes an
entity, a class or a literal value. An RDF dataset (G) consists of a finite set
of triples and is often represented as a graph. Figure 4.1 shows an example
RDF graph describing precipitation observations in Spain (extracted from
http://aemet.linkeddata.es/sparql) with links to DBpedia.

Definition (RDF Graph) An RDF graph is denoted as G = {N, E, ®}, where
N = Ng UNc U N is the set of nodes corresponding to subjects and objects
in a set of RDF triples (with Ng, N¢, and Nj, representing sets of entity nodes,
class nodes, and literal nodes); E C N x N x © is the set of directed edges
representing triples; and © is the set of corresponding edge labels represent-
ing the triples’ predicates.

Queries are based on graph patterns that are matched against G. A Basic
Graph Pattern (BGP) consists of a set of triple patterns of the form (IV) x
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Fig. 4.1: Spanish precipitation observations

(IV) x (LIV), where V (VN BLI = @) is a set of query variables.

Definition (BGP Query graph) A BGP query is denoted as Q =
{N Q, EQ,G)Q}, where N€ is a set of nodes and variables; EX is a set of edges
and variables; and @F is the corresponding set of edge labels.

Most SPARQL aggregate queries use the pattern SELECT RD WHERE GP
GROUP BY GRP, where GRP defines a set of grouping variables and GP a BGP
optionally using functions, such as assignments (e.g., BIND) and constraints
(e.g., FILTER). RD is the set of result description variables corresponding to
a subset of variables in the graph pattern GP and aggregation variables with
corresponding aggregate functions.

In this chapter, we focus on analytical queries on RDF data for aggregating
measurable attributes (measures) of a set of observations (facts) according
to relevant criteria (dimensions). The basic graph pattern of such queries
usually has a special rooted pattern [68].

Definition (Rooted Query) A BGP of query q is rooted in node n € N iff
there exists a connected path from any node x € N to node n.

4 Data Integration in LITE

In this section we first describe how LITE models global and local schemas
as graphs. We then proceed to describe how we define mappings between
these schemas.
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4.1 Modeling Source and Target Schemas

To represent schemas of the local sources we use an RDF schema graph that
highlights the structure of the data available to the analyst, i.e., a footprint of
the available data.

Definition (RDF Schema Graph) The schema graph of an RDF dataset G is
denoted as G° = {N®, E®,®°}, where N° = N4 U N¢ is a union of summary
nodes N, and class nodes in the ontology Nc ; E5 C N° x N¥ x ©° is a set
of (directed) edges in the RDF schema graph (ES C E;E € G); and ©F is a set
of corresponding edge labels. Each summary node ny € N4 represents an
aggregation of all entity nodes ng € N that are instances of a specific class

¢ € N¢ or literal nodes n;, € Np.
‘ n14:Name ' e1 - am:observedininterval
- time:hasBeginning

- time:inDateTime
- time:inXSDDateTime

n7:Weather e9 - ssn:observedBy
n16 Name
Statlon :
Value €5 13 - rdfs:seeAlso
n8 Name

(ng Mun|C|p|o)—<n1O Provmma)—(nﬂ Country) 97 :fdnqu:xgtJ;iOfObsewedData
€10 - am:locatedIn
e11 - geo:formaParteDe
n1:Observation ) n4:DateTime
s Description
(nG Value) (nZ Interval)—( n3:Instant

e1 0 - ssn:observedProperty
n5:Precipitation
e12 - gn:parentFeature
Fig. 4.2: RDF Schema graph for Spain

e3

We use the notion of summary nodes to represent the repetitive nodes in a
dataset that have the same class but different IRIs, like observations, weather
stations, etc. We use the summary nodes during the query rewriting phase
and replace these nodes with variables if necessary. The schema graph of the
RDF data graph given in Figure 4.1 (without data from the remote endpoint)
is shown in Figure 4.2.

ls:nodel a am:0bservation .

ls:nodel am:observedInInterval ls:node2 .
ls:nodel ssn:observedBy ls:node7 .
ls:nodel am:valueOfObservedData ls:nodef .
ls:node2 a time:Interval .

ls:node2 time:hasBeginning ls:node3d .
ls:node3 a time:Instant .

ls:node3 time:inDateTime ls:node4 .
ls:node4 a time:DateTimeDescription .
ls:node4 time:inXSDDateTime ls:nodel2 .
ls:node7 a am:WeatherStation .

ls:node7 rdfs:label 1ls:node8 .
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ls:node7 am:locatedIn ls:node9 .
ls:node9 a geo:Municipio .

ls:node9 rdfs:label ls:nodel3d .
ls:node9 geo:formaParteDe ls:nodelQ .
ls:nodel0 a geo:Provincia .
ls:nodel0 rdfs:label ls:nodel6 .

Listing 4.1: Excerpt of local schema

Multidimensional global schema: The global schema, on the other
hand, can be built using powerful multidimensional vocabularies like
QB4OLAP [25], and (to a lesser extent) QB [30] or more general approaches
like AnS [68]. While the global schema should in general (at least) be able to
represent the structure of the virtually integrated data, LITE with QB4OLAP
offers much more expressive power by natively supporting well-known, intu-
tive data analytics concepts such as dimensions with hierarchies of levels (for
example, a hierarchy generalizing the administrative division of countries)
and built-in measures with associated (automatic) aggregation functions (for
example total precipitation over a group of observations). We note that the
RDF schema graph is not appropriate for defining the global schema since it
does not allow us to specify the dimensions, complex hierarchies or measures
as needed by analysts.

In general, analysts prefer to work with highly structured data. However,
the structure of the local sources may be less evident. Thus we should map
the local schemas to the global schema to allow analysts to write structured,
multidimensional (OLAP-like) queries using the global schema that will then
be automatically translated into queries over local graph-like data with a less
explicit data structure.

4.2 Mapping Model

We now outline the mapping model that map the local and global schemas
in LITE. In a sense, we are mapping a multidimensional data schema to
a schema that represents graph-like data. However, since both local and
global schemas are encoded as RDF, both local and global schemas can be
represented as graphs. Therefore, we depict the global schema as a graph
where nodes represent the concepts specified in the multidimensional data
model [25]. A root node, for example, represents observations that may be
analyzed using other schema nodes reachable from the root node such as
hierarchies of dimension levels and measures.

In our mapping model, we allow to specify schema fragments — the sub-
graphs that reflect some core concepts in schemas. For instance, in a schema,
a fragment can be a subgraph that connects a node representing a measure to
the root node. Another example of the schema fragment is a subgraph that
represents a step in a hierarchy — a parent/child relationship between two
levels. The schema fragments can easily model such concepts, unlike single
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triples. For example, nodes nl1, n6, n5 and edges ¢6, e8 in Figure 4.2 consti-
tute a schema fragment related to the Precipitation measure, while nodes 1,
n7 and the edge €9 constitute the Station level in the Geography dimension.
The union of all fragments of the schema forms the complete schema. Then
we map the fragments representing the same concepts in global and local
schemas to each other.

Definition (RDF Schema Fragments) An RDF schema S = {N,E,®} (N -
set of nodes, E - set of edges, © - set of edge labels) can conceptually be
partitioned into a set of fragments F = {F;, F, ..., F, } where F,k =1,...,m is
specified by (N]i” U N¢*, Eg, ©f) such that

L [N{"UN{Y,.., Nji UN;] is a disjoint partitioning of N, ie., Nf" 1 N/" =
@,i,j € {1,...m},i # j,and [Uiey_uNi", Uiey_uNEY] = N

2. Anode n € N{* iff the node n resides in several fragments, i.e. n € F;,n €
F,i#j;

3. Nodes in N{* are called external nodes and nodes in N,i” are called internal
nodes of F;

4. Ex C N/" x NI" x ©;

5. O is a set of edge labels in F.

In the example schema fragment related to the measure, node n1 is an exter-
nal node (also present in other fragments), while node 16 is internal.

BGP Query fragments Similarly with Definition 4.2, a BGP query graph con-
sists of a set of BGP query fragments where variables may appear in any of
the subject, predicate, or object positions within the fragments.

Our mapping model also links the graph nodes that have the same mean-
ing in both global and local schemas. Since the global schema is built based
on the local schemas, measures and hierarchy levels present in the global
schema should contain their counterpart nodes in the local schemas. Hence,
in LITE we link these nodes. For example, if the node represents a hierarchy
level in the global schema, it can be linked to a node representing the same
hierarchy level in the local schema. LITE also allows extra hierarchies to be
added as will be explained later.

SPIN Extension: To map schema fragments and link nodes in global and
local schemas, we extend the SPARQL Inferencing Notation (SPIN) Syntax
vocabulary [20] — an RDF syntax to represent SPARQL queries as RDF triples.
The SPIN SPARQL Syntax can represent SPARQL queries and thus can en-
code graph patterns of arbitrary complexity. We adapt SPIN to represent
RDF schema graphs. For example, to represent the constituents of triples,
we use such SPIN properties as sp:subject, sp:predicate, and sp:object. The set
of triples is represented as a list (rdf:List) and is defined by the sp:elements
property. Also, the vocabulary can encode optional triples (sp:Optional), com-
bination of alternative triples (sp:Union), negation of triples (sp:Minus and
sp:NotExists), etc.
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Additionally, SPIN can encode fragments that reside on a remote end-
point. To do so, SPIN uses the instances of sp:Service. The property
sp:servicelIRI points to the URI where the data is located. This helps to
map global schema hierarchies to hierarchies that are external for local data
sources. The set of graph patterns related to the external hierarchies is repre-
sented with the property sp:elements. Listing 4.2 shows an example of defin-
ing an external dataset with sp:Service property.

1 ex:gsmt4 fs:pattern [sp:subject gs:nodel; sp:predicate ex:station; sp:
object gs:node7 ]

2 ex:gsmtb fs:pattern [sp:subject gs:node7; sp:predicate gb4o:inLevel; sp:
object ex:Station ]

3 ex:gsmt6 fs:pattern [sp:subject gs:node7; sp:predicate skos:broader; sp:
object gs:nodel7 1]

4 ex:gsmt7 fs:pattern [sp:subject gs:nodel7; sp:predicate gb4o:inLevel; sp
:object ex:AdmDivLevel2 ]

5 ex:glist3 sp:elements ex:gsmtd, ex:gsmtb . ex:glist4 sp:elements ex:
gsmt6, ex:gsmt7

6 ex:1smtb fs:pattern [sp:subject ls:nodel; sp:predicate ssn:observedBy;
sp:object ls:node7 1]

7 ex:1smt6 fs:pattern [sp:subject ls:node7; sp:predicate owl:locatedIn; sp
:object ls:node9 ]

8 ex:1smt7 fs:pattern [sp:subject ls:node9; sp:predicate owl:samels; sp:
object gn:nodel2 ]

9 ex:1smt8 fs:pattern [sp:subject gn:nodel2; sp:predicate gn:name; sp:
object gn:nodel6 ]

10 ex:11ist3 sp:elements ex:1lsmtbh . ex:1list4 sp:elements ex:1lsmt6, ex:
lsmt7

11 ex:glist3 fs:schemaMatch ex:11list3 . gs:node7 fs:sameConcept ls:node7

12 ex:glist4 fs:schemaMatch ex:1list4 . gs:nodel7 fs:sameConcept ls:nodel3

13 ex:gnsrv a sp:Service ; sp:serviceURI <http://lod2.openlinksw.com/sparql
> ; sp:elements ex:1lsmt8

Listing 4.2: Mapping global and local schemas

In a typical scenario, a graph pattern in SPIN is stored as a (tree) struc-
ture of blank nodes (for example, a triple pattern that has exactly one value
for the properties sp:subject, sp:predicate and sp:object is represented as a
blank node). To map schema fragments, we encode these fragments as a
list of triples and associate it with the fragments (a list of triples) from other
schemas. To benefit from using SPIN for mapping the schema fragments,
we need to introduce properties to properly identify each triple in the list
and correctly map these lists of triples from different schemas. Therefore we
introduce the property names whose meanings are intuitive:

pattern, schemaMatch, sameConcept

The property pattern is used to identify each triple in the schema graph.
Then, these triples are used to form a list of schema fragment triples. The
property schemaMatch is used to map the triples that represent the same frag-
ments in a local and global schemas. The property sameConcept, on the other
hand, is used to link the nodes that have the same meaning in both schemas.

Consider the excerpt from the mappings produced for the global and local
schemas (Listing 4.2) that maps schema fragments representing the parent-
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child relationship between the observation and the first level of the Admin-
istrative Division hierarchy in both schemas. The fs:pattern predicate is used
to construct triples that represent one triple of a graph (lines 1-4 and 6-9).
The subgraphs that constitute the fragment in the schema meaningful for
the data analysis is represented as a list of these triples with the help of
sp:elements property (lines 5 and 10). Then the schema fragments that rep-
resent the same concept in different schemas are mapped with the property
fs:schemaMatch, while the graph nodes that denote the same meaning in both
schemas (the station and the location of the sensors) are mapped with the
property fs:sameConcept (line 11-12). The property sp:Service represents a re-
mote endpoint that holds data related to externally defined hierarchies (line
13). Graphically, this process can be represented as shown in Figure 4.3 where
the mapped parts of both schemas are highlighted. To the left, a global hierar-
chy generalizing the administrative divisions of countries is added, based on
an external ontology. We see how some of the lower levels (in red) map to the
local source, while the new upper levels give the analysts new opportunities
to aggregate data beyond what the local sources can support.
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Fig. 4.3: Mapping global and local schemas
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5 Query Rewriting and Optimization

In this section we describe our query rewriting algorithm to rewrite a globally
defined query to corresponding queries over local datasets. Then we specify
the techniques we used to optimize rewritten queries. During query rewrit-
ing, we also apply RDEFS rules to account for implicitly defined hierarchies in
local datasets.

51 Query Rewriting

With the schemas and the mapping defined, the system can process the
queries written by the users. The system rewrites the queries defined over
the global schema to be executed over the local data sources. The rewrit-
ten query is produced by replacing the query graph patterns defined over
the global schema with the graph patterns defined over the local schemas
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and rewriting the aggregate function. In our approach, we focus on analyt-
ical RDF queries over hierarchical multidimensional data that are linked to
remote data sources. We also expect that the schemas of the sources can be di-
vided into a set of fragments representing different concepts in a data model
like a measure or a step in a hierarchy. At the same time we suppose that
the global and local schemas contain nodes representing the same concepts
in both schemas. The query rewriting algorithm is described in Algorithm 6.

First, we need to identify the global schema subgraph that corresponds
to the user query by matching the BGP of the user query against the RDF
schema graph (line 1).

Definition (BGP query match against the RDF schema graph) A graph §’ is
a match of query Q{N<, EQ,®%} over RDF schema graph S{N,E,®} (S’ =
Q(S)) if and only if S’ is a subgraph of S and exists a mapping function f
that:

— maps a variable in N€ to any node in N;

— maps a node n1 € N9 to a node n° € N if nodes n7 and n° have the same
URI

- maps an edge ¢7 € EQ to an edge ¢° € E such that the label of the edge e/
in OF is equal to the label of the edge ¢° in ®;

- maps a variable in EC to any edge in E.

Then, from all possible schema fragments, we identify the subset of the
fragments such that these fragments, when combined, constitute the sub-
graph produced during the previous step (line 3). Using these schema frag-
ments and the mapping among the schema fragments, we build a schema of
the local data source that corresponds to the user query (line 5). Then, based
on globally available information, we optimize the local schema (the details
of the optimization are discussed in Sec. 5.2). Additionally, using the global
schema fragments, we identify the corresponding query fragments of the
user query. Then, for each variable in the query fragment that is also a result
description variable in the SELECT statement, we identify the corresponding
node in the global schema and the same concept node in the local schema and
replace the node in the local schema with the corresponding variable name
(lines 10 - 13). After that, all the remaining summary nodes in the schema
of the local data source are replaced with the newly generated variables so
that the resulting graph patterns can be used in the local query. Then, the
graph patterns in the WHERE clause of the global query are replaced with
the graph patterns of the local query and the aggregate functions are rewrit-
ten (line 16) to account for the type of the function (algebraic or distributive).
Next, the rewritten query is passed for further execution.

SELECT 7loc (SUM(?prec) as 7totalPrec)

WHERE {
?obs rdf:type gb:0bservation .
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Input: Global schema S, global query Qg, mapping schema M
Output: Rewritten query Qr,
Sé; = Qg (Sg) - a result of execution of query Qg over global schema Sg ;
FG = [FG, .. .,F]?]; FC € M - is a set of global schema fragments in M ;
From FC find such subset F;, = [F{,...,FS] that F; C FC and
U[FS,... ES]=5';
F = [FlL, ..., FL] —is a set of schema fragments for a local dataset from the
mapping schema M where F,.L is mapped to FiG,i =1,...,m];
S} = UF] --is a schema of the local dataset corresponding to the query Qg ;
1 = ApplyOptimization(S}, M) ;
Fé =[F7,..., FQ ] -- is a set of query fragments from Q such that FC is a
schema match for FiQ fori=11,...,m];
D= U,v:L___,m(an, nlL) -- is a dictionary of same concept nodes for all fragments
F(, F| from mapping M ;
RD = vars;(Q) - is a set of projected (result description) variables in Q ;
foreach FiQ € F), F? € F. do
if Joar € Fl.Q and var € RD and var is mapped to n € (N} UN¢)° from F? and
n € D then
e = D(n) -- is the same concept node in local schema retrieved from
D;
Replace 1y, in S} with variable var ;

B GPLQ = Convert(S') -- replace summary nodes in §’ with generated variables ;
Qr = REPLACE(Q, BGPY, BGP{2 ) -- replace the basic graph pattern in query
Q

RD = RD U {y(varsz(Q))} \ {f(vars;(Q))} where 7 is a rewrite of the
aggregate function f;

return Qy ;

Algorithm 1: Query rewriting using a global-to-local mapping

7obs qb:dataSet ex:Precipitation .
?obs ex:precipitationLevel ?prec
7obs ex:station ?station .

?station qb4o:inlevel ex:Station .

?station skos:broader 7loc .

?loc gb4o:inLlevel ex:AdmDivLievel2 .

?obs sen:samplingTime ?date

FILTER(?7date=2014-02-07’""xsd:date)
} GROUP BY ?loc

Listing 4.3: Global query

SELECT ?loc (SUM(?node6) as ?totalPrec)
WHERE{ ?nodel rdf:type ae:0Observation .
?nodel ae:valueOfObservedData ?prec .
?nodel ssn:observedBy/ssn:locatedIn 7noded .
?node9 owl:sameAs ?nodel2 .
SERVICE <http://lod2.openlinksw.com/sparql> {
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Fig. 4.4: Query rewriting

?nodel2 gn:name ?loc . }
?nodel ssn:observationSamplingTime ?node6 .
?node6 tm:inInterval/tm:hasBeginning 7node3 .
?node3 tm:inDateTime/tm:inXSDDateTime 7date .
FILTER(?date=2014-02-07’~~xsd:date)
} GROUP BY 7?loc

Listing 4.4: Local query

Let us consider an example. Listing 4.3 shows a global query that cal-
culates the total precipitation at each location on a specific day and groups
the results by the location. This query is executed against the global schema
and the resulting subgraph is shown in red in Figure 4.4. Based on the re-
sulting subgraph, we find the corresponding schema fragments (represented
by solid green line, dashed magenta and black lines) and its counterparts for
the local schema (represented by the same color lines). We assemble the local
schema fragments and build a subgraph corresponding to a query over the
local dataset (in red). Then, based on the resulting subgraph and the same
concept mapping, we build a query over the local dataset. The resulting local
query is shown in Listing 4.4. However, in the federated environment it is
important to optimize the query before the execution.

5.2 Global and Local Optimization

There are two basic options to evaluate queries with externally defined hi-
erarchies: (a) to execute SERVICE queries for every observation while eval-
uating a query in a nested loop join (NLJ) fashion or (b) to download all
triples matching the specified graph pattern of the SERVICE query for eval-
uating the query locally. In the approach (a), the NL] causes many remote
requests (one request per observation, although the batches of bindings can
be combined for optimization) while in the approach (b) a large amount of
potentially irrelevant data needs to be shipped from the remote endpoint.
Thus, the system intends to optimize queries based on globally available
information first. We use rule-based optimization on the global level and
cost-based optimization on the local level. On the global level, we opted
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for rule-based optimization due to the complexity of calculating estimations
in federated systems [100], although LITE can be extended with cost-based
optimization in the presence of necessary statistics.

On the global level, we try to (1) use internal hierarchies for rolling up the
hierarchy levels if possible, (2) place restrictions on external hierarchies to
retrieve only necessary results, or (3) roll-up data for external hierarchies to
the maximal hierarchy levels on local endpoints instead of rolling-up the data
in a mediator. These rules are designed to reduce the amount of transferred
data and increase the performance of the system.

For rule (1), we check if the system can use internal hierarchies to roll-
up to a level that corresponds to some level of the external hierarchy. For
example, Rainfall Districts in Australia do not correspond to administrative
districts recorded in GeoNames but Rainfall States (the next hierarchy level)
are the same as administrative states. Thus, if the query aggregates on the
state level or above, the system can use local data to roll-up to the state level,
and external hierarchies to roll-up further. For Australia, 14 times less data is
received from GeoNames when this rule is applied.

Input: schema S that corresponds to Qr, mapping schema M
Output: Optimized schema S

1 Fé = [Fg1, ..., Fr); Fé € M - is a set of schema fragments in the local schema
S’L that are external to the local source ;

2 D = U,-:L___,m(nf, nlL) -- is a dictionary of same concept nodes for local and
external fragments Fj, Fr from mapping M ;

3 From F;, € S| find a subset F| = [F11,..., Fi,] such that F] is a roll-up path
and 3 n € F} and n € D’ such that 3 n,, = D’(n) the same concept node and
Njoc € P[C(FLm) ’

a Ffl = [Fg1,...,Fel; Ff C Ff; n € Fgg; - is a part of external hierarchy roll-up
path (as a connected graph) with the same concept node #;

5 Sopt = Replace Fy in S} with F ;

6 Fp = [Fg1,...,Fex]; FE € M - is a set of all schema fragments in the local
schema S; that are external to the local source ;

7 R -- is a set of restricted values in Fg that are external to the local source ;

8 FY' = [Fegi1,- .., Fex] - is a set of schema fragments that form a roll-up path
such that F{/ U F{' is also connected and R € F}’ ;

9 SOpt = SOpt Ung" ;

10 return Sopt ;

Algorithm 2: Optimizing query

For rule (2), we place a restriction on the values for hierarchy levels so
that the SERVICE query does not retrieve irrelevant data. For example, if
the endpoint contains precipitation data related to Australia, a remote query
to GeoNames will retrieve Australia-related data only (using FILTER clause),
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significantly reducing the amount of transferred data (559 result bindings
instead of 40128 for districts in Australia).

For rule (3), we intend to reduce the amount of data transferred from the
local endpoint to a mediator. For example, if the local datasets provide infor-
mation on the City level and the user query asks to roll-up to the Continent
level, we can either roll-up data to the Continent level on local endpoints and
merge the results on the mediator, or aggregate on each endpoint by the City
level and perform the roll-up on the mediator. In general, the amount of data
transferred from the local sources to the mediator is less in the first approach
(1 result for a continent versus 99 aggregations for Rainfall Districts for Aus-
tralia) while the aggregation of data can happen in parallel in a number of
endpoints. The optimization algorithm is given in Algorithm 2.

After applying rule-based optimization on the global level, we use CoDA
[69] for cost-based optimization on the local level. Based on estimating con-
stants and result sizes for triple patterns, joins, grouping and aggregation,
CoDA uses a cost model to select among different query execution strategies
like Mediator Join, SemiJoin, or Partial Aggregation for queries with SER-
VICE construct. The local endpoints then execute optimized queries. More
information on CoDA is available in [69].

However, before executing the query over a local dataset we should ac-
count for implicit hierarchies that may appear due to the RDFS entailment
(Sec. 5.3).

5.3 RDF Entailment

A valuable feature of RDF is RDF Schema (RDFS). RDFS is used to enhance
the meaning of an RDF dataset — it defines the semantic constraints between
the classes and properties used for resource descriptions. These constraints
are stated using the RDFS standard properties subClassOf, subPropertyOf, do-
main, and range. As a result, RDFS entails implicit triples that may not be
explicitly present in RDF dataset. Accounting for the implicit triples is nec-
essary for returning a complete answer.

In our framework, we are interested in accounting for hierarchical informa-
tion present in the data. We handle dimensional hierarchies by rewriting the
queries based on the specified mappings. However, local data sources may
contain hierarchical information encoded using predefined RDFS properties,
such as rdfs:subClassOf or rdfs:subPropertyOf. These hierarchies should also
be taken into consideration.

For example, a person in DBpedia belongs to several classes including
dbo:Person. Some of these classes denote a profession of the person like
dbo:Journalist or dbo:Actor. The classes denoting the profession have a sub-
class relation (rdfs:subClassOf) with dbo:Person. Thus, we can build a new
hierarchy among the persons with two hierarchy levels — Profession and All
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— using solely RDFS entailment.

There are two main approaches for processing queries when consider-
ing RDF entailment. In the dataset saturation approach, all implicit triples
are materialized and added to the dataset. While requiring more space and
complex maintenance, this method benefits from applying plain query eval-
uation techniques to compute the answer. Query reformulation, on the other
hand, leaves the dataset unchanged but reformulates a query as a union of
queries and increases the overhead during query evaluation. Since the data
sources are independent in a federated setup, we use the query reformulation
approach in our framework.

Input: RDFS schema S, Query Q

Output: Rewritten query Q’

T = BGP(Q) -- a basic graph pattern of query Q; T/ =T ;
foreach t(s, p1,0) € T do

L if (p1, rdfs:subPropertyOf, p) € S then

W N =

L T' = T' U UNION{newt(s, pp,0)} -- new triple pattern ;

5 foreach t;(s1, rdfitype, X) € T and t(sy, rdfitype, Y) € T do
L if (X, rdfs:subClassOf,Y) € S then

o

L T' = T' U UNION{newt(s1, newVar(p),s»)} -- new triple pattern ;

8 Q' = REPLACE(Q,T,T’) - replace T with T’ in query Q;
9 return Q' ;

Algorithm 3: Query rewriting considering RDFS entailment

Algorithm 3 is used for rewriting a query considering RDFS entail-
ment. For all rules specifying hierarchical relations between predicates
(rdfs:subPropertyOf), the algorithm adds an UNION triple pattern for triples
with the implicit predicates specified in rules (lines 2-4). Then, for all rules
specifying the hierarchical relations between classes (rdfs:subClassOf), the al-
gorithm adds an UNION triple pattern with two hierarchically connected
nodes and a newly generated variable replacing the predicate (lines 5-7). Af-
ter rewriting the query, it can be passed for further execution to the endpoint
containing the local dataset.

6 Experimental Evaluation

To evaluate the performance gain of LITE for federated analytical queries
over existing systems, we implemented LITE using the .NET Framework 4.0
and the dotNetRDF (http://dotnetrdf.org/) APL. We report total response
time, i.e., including query rewriting (typically very small, on average 3%)
and query execution. The timeout was set to 30 minutes for each query. All
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queries were executed 5 times following a single warm-up run. The average
runtime is reported for all queries.

For comparison, we need a system that fully support both aggregate and
federated SPARQL queries. Thus we initially considered with three open
source systems that fully support the SPARQL1.1 specification (Virtuoso,
Sesame, and Jena). Here, Jena and Virtuoso use the same strategy to eval-
uate federated queries, while Sesame tries to download all matched triple
patterns from the remote endpoint and times out even for small datasets,
and was thus discarded. Jena could not efficiently load the required data
volumes, so we ultimately chose Virtuoso as the comparison target.

6.1 Datasets, Setup, and Queries

' n12:City

' n13:Nation
n14:Region

n7:Customer

=

Fig. 4.5: SSB Dataset

Unfortunately, none of the standard SPARQL benchmarks are applicable
to our scenario. Existing benchmarks either do not define analytical SPARQL
queries or do not require linked data from other endpoints to answer the
queries. Therefore, we decided to extend the Star Schema Benchmark
(SSB) [66], originally designed for aggregate queries in relational database
systems. This benchmark is well-known in the database community and was
chosen for its well-defined testbed and its simple design.

The data in the SSB benchmark represent sales in a retail company; each
transaction is defined as an observation described by 4 dimensions (Parts,
Customers, Suppliers, and Dates). We translated the data into the RDF rep-
resentation as illustrated in Figure 4.5. An observation is connected to di-
mensions (objects) via certain predicates. The Suppliers and Customers di-
mension contain information about cities, countries and world regions for
each supplier/customer. We linked each city/country present in the dataset
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to their counterparts from the GeoNames dataset using owl:sameAs predicate,
thus showing how external hierarchies can be added. To establish a feder-
ated setup, we divided the data among 5 SPARQL endpoints, each storing
observations for one of the world regions defined in SSB: Africa, America,
Asia, Europe and Middle East. The schema in each SPARQL endpoint was
made slightly different from the other schemas, by generating an interme-
diary graph node between the observation and one of the dimensions or the
value of revenue (dashed lines in Figure 4.5) for every SPARQL endpoint. For
example, the data schema in the Africa endpoint was different in the Parts
dimension and so on. Each endpoint was hosted on a separate physical ma-
chine running 64-bit Debian "jessie" 8.7 with Intel(R) Core 2 Duo E8400 CPU,
4GB RAM, 160GB HDD and Virtuoso v06.01.3127 as triple store. The data
related to the GeoNames dataset (GeoNames dump) were held on a sepa-
rate machine running 64-bit Ubuntu 14.04 LTS with Intel(R) Core(TM) i7-950
CPU, 24GB RAM, 600GB HDD. All machines were located on the same LAN
(the performance gains would be even higher on a WAN). We used scaling
factors 1 to 3 to obtain datasets of different sizes (120 to 360M triples). SSB
defines 13 classic data warehouse queries that are typical in business intel-
ligence scenarios. We converted all 13 queries into SPARQL. All queries,
schemas, and datasets are available at http://extbi.cs.aau.dk/fedsystem.

6.2 Query Evaluation
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Fig. 4.6: Performance of queries over scale factor 1

Figure 4.6 shows the results of executing the SSB queries in LITE and
Virtuoso over scale factor 1. LITE performs on average 4 times faster than
plain Virtuoso (where some queries even time out). The only exception is
Q12 which has a very large result size with 7600 mappings, yielding less
effect of the optimization.

We also evaluated how the number of endpoints in the federation in-
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Fig. 4.7: Comparing executions of queries

fluence the performance of the queries (Figure 4.7 — selected queries with
similar result patterns are grouped into separate graphs for better visualiza-
tion). The solid lines show the execution of queries in Virtuoso, dashed lines
of the same color show the execution of the queries using LITE, while dotted
lines show the execution after applying only global optimization. The exe-
cution time for plain Virtuoso in Figure 4.7a grow linearly with the number
of endpoints, as it needs query more endpoints to retrieve the result, while
LITE times are constant due to parallel execution. For one endpoint, Virtu-
oso slightly outperforms LITE for Q1 and Q3 due to the small parsing/opti-
mization overhead. Also, Q1 and Q3 do not retrieve dimensional data from
the external endpoint, so the query optimization does not have any effect
on these queries. On the other hand, the execution time for queries in Fig-
ure 4.7b is not affected by the number of endpoints. . The FILTER expression
of these queries apply restrictions on the continent value therefore data from
one endpoint is enough to answer these queries. Thus, the requests to other
endpoints return no results and the overall execution time for the queries
do not change. The times for LITE queries stay the same regardless of the
number of endpoints due to the parallel execution of queries over several
endpoints.
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Fig. 4.8: Comparison of queries over scale factors
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In the next line of experiments, we measured the runtime for the bench-
mark queries over different scale factors to evaluate the influence of the vol-
ume of data to the execution of the queries (Figure 4.8). For plain Virtuoso
queries, the system performance quickly degrades and starting from scale
factor 2, the queries time out due to the increased amount of data that needs
to be processed, and the increased number of external requests to the GeoN-
ames dataset. The performance of queries with higher selectivity that do
not retrieve dimensional data from the GeoNames dataset degraded slower
(Q2 was successfully executed on scale factor 2 data). In comparison, LITE
queries were executed successfully for all tested data sizes and were much
faster overall.

In summary, the experimental results show that LITE can significantly
optimize analytical queries in a federated setup. The advantage of LITE is
even more evident for queries that retrieve hierarchical data from remote
endpoints. The experiments also show that evaluating queries using LITE is
much faster (up to 7x times faster) than on current systems (Virtuoso) and
scales well when the data volumes and number of endpoints grow.

7 Conclusion

In this chapter, we have addressed the problem of efficiently evaluating ana-
lytical SPARQL queries over a federation of SPARQL endpoints. To solve this
problem, we have proposed LITE (OLAP-style Analytlcs in a FederaTion of
SPARQL Endpoints) and presented its main components. In particular, LITE
enables RDF-based schema mappings and comes with algorithms for query
rewriting and optimization in consideration of RDF specifics. A compre-
hensive experimental evaluation showed the efficiency and scalability of the
proposed approach. In our future work, we plan to develop a cost model for
optimizing queries on a global level based on some statistical data, build the
approach that accounts for data overlap in sources, and investigate the po-
tential of considering materialized RDF views to increase performance even
further.
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Abstract

During recent years, more and more data has been published as native RDF datasets.
In this setup, both the size of the datasets and the need to process aggregate queries
represent challenges for standard SPARQL query processing techniques. To over-
come these limitations, materialized views can be created and used as a source of
precomputed partial results during query processing. However, materialized view
techniques as proposed for relational databases do not support RDF specifics, such as
incompleteness and the need to support implicit (derived) information. To overcome
these challenges, this chapter proposes MARVEL (MAterialized Rdf Views with En-
tailment and incompLetness). The approach consists of a view selection algorithm
based on an associated RDF-specific cost model, a view definition syntax, and an
algorithm for rewriting SPARQL queries using materialized RDF views. The exper-
imental evaluation shows that MARVEL can improve query response time by more
than an order of magnitude while effectively handling RDF specifics.

1 Introduction

The growing popularity of the Semantic Web encourages data providers to
publish RDF data as Linked Open Data, freely accessible, and queryable via
SPARQL endpoints [7]. Some of these datasets consist of billions of triples.
In a business use case, the data provided by these sources can be applied
in the context of On-Line Analytical Processing (OLAP) on RDF data [68] or
provide valuable insight when combined with internal (production) data and
help facilitate well-informed decisions by non-expert users [5].

In this context, new requirements and challenges for RDF analytics
emerge. Traditionally, OLAP on RDF data was done by extracting multi-
dimensional data from the Semantic Web and inserting it into relational data
warehouses [28]. This approach, however, is not applicable to autonomous
and highly volatile data on the Web, since changes in the sources may lead to
changes in the structure of the data warehouse (new tables or columns might
have to be created) and will impact the entire Extract-Transform-Load pro-
cess that needs to reflect the changes. In comparison to relational systems,
native RDF systems are better at handling the graph-structured RDF model
and other RDF specifics. For example, RDF systems support triples with
blank nodes (triples with unknown components) whereas relational systems
require all attributes to either have some value or null. Additionally, RDF
systems support entailment, i.e., new information can be derived from the
data using RDF semantics while standard relational databases are limited to
explicit data.

Processing analytical queries in the context of Linked Data and federa-
tions of SPARQL endpoints has been studied in [69,70]. However, performing

80



2. Related Work

aggregate queries on large graphs in SPARQL endpoints is costly, especially
if RDF specifics need to be taken into account. Thus, triple stores need to
employ special techniques to speed up aggregate query execution. One of
these techniques is to use materialized views — named queries whose results
are physically stored in the system. These aggregated query results can then
be used for answering subsequent analytical queries. Materialized views are
typically much smaller in size than the original data and can be processed
faster.

In this chapter, we consider the problem of using materialized views in the
form of RDF graphs to speed up analytical SPARQL queries. Our approach
(MARVEL) focuses on the issues of selecting RDF views for materialization
and rewriting SPARQL aggregate queries using these views. In particular,
the contributions of this chapter are:

* A cost model and an algorithm for selecting an appropriate set of views
to materialize in consideration of RDF specifics

e A SPARQL syntax for defining aggregate views

* An algorithm for rewriting SPARQL queries using materialized RDF
views

Our experimental evaluation shows that our techniques lead to gains in per-
formance of up to an order of magnitude.

The remainder of this chapter is structured as follows. Section 2 discusses
related work. Section 3 introduces the used RDF and SPARQL notation and
describes the representation of multidimensional data in RDF. Section 4 spec-
ifies the cost model for view selection, and Section 5 describes query rewrit-
ing. We then evaluate MARVEL in Section 6, and Section 7 concludes the
chapter with an outlook to future work.

2 Related Work

Answering queries using views is a complex problem that has been exten-
sively studied in the context of relational databases [71]. However, as dis-
cussed in [71,72], aggregate queries add additional complexity to the prob-
lem.

In relational systems, the literature proposes semantic approaches for
rewriting queries [72] as well as syntactic transformations [73]. However,
SPARQL query rewriting is more complex. The results for views defined
as SELECT queries represent solutions in tabular form, so that the solutions
need to be converted afterwards into triples for further storage, thus making
a view definition in SPARQL more complex and precluding view expansion
(replacing the view by its definition).
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Another problem in this context is to decide which views to materialize in
order to minimize the average response time for a query. [74] addresses this
problem in relational systems by proposing a cost model leading to a trade-
off between space consumption and query response time for an arbitrary
set of queries. [75] provides a method to generate views for a given set of
select-project-join queries in a data warehouse by detecting and exploiting
common sub-expressions in a set of queries. [76] further optimizes the view
selection by automatically selecting an appropriate set of views based on the
query workload and view materialization costs. However, these approaches
have been developed in the context of relational systems and, therefore, do
not take into account RDF specifics such as entailment, the different data
organization (triples vs. tuples), the graph-like structure of the stored data,
etc.

The literature proposes some approaches for answering SPARQL queries
using views. [77] proposes a system that analyzes whether query execution
can be sped up by using precomputed partial results for conjunctive queries.
The system also reduces the number of joins between tables of a back-end
relational database system. While [77] examines core system improvements,
[78] considers SPARQL query rewriting algorithms over a number of virtual
SPARQL views. The algorithm proposed in [78] also removes redundant
triple patterns coming from the same view and eliminates rewritings with
empty results. Unlike [78], [79] examines materialized views. Based on a cost
model and a set of user defined queries, [79] proposes an algorithm to iden-
tify a set of candidate views for materialization that also account for implicit
triples. However, these approaches [77-79] focus on conjunctive queries only.
The complexity of loosing the multiplicity on grouping attributes (by group-
ing on attribute X, we loose the multiplicity of X in data) and aggregating
other attributes is not addressed by these solutions.

The performance gain of RDF aggregate views has been empirically eval-
uated in [26], where views are constructed manually and fully match the
predefined set of queries. Hence, the paper empirically evaluates the per-
formance gain of RDF views but does not propose any algorithm for query
rewriting and view selection.

Algorithms that use the materialized result of an RDF analytical query to
compute the answer to a subsequent query are proposed in [80]. The answer
is computed based on the intermediate results of the original analytical query.
However, the approach does not propose any algorithm for view selection. It
is applicable for the subsequent queries and not to an arbitrary set of queries.

Although several approaches consider answering queries over RDF views
[77-79], none of them considers analytical queries and aggregation. In this
chapter, we address this problem in consideration of RDF specifics such as
entailment and data organization in the form of triples, and taking into ac-
count the graph structure of the stored data. In particular, this chapter pro-
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poses techniques for cost-based selection of materialized views for aggregate
queries, query rewriting techniques, and a syntax for defining such views.

3 RDF Graphs and Aggregate Queries

The notation we use in this chapter follows [81] and is based on the three
disjoint sets of blank nodes B, literals L, and URIs/IRIs U. For simplicitly we
abbreviate the union of them as BLU.

An RDF [2] triple (s, p,0) € BU x U x BLU connects a subject s through
predicate p to object 0. An RDF database (G) consists of a finite set of triples
and is often represented as a graph. Queries are based on graph patterns that
are matched against G. A Basic Graph Pattern (BGP) P consists of a set of
triple patterns of the form (UV) x (UV) x (LUV), where V (VN BLU = @)
is a set of query variables. We distinguish variables by a leading question
mark symbol, e.g., ?x or ?y, and literals by a leading pound symbol, e.g., #o.
We denote a set of variables occurring in a graph pattern P as vars(P).

A solution mapping is a mapping u from a set of variables V to a set of
RDF terms BLU, i.e., u : V — BLU. A solution sequence is a list of solutions.
A BGP can be extended by additional conditions in a FILTER expression to
restrict solutions to only those for which the filter expression evaluates to
true.

Similar to relational query languages, an aggregate function uses an aggre-
gate expression to compute a scalar value over groups of solutions. A group
function groups a solution sequence into multiple solutions based on a given
list of attribute(s).

Most common SPARQL 1.1 [47] aggregate queries conform to the form
SELECT RD WHERE GP GROUP BY GRP, where RD is the result description
based on a subset of variables in the graph pattern GP. GP contains BGP and
optional functions, such as assignment functions (e.g., BIND and assignment
expressions) and constraints (e.g., FILTER). GRP defines a set of grouping
variables (varsgrp(GP) C vars(GP)), whereas RD contains selection descrip-
tion variables (varsgg; (GP) C varsgrp(GP)) as well as aggregation variables
(varspgg(GP) C vars(GP)) with corresponding aggregate functions. In this
chapter, we consider the standard aggregate functions COUNT, SUM, AVG,
MIN, and MAX).

A BGP can be represented as a directed labeled multi-graph whose nodes
N correspond to subjects and objects in the triple patterns. The set of edges
E contains one edge for each triple pattern in the BGP with the predicate as
a label. In data analytics, graph patterns of SPARQL queries have a special,
rooted pattern [68]. A BGP is rooted in node n € N iff any node x € N is
reachable from 7 following directed edges in the graph. The graph patterns
of the queries are rooted due to the typical graph structure of the data that
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are processed for data analysis. It is based on the multidimensional model,
which may represent data in an n-dimensional space, called a data cube or a
hypercube. A data cube is defined by dimensions (perspectives used to analyze
the data) and observations (facts). Dimensions are structured in hierarchies to
allow analyses at different aggregation levels. Dimension level instances are
called members. Data cube cells (observations) that are analyzed along the
dimensions have associated values called measures, which can be aggregated.

A typical example of multidimensional RDF data is the statistical data
published using the W3C RDF Data Cube Vocabulary (QB) [30]. QB datasets
consist of a collection of observations characterized by a set of dimensions
defining what the observation applies to, along with measure components
representing the phenomenon being observed, and metadata describing the
measures. A set of values for all the dimension components can identify a
single observation, and is usually attached to the observation through prop-
erties. This observation structure is called a normalized structure.

An example of data with hierarchical dimensions is the utilities consump-
tion data from electricity and gas meters for Scottish Government buildings'.
The data is available as energy usage over a daily period. The unit used
for the data is kilowatt-hour (gas consumption is converted to kilowatt-hours
using standard conversion factors). Figure 5.1 sketches the data with two
hierarchical dimensions where Building, Locality and Region are hierarchy
levels in Geography dimension, Repodt Date, Month and Year are hierarchy
levels in Date dimension, and the observation contains a utility consumption

measure (connected to Data node in Figure 5.1).
Building Locality
gol:refBuilding

K gol:utilityConsumption

gol:report
DateTime skos:narrower

vc:locality vc:region

gb:observation

skos:narrower

Fig. 5.1: Representing Observations in RDF

A dataset with such observations is stored in a SPARQL endpoint? to
enable analytical querying involving aggregations and groupings on differ-
ent hierarchy levels. For example, the following query computes the daily
consumption of electricity in each city in September 2015:

SELECT ?date ?place (SUM(?val) as ?value)
WHERE {

Thttp:/ /cofog01.data.scotland.gov.uk/id /dataset/golspie/ utilities
Zhttp:/ /cofog01.data.scotland.gov.uk /sparql
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?obs gol:refBuilding ?bld ;
gol:reportDateTime 7date ; gb:observation ?data .
?data gol:utilityConsumption ?val .
?bld org:sitelAddress/vc:adr/vc:locality ?place .
?month skos:narrower ?date . ?month gol:value ?mVal .
FILTER (?mVal = 'September 2015')
} GROUP BY 7date 7place

Listing 5.1: Example Query with Grouping and Aggregation

Another example of multidimensional data (not published as QB) is the
statistics on radioactivity observations published after a nuclear accident in
Japan in March 2011 that was triggered by an earthquake and subsequent
tsunami. The daily announcements of radioactivity statistics observed hourly
at 47 prefectures from March 16, 2011 to March 15, 2012 were converted to
RDF data and made publicly available via a SPARQL endpoint (http://wuw.
kanzaki.com/works/2011/stat/ra/). Figure 5.2 visualizes this dataset with
its two hierarchical dimensions.

ev:place
Observation rdf:value 0.079
ev:time

DateTime skos:broader Month skos:broader Year

Fig. 5.2: Radioactivity Statistics in RDF

An example of an analytical query for this dataset is to compute the av-
erage radioactivity separately for each prefecture in Japan to find out which
prefectures were more affected than others.

SELECT ?regionID (AVG(?radioValue) AS Zaverage)

WHERE {
?s ev:place ?placelID; ev:time ?time;
rdf :value ?radioValue . 7placelID vc:region 7regionID .

} GROUP BY ?regionID

Listing 5.2: Example Query with Grouping and Aggregation

Traditional OLAP operations associated with multidimensional data
cubes are roll-up (increasing the level of aggregation), drill-down (decreasing
the level of aggregation or increasing detail), and slicing and dicing (selection
and projection). These operations transform a cube specified by a SPARQL
query into another.

Slice The slice operation removes a dimension in a cube by fixing a sin-
gle value in the dimensions hierarchy level — a cube of n — 1 dimensions is

85


http://www.kanzaki.com/works/2011/stat/ra/
http://www.kanzaki.com/works/2011/stat/ra/

Chapter 5.

obtained from a cube of n dimensions. The other dimensions remain un-
changed. Given the query Q, the slice in SPARQL can be achieved by con-
straining the value of a certain variable to the specified value, e.g. by using
FILTER operator.

Dice The dice operation keeps in a cube only those cells that satisfy a spe-
cific Boolean condition. This condition is imposed over dimension levels,
attributes, and measures. Intuitively, the dice operation restricts several ag-
gregation dimension to specific set of values. It is analogous to the relational
algebra selection, where the argument is a cube instead of a relation. Like in
slice, the dice in SPARQL can be achieved by projection in combination with
constraining the values of certain variables, e.g by using FILTER or VALUES
operators. However, as the VALUES operator is not yet widely supported [19],
FILTER must often be used.

Roll-up The roll-up operation aggregates measures at a coarser granularity
along a given dimension. Given the hierarchical structure of the data in the
graph, navigating up the hierarchy corresponds to adding classifier triples.
Thus, for a given query Q, the roll-up in SPARQL can be achieved by adding
to the graph pattern of the query the connected triple patterns that reflect the
hierarchy structure in the dataset.

Drill-down The the drill-down operation — the inverse of roll-up — disaggre-
gates previously summarized data to a child level in order to obtain measures
at a finer granularity. In the hierarchical data, navigating down the hierarchy
corresponds to removing classifier triples and for a given query Q, the drill-
down in SPARQL can be achieved by removing some of the connected triple
patterns that reflect the hierarchy structure in the dataset from the graph
pattern of the query.

However, executing OLAP queries requires considerable amounts of pro-
cessing resources at the endpoint, which becomes a bottleneck with with
increasing amounts of data. To enable scalable processing, this chapter pro-
poses RDF-specific techniques for materialized views. Hence, we define a
materialized view as a named graph described by a query whose results are
physically stored in a graph database in the form of triples. Given a query,
the DBMS query optimizer checks whether the query can be answered based
on one of the available materialized views. As the materialized views are
typically much smaller than the original data, this can yield a significant per-
formance boost. Precalculating all possible aggregations over the different
dimension levels is infeasible, as it typically requires much more space than
the original data [24]. Hence, it is very important to find an appropriate se-
lection of views to materialize in order to minimize the total query response
time and the cost of maintaining the selected views.
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4 View Materialization in MARVEL

A high number of triples needs to be processed for evaluating OLAP queries
on a dataset. This imposes high execution costs, especially when the amount
of data increases. To enable scalable processing, we propose RDF-specific
techniques to select a set of materialized views that can be used to evaluate
queries more efficiently. We define a materialized view as a named graph de-
scribed by a query whose results are physically stored in a triple store. Given
a query, the system checks whether the query can be answered based on
the available materialized views. As materialized views are typically smaller
than the original/raw data, this can yield a significant performance boost.
Precalculating all possible aggregations over all dimension levels is usually
infeasible as it requires much more space than the raw data [24]. Thus, it is
important to find an appropriate set of materialized views to minimize the
total query response time.

4.1 Creating Materialized RDF Views

SQL has a standard mechanism to define a view, namely CREATE VIEW,
which specifies the name of the view and the SQL query defining it. Since
such a mechanism do not yet exist for SPARQL, we use CONSTRUCT queries
(i.e., queries that output RDF graphs) to define views. Indeed, in SPARQL,
the result of a SELECT query is a set of values in a tabular form, not a set of
triples, which is what we need to store the result as RDF data. CONSTRUCT
queries allows us to create RDF triples from the results of a SELECT subquery.
For this, we need to specify the subject of the triples and the predicates con-
necting the subject to the query results. Since the combination of values in
the GROUP BY clause of a SELECT subquery is unique, we can use these
values to construct the subject of the triples in the view defining CONSTRUCT
query.

Listing 5.3 gives an example of such a query, where the query in the SE-
LECT clause aggregates utility consumptions by City and Date. We use the
IRI function to create a resource identifier id based on the unique combi-
nation of City and Date. Note also the use of STRAFTER function to strip
the protocol identifier hitp:// from the IRI of the resource. The CONSTRUCT
clause then creates triples by connecting the id to the resulting aggregate and
grouping values.

CONSTRUCT {
7id gol:reportDate ?date ; gol:reportLocality ?vCity ;
gol:utilityConsumption ?value .
} WHERE {
SELECT 7id ?date ?vCity (SUM(?cons) as ?value)
WHERE { ?fact gol:refBuilding ?7bld ;

gol:reportDateTime 7date ; gb:observation ?data .
7data gol:utilityConsumption 7cons .
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?bld org:siteAddress/vc:adr/vc:locality ?vCity .
BIND(IRI('http://ex.org/id#', CONCAT(STRAFTER(STR(7dt),
‘http://'), STRAFTER(STR(?vCity), 'http://'))) AS 7id).
} GROUP BY 7id ?date ?vCity
H

Listing 5.3: Query to Construct Materialized View

Examples of triples created by the query in Listing 5.3 are given in Listing
5.4. Values for City and Date and aggregated values are connected to the gen-
erated identifier. The set of all such triples forms the complete materialized
view.

gol:City_11Date_01052013 gol:utilityConsumption 1019794;
gol:reportLocality <http://data.gov.uk/.../AB0O112>;
gol:reportDate <http://data.gov.uk/.../20130501> .

gol:City_8Date_17092014 gol:utilityConsumption 1460796;
gol:reportLocality <http://data.gov.uk/.../AB0099>;
gol:reportDate <http://data.gov.uk/.../20140917> .

Listing 5.4: Materialized View Representation

4.2 Storing Materialized RDF Views

We now consider how to store the materialized RDF views. As stated in [47],
an RDF dataset represents a collection of graphs. The RDF dataset comprises
one default (nameless) graph and zero or more IRI-named graphs.

One option is to store all materialized views as well as the original base
data in the default graph and specify the type of the data (base data or view
data) in one of the triples as a part of the BGP of the query, e.g., as (?obs
rdf:type ex:agguiewl .) for a view. However, as discussed below, a better option
is to store each materialized RDF view in a separate named graph, which is
what we propose in this chapter.

A SPARQL query can specify the dataset to be used for matching by
using the FROM and/or the FROM NAMED clause. When specified, the
dataset is added into the default graph and thus extend the search space.
Using named graphs allows us to separate base and view data. Separating
views by named graphs has a number of benefits. First, maintaining view
data is easier. Indeed, SPARQL 1.1 allows us to delete graph data and in-
sert new data. Thus, we can easily specify that certain updates affect this
graph (view) only. Second, finding and aggregating the data stored in a
named graph is faster. If data in named graphs are stored in quads (<con-
text><subject><predicate><object>), the system can index the data by the con-
text and provide faster access to the data. If the data are stored in separate
tables, scanning a smaller table is much faster than scanning a bigger table.
Thus, the system will execute queries faster. Finally, a separation of base
and view data into different graphs facilitates the correctness of aggregation
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results. By explicitly specifying the graphs, the SPARQL engine excludes ir-
relevant data from the default data space and executes aggregations over the
appropriate data. This will ensure result correctness.

4.3 Data Cube Lattice

We first introduce the notion of a data cube lattice. In its simplest form,
a node in the lattice represents an aggregation by a given combination of
dimensions. A view, in the data cube lattice terminology, is defined by a
query with the same grouping as in the corresponding node. For example,
in case of 3 dimensions, Part (P), Customer (C) and Date (D), possible nodes
(grouping combinations) are PCD, PC, PD, CD, P, C, D and All (all values are
grouped into one group). Nodes are connected if a node j can be computed
from i and the number of grouping attributes of i is the number of attributes
of j plus one. In our example, the view that corresponds to node PC can
be computed from the view that corresponds to node PCD. We denote this
dependence relation as PC < PCD and we call view PCD the ancestor of view
PC and view PC is the predecessor of view PCD.

In the presence of dimension hierarchies, grouping by a dimension breaks
down to grouping by different hierarchy levels of that dimension, thus the
number of all possible combinations increases. The total number of all dif-
ferent nodes in the lattice [82] can be calculated as: H?:l (h; + 1), where k; is
the number of hierarchy levels in dimension i and (h; + 1) accounts for the
top level All.

The concept of the data cube lattice is useful since user queries over mul-
tidimensional data can be evaluated using the nodes in the lattice. Given a
query grouping (GROUP BY), the lattice node with the given grouping repre-
sents the best candidate view for answering the query. Since these views are
smaller in size than the raw data, calculating the answer from the views will
be cheaper than calculating it from raw data. Thus, to answer user queries we
need to find an appropriate set of views so that the multidimensional queries
posed against the data could be mapped to one of these materialized views.

The data cube lattice is used for selecting aggregated views in a relational
framework [74]. However, this framework considers data that is hierarchi-
cal, complete, and complies to a predefined schema, and therefore cannot be
directly applied to RDF graphs that lack these characteristics. Indeed, hier-
archies in RDF may not be expressed explicitly. For example, a parent-child
relation between two entities may be implied from the rdfs:subClassOf seman-
tics between the rdf:type properties of these entities: for two triples (x rdf:type
c1) and (y rdf:type cy), if the relationship between c; and c; is defined by RDFS
semantics (cq rdfs:subClassOf c;), then we need to account that x and y belong
to the same hierarchy and x is a child of y.

Additionally, RDF data may be incomplete. For example, the canonical-
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ized Ontology Infobox dataset from the DBpedia Download 3.8 contains birth
place information for 266,205 persons (either as a country, a populated place
like city or village, or both). However, out of 266,205 records, 16,351 records
contain information only about the country of birth. Thus the information
available in the source may not contain the information that holds in the world
and, therefore, should ideally be present in the source. Accordingly, an in-
complete data source is defined as a pair Q) = (G,, G;) of two graphs, where
Ga C G;. G, corresponds the available graph and G,; is the ideal graph [83].

Definition (Incomplete View). A view is incomplete if its defining query over
the available graph does not produce the same results as the defining query
over the ideal graph: [q,]¢, # [q0]G,-

Such incomplete views may not be used to answer queries involving the
grouping over a higher hierarchy level than in the view. In the above example,
the aggregation over the city of birth is incomplete and the city level view,
due to incompleteness, cannot be used to roll-up to the country level even
though the relationship City — Country between the levels holds.

In summary, for RDF data cubes we need to account for implicitly speci-
fied hierarchies, heterogeneity of data, and incompleteness of views. There-
fore, we propose a novel aggregate view selection model that supports RDF-
specific requirements unlike earlier models.

44 MARVEL Cost Model

MARVEL takes into account that RDF data are stored as triples and not as
tuples. Thus, the cost of answering an aggregate SPARQL query in a generic
RDF store is defined as the number of triples contained in the materialized
view used to answer the query. This cost model is simple and works for a
general case. More complex models that account for algorithms and auxiliary
structures used in a particular triple store are certainly possible.

Usually, an observation in a view is described by its n dimensions. In
addition, the observation is related to m measures, so that the number of
triples for one observation is (n + m). Thus, the size of a view w is equal to:

Size(w) = (n+m) * N (5.1)

where N is the number of observations. This number is used to calculate the
benefit of materializing the view. Note that the size of the view w serves as
the cost of the view v if the view v is computed from the view w: Cost(v) =
Size(w). Note also that at the beginning the cost of every view is equal to the
size of the base view (base data).

Let By be the benefit of view w. For every view v such that v < w the
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benefit of view w relative to v is calculated as

Bw,y = (Cost(v) — Size(w)) if Cost(v) > Size(w).

. (5.2)
By, = 0 otherwise.

That is, the difference between the current cost of the view v and the possible
cost of the same view (if view w is materialized and used to compute the
view v) contributes to the benefit of the view w. We then sum up the benefits
for all appropriate views to receive the full benefit of the view w:

By = Z By, for all i such that v; < w. (5.3)

Note that this value of benefit is absolute and does not take into account
the size of the view. If the storage space is limited, the benefit of each view
per unit space can be considered instead. In this case, the value of the benefit
is calculated by dividing the absolute benefit of the view to its size:

, Bw
B =
o Size(w)

5.4)

In addition, we need a flexible way of defining a cube schema over RDF
data since usually RDF data do not strictly conform to a predefined schema.
Equally important is the possibility to specify that a hierarchy level should
be computed from several ancestor levels (i.e., from a set of views) or should
be complemented by observations that were not taken into account for ances-
tor levels. For example, for a birth place dimension we can specify that the
roll-up to the Country level should be calculated from both the City and the
Person levels since some people do not contain information about their city of
birth but only about the country. Therefore, we use QB4OLAP schema [25] to
describe the dataset and annotate it with information about the completeness
of levels, about how to construct triples for the next hierarchy levels, and
the types of hierarchy levels. We chose QB4OLAP over Analytical Schema
(AnS) introduced in [68] since QB4OLAP allows representing OLAP cubes in
RDF by adding the capability of representing dimension levels, level mem-
bers, roll-up relations between levels and members, and associating aggregate
functions with measures. AnS, on the other hand, underlines the structure
of the needed data in a large dataset and allows to define perspectives (re-
ferred to as lenses) for analysis of RDF data but does not allow us to specify
dimensions, complex hierarchies (for instance, as given above), or measures.

When a hierarchy level is computed from several ancestor levels, we say
that the view corresponding to this level should be calculated from a set of
views. We denote this dependence relation as w < {v;...v,}. where w is
the current view and {v;...v,} are the ancestor views. In general, we can
distinguish the following roll-up cases:
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* Single path roll-up: a view w can be derived from either of the views
U1...0y, i€ Jw,0;1...0, such that w < v; and v; A v; fori,j = {1...n}

* Multiple path roll-up: a view w can be derived from the union of views
v1 U .- - Uoy, while deriving w from any single v; will be incomplete:
Jw,vy...v, such that w < {v;...vx}, w A v;, and v; A vj for i,j =

{1...n}

Listing 5.5 provides an excerpt of the QB4OLAP schema showing the hi-
erarchy steps that define the roll-up paths for the dp:CountryLvl level of the
Person hierarchy. It shows that aggregations over the dp:CountryLvl level
should be derived from both the aggregations by the dp:CityLvl level and
the observation data since the aggregation over just one roll-up path will be
insufficient (dp:isPartial “true””xsd:boolean).

dp:phs4 a gbd4o:HierarchyStep ;
gb4o:parentlevel dp:CountryLvl ;
qb4o:childLevel dp:CityLvl ;
rdf :predicate dbo:country ;
dp:direction dp:forward ;
dp:datatype dbo:City ;
gqb4o:cardinality qb4o:0neToMany .

dp:phs8 a gbd4o:HierarchyStep ;
gb4o:parentlevel dp:CountryLvl ;
gb4o:childLevel gb:PersonLvl ;
rdf :predicate dbo:birthPlace ;
dp:direction dp:forward ;
dp:datatype dbo:Country ;
dp:isPartial "true"~""xsd:boolean ;
gb4o:cardinality qb4o:0neToMany .

Listing 5.5: Defining Hierarchy Steps

[ Em||y Mitchell } dbo:birthplace dbo:country

[U nited Kingdom)

Fig. 5.3: Example of Instances in Person Hierarchy

However, before selecting the views to materialize we need to take into
account not only the explicit triples present in RDF but also the implicit ones.
In RDF, these implicit triples are considered a part of the graph; they com-
plete the query answer.

4.5 RDF Entailment

RDF entailment is a mechanism which derives the implicit triples based on a
set of entailment rules. The W3C RDF Recommendation [2] defines a number
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of patterns of entailment which lead to deriving implicit triples from RDF
datasets. RDF Schema (RDFS) entailment patterns are particularly interesting
since RDFS encodes the semantics of an application domain.

Accounting for implicit triples in the materialized views is important for
returning a complete answer to the query since these triples are also consid-
ered a part of the RDF dataset. Materialized views process and group data
and produce the aggregated summaries. These summaries of data do not
contain the provenance information and cannot be used to extract the orig-
inal triples. Thus, if the implicit triples are not accounted in materialized
views, they will not be accounted when answering queries using views — the
query answer will be incomplete.

It is important to note that the RDF entailment may derive new observa-
tions only based on existing information and specified rules. In this chapter
we do not intend to propose a solution for adding missing knowledge to the
database using logical rules. It is an orthogonal problem which is difficult to
solve in general [84,85]. Neither do we intend to derive the information that
is not known due to the Open World assumption. Instead, we focus on deriv-
ing missing information based on the existing data and specified semantics.

There are two main methods for processing queries when considering
RDF entailment. In the dataset saturation approach, all implicit triples speci-
fied in the RDF recommendation are materialized and added to the dataset.
Saturation allows to apply the plain query evaluation techniques on the sat-
urated dataset to compute the answer. This technique also has some draw-
backs — more space is needed for storing implicit triples and the maintenance
is more complex since a change to a dataset requires recalculation of implicit
triples. On the other hand, query reformulation leaves the dataset intact but re-
formulates a conjunctive query to a union of conjunctive queries. The answer
can be obtained by executing this union of queries against the unchanged
RDF data using standard query evaluation techniques. The drawback of this
approach is the increasing overhead during query evaluation.

In MARVEL we use query reformulation techniques to produce and ma-
terialize the complete answer of a view query. By using query reformulation
we leave a database intact but still account for implicit triples in query an-
swers. Taking into account that the evaluation of the view query takes place
once and the results are reused for other queries, we believe that this over-
head is justified.

Table 5.1 lists some of the entailment rules used to derive facts from typi-
cal RDFS constraints. It specifies semantic relationships between classes and
properties of a dataset. These rules can be used to reformulate a query into a
union of conjunctive queries that will provide a complete answer over a non-
saturated dataset. In our approach, we use the algorithm described in [79]
for reformulating a query using RDFS rules.
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RDEFS Properties Explicit Triple | Implicit Triple
(c1, rdfs:subClassOf, cy) (s, rdf:type, c1) | (s, rdf:type, c2)
(p1, rdfs:subPropertyOf, py) | (s, p1, 0) (s, p2, 0)

(p, rdfs:range, c) (s, p, o) (o, rdf:type, c)

(p, rdfs:domain, c) (s, p, o) (s, rdf:type, c)

Table 5.1: RDFS Entailment Rules

4.6 MARVEL View Selection Algorithm

Given the open nature of SPARQL endpoints, we cannot assume that the set
of queries is known in advance. Instead, we assume all groupings in user
queries to be equally likely.

Suppose we want to materialize N views with the maximum benefit re-
gardless of their size to use for answering user queries. Algorithm 4 presents
our method for selecting the materialized views.

We start by assigning the cost to every view. At the beginning it is equal
to the size of the dataset since the whole dataset is used to answer view
defining queries. Then we compute the benefit of the candidate view for the
cases when this candidate view is used to derive a full answer (single path
roll-up) to another view in the cube lattice (lines 4-10). The benefit of the
candidate view is computed according to the cost model defined in Section
4.4. Thus, we can find the benefits of all appropriate views of the cube lattice.

The same algorithm is applied when a view can only be fully computed
from a set of views (multiple path roll-up — lines 11-17). In these cases all the
views in the set are considered together.

After calculating the benefit of the views, the algorithm selects the view
with the maximum benefit. If the number of views already selected for ma-
terialization together with the current view does not exceed N, the selected
view is added to the set of the views proposed for the materialization. This
is done to take into account that there can be a set of views for which the
benefit is calculated together. After selecting a (set of) view(s) to material-
ize, the cost of the remaining views is recalculated to take into account the
recently selected view(s) (lines 18-27). If the selected set of the views with
maximum benefit does not conform to the initial conditions, the selected set
is discarded from further considerations (line 27). This process is repeated
until we identify all N views.

The complexity of this algorithm is O(n?) due to the utilization of nested
loops — the view benefits over other views are calculated for all views.
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Input: Set of views W, cube schema S, number of needed views N
Output: Selected views W’
1 W = @ - set of selected views; T = @ -- set of discarded view sets;
2 Cost(v;) = Size(G) -- for all views where G is base data ;

© ® N o u ke

10

1

12
13
14
15

16
17

18

19
20
21
22
23
24

25

26
27

3 while IW'| # N do

!
return W ;

{V,B} = @ -- set of views together with the benefit ;
foreach view w € W do
By = 0 -- benefit of the view w ;
foreach view v € W do

if w = v (according to S) and roll-up is single path then
L L Bw = By + (Cost(v) — Size(w)) ;

L {V'B} = {VrB} U (erw) ;

foreach {wy...wy, } for which v such that v < {w1...w, } (according to S) and
roll-up type is multiple path do
B{w,..v,} = 0 - benefit of the set of views {w...wy} ;
foreach view v € W where v < {w;...w, } do
if (1 Size(w;)) < Cost(v) then
L L B{wl...w,,} = B{wl‘..w,,} + (COSt(U) - ( 1”:1 Size(wi))) ;

if B{wl---wn} 7'é 0 then
L {v,B}={V,B}U ({wl-'-w"}fB{wl...w,,}) ’

let w be the view (or set of views) from {V, B} for which By, (or By, 1,})
is MAX;
if [w| < (N —|W'|) and w ¢ T then
W =W Uw;{V,B} ={V,B} — (w,By) ;
foreach view v € W do
if v < w (according to S) then
L if Size(w) < Cost(v) then

| Cost(v) = Size(w) ;

L W=W\w;
else
| T=Tuw

Algorithm 4: Algorithm for Selecting Views to Materialize

5 Query Rewriting in MARVEL

There are several aspects that complicate the problem of rewriting queries
over SQL aggregate views. First, in SPARQL a user query and a view defini-
tion may use different variables to refer to the same entity. Thus, the query
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rewriting algorithms require variable mapping to rewrite a query. A variable
mapping maps elements of a triple pattern in the BGP of the view to the same
elements of a triple pattern in the BGP of the query. Second, the algorithms
need to match the new graph structure that is formed by the CONSTRUCT
query of the view to the graph patterns of the user query and possibly ag-
gregate and group these data anew. Third, complex and indirect hierarchies
present in RDF data complicate query rewriting and need to be taken into
consideration.

The rewriting algorithms proposed in [78,79] target conjunctive queries
and do not consider grouping and aggregation of data. Therefore, we built
upon these algorithms and developed an algorithm to rewrite aggregate
queries that identifies the views which may be used for query rewriting and
selects the one with the least computational cost.

For ease of explanation, we split the algorithm used in MARVEL for ag-
gregate query rewriting using views into two parts: an algorithm for iden-
tifying the best view for rewriting (Algorithm 5) and a query rewriting al-
gorithm (Algorithm 6). In the algorithms, we need to look for dimension
roll-up paths (RUDPs), i.e., path-shaped joins of triple patterns of the form
{(root, p1,01), (52, P2,02), -, (Sn, Pn,d) } where root is the root of the BGP, py
is a predicate from the set of hierarchy steps defined for hierarchies in a cube
schema, and triple patterns in the path are joined by subject and object values,
e.g., 0x_1 = Sy. We denote such a RUP as ¢y, (d;) where py;y, is a predicate
connecting the root variable to the first variable in the roll-up path and d;
represents the last variable in the path. These algorithms use y(aggyn) and
7(gn) to denote sets of triple patterns in the CONSTRUCT clause CnPtrn
{(s, pgl,gl), ce, (s, pgn,gn), (s, pgm, aggm),---, (s, pgk, aggr)} describing the
results of aggregation, e.g., (s, pgx,aggx), and grouping, e.g., (s, pgx,gx).

The first step in Algorithm 5 is to replace all literals and IRIs in the
user query with variables and corresponding FILTER statements (line 2):
(?s,p,#0) — (?s,p,?0) . FILTER(?0 = #0). We do this to make graph pat-
terns of views and queries more compatible with each other, since the graph
patterns in the aggregated views should not contain literals. This may also
potentially increase the number of candidate views since we may now use the
views grouping by the hierarchy level of the replaced literal and then apply
restrictions imposed by the FILTER statement.

To make the user query and the view query more compatible, we rename
all variable names in the user query to the corresponding variable names in
a view (line 4). We start from the root variable and replace all occurrences of
this variable name in the user query with the name that is used in the view
query. We then continue renaming variables that are directly connected to
the previously renamed variables. We continue until we have renamed all
corresponding variables in the user query.

Afterwards, for each dimension of the query graph pattern we define the
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5. Query Rewriting in MARVEL

Input: Set of materialized views MV, query Q, data cube schema S

Output: Selected view w

W = @ -- Set of candidate views ;

Q = ReplaceLiterals AndURI(Q) ;

foreach v € MV do

Q = RenameVariables(Q,v) ;

{d9,...d9} = FindMinimalRUP(Q) ;

{d¥,...d5} = FindMinimalRUP(v) ;

let {hlvl(d{)9...hlvl(d,)?} be a set of hierarchy levels of Q defined in S ;
let {hlvl(dy)? ... hlvl(dm)"} be a set of hierarchy levels of v defined in S ;
agg? = {¢(01), ..., p(0n)} — All aggregate expressions in Q ;

10 agq” = {¢(01), ..., p(om)} - All aggregate expressions in v ;

1 if aggQ C agg? and ({hlvl(dy)9 ... hlvl(d,)°} < {hlvl(d1)°...hlvl(dy)?})
such that hlvl(d;)S < hlvl(d;)? for all i then

12 | W=Wuy;

=W N =

© ® 9 o

3 return w € W with minimal costs ;

Y

Algorithm 5: Algorithm for selecting a candidate view

appropriate roll-up path that the candidate view should have (lines 5-6). This
path depends on the conditions (FILTER statements) and /or grouping related
to the corresponding hierarchy and is the minimum of both; we take the roll-
up paths to variables in FILTER and GROUP BY for the same dimension
and keep only the triple patterns that are the same in both — common RUP.
For example, if the query groups by regions of a country but the FILTER
statement restricts the returned values to only some cities (Region < City),
the required level of the hierarchy in the view should not be higher than the
City level.

Then, we identify the hierarchy levels for all dimensions in the query and
all dimensions in a view and compare them. We check that the hierarchy lev-
els of all dimensions defined in the view do not exceed the needed hierarchy
levels of the query and that the set of aggregate expressions defined in a view
may be used to compute the aggregations defined in the query. The views
complying with these conditions are added to the set of candidate views (line
12). Out of these views we select one with the least cost for answering the
query (line 13).

Let us consider an example. Given the materialized view described in
Listing 5.3 and the query of Listing 5.1, the system renames all variables in the
query to the corresponding variable names in the view (i.e. ?place — ?vCity;
?fact — ?0bs; ?val — ?cons) and defines the roll-up paths for the dimensions
in the query (i.e. (?fact gol:refBuilding/org:siteAddress/vc:adr/vc:locality ?vCity)
and (?fact gol:reportDateTime ?date)). Note that the roll-up path in the Date
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dimension contains the Date level and not the Month level since the query
groups by dates. Then the system identifies the roll-up paths for the di-
mensions in the view (i.e. (?fact gol:refBuilding/org:siteAddress/vc:adr/vc:locality
?vCity) and (?fact gol:reportDateTime ?date)) and compares them. The sys-
tem also identifies aggregation expressions in the query and the view (?fact
gb:observation/gol:utilityConsumption ?cons, (SUM(?cons) as ?value)). Since the
view contains the same aggregate expression and all necessary dimensions
and the hierarchy levels of the dimensions in the view do not exceed those in
the query, this view is added to the set of candidate views.

Given one of the collected views, MARVEL uses Algorithm 6 to rewrite a
query. For every dimension in the query we identify the common roll-up path
in the query and the view. In the rewritten query Q’, these triple patterns will
be replaced by the triple patterns from the CONSTRUCT clause of the view
(7" (c")). The remaining triple patterns belonging to the dimensions (A(d<))
remain unchanged (lines 4-11).

Afterwards, the algorithm compares the aggregate functions of the query
and the SELECT clause of the view and identifies those that are needed for
rewriting. We add the corresponding triple pattern from the CONSTRUCT
clause and rewrite the aggregate functions to account for the type of the
function (algebraic or distributive) (lines 12-17). GROUP BY and ORDER BY
clauses do not change. Additionally, the triple patterns of the CONSTRUCT
clause will be placed inside the GRAPH statement of the SPARQL query to
account for the different storage of the view triple patterns (lines 10, 16, 18).

SELECT ?date ?vCity (SUM(?value) as ZaggValue)
FROM <http://data.gov.uk> FROM NAMED <http://data.gov.uk/matviewl>
WHERE { GRAPH <http://data.gov.uk/matviewl> { ?id gol:reportDate 7?date;
gol:reportlocality ?vCity; gol:utilityConsumption ?value. }
?month skos:narrower ?date . ?month gol:value ?mVal .
FILTER (?mVal = 'September 2015') } GROUP BY ?date ?vCity

Listing 5.6: Rewritten query

Listing 5.6 shows the result of rewriting the query from List-
ing 5.1 using the view from Listing 53. The algorithm identifies com-
mon roll-up paths for the two dimensions in the view and in the
query: ?fact gol:refBuilding/org:siteAddress/vc:adr/vc:locality ?vCity and ?fact
gol:reportDateTime ?date. The system replaces these triple patterns with the
triple pattern from the CONSTRUCT clause and puts these replaced triple
patterns inside the GRAPH statement. The remaining triple patterns in the
Date dimension (?month skos:narrower ?date . and ?month gol:value ?mVal .) are
added to the query graph pattern outside the GRAPH statement. The aggre-
gate function is rewritten; since SUM is a distributive function, it is rewritten
using the same aggregation (SUM). All assignment and constraint functions
(e.g., FILTER) are copied to the rewritten query.
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® N U R W N

10
11

12
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14
15

16
17

18
19
20

Input: View v, query Q
Output: Rewritten query Q’
GP' = @; RD' = @; GBD = varsSpp;
let @2 be assignment and constraint functions of Q ;
GBGP' = @; - A graph pattern of GRAPH statement ;
qDims = {5,(d?) ...} - Set of RUP in query Q ;
vDims = {6,(d”) ...} -- Set of RUP in view v ;
foreach 0,(d9) € gDims do
6p(cQ) = 6,(d2) N 6,(d”) -- Common RUP in Q and v ;
A(d9) = 5,(d2) \ 6,(c?) -- Remaining part of a RUP (remaining triple
patterns) in Q after subtracting the part in common with v;
let v°(c”) be a triple pattern € CnPtrn such that 7 (c”) represents d,(c”) ;
GP' = GP' UA(dRQ); GBGP' = GBGP' U1°(c?);
RD' = RD' U {d9};
agg? = {¢(01), ..., p(0n)} - Aggregate expressions in Q over variables
{01...00};
a8g” = {¢(01), ..., ¢(0om)} - Aggregate expressions in v over variables
{o1...0m};
foreach ¢°(x) € agg? do
let v (x) be a triple pattern € CnPtrn such that y”(x) represents
9% (x) € agg® and ¢° = ¢ ;
GBGP' = GBGP' U~?(x) ;
RD' = RD' U{f'(v"(x))} where f’ is a rewrite of the aggregate function ¢ ;
GP' = GBGP' UGP' U ®Q);
Q' = SELECT RD' WHERE GP’ GROUP BY GBD ;
return Q' ;

6

To

Algorithm 6: Algorithm for query rewriting using a view

Evaluation

evaluate the performance gain for queries executed over materialized

views against the queries over the raw data, we implemented MARVEL us-
ing the NET Framework 4.0 and the dotNetRDF (http:/ /dotnetrdf.org/) API
with Virtuoso v07.10.3207 as triple store. The times reported in this section
represent total response time, i.e., they include query rewriting and query ex-
ecution. All queries were executed 5 times following a single warm-up run.
The average runtime is reported for all queries. The triple store was installed
on a machine running 64-bit Ubuntu 14.04 LTS with CPU Intel(R) Core(TM)
i7-950, 24GB RAM, 600GB HDD.
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Query Templates Query# Query Parameters for Various Selectivities

Template 1. Amount of revenue | Q1 Discounts 1, 2, and 3 for quantities less than 25 shipped in
increase that would have resulted 1993.

from eliminating certain company- | Q2 Discounts 1, 2, and 3 for quantities less than 25 shipped in
wide discounts. 01/1993.

Q3 Discounts 5, 6, and 7 for quantities less than 35 shipped in
week 6 of 1993.

Template 2. Revenue for some | Q4 Revenue for ‘"MFGR_12’ category, for suppliers in America
product classes, for suppliers in a | Q5 Revenue for brands ‘"MFGR_2221" to ‘"MFGR_2228’, for sup-
certain region, grouped by more pliers in Asia

restrictive product classes and all | Q6 Revenue for brand ‘MFGR_2239’ for suppliers in Europe
years.

Template 3. Revenue for some | Q7 For Asian suppliers and customers in 1992-1997

product classes, for suppliers in a | Q8 For US suppliers and customers in 1992-1997

certain region, grouped by more | Q9 For specific UK cities suppliers and customers in 1992-1997
restrictive product classes and all | Q10 | For specific UK cities suppliers and customers in 12/1997
Yemiplate 4. Aggregate profit, mea- | QI1 For American suppliers and customers for manufacturers
sured by subtracting revenue from ‘MFGR_1" or ‘MFGR_2’

supply cost. Q12 For American suppliers and customers for manufacturers

‘MFGR_1" or ‘'MFGR_2’ in 1997-1998
Q13 For American customers and US suppliers for category
‘MFGR_14’ in 1997-1998

Table 5.2: SSB Queries

6.1 Datasets and Queries

Unfortunately, none of the benchmarks for SPARQL queries are applicable
to our setup. All these benchmarks produce the complete set of data that
should be present in the source — data generators do not have an option to
withhold some data from being present in the source and instead generate
the implicit data that can be used to derive the missing data. Moreover,
the BSBM Business Intelligence Use Case benchmark that contains analytical
queries [86] does not require reasoning to answer the queries correctly, has
only a limited set of analytical queries and does not involve hierarchies and
data cubes; and the LUBM benchmark [87] that is used to evaluate reasoning
capabilities does not define analytical queries. Therefore, we decided to test
our approach on 2 different datasets and adapt data generators and queries
to our needs. All queries, schemas, and datasets are available at http://
extbi.cs.aau.dk/aggview.
LUBM Dataset LUBM [87] features an ontology for the university domain;
it creates synthetic OWL data scalable to an arbitrary size. The dataset de-
scribes universities, departments, students, professors, publication, courses,
etc. We decided to build our data cube and corresponding queries on the
information related to courses. In particular, we are interested in knowing
the number of courses offered by departments, the type of the courses, the
number of students taking courses, etc.

To introduce incompleteness in the data we changed the data generator
so that approx. 30% of the information that relates staff to courses is missing.

100


http://extbi.cs.aau.dk/aggview
http://extbi.cs.aau.dk/aggview

6. Evaluation

Instead, we introduced information about the department that offers these
courses (lubm:offeringDepartment). In such settings, counting the number of
courses offered by departments becomes more challenging since the roll-up
path Course — Staff — Department needs to be complemented by the roll-up
path Course — Department and the aggregation of courses by Department
cannot be answered by the results of the aggregation by Staff. A simplified
schema of the data structure is presented in Figure 5.4. We generated 3
datasets containing 30, 100, and 300 universities. The number of generated
triples in each dataset is given in Table 5.3.

lubm:takesCourse
Student

lubm:teacherOf lubm:worksFor

rdf:type _ _ lubm:offeringDepartment _ __ :

Fig. 5.4: Excerpt of an altered LUBM schema

# Universities 30 100 300
# Triples 3,968,866 | 13,405,383 | 39,874,037

Table 5.3: Materialized Views for LUBM Dataset

LUBM Queries Inspired by [80] and the corresponding technical report, we
defined in SPARQL 6 analytical queries involving grouping over several clas-
sification dimensions. We use COUNT aggregation in all queries. These
queries aggregate over number of courses offered by departments, number
of courses taken by students, number of graduate courses in each depart-
ment, number of courses taught by professors in each department, etc.
LUBM Cube Schema We drafted the QB4OLAP schema of the LUBM data
cube specifying 3 dimensions (Student, Staff, and Course), hierarchy levels,
and steps between the levels. In total, the schema contains 183 triples.
LUBM Materialized Views We applied Algorithm 4 to select a set of views
providing a good performance gain for answering user queries. The execu-
tion of the algorithm on a data cube lattice with 60 nodes and known view
sizes took 213 ms.

To choose which views to materialize, we ran MARVEL's view selection
algorithm and measured (i) the total query response time for all queries in
the cube using materialized views whenever possible and (ii) the total space
these views require. The unit in which we measured both space and time con-
sumption is the number of triples. The results for the first 25 views sorted by
their benefit are presented in Figure 5.5a. Based on these results we decided
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to materialize the first 5 views where the benefit in total response time for
the views is good compared to the growth in space consumption for storing
these views (Table 5.4).

View # | StudentDim | StaffDim CourseDim
View 1 | Student Department | All

View 2 | Student Professor All

View 3 | Department | Professor All

View 4 | Department | Department | All

View 5 | All Department | Type

Table 5.4: Materialized Views for LUBM Dataset

T T T T T T T T T
100M LUBM Time —+— 150M H SSB Time —+—
o LUBM Space —+— ) o SSB Space —+— o
= @ £ 3
= & ~100M &
© 50M = o) =
o ° o B
F e F 50M =
0 1 1 T T 0
0 5 10 15 20 25 0 5 10 15 20 25

Number of Views

(b) SSB Dataset

Number of Views

(a) LUBM Dataset

Fig. 5.5: Time and space vs number of views

SSB RDF Dataset In our experiments we also used the Star Schema Bench-
mark (SSB) [66], originally designed for aggregate queries in relational
database systems. This benchmark is well-known in the database commu-
nity and was chosen for its well-defined testbed and its simple design.

The data in the SSB benchmark represent sales in a retail company; each
transaction is defined as an observation described by 4 dimensions (Parts,
Customers, Suppliers, and Dates). We translated the data into the RDF mul-
tidimensional representation (QB4OLAP) introducing incompleteness to this
dataset as well, as illustrated in Figure 5.6. An observation is connected to
dimensions (objects) via certain predicates. Every connected dimension ob-
ject is in turn defined as a path-shaped subgraph. Hierarchies in dimensions
are connected via the skos:broader predicate. Measures (represented as rect-
angles in Figure 5.6) are directly connected to observations. We changed the
data generator to omit some information that relates suppliers to their cor-
responding cities in the Supplier dimension (and parts to their brands in the
Part dimension). Instead, we connected suppliers with missing city informa-
tion directly to their respective nations (ssb:s_nation) and parts with missing
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Price ‘ Revenue ‘ Discount‘ Quantity
<< X 7 e
ssb:price ssb:revenue ssb:discount Ssb:quantity

gb:Observation

ssbipart  sgph-customer  ssbidate Ssbisupplier

e v \ ~
{ Part )[Customer}[ Date ) [Supplier}-mi

skos:broader  skos:broader skos:broader skos:broader
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12 12
CManuf.) CRegion)

Fig. 5.6: SSB Dataset in QB4OLAP format

ssb:p_category
ssb:s_nation --

brand information directly to the categories (ssb:p_category). Thus, in the roll-
up path Supplier — City — Nation — Region the City level is incomplete.
The Part dimension is affected in the level Brand (Part — Brand — Category
— Manufacturer).

In our experiments, we used scaling factors 1 to 3 to obtain datasets of dif-
ferent sizes; the number of triples in each scaling factor are listed in Table 5.5.
Observations and all dimensional data are stored in separate graphs — one for
each dimension (parts, customers, suppliers, dates) and one for observations.

Scale Factor # 1 2 3
# Triples 122,327,740 | 244,518,460 | 364,744,560

Table 5.5: Number of Triples for the Generated SSB Test Datasets

SSB Queries SSB defines 13 queries. We converted all 13 defined queries into
SPARQL. They are briefly described in Table 5.2.

SSB Materialized Views Then we applied Algorithm 4 to select a set of ma-
terialized views. The execution of the algorithm on a cube lattice with 500
nodes and known view sizes took 11.8 seconds. We then conducted the same
time and space analysis as described above (Figure 5.5b). As a result, we
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identified and materialized 6 views with the maximum benefit (Table 5.6)
and stored these views in separate named graphs — each view in its own

graph.

View # | Dates Level | Suppliers Level | Customers Level | Parts Level

View 1 | Month Supplier City Manufacturer

View 2 | Month Nation Customer Part

View 3 | Year Supplier City Category

View 4 | Month City Nation Part

View 5 | Year Nation Region Part

View 6 | Date All Customer Manufacturer
Table 5.6: Selected Materialized Views with Hierarchy Levels

6.2 Query Evaluation

LUBM Figure 5.7 shows the results of executing the LUBM queries for 3
scale factors — queries with similar runtimes are grouped into separate graphs
for better visualization. For queries over raw data we materialized the im-
plicit triples and saved them to the dataset to avoid the entailment during
query execution. Note that the performance gain for queries over material-
ized views becomes more evident with the growth in the volume of data, due
to the growing difference in their sizes. For scale factor 3 the execution of the
queries over materialized views is on average 3 times faster.

Q2 Raw Data —@— Q1 Raw Data —@—
4 Q2 View -o- 40 Q1 View -o-
o Q4 Raw Data —#— o Q3 Raw Data —#—
& 31Q4 View -0~ 3 30 Q3 View -0~
] | Q5 Raw Data —#&— 2 5 | Q6 Raw Data —#&—
E 2[Qs View —-A- g E Q6 View - A  _ 3
1 . 10 =~
0 . 0 :
30 Uni 100 Uni 300 Uni 30 Uni 100 Uni 300 Uni

(a) Queries 2, 5 and 4 (b) Queries 1,3 and 6

Fig. 5.7: Execution times of LUBM queries over raw data and views

We also compared the performance of the queries over views that take
implicit triples into account and those that do not. Query 3 requests informa-
tion on the number of courses taken by research assistants whose advisors are
professors. We materialized 2 views: one takes into account that all professor
ranks are subclasses of the more general class Professor and the other view
does not. The execution of Query 3 over the view with implicit information
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for scale factor 3 was 1.7 times faster than the execution over the other view
(Figure 5.8a).

40 80

Time (sec)

W/O Entaiment —@— Smallest \(iew |
30 | With Entaiment ~ —il— 60 | Largest View ]
Raw Data g Raw Data —
2
20} o 40
£
s
10 20k
0 v! 1 1 0 | |
30 Uni 100 Uni 300 Uni 0% 30% 50%
(a) Entailment in views, LUBM (b) Various incompleteness, SSB

Fig. 5.8: Execution times of LUBM and SSB queries

SSB Given the set of materialized views, MARVEL was able to rewrite 10 out
of the 13 queries. The other 3 benchmark queries (Q1, Q2, and Q3) apply
restrictions on measures. Since the views group by dimensions and only
store aggregates over the measures, these queries cannot be evaluated on any
aggregate view.

Time (sec)

80 Q4 —A—
Q8 —0—

60 Q11 —i— <

Q12 —%— &

[0}

£

'_

(a) SSB queries (b) SSB queries

Fig. 5.9: Execution times of SSB queries over raw data and views

Figure 5.9 shows the runtime of the queries evaluated on the original
datasets and on the views (dashed lines of the same colors indicate the exe-
cution times over views). Our results for scale factor 3 show that evaluating
queries using views is on average 5 times faster (up to 18 times faster for
Query 10). This can be explained by the decreased size of the data and the
availability of partial results.

We also compared the performance gain for queries over views with dif-
ferent levels of incompleteness. For scale factor 3, we generated datasets with
0%, 30%, and 50% levels of incompleteness and identified a set of views for
every dataset. In each case, the set of materialized views is different due to
the difference in the size and the benefit of the views. We then evaluated the
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execution of Query 4 over the raw data and over the largest and the smallest
view. The slight increase in the query execution time over the raw data for in-
complete datasets is caused by a rewriting of the query into a more complex
query. The results show that in all cases the evaluation of queries over views
is far more beneficial (on average 11 times more beneficial — Figure 5.8b).

Additionally, we compared the performance gain of MARVEL to the ap-
proach in [80] which materializes partial results of user queries to answer
subsequent queries. We used the original (non-modified) LUBM dataset con-
taining approx. 100M triples, analytical queries, and views introduced in the
technical report of [80]. The execution times for the queries over the original
data and views are reported in Figure 5.10. As shown in the figure, MARVEL
is on average more than twice as fast as partial result materialization [80].
This can be explained by the difference in the size of the data — partial results
contain identifiers for facts while our materialized views contain aggregated
data only.
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Fig. 5.10: Comparison with results from [80]

In summary, the experimental results show that MARVEL accounts for
RDF-specific requirements and finds an appropriate set of views that provide
a good balance between the benefit of the views and their storage space.
The rewriting algorithm of MARVEL is able to rewrite analytical SPARQL
queries based on a set of materialized views. The experiments also show that
evaluating queries over materialized views is on average 3-11 times faster
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than evaluating the queries over raw data.

7 Conclusion and Future Work

In this chapter, we have addressed the problem of selecting a set of aggregate
RDF views to materialize and proposed a cost model and techniques for
choosing these views. The selected materialized views account for implicit
triples present in the dataset. The chapter also proposes a SPARQL syntax for
defining RDF views and an algorithm for rewriting user queries given a set of
materialized RDF views. A comprehensive experimental evaluation showed
the efficiency and scalability of MARVEL resulting in 3-10 times speedup
in query execution. In future work, we plan to investigate algorithms for
incrementally maintaining the materialized views in the presence of updates.
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Chapter 6

Conclusion

Abstract

This chapter summarizes the conclusions and proposes directions for future work
presented in Chapters 2-5.

1 Summary of Results

The capability of incorporating data from different sources into the decision
making process is, nowadays, essential for Bl applications. Huge amounts of
data available on the Web call for more active use of these data to provide
richer insights. However, due to the amount and complexity of data avail-
able on the Web, incorporation and utilization of these data pose challenges
for technologies that were shaped for storing and manipulating structural
data. Thus, this thesis presented our approach aimed at optimizing ana-
lytical queries over RDF sources. The thesis focused on data integration and
data processing techniques to enable efficient execution of analytical SPARQL
queries in the Semantic Web.

Overall, in the thesis we proposed a conceptual model of a system for
Exploratory OLAP over RDF data sources. We have identified and described
4 modules needed in such systems. We also presented a use case to demon-
strate the applicability of the proposed framework. We discussed the chal-
lenges and explored optimizations needed for the efficient processing of ag-
gregate queries in a federation of SPARQL endpoints. In addition, we con-
sidered federated systems where endpoints contain related data divided by
a certain “aspect” (like dimension, hierarchies, facts) to enable the analysis of
data across these endpoints. At the end, we addressed the issue of improving
the performance of SPARQL endpoints for aggregate queries using material-
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ized RDF views. For each challenge that we addressed, we proposed algo-
rithms and query processing optimization techniques that considered RDF
specifics. In the sequel, we summarize contributions of each of the presented
chapters.

Chapter 2 presented a framework for Exploratory OLAP over LOD
sources. We followed the best practices in the system design and constructed
the framework on a modular basis. This also helped us to investigate each
module separately. The framework employs the schema of the data cube ex-
pressed by the combination of QB4OLAP and VoID vocabularies and stored
in the Global Conceptual Schema Module. By combining the vocabularies
and specifying how RDF data can be accessed using various protocols, we
enabled the system to query remote data sources, extract and aggregate data,
and build an OLAP cube. We also introduced a computer-aided process
for discovering previously unknown data sources necessary for the given
data cube and building a multidimensional schema. We presented a use
case that demonstrated the applicability of the proposed framework. Over-
all, Chapter 2 motivated the research of this thesis and set the directions for
further investigation. In particular, we envisioned/designed the Distributed
Query Processing Module and in the following chapters we investigated the
algorithms and techniques to increase the efficiency of executing analytical
SPARQL queries in a distributed environment.

Chapter 3 presented our findings related to the problem of efficiently pro-
cessing aggregate queries in a federation of SPARQL endpoints. While exe-
cuting an aggregate query that retrieves information from a remote endpoint,
the state-of-the-art triple stores timed out during the query execution since
they used basic strategies. We examined this issue and proposed our solution.
More particularly, we investigated several query processing strategies for this
scenario such as Mediator Join, SemiJoin, and Partial Aggregation. Sepa-
rately, these strategies do not contribute to the optimal solution for an ad-hoc
query. Thus, we proposed a cost model that analyzes each query and chooses
the best strategy in each case. Our CoDA approach for aggregate SPARQL
queries estimates constants and result sizes for triple patterns, joins, group-
ing and aggregation present in the query and makes an informed decision on
which strategy to apply. The comprehensive experimental evaluation, based
on an RDF version of the widely used Star Schema Benchmark, showed that
CoDA is efficient and scalable, able to pick the best query processing plan
in different situations, and significantly outperforms current state-of-the art
triple stores.

Chapter 4 continued our research on increasing the efficiency of evalu-
ating analytical SPARQL queries in a federation of SPARQL endpoints. In
this chapter we investigated federations of SPARQL endpoints where data
are distributed in such a manner that related data are stored on multiple end-
points such that an endpoint contributes data for a certain “aspect” (dimen-
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sions, hierarchies, facts, etc.) only. A typical example is the setup where each
endpoint contains statistics data of a single country only. In our approach
(LITE), we defined mappings to link a mediated (global) schema to source
(local) schemas, extended RDF vocabularies to be used for mapping, and
proposed a query rewriting algorithm that rewrites a globally defined query
to queries for local endpoints. During the rewriting process, our algorithm
also takes into account hierarchical information encoded in RDFS. Addition-
ally, we use global heuristics to optimize rewritten queries and the previously
implemented cost model to improve the federated queries that are executed
on local endpoints. Our experimental evaluation showed the efficiency and
scalability of the proposed approach. The advantage of LITE was even more
evident for queries that retrieve hierarchical data from remote endpoints.

In Chapter 5, we investigated one of the methods to increase the per-
formance of aggregate queries on a single SPARQL endpoint — materializing
RDF views for their further utilization during query execution. MARVEL is a
materialized view selection and analytical SPARQL query rewriting approach
for RDF data. Its view selection algorithm is based on an RDF-specific cost
model that proposes to materialize a set of views to be used during a query
execution. While materializing views, the approach also accounts for im-
plicit triples present in the view. MARVEL also proposes a SPARQL syntax
for defining aggregate RDF views and constructing new triples from tabu-
lar data generated by SPARQL queries, and an algorithm for rewriting user
queries based on a selected materialized RDF view. A comprehensive experi-
mental evaluation showed the efficiency and scalability of MARVEL resulting
in 3-10 times speedup in query execution.

In summary, we concentrated on designing a framework that facilitates
analytical SPARQL queries over Semantic Web sources. In Chapter 2, we de-
veloped the framework that retrieves data from federated RDF sources while
in Chapters 3-5 we investigated different aspects and proposed algorithms
and query processing optimization techniques for improving query perfor-
mance for analytical SPARQL queries in a federated setup. Our framework
allows to virtually integrate several endpoints into a federated system and
to perform analytical queries that retrieve data from remote endpoints. The
performance of standalone endpoints in a federation can also be optimized
using materialized views. Overall, when using our framework, we observe
7x times performance gain for analytical queries in a federation, and 3-11x
times performance gain for analytical queries on single endpoints.

2 Future Directions

Several future directions exist for the work presented in this thesis. Thus, we
next discuss these research directions.
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The approach presented in Chapter 2 is our vision of the framework for
Exploratory OLAP that queries distributed RDF sources, extracts and aggre-
gates data, and presents the results to a user. Up to the moment, we have
focused on the performance optimization techniques for aggregate SPARQL
queries in stand-alone endpoints and in distributed settings. In Chapters 2
and 4, we also specified and extended the vocabularies used for defining the
multidimensional schema of the OLAP cube and the mappings between the
global schema of the system and local schemas of individual data sources.
Thus, the next step in the extension of the framework is to investigate and
automate the process of building global and local schemas and mappings
between these schemas and to integrate the whole framework with current
BI tools to improve the capabilities of Bl systems. Besides, even though we
addressed query performance issues in different chapters of the thesis, we
believe that further optimization is possible and required. We point out pos-
sible improvements below.

Chapter 3 explores the execution of aggregate SPARQL queries in a fed-
erated setup. In our approach, we assumed that no information is known
about standalone endpoints comprising the federation. However, the cost
model can benefit from the information that may be available for some of
the endpoints to more accurately predict the communication and processing
costs. Additionally, the model may be enhanced to more accurately estimate
the selectivity of predicates and FILTER statements in SPARQL queries by
using the histograms that capture data distributions in federated endpoints.
Moreover, more complex statistics with precomputed join result sizes and
correlation information may be used to better estimate cardinalities. Also,
the approach needs to be expanded to handle more complex queries e.g.,
with optional patterns or complex aggregation functions, those involving
property paths and complex subqueries, etc. Another interesting direction
for future work is investigating the influence of ontological constraints and
inference/reasoning in the context of federated aggregate SPARQL queries.

We envision several improvements for our approach presented in Chap-
ter 4. A further optimization of our work would be to develop a cost model
for optimizing queries on a global level based on some statistical data in cases
where such statistical data is available. Another direction for future work is
developing methods and algorithms for automatically generating schemas
for local and global sources and mappings between these schemas.

There are several improvements for the cost model presented in Chap-
ter 5. The current cost model is formulated for a generic triple store. Thus,
the model can be optimized if algorithms and/or auxiliary structures of a
particular triple store are taken into the account. Additionally, the choice of
the views to materialize can be refined based on the logs or the likely set of
user queries. Moreover, algorithms for incrementally maintaining material-
ized views in the presence of updates need to be developed.
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Overall, the thesis addressed the issues related to the efficient execution of
analytical queries in a federation of SPARQL endpoints. Developing methods
and algorithms for automatically devising analytical schemas and mappings
for the framework is left as a future work. One of the interesting directions
for future research is to consider entailment rules in federated settings, when
the inferred data in one endpoint affects the results of query answering in
others. Another direction for future is to address the problem of answering
analytical federated queries using distributed materialized views. Separately,
our developed techniques for answering SPARQL queries using materialized
views and our optimization techniques for analytical queries in a federated
setup speed up the performance of analytical SPARQL queries either in a
federation or on standalone endpoints. Combining these two techniques, we
can further optimize the performance of analytical queries over the Semantic
Web sources. In addition, our work calls for a new line of research on the
integration of data from heterogeneous (XML, CSV, XLS, Raster, etc.) data
management systems.
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