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The Cocktail Party Problem

@ Cocktail Party Problem
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The Cocktail Party Problem

How do we recognize what one person is saying when others are speaking at
the same time (the "cocktail party problem")? On what logical basis could
one design a machine ("filter") for carrying out such an operation?

— Colin Cherry, 1953.
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The Vision: Solve the Problem
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Speech Enhancement and Separation

@ Speech Enhancement and Separation
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Single-Microphone Speech Enhancement

First Task of the Thesis

——Speaker 1

——Noise

Speech
Enhancement
Algorithm

——Speaker 1
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Single-Microphone Speech Separation

Second Task of the Thesis

——Speaker 1
Speaker 2

——Noise

Speech
Separation —
Algorithm

——Speaker 1

Speaker 2
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Speech Enhancement and Separation

Two Motivating Applications

Why Is Solving the Cocktail Party Problem Important?

Human Receivers

» Potential: Hundreds of millions of
people worldwide have a hearing loss.

» Challenge: Hearing impaired often
struggle in "cocktail party" situations.

» Solution: Algorithms that can enhance
the speech signal of interest.

» Application: Hearing Assistive Devices
e.g. hearing aids or cochlear implants.
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Speech Enhancement and Separation

Two Motivating Applications

Why Is Solving the Cocktail Party Problem Important?

Machine Receivers

>

Potential: Millions of people vocally
interact with smartphones.

Challenge: These devices operate in
complex acoustic environments.

Solution: Noise-robust
human-machine interface.

Application: Social robots or digital
assistants e.g. Google Asst., Siri, etc.
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Whats new? — A paradigm shift!

Classical Paradigm Deep Learning Paradigm
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Speech Enhancement and Separation

Old Problem: Whats new?

Whats new? — A paradigm shift!

Classical Paradigm Deep Learning Paradigm

» Derive the solution using specific
mathematical models that approximate
speech and noise.
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» Simplifying assumptions for mathematical
tractability.



Morten Kolbaek | Single-Microphone Speech Enhancement and Separation Using Deep Learning

Speech Enhancement and Separation

Old Problem: Whats new?

Whats new? — A paradigm shift!

Classical Paradigm Deep Learning Paradigm
» Derive the solution using specific » Learn the solution using general
mathematical models that approximate mathematical models that have "observed"
speech and noise. speech and noise.
» Simplifying assumptions for mathematical » No explicit assumptions.

tractability.



Morten Kolbaek | Single-Microphone Speech Enhancement and Separation Using Deep Learning

Speech Enhancement and Separation ((‘

Old Problem: Whats new?

Whats new? — A paradigm shift!

Classical Paradigm Deep Learning Paradigm
» Derive the solution using specific » Learn the solution using general
mathematical models that approximate mathematical models that have "observed
speech and noise. speech and noise.
» Simplifying assumptions for mathematical » No explicit assumptions.
tractability.

» Generally not data-driven.



Morten Kolbaek | Single-Microphone Speech Enhancement and Separation Using Deep Learning

Speech Enhancement and Separation ((‘

Old Problem: Whats new?

Whats new? — A paradigm shift!

Classical Paradigm Deep Learning Paradigm
» Derive the solution using specific » Learn the solution using general
mathematical models that approximate mathematical models that have "observed
speech and noise. speech and noise.
» Simplifying assumptions for mathematical » No explicit assumptions.
tractability.

» Generally not data-driven. » Data-driven.



Morten Kolbaek | Single-Microphone Speech Enhancement and Separation Using Deep Learning

Speech Enhancement and Separation ((‘

Old Problem: Whats new?

Whats new? — A paradigm shift!

Classical Paradigm Deep Learning Paradigm
» Derive the solution using specific » Learn the solution using general
mathematical models that approximate mathematical models that have "observed
speech and noise. speech and noise.
» Simplifying assumptions for mathematical » No explicit assumptions.
tractability.
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Speech Enhancement and Separation ((‘

Old Problem: Whats new?

Whats new? — A paradigm shift!

Classical Paradigm

» Derive the solution using specific
mathematical models that approximate
speech and noise.

» Simplifying assumptions for mathematical
tractability.

» Generally not data-driven.

» Good performance when assumptions
are valid (sometimes they are not).

Deep Learning Paradigm

>

Learn the solution using general
mathematical models that have "observed"
speech and noise.

No explicit assumptions.

Data-driven.

State-of-the-art performance given enough
data and computational resources.
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Deep Learning

@ Deep Learning
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Deep Learning
What is it?

» Deep Learning: Subfield of Machine
Learning.

Unknown Function

r—— f(x) —v

”Learned” Function
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Deep Learning
What is it?

» Machine Learning: Use data to "learn”
or approximate unknown functions f(z)
that can be used to make predictions.

Unknown Function

r—— f(x) —v

”Learned” Function
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Deep Learning

What is it? — Classical Regression Example

» Estimate Happiness from
income

» Hypothesis: Happiness is
associated with income.

Subjective Happiness Scale

Income $
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Deep Learning

What is it? — Classical Regression Example

» Estimate Happiness from
income

> Hypothesis: Happiness is

associated with income.

» Data: Perceived happiness and
income from people.

» Candidate Models:

B 7-params. (Big Capacity)
filz) = ax® + ba® + ca?t

+da® +ex? + fr+g

W 4-params. (Small Capacity)
fg(r) = az® +bz® +cx+d

Subjective Happiness Scale

Income $
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» Estimate Happiness from
income

> Hypothesis: Happiness is

associated with income.

» Data: Perceived happiness and
income from people.
» Candidate Models:

B 7-params. (Big Capacity)
4

fi(@) = axb 4+ ba® 4 ca
+da® +ex? + fr+g

W 4-params. (Small Capacity)
fg(r) = az® +bz® +cx+d

Subjective Happiness Scale

> Goal: Find parameters of
fi1(z) and f2(x) that best
explain the observations.

Income $
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What is it? — Classical Regression Example

» Estimate Happiness from
income

8 Observations

> . . .
Hypothesis: Happiness is — = f(z) ("True’ Relationship) ]

associated with income.

» Data: Perceived happiness and
income from people.
» Candidate Models:

B 7-params. (Big Capacity)
4

fi(@) = axb 4+ ba® 4 ca
+da® +ex? + fr+g

W 4-params. (Small Capacity)
fg(r) = az® +bz® +cx+d

Subjective Happiness Scale
\

> Goal: Find parameters of 1
fi1(z) and f2(x) that best
explain the observations.

Income $
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What is it? — Classical Regression Example

» Estimate Happiness from
income

» Hypothesis: Happiness is 8 Observations

! ar = = f(z) ("True” Relationship)
associated with income. fi(z) (Big Capacity)

e f(2) (Small Capacity)

» Data: Perceived happiness and
income from people.

» Candidate Models:
B 7-params. (Big Capacity)
fi(z) =—0.22% + 2.52° — 8,127
+10.32% — 5.422 + x + 0.3

W 4-params. (Small Capacity)
fa(z) =—22.20% + 2.62% 4+ 3.82 — 0.6

Subjective Happiness Scale

> Goal: Find parameters of
fi(z) and f2(z) that best
explain the observations.

Income $
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What is it? — Classical Regression Example

» Estimate Happiness from
income

» Hypothesis: Happiness is 8 Observations

! ar = = f(z) ("True” Relationship)
associated with income. fi(z) (Big Capacity)

e f(2) (Small Capacity)

» Data: Perceived happiness and
income from people.

» Candidate Models:
B 7-params. (Big Capacity)
fi(z) =—0.22% + 2.52° — 8,127
+10.32% — 5.422 + x + 0.3

W 4-params. (Small Capacity)
fa(z) =—22.20% + 2.62% 4+ 3.82 — 0.6

Subjective Happiness Scale

Income $

> Goal: Find parameters of
fi(z) and f2(z) that best
explain the observations.
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Deep Learning

What is it? — Classical Regression Example

» Estimate Happiness from
income

» Hypothesis: Happiness is
associated with income.

» Data: Perceived happiness and
income from people.
» Candidate Models:
B 7-params. (Big Capacity)
fi(z) = 1.125% —6.52° + z?

—18.0z% + 11.02% — x4+ 0.6

W 4-params. (Small Capacity)
folz) = 18.22° — 19.42% + 9.3z — 1.2

> Goal: Find parameters of
fi1(z) and f2(x) that best
explain the observations.

Subjective Happiness Scale
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= = f(x) ("True” Relationship)
fi(x) (Big Capacity)

e f(2) (Small Capacity)

Income $
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Deep Learning

What is it? — Classical Regression Example

» Estimate Happiness from
income

» Hypothesis: Happiness is
associated with income.

» Data: Perceived happiness and
income from people.

» Candidate Models:
B 7-params. (Big Capacity)
fi(z) =—0.32% + 3.22° + 11.12"
+17.32% — 13.622 + z— 0.5
W 4-params. (Small Capacity)

fa(z) =—9.22% + 2,92 + 112 — 0.2

> Goal: Find parameters of
fi1(z) and f2(x) that best
explain the observations.

Subjective Happiness Scale
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= = f(x) ("True” Relationship)
fi(x) (Big Capacity)

e f(2) (Small Capacity)

Income $
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Deep Learning

What is it? — Classical Regression Example

» Estimate Happiness from
income

» Hypothesis: Happiness is
associated with income.

» Data: Perceived happiness and
income from people.

» Candidate Models:
B 7-params. (Big Capacity)
f] (z) =—0.12% + 2.02° — 7.72*
+13.32% —11.722 + 532 — 0.5

W 4-params. (Small Capacity)
folz) = 10.92° — 10.42% +5.12 — 0.5

> Goal: Find parameters of
fi1(z) and f2(x) that best
explain the observations.

Subjective Happiness Scale

100+ Observations
= = f(x) ("True” Relationship)
fi(x) (Big Capacity)
e f(2) (Small Capacity)

Income $
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Deep Learning

What is it? — Classical Regression Example

» Estimate Happiness from
income

» Hypothesis: Happiness is
associated with income.

» Data: Perceived happiness and
income from people.

» Candidate Models:
B 7-params. (Big Capacity)
fi(z) =—0.12% +2.02° — 7.72*
+13.323 — 11.72% + 5.3z — 0.5
W 4-params. (Small Capacity)

fa(z) = 10.92°% —10.42% +5.12 — 0.5

> Goal: Find parameters of
fi(z) and f2(z) that best
explain the observations.

Subjective Happiness Scale
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100+ Observations
= = f(x) ("True” Relationship)
fi(x) (Big Capacity)
e f(2) (Small Capacity)

‘ Good Generalization!

Income $
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Deep Learning
What is it? — Essentially Regression with Deep Neural Networks

» Deep Learning
» "Regression" using Deep Neural Networks.
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Deep Learning (‘ 2
What is it? — Essentially Regression with Deep Neural Networks %, 2

> Deep Learning
\

» "Regression" using Deep Neural Networks. \

» Deep Neural Network ’

» Non-linear function with potentially MANY
(millions) parameters. .
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What is it? — Essentially Regression with Deep Neural Networks %, 2

» Deep Learning
|

» "Regression" using Deep Neural Networks. \

» Deep Neural Network ’

» Non-linear function with potentially MANY
(millions) parameters. .

» If big enough, they can approximate any
function.
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Deep Learning (‘ 2
What is it? — Essentially Regression with Deep Neural Networks %, 2

» Deep Learning

» "Regression" using Deep Neural Networks. \

» Deep Neural Network

» Non-linear function with potentially MANY
(millions) parameters. .

» If big enough, they can approximate any
function.

» With enough data, they can learn complex )
mappings.
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Deep Learning
What Can It Do?
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What Can It Do?
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Deep Learning
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Deep Learning
What Can It Do?
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Deep Learning

What Can It Do?
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Al could contribute up to $15.7 trillion to
the global economy in 2030, more than the
current output of China and India combined.

Sizing theprize

What's the real value of Al for
your business and how can
you capitalise?
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Generalization of DNN based Speech Enhancement

Human Receivers - Speech Intelligibility

@ Generalization of Deep Learning based Speech Enhancement
e Human Receivers - Speech Intelligibility
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Human Receivers - Motivation and Research Gap

o,
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r(k,m)
Promising Results
» Recent studies show that speech enhancement Y[ [ Framing, Gan 1 G(k,m) La(k, m)[ g nmess, | L0
. . — Estimator —s
algorithms based on deep learning outperform Transform e.g. DNN g Overlap-add

classical techniques.
Assump./ Prior

Noisy speech (time-domain)
Noisy speech (transform-domain)

]
)

g(k,m) : Estimated gain
) : Enhanced speech (transform-domain)
]

Enhanced speech (time-domain)
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Generalization of DNN based Speech Enhancement

Human Receivers - Motivation and Research Gap

o, Q)
o, @
R yniv®

r(k,m)
Promising Results
» Recent studies show that speech enhancement Y[ [ Framing, Gan 1 G(k,m) La(k, m)[ g nness, | L0
. . — Estimator —s
algorithms based on deep learning outperform Transform c.g. DNN g Overlap-add

classical techniques.

. . " Assump./ Prior
» DNNs trained and tested in "narrow" conditions. P

Noisy speech (time-domain)
Noisy speech (transform-domain)

Enhanced speech (transform-domain)

]
)
g(k,m) : Estimated gain
)
] - Enhanced speech (time-domain)
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Generalization of DNN based Speech Enhancement

Human Receivers - Motivation and Research Gap
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r(k,m)
Promising Results
» Recent studies show that speech enhancement Y] [ Framing, Esﬁ;igtor g(k,m) La(k, m)"gnness, | 1]
algorithms based on deep learning outperform fiasfo ¢.g. DNN g Overlap-add
classical techniques.
» DNNs trained and tested in "narrow" conditions. Assump. /Prior
Research Gap y[n] : No!sy speech (time-domain)
r(k,m) : Noisy speech (transform-domain)
» Unknown how these algorithms perform in ok . Estimated qain
general "broader" conditions and in conditions g(k,m) : Estimated ga )
with a mismatch between training and test. a(k,m) : Enhanced speech (transform-domain)

Z|n] : Enhanced speech (time-domain)
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Human Receivers - Contribution
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Contribution

» We studied generalizability capability of deep
neural network-based speech enhancement

algorithms for additive-noise corrupted speech [1]. r(k,m)
Y[ [Framing, Deep | §(k,m) La(k, m)[ g rness | 27
— Analysis NNe?VL\J/gIk Y Overlap-add —
Prior

N

"Speaker ID" "SNR" "Noise type"

y[n] = z[n] + avn]

[1] M. Kolbeek, et al., IEEE TASLP, 2017
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Human Receivers - Contribution
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Contribution

» We studied generalizability capability of deep
neural network-based speech enhancement

algorithms for additive-noise corrupted speech [1]. r(k,m)
» Specifically, our goal was to study the y[7] [ Framing, Deep | G(k,m) Lalk, m)[ g mmess, | 2[1]
i i i i . — Analysis Neure] & Overlap-add [~
generalization error w.r.t. three dimensions: Network

» Speaker Identity Prior

» Signal-to-Noise Ratio
> Noise type / \\

"Speaker ID" "SNR" "Noise type"

y[n] = z[n] + avn]

[1] M. Kolbeek, et al., IEEE TASLP, 2017
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neural network-based speech enhancement

algorithms for additive-noise corrupted speech [1]. r(k,m)
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generalization error w.r.t. three dimensions: Network
» Speaker Identity Prior

» Signal-to-Noise Ratio
> Noise type / \\

"Speaker ID" "SNR" "Noise type"
» We trained multiple DNNs with various priors.

» Generalization was evaluated using PESQ and
STOI, which are speech quality and intelligibility
estimators, respectively.

y[n] = z[n] + av|n]

[1] M. Kolbeek, et al., IEEE TASLP, 2017
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Results and Conclusion

» Performance (PESQ and STOI) is generally
reduced when a "narrow" system is tested in a
more general scenario.

» Performance is comparable or exceeding

performance of a classical technique. o - ‘ ‘ ‘ ‘ ‘ ‘
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> Matching the noise type is the most critical, 6-Speaker Babble Noise
whereas matching the speaker and SNR is less 100 o S RNTBRL 5B
critical. wls DNN-A BEL 1520 4B
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» Listening tests show small improvement in speech
intelligibility relative to previously published results.

» Both PESQ and informal listening tests indicate
that DNN systems improve speech quality. 14
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Motivation
» Digital devices with voice-user interfaces struggle
in "cocktail-party” conditions.

» Such devices can benefit from denoising
front-ends.

» A State-of-the-art noise-robust speaker verification
system relies on speaker dependent non-negative
matrix factorization (Thomsen et al. 2016).

Research Gap

» |t is unknown how well DNN based speech
enhancement algorithms work as denoising
front-ends for speaker verification systems.
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» We designed a DNN based speech enhancement
front-end for a speaker verification system [2].

» Goal was to study the generalization error w.r.t.
three dimensions:
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» Signal-to-Noise Ratio
> Noise type

"Unlock"

[2] M. Kolbzek, et al., IEEE SLT, 2016
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» We designed a DNN based speech enhancement
front-end for a speaker verification system [2].

» Goal was to study the generalization error w.r.t.
three dimensions: Is this person
allowed to
unlock this
device:

Yes/No

» Speaker Identity
» Signal-to-Noise Ratio
> Noise type

"Unlock"

» Generalization was evaluated using equal error
rates and the results were compared to existing
enhancement techniques.

[2] M. Kolbzek, et al., IEEE SLT, 2016
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Results

> Male-speaker "general" DNN-based speech
enhancement front-end generally leads to lower
EER compared to classical techniques.

» Even NMF which is "narrow", i.e. speaker, text,
and noise type dependent.

Conclusion

» DNN based speech enhancement front-end
improves state-of-the-art noise-robust speaker
verification.

» Eliminating the need for noise type and speaker
dependent front-ends.
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Motivation
» Goal of speech enhancement algorithms is often
to improve speech intelligibility (Sl).

» Often these algorithms are designed to minimize
the short-time spectral amplitude (STSA)
mean-square error (MSE) with no link to SI.

» Can we use a function with a stronger link to SI? —
e.g. the STOI Sl estimator.

Research Gap

» No DNN-based speech enhancement algorithm
exists that maximize STOI.

Contribution
» We propose such an algorithm [3,4].

[3] M. Kolbeek, et al., IEEE ICASSP, 2018
[4] M. Kolbeek, et al., IEEE TASLP, 2018
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» DNNs designed to maximize approximate-STOI,
improves ELC at various SNRs (and noise types).

» Similar conclusions can be drawn for DNNs that
minimize EMSE.
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evaluated using STOI.
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» Similar conclusions can be drawn for DNNs that
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» Same conclusions hold when the same DNNs are
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» DNNs designed to maximize approximate-STOI,
improves ELC at various SNRs (and noise types).

» Similar conclusions can be drawn for DNNs that
minimize EMSE.

» Same conclusions hold when the same DNNs are
evaluated using STOI.

» Apparently, nothing to gain in terms of STOI, when
maximizing ELC compared to minimizing MSE.
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Method
» Using Bayesian statistics we derive the maximum by L = Argm ax / Luro (a,d) fo R (alr) da
mean ELC (MMELC) estimator.
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T IE A le(AlD)] ]

arpsp = arg 11211/ (a —a)® fa R (alr) da

=Ey, [Alr]
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Method
» Using Bayesian statistics we derive the maximum a , = arg max / Lrre (a,d) fa r(alr) da
mean ELC (MMELC) estimator. e ax ] fore (@) fap (ar) do

E Ay [e(Alr)]
Result = By AT
» We show, under certain general conditions, that
the MMELC estimator is asymptotically (in V) .
equivalent to the classical STSA-MMSE estimator. Ayvse = arg mjn/ (a —a)* fpR (alr) da
a A|R
=E 4 [Alr]
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Method

» Using Bayesian statistics we derive the maximum G v ELe = ATg max

mean ELC (MMELC) estimator. o ’ a .

E A [e(Alr)]

_ “Ar
Result = TE oy AT
» We show, under certain general conditions, that
Aprvsp = argmin / (a —a)° far (alr) da
a A|R

the MMELC estimator is asymptotically (in V)

equivalent to the classical STSA-MMSE estimator.
=E 4 [Alr]

Conclusion
» The STSA-MMSE estimator leads to the same
approximate-STOI value as the MMELC estimator.
li = Qg — A
\Efic AMMELC = AMMSE /jgwmsn
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Method
» Using Bayesian statistics we derive the maximum G v ELe = ATg max / Lrrc (a,d) fo R (alr) da
mean ELC (MMELC) estimator. o ) a . CoEE T
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_ “Ar
Result TE Ay LA
» We show, under certain general conditions, that
the MMELC estimator is asymptotically (in V) . ‘
equivalent to the classical STSA-MMSE estimator. Ayvse = arg mjn/ (a—a)? far (alr) da
a A|R
=E 4 [Alr]

Conclusion

» The STSA-MMSE estimator leads to the same
approximate-STOI value as the MMELC estimator.

» For practical DNN based speech enhancement
algorithms this is valid already at N > 15. lim  ayypere = Gumse — B
N — 00 —SMMSE

» No reason to optimize for ELC if the goal is to
perform optimally w.r.t. STOl. STSA-MSE is near

optimal.
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Motivation, Research Gap, and Contribution

Motivation
» Speech separation algorithms are useful for
various applications.
Speech

» E.g. "Cocktail party" situations. - Separaion

» Existing solutions are complicated or limited.

Research Gap

» No DNN-only solution exists for speaker
independent multi-talker speech separation.

Contribution
» We propose such algorithms [5,6,7].

[5] D. Yu, et al., IEEE ICASSP, 2017
[6] M. Kolbeek, et al., IEEE TASLP, 2017
[71 M. Kolbeek, et al., IEEE MLSP, 2017
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» DNNs trained with uPIT works well for speech
separation and enhancement jointly.

» More interestingly, works well without prior
knowledge about the number of speakers.

Conclusion

» uPIT is a DNN training technique that enable
DNN-only algorithms for speaker-independent
multi-talker speech separation and
enhancement.
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» Generalizability [1, 2]

» Matching the noise type is the most critical, whereas matching the speaker and SNR is
less critical if a modest amount of speakers are included in the training set.

» A male-speaker "general" DNN based speech enhancement front-end achieves
state-of-the-art performance on a speaker verification task.

» Optimality [3, 4]
» The STSA-MMSE estimator is asymptotically equivalent to the MMELC estimator.

» The STSA-MSE cost function leads to enhanced speech signals which are essentially
optimal in terms of STOI. In other words, there is no benefit from optimizing for STOI.

» Permutation Invariant Training [5, 6, 7]

» A training criterion that enable DNNs to work well on single-microphone
speaker-independent multi-talker speech separation and enhancement.

» Simple solution to the label permutation problem.

» Achieves state-of-the-art performance.
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