
 

  

 

Aalborg Universitet

Single-Microphone Speech Enhancement and Separation Using Deep Learning

Kolbæk, Morten

DOI (link to publication from Publisher):
10.54337/aau300036831

Publication date:
2018

Document Version
Other version

Link to publication from Aalborg University

Citation for published version (APA):
Kolbæk, M. (2018). Single-Microphone Speech Enhancement and Separation Using Deep Learning. Aalborg
Universitetsforlag. https://doi.org/10.54337/aau300036831

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 21, 2024

https://doi.org/10.54337/aau300036831
https://vbn.aau.dk/en/publications/2e44464a-d268-4538-b353-5f2844c2f273
https://doi.org/10.54337/aau300036831


Single-Microphone Speech Enhancement
and Separation Using Deep Learning

November 30, 2018

Morten Kolbæk

PhD Fellow
Department of Electronic Systems

Aalborg University
Denmark



Morten Kolbæk | Single-Microphone Speech Enhancement and Separation Using Deep Learning

32
1

Supervisors: Prof. Jesper Jensen, AAU, Oticon
Prof. Zheng-Hua Tan, AAU

Stay Abroad: Dr. Dong Yu, Tencent AI Lab / Microsoft Research



Morten Kolbæk | Single-Microphone Speech Enhancement and Separation Using Deep Learning

32

2Agenda

Introduction:

Cocktail Party Problem

Speech Enhancement and Separation

Deep Learning

Scientific Contributions:

Generalization of Deep Learning based Speech Enhancement
Human Receivers - Speech Intelligibility
Machine Receivers - Speaker Verification

On STOI Optimal Deep Learning based Speech Enhancement

Permutation Invariant Training for Deep Learning based Speech Separation

Summary and Conclusion



Morten Kolbæk | Single-Microphone Speech Enhancement and Separation Using Deep Learning

32

2

Part I

Introduction



Morten Kolbæk | Single-Microphone Speech Enhancement and Separation Using Deep Learning

32

2The Cocktail Party Problem

Cocktail Party Problem

Speech Enhancement and Separation

Deep Learning



Morten Kolbæk | Single-Microphone Speech Enhancement and Separation Using Deep Learning

32

3

The Cocktail Party Problem

How do we recognize what one person is saying when others are speaking at
the same time (the "cocktail party problem")? On what logical basis could
one design a machine ("filter") for carrying out such an operation?

– Colin Cherry, 1953.
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The Cocktail Party Problem
The Vision: Solve the Problem
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Speech Enhancement and Separation
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Single-Microphone Speech Enhancement
First Task of the Thesis

Speaker 1

Noise Speaker 1

Speech
Enhancement

Algorithm
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Single-Microphone Speech Separation
Second Task of the Thesis

Speaker 1
Speaker 2
Noise

Speaker 1

Speaker 2

Speech
Separation
Algorithm
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Speech Enhancement and Separation
Two Motivating Applications

Why Is Solving the Cocktail Party Problem Important?

Human Receivers
I Potential: Hundreds of millions of

people worldwide have a hearing loss.

I Challenge: Hearing impaired often
struggle in "cocktail party" situations.

I Solution: Algorithms that can enhance
the speech signal of interest.

I Application: Hearing Assistive Devices
e.g. hearing aids or cochlear implants.

Machine Receivers
I Potential: Millions of people vocally

interact with smartphones.

I Challenge: These devices operate in
complex acoustic environments.

I Solution: Noise-robust
human-machine interface.

I Application: Social robots or digital
assistants e.g. Google Asst., Siri, etc.
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Speech Enhancement and Separation
Old Problem: Whats new?

Whats new? – A paradigm shift!

Classical Paradigm
I Derive the solution using specific

mathematical models that approximate
speech and noise.

I Simplifying assumptions for mathematical
tractability.

I Generally not data-driven.

I Good performance when assumptions
are valid (sometimes they are not).

Deep Learning Paradigm
I Learn the solution using general

mathematical models that have "observed"
speech and noise.

I No explicit assumptions.

I Data-driven.

I State-of-the-art performance given enough
data and computational resources.
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Deep Learning

Cocktail Party Problem

Speech Enhancement and Separation

Deep Learning
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Deep Learning
What is it?

Unknown Function

f(x) yx

”Learned” Function

f̂(x) ŷx

ŷ ≈ y

I Deep Learning: Subfield of Machine
Learning.

I Machine Learning: Use data to "learn"
or approximate unknown functions f(x)
that can be used to make predictions.
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Deep Learning
What is it? – Classical Regression Example

I Estimate Happiness from
income

I Hypothesis: Happiness is
associated with income.

I Data: Perceived happiness and
income from people.

I Candidate Models:

� 7-params. (Big Capacity)

f̂1(x) = ax6 + bx5 + cx4

+ dx3 + ex2 + fx+ g

� 4-params. (Small Capacity)

f̂2(x) = ax3 + bx2 + cx+ d

I Goal: Find parameters of
f̂1(x) and f̂2(x) that best
explain the observations. Income $

S
ub

je
ct

iv
e

H
ap

pi
ne

ss
S
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le
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Deep Learning
What is it? – Essentially Regression with Deep Neural Networks

I Deep Learning

I "Regression" using Deep Neural Networks.

I Deep Neural Network

I Non-linear function with potentially MANY
(millions) parameters.

I If big enough, they can approximate any
function.

I With enough data, they can learn complex
mappings.
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ŷ4

ŷ5
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ŷ5

ŷ6
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ŷ9
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Deep Learning
What Can It Do?

Game changer

$15.7 trillion
AI could contribute up to $15.7 trillion to
the global economy in 2030, more than the 
current output of China and India combined.

Sizing the prize
What’s the real value of AI for 
your business and how can 
you capitalise?

+26%

+14%

Artificial intelligence (AI) is a source of both huge excitement 
and apprehension. What are the real opportunities and threats 
for your business? Drawing on a detailed analysis of the business 
impact of AI, we identify the most valuable commercial opening in 
your market and how to take advantage of them.

www.pwc.com/AI

PwC research shows 
global GDP could be 
up to 14% higher in 
2030 as a result of 
AI – the equivalent of 
an additional $15.7 
trillion – making it the 
biggest commercial 
opportunity in today’s 
fast changing economy.

The greatest gains 
from AI are likely to be 
in China (boost of up 
to 26% GDP in 2030) 
and North America 
(potential 14% boost). 
The biggest sector 
gains will be in retail, 
f nancial services 
and healthcare as AI 
increases productivity, 
product quality and 
consumption.
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Generalization of DNN based Speech Enhancement
Human Receivers - Speech Intelligibility

Generalization of Deep Learning based Speech Enhancement
Human Receivers - Speech Intelligibility
Machine Receivers - Speaker Verification

On STOI Optimal Deep Learning based Speech Enhancement

Permutation Invariant Training for Deep Learning based Speech Separation

Summary and Conclusion
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Generalization of DNN based Speech Enhancement
Human Receivers - Motivation and Research Gap

Promising Results
I Recent studies show that speech enhancement

algorithms based on deep learning outperform
classical techniques.

I DNNs trained and tested in "narrow" conditions.

Research Gap
I Unknown how these algorithms perform in

general "broader" conditions and in conditions
with a mismatch between training and test.

y[n]

r(k,m)

ĝ(k,m) â(k,m) x̂[n]

Assump. / Prior

Framing,
Transform

Gain
Estimator
e.g. DNN

Synthesis,
Overlap-add

y[n] : Noisy speech (time-domain)

r(k,m) : Noisy speech (transform-domain)

ĝ(k,m) : Estimated gain

â(k,m) : Enhanced speech (transform-domain)

x̂[n] : Enhanced speech (time-domain)
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Human Receivers - Contribution

Contribution
I We studied generalizability capability of deep

neural network-based speech enhancement
algorithms for additive-noise corrupted speech [1].

I Specifically, our goal was to study the
generalization error w.r.t. three dimensions:

I Speaker Identity
I Signal-to-Noise Ratio
I Noise type

I We trained multiple DNNs with various priors.

I Generalization was evaluated using PESQ and
STOI, which are speech quality and intelligibility
estimators, respectively.

y[n]

r(k,m)

ĝ(k,m) â(k,m) x̂[n]

Prior

Framing,
Analysis

Deep
Neural

Network

Synthesis,
Overlap-add

"Speaker ID" "SNR" "Noise type"

y[n] = x[n] + αv[n]

[1] M. Kolbæk, et al., IEEE TASLP, 2017
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Human Receivers - Results and Conclusion

Results and Conclusion
I Performance (PESQ and STOI) is generally

reduced when a "narrow" system is tested in a
more general scenario.

I Performance is comparable or exceeding
performance of a classical technique.

I Matching the noise type is the most critical,
whereas matching the speaker and SNR is less
critical.

I Listening tests show small improvement in speech
intelligibility relative to previously published results.

I Both PESQ and informal listening tests indicate
that DNN systems improve speech quality.
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Machine Receivers - Speaker Verification

Motivation
I Digital devices with voice-user interfaces struggle

in "cocktail-party" conditions.

I Such devices can benefit from denoising
front-ends.

I A State-of-the-art noise-robust speaker verification
system relies on speaker dependent non-negative
matrix factorization (Thomsen et al. 2016).

Research Gap
I It is unknown how well DNN based speech

enhancement algorithms work as denoising
front-ends for speaker verification systems.

y[n] x̂[n]Deep Neural Network
Enhancement

Front-end

Voice-controlled device
e.g. Smartphone
or Smartwatch

Noisy Speech Enhanced Speech
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Generalization of DNN based Speech Enhancement
Machine Receivers - Contribution

Contribution
I We designed a DNN based speech enhancement

front-end for a speaker verification system [2].

I Goal was to study the generalization error w.r.t.
three dimensions:

I Speaker Identity
I Signal-to-Noise Ratio
I Noise type

I Generalization was evaluated using equal error
rates and the results were compared to existing
enhancement techniques.

"Unlock"  

Is this person 
allowed to 
unlock this 
device:

Yes/No

?

[2] M. Kolbæk, et al., IEEE SLT, 2016



Morten Kolbæk | Single-Microphone Speech Enhancement and Separation Using Deep Learning

32
17

Generalization of DNN based Speech Enhancement
Machine Receivers - Contribution

Contribution
I We designed a DNN based speech enhancement

front-end for a speaker verification system [2].

I Goal was to study the generalization error w.r.t.
three dimensions:

I Speaker Identity
I Signal-to-Noise Ratio
I Noise type

I Generalization was evaluated using equal error
rates and the results were compared to existing
enhancement techniques.

"Unlock"  

Is this person 
allowed to 
unlock this 
device:

Yes/No

?

[2] M. Kolbæk, et al., IEEE SLT, 2016



Morten Kolbæk | Single-Microphone Speech Enhancement and Separation Using Deep Learning

32
17

Generalization of DNN based Speech Enhancement
Machine Receivers - Contribution

Contribution
I We designed a DNN based speech enhancement

front-end for a speaker verification system [2].

I Goal was to study the generalization error w.r.t.
three dimensions:

I Speaker Identity
I Signal-to-Noise Ratio
I Noise type

I Generalization was evaluated using equal error
rates and the results were compared to existing
enhancement techniques.

"Unlock"  

Is this person 
allowed to 
unlock this 
device:

Yes/No

?

[2] M. Kolbæk, et al., IEEE SLT, 2016



Morten Kolbæk | Single-Microphone Speech Enhancement and Separation Using Deep Learning

32

18

Generalization of DNN based Speech Enhancement
Machine Receivers - Results and Conclusion

Results
I Male-speaker "general" DNN-based speech

enhancement front-end generally leads to lower
EER compared to classical techniques.

I Even NMF which is "narrow", i.e. speaker, text,
and noise type dependent.

Conclusion
I DNN based speech enhancement front-end

improves state-of-the-art noise-robust speaker
verification.

I Eliminating the need for noise type and speaker
dependent front-ends.
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On STOI Optimal DNN based Speech Enhancement
Motivation, Research Gap, and Contribution

Motivation
I Goal of speech enhancement algorithms is often

to improve speech intelligibility (SI).

I Often these algorithms are designed to minimize
the short-time spectral amplitude (STSA)
mean-square error (MSE) with no link to SI.

I Can we use a function with a stronger link to SI? –
e.g. the STOI SI estimator.

Research Gap
I No DNN-based speech enhancement algorithm

exists that maximize STOI.

Contribution
I We propose such an algorithm [3,4].

Speech
Enhancement

Algorithm

Mean-Square Error:

JMSE =
1

K

K∑
k=1

(a(k,m)− â(k,m))2

a(k,m) : Clean Speech STFT Amplitudes

â(k,m) : Enhanced Clean Speech STFT Amplitudes

[3] M. Kolbæk, et al., IEEE ICASSP, 2018
[4] M. Kolbæk, et al., IEEE TASLP, 2018
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On STOI Optimal DNN based Speech Enhancement
Short-Time Objective Intelligibility (STOI) - Architecture
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Figure reprinted from C. H. Taal et al., 2011
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On STOI Optimal DNN based Speech Enhancement
Proposed STOI-based Approach

I STOI-based Speech Enhancement Model
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âj,m = ĝj,m ◦ rj,m

ĝj,m : Estimated Gains

rj,m : Noisy Speech 1/3-Octave band

aj,m : Est. Clean Speech 1/3-Octave band

LELC =

(
aj,m − µaj,m

)T (
âj,m − µâj,m
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LEMSE =
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N
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L : Loss for sample m in band j

ELC : Envelope Linear Correlation

EMSE : Envelope Mean-Square Error
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ĝj,m : Estimated Gains

rj,m : Noisy Speech 1/3-Octave band

aj,m : Est. Clean Speech 1/3-Octave band

LELC =

(
aj,m − µaj,m

)T (
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On STOI Optimal DNN based Speech Enhancement
Experimental Results

Experimental Results
I DNNs designed to maximize approximate-STOI,

improves ELC at various SNRs (and noise types).

I Similar conclusions can be drawn for DNNs that
minimize EMSE.

I Same conclusions hold when the same DNNs are
evaluated using STOI.

I Apparently, nothing to gain in terms of STOI, when
maximizing ELC compared to minimizing MSE.

New Hypothesis
I Are the solutions in fact the same?
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On STOI Optimal DNN based Speech Enhancement
Theoretical Results and Conclusion

Method
I Using Bayesian statistics we derive the maximum

mean ELC (MMELC) estimator.

Result
I We show, under certain general conditions, that

the MMELC estimator is asymptotically (in N )
equivalent to the classical STSA-MMSE estimator.

Conclusion
I The STSA-MMSE estimator leads to the same

approximate-STOI value as the MMELC estimator.
I For practical DNN based speech enhancement

algorithms this is valid already at N > 15.
I No reason to optimize for ELC if the goal is to

perform optimally w.r.t. STOI. STSA-MSE is near
optimal.

âMMELC = argmax
â

∫
LELC (a, â) fA|R (a|r) da

=
EA|r [e(A|r)]

‖EA|r [e(A|r)] ‖

âMMSE = argmin
â

∫
(a− â)2 fA|R (a|r) da

= EA|r [A|r]

lim
N→∞

âMMELC = âMMSE − µâMMSE
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âMMSE = argmin
â
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â

∫
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âMMSE = argmin
â
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(a− â)2 fA|R (a|r) da

= EA|r [A|r]

lim
N→∞
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Permutation Invariant Training for Speech Separation
Permutation Invariant Training

Generalization of Deep Learning based Speech Enhancement
Human Receivers - Speech Intelligibility
Machine Receivers - Speaker Verification

On STOI Optimal Deep Learning based Speech Enhancement

Permutation Invariant Training for Deep Learning based Speech Separation

Summary and Conclusion
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Permutation Invariant Training for Speech Separation
Motivation, Research Gap, and Contribution

Motivation
I Speech separation algorithms are useful for

various applications.

I E.g. "Cocktail party" situations.

I Existing solutions are complicated or limited.

Research Gap
I No DNN-only solution exists for speaker

independent multi-talker speech separation.

Contribution
I We propose such algorithms [5,6,7].

Speech
Separation
Algorithm

[5] D. Yu, et al., IEEE ICASSP, 2017
[6] M. Kolbæk, et al., IEEE TASLP, 2017
[7] M. Kolbæk, et al., IEEE MLSP, 2017
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Permutation Invariant Training for Speech Separation
Label Permutation Problem

I 2-Speaker Separation Model (S = 2)

r(1,m)

r(2,m)

r(3,m)

r(K,m)

ĝ1(1,m)

ĝ1(2,m)

ĝ1(K,n)

ĝ2(1, n)

ĝ2(2, n)

ĝ2(K,n)

I MSE Cost Function

JMSE =
1

SK

S∑
s=1

K∑
k=1

(as(k,m)− ĝs(k,m)r(k,m))
2

=
1

SK

S∑
s=1

K∑
k=1

(as(k,m)− âs(k,m))
2

Permutation problem!

I Training Progress for Speaker "Independent" Data
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Permutation Invariant Training for Speech Separation
Frame-level Permutation Invariant Training

I 2-Speaker Frame-level PIT Technique

DNN/CNN/LSTM

Mask 1
(M frames)

Cleaned speech 1
(M frames)

Mask 2
(M frames)

Mixed speech
(M frames)

Cleaned speech 2
(M frames)

XX
output1 output2

Clean speech 1
(M frames)

Clean speech 2
(M frames)

Pairwise scores

Error
assignment 1

Error
assignment 2

Minimum
error

input

Feature
(T frames)

input

Input S1 Input S2

Pairwise scores:

Error Assignment: (summation)

(distance)O(S2)

O(S!)

I PIT MSE Cost Function

JPIT = min
θ∈P

1

SK

S∑
s=1

K∑
k=1

(as(k,m)− âθ(s)(k,m))
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Permutation Invariant Training for Speech Separation
Utterance-level Permutation Invariant Training

I Problem: With Frame-level PIT permutation is
unknown during inference.

I Solution: Train with permutation corresponding to
minimum utterance-level error (for all m).

θ
∗
= argmin

θ∈P

1

SMK

S∑
s=1

M∑
m=1

K∑
k=1

(as(k,m)− âθ(s)(k,m))
2

JuPIT =
1

SK

S∑
s=1

K∑
k=1

(as(k,m)− âθ∗(s)(k,m))
2

I Utterance-level PIT minimizes the utterance-level
error, hence reducing context switch.

I Note: No extra computations during inference.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Frame

O
ut

pu
t 1

0

1

2

3

4

F
re

qu
en

cy
 [k

H
z]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Frame

O
ut

pu
t 2

0

1

2

3

4

F
re

qu
en

cy
 [k

H
z]

Speaker 1
Speaker 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Frame

O
ut

pu
t 1

0

1

2

3

4

F
re

qu
en

cy
 [k

H
z]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Frame

O
ut

pu
t 2

0

1

2

3

4

F
re

qu
en

cy
 [k

H
z]

Speaker 1
Speaker 2



Morten Kolbæk | Single-Microphone Speech Enhancement and Separation Using Deep Learning

32

27

Permutation Invariant Training for Speech Separation
Utterance-level Permutation Invariant Training

I Problem: With Frame-level PIT permutation is
unknown during inference.

I Solution: Train with permutation corresponding to
minimum utterance-level error (for all m).

θ
∗
= argmin

θ∈P

1

SMK

S∑
s=1

M∑
m=1

K∑
k=1

(as(k,m)− âθ(s)(k,m))
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Permutation Invariant Training for Speech Separation
Results and Conclusion

Result
I State-of-the-art on 2-talker and 3-talker

speaker-independent speech separation tasks.

I DNNs trained with uPIT works well for speech
separation and enhancement jointly.

I More interestingly, works well without prior
knowledge about the number of speakers.

Conclusion
I uPIT is a DNN training technique that enable

DNN-only algorithms for speaker-independent
multi-talker speech separation and
enhancement.
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Permutation Invariant Training for Speech Separation
Demo - 2-Speaker Separation and Enhancement

Male + Female

The swap offer requires at least eighty percent of the total be tenderedHe cites double-quote the law of large numbers

Separated Male

The swap offer requires at least eighty percent of the total be tendered

Separated Female

He cites double-quote the law of large numbers

Play

Play

Play

Male + Female + Noise

The swap offer requires at least eighty percent of the total be tenderedHe cites double-quote the law of large numbersdvdsdkhgfskskdfpokfrotysdgkyoeptrdfgksjkjhigthjkojkjghergkljikosprs

Separated and Enhanced Male

The swap offer requires at least eighty percent of the total be tendered
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Concluding Remarks
I Generalizability [1, 2]

I Matching the noise type is the most critical, whereas matching the speaker and SNR is
less critical if a modest amount of speakers are included in the training set.

I A male-speaker "general" DNN based speech enhancement front-end achieves
state-of-the-art performance on a speaker verification task.

I Optimality [3, 4]
I The STSA-MMSE estimator is asymptotically equivalent to the MMELC estimator.
I The STSA-MSE cost function leads to enhanced speech signals which are essentially

optimal in terms of STOI. In other words, there is no benefit from optimizing for STOI.

I Permutation Invariant Training [5, 6, 7]
I A training criterion that enable DNNs to work well on single-microphone

speaker-independent multi-talker speech separation and enhancement.
I Simple solution to the label permutation problem.
I Achieves state-of-the-art performance.
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Not there yet, but a small step closer.
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