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Abstract

A large part of people’s lives are spent in indoor spaces such as office and
university buildings, shopping malls, subway stations, airports, museums,
community centers, etc. Such kind of spaces can be very large and paths
inside the locations can be constrained and complex. Deployment of indoor
tracking technologies like RFID, Bluetooth, and Wi-Fi can track people and
object movements from one symbolic location to another within the indoor
spaces. The resulting tracking data can be massive in volume. Analyzing
these large volumes of tracking data can reveal interesting patterns that can
provide opportunities for different types of location-based services, security,
indoor navigation, identifying problems in the system, and finally service im-
provements. In addition to the huge volume, the structure of the unprocessed
raw tracking data is complex in nature and not directly suitable for further
efficient analysis. It is essential to develop efficient data management tech-
niques and perform different kinds of analysis to make the data beneficial to
the end user.

The Ph.D. study is sponsored by the BagTrack Project (http://daisy.aau.dk-
/bagtrack). The main technological objective of this project is to build a
global IT solution to significantly improve the worldwide aviation baggage
handling quality. The Ph.D. study focuses on developing data management
techniques for efficient and effective analysis of RFID-based symbolic indoor
tracking data, especially for the baggage tracking scenario. First, the thesis
describes a carefully designed a data warehouse solution with a relational
schema sitting underneath a multidimensional data cube, that can handle
the many complexities in the massive non-traditional RFID baggage tracking
data. The thesis presents the ETL flow that loads the data warehouse with the
appropriate tracking data from the data sources. Second, the thesis presents a
methodology for mining risk factors in RFID baggage tracking data. The aim
is to find the factors and interesting patterns that are responsible for baggage
mishandling. Third, the thesis presents an online risk prediction technique
for indoor moving objects. The target is to develop a risk prediction system
that can predict the risk of an object in real-time during its operation so that
the object can be saved from being mishandled. Fourth, the thesis presents
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two graph-based models for constrained and semi-constrained indoor move-
ments, respectively. These models are used for mapping the tracking records
into mapping records that represent the entry and exit times of an object at
a symbolic location. The mapping records are then used for finding dense
locations. Fifth, the thesis presents an efficient indexing technique, called the
DLT-Index, for efficiently processing dense location queries as well as point
and interval queries. The outcome of the thesis can contribute to the avi-
ation industry for efficiently processing different analytical queries, finding
problems in baggage management systems, and improving baggage handling
quality. The developed data management techniques also contribute to the
spatio-temporal data management and data mining field.



Summary in Danish / Dansk
Resumé

Størstedelen af folks liv foregår indendørs, fx på kontorer, universiteter, ind-
købs centre, undergrundsbaner stationer, lufthavne, museer, lokalcentre osv.
Sådanne lokationer kan være meget store og det kan være svært at finde
vej. Udvikling af indendørs sporings teknologier som fx RFID, Bluetooth og
Wifi kan spore folk og objekter fra en symbolsk lokation til en anden inden
i et indendørs område. Den resulterende sporingsdata kan være meget stor.
Analyse af denne store mængde sporingsdata kan afsløre interessante data
mønstre der kan give mulighed for forskellige typer of lokationsbestemte
servicer, sikkerhed, navigation, problem identificering og service forbedring.
Den store data mængde er ikke det eneste problem, strukturen af det upro-
cesseret sporingsdata er kompleks af natur og den er ikke direkte brugbar
til effektiv analyse. Det er derfor essentielt at udvikle effektiv datahåndter-
ings teknikker og udføre data analyse for at gøre dette data brugbart for
slutbrugeren.

Dette Ph.d. studie er sponseret af BagTrack projektet (http://daisy.aau.dk-
/bagtrack). Det primære tekniske mål af dette projekt er at bygge en global
IT løsning der skal signifikant forbedre kvaliteten af luftfart bagage hånd-
tering. Ph.d. studiet fokuserer på udvikling af forskellige data håndterings
teknikker for effektiv analyse af RFID baseret symbolsk indendørs sporings-
data, især på baggage håndtering. For det første så designer Ph.d. afhandling
en data warehouse løsning baseret på et relationelt schema, oven på dette er
der bygget en multidimensional data kube. Denne kube kan håndtere mange
af kompleksiteterne fra det massive RFID bagage sporings system. ETL pro-
cessen indlæser sporingsdataet ind i data warehouset fra datakilderne. For
det andet så udvikler dette Ph.d. studie en metodologi for at finde risiko
faktorer i RFID bagage sporingsdata. Målet er at finde faktorer og interes-
sante mønstre der er for ansvarlige for baggage fejlbehandling. For det tredje
så bliver der i dette studie udviklet en online risiko forudsigelses teknik for
objekter der bevæger sig i symbolske lokationer. Den udviklede teknik vil
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skulle være i stand til at forudsige om et objekt er i fare i realtid under selve
baggage håndteringen. For det fjerde så designes der to modeller baseret
på grafer, en for begrænsninger og en anden for semi-begrænset indendørs
bevægelser. Modellerne bliver brugt til afbilding af sporings registre til reg-
istre der repræsentere ind- og udgangs tider for objekter i symbolske loka-
tioner. Disse afbildinger registre bliver brugt til at finde lokationer med høj
objekt tæthed. For det femte så designer denne afhandling en effektiv Indek-
sering teknik, kaldet DLT-Index, til effektiv processering af lokationer med
høj objekt tæthed så vel som punkt og interval forsørgelser. Denne afhan-
dling giver effektiv processering af forskellige analytiske forsørgelse, finder
problemer i bagage håndterings systemer, og forbedre bagage håndterings
kvaliteten for luftfartsindustrien. De udviklede data håndterings teknikker
og analyser bidrager til spatio-temporal data håndtering og data mining
forsknings områderne.
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Chapter 1

Introduction

1 Background and Motivation

A study shows that people spend approximately 87% of their time in indoors,
5-6% in a vehicle, and 7-8% in outdoors [51]. Indoor spaces touch a number
of aspects of our life like office and university buildings, airports, subway
stations, shopping malls, community centers, museums, and so on. Indoor
tracking technologies based on means such as Radio Frequency Identification
(RFID) [77], Bluetooth [33], and Wi-Fi [21] can continuously track and record
object positions and movements in large indoor spaces. For example, track-
ing movements of people inside the different parts of a museum and various
sections in an airport, tracking of items positions and movements in supply
chain management systems, baggage tracking in airports, books tracking in
libraries, etc. However, the unprocessed raw tracking data are complex in na-
ture, massive in volume, and rich in low level details, all having impacts on
the further analysis. Moreover, as the consequence these problems also badly
affect making any strategic decision from the produced data. For example,
Walmart recently started using RFID at the item level. The research firm
Venture Development Corporation [12] predicts that this will generate up to
7 terabytes of data per day [41]. Managing and querying outdoor tracking
data is well established and has been studied over the past decade [39, 66, 78].
However, the indoor tracking scenario significantly differs from the GPS and
cellular based outdoor tracking scenarios as geometric representations such
as the linear model are not suitable in the indoor setting. In an indoor track-
ing scenario, the presence of an object at a location is only visible when the
object comes under the activation range of a tracking device deployed at that
location, whereas, GPS and cellular based outdoor tracking can continuously
report the position of objects. Thus, indoor movements are modeled differ-
ently as compared to outdoor movements. In the case of indoor movement,
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Chapter 1. Introduction

symbolic models [48] are used, whereas, in the outdoor scenario geometric
models and spatial networks are used. In general, managing and querying
the nontraditional large volume of low-level indoor tracking data is a critical
issue for the analyst. The aim of the Ph.D. study is to develop efficient data
management techniques to facilitate efficient and effective analysis over the
unprocessed large volume indoor tracking data.

The Ph.D. work is being carried out in connection with a major industry
initiative called The BagTrack Project [1]. The project partners include IATA,
SAS airline, Aalborg Airport, Lyngsoe Systems [6], Department of Mathe-
matical Science, AAU and Center for Data-intensive Systems (Daisy), De-
partment of Computer Science, AAU. The main technological objective of
this project is to build a global IT solution to significantly improve the world-
wide aviation baggage handling quality. More details about the project can
be found at this link: http://daisy.aau.dk/bagtrack.

The baggage reports of SITA [9] disclose the immense loss caused by
baggage mishandling in the aviation industry. Every year more than 31M
passengers and 34M bags are affected by baggage mishandling. Such a pas-
senger wastes on average 1.7 days of his vacation or business trip waiting
for the mishandled bag. Overall, baggage mishandling problems cost a total
of 3,300M USD/year to the airline sector. In addition to this enormous loss,
the baggage mishandling frustrates the passengers. Therefore, the aviation
industry faces a major challenge to solve the problem of mishandled bags.

The project’s industry partner Lyngsoe Systems (LS) [6] implements RFID-
based baggage tracking systems in a number of Scandinavian airports. LS
deploys RFID readers at different baggage handling locations such as check-
in, sorter, gateway, belt loader, etc., and uses RFID technology for tracking the
movements of bags during their operation in the airports. The tracking re-
sults in a large volume of raw RFID baggage tracking data. Due to the large
volume, rawness, and lack of efficient structure, the report generation and
query processing is extremely slow as well as not suitable for analyzing the
reasons of baggage mishandling. So, it requires efficient data management
techniques for easy and fast queries on the data set to get more insight into
the data and see them from different dimensions. It also requires predictive
models that can find interesting patterns and factors from the data set that
are closely related to baggage mishandling. Further, dense location extrac-
tion for finding over-loaded locations, real-time baggage risk prediction so
that a risky bag can be saved, and other kinds of analytics can utilize the gen-
erated data for system improvements and location based services, and can
create more business opportunities. To solve these issues and facilitate more
opportunities, the thesis proposes several novel techniques that are briefly
discussed in section 3.
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2 Symbolic Indoor Tracking

In an indoor tracking system, tracking devices are strategically deployed at
different fixed symbolic locations, such as different doors in an office space,
between sections in an airport, different locations in airport baggage man-
agement, etc. The objects contain tags or devices that can be tracked by the
tracking devices. For example, in the case of RFID technology, RFID readers
and RFID tags are used; in the case of Bluetooth systems, Bluetooth access
points and Bluetooth devices are used. After deployment of the tracking
devices, the positions are recorded in the database.
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Fig. 1.1: RFID reader deployment for airport baggage tracking

Fig. 1.1 shows an example of RFID baggage tracking scenario. The circles
represent the activation ranges of the RFID readers. Fig. 1.2 shows an exam-
ple of airport baggage flow inside an airport and across multiple airports.
The upper part of Fig. 1.2 shows the top level path of a bag that travel-
ing from Aalborg Airport (AAL) to Brussels Airport (BRU) via Copenhagen
Airport (CPH). The bag has to go through several baggage processing steps
inside each airport. The bottom part of Fig. 1.2 shows the baggage process-
ing stages inside AAL. The circles represent the baggage tracking locations
where RFID readers are deployed for baggage tracking. Before handing over
a bag into the system, an RFID tag with some encoded information about the
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Fig. 1.2: Baggage flow inside an airport and across multiple airports

bag and the route is attached to the bag. Suppose the bag is intended for
Flight1 and the expected path for the bag is: "check-in → Screening→ Sorter1
→ Gateway1 → BeltLoader1". Mismanagement or inefficiency at any one of
these transitions may result in the bag being mishandled, i.e., the bag might
miss the flight due to delay, or the bag might be sent to wrong flight. While
passing through the different locations, the bag enters the activation range
of an RFID reader, it is continuously detected by the reader with a sampling
rate, and it generates raw reading records with the form: 〈obj, Loc, t〉. It means
that a reader placed at location Loc detects a moving object Obj in its activa-
tion range at time t. An example set of raw reading records in a symbolic
indoor tracking system for the scenario of Fig. 1.2 is shown in Table 1.1. It
can be seen that there can be several readings when an object go through
under the activation range of a reader. As a result, the produced raw reading
records are generally huge in volume and not well structured. So, they need
to be managed in an efficient way for further analysis.

Table 1.1: Raw Tracking Data

Obj 〈 Obj, Loc, t 〉
o1 (o1, l1, 1) (o1, l1, 3) ( o1, l1, 5) (o1, l2, 12) (

o1, l2, 14) (o1, l3, 25) (o1, l3, 27) ...
o1 ( o2, l1, 10) ( o2, l1, 12) (o2, l2, 26) o2, l3, 32)

(o2, l4, 39) (o2, l4, 41) (o2, l6, 46) (o2, l8, 55)
...

... ...
o1000 ...
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3 Thesis Overview

This section gives an overview of each chapter and the appendices in this
thesis.

3.1 Chapter 2: Data Warehouse Solution

A data warehouse is a repository of historical data for the purpose of anal-
ysis. Usually multidimensional modeling is applied to the data of the data
warehouse to make it usable for analysis and decision making. An OLAP
cube uses the multidimensional model and stores summarized and aggre-
gated information. It facilitates rapid and uniform response times to aggre-
gate queries from the large data set [49].

Chapter 2 presents a data warehouse solution for storing and analyzing
RFID-based airport baggage handling data. During the travel from the origin
airport to the final destination, a bag has to be processed at different locations
and has to move through a sequence of locations or steps such as check-in,
screening, sorter, gateway, loading, unloading, transfer, arrival, etc. A large
number of stakeholders are involved in these steps and inaccuracy or ineffi-
ciency at any one of these steps can lead to the bag being mishandled, i.e.,
the bag may be delayed in the airport and miss the flight or may be sent to
a wrong airport. Deployment of RFID readers at different baggage handling
steps can help track the baggage movements from one symbolic location to
another. The generated huge volume of tracking data needs to be stored
in a well-structured way for efficient analysis. Further, incorporating other
different kinds of dimensions [65] such as route, airports, airline, handler,
transit time, special events, etc., the tracking data can reveal interesting infor-
mation about the baggage handling quality, finding problems and relevant
solutions. The analysis can also indicate new opportunities as well as ac-
tions for service improvements. In addition to the relational data warehouse
schema, the chapter also builds a multidimensional data cube on top for ef-
ficient query processing. The data warehouse supports complex queries to
analyze the data from different dimensions with various level of granularity.
For example, the manager of Aalborg airport may ask a query like how many
bags originating from Aalborg airport have missed their flights during the Aalborg
Carnival of 2015. Another query can be find the average number of bags traveling
to Asia from Aalborg in the morning of each Monday. As mentioned above, due
to the massive volume, rawness, and other reasons the queries are very slow.
Moreover, due to a lack of proper structure, in many cases it is not possible to
get more insight into the data and generate reports involving various dimen-
sions. The proposed data warehouse facilitates more insight into the data,
enables reports involving various dimensions as well as processing complex
queries very efficiently and effectively.
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In general, in an RFID tracking setting, the raw reading records are con-
verted into tracking records that represent the first and last times an object
stayed under the activation range of an RFID reader [76]. There is some re-
search on RFID data warehousing solutions for supply chain systems [32, 38].
However, the setting in the RFID baggage tracking differs from other kinds
of scenarios such as supply chain and logistics, as the locations in baggage
tracking are much more fine-grained and objects move fast between locations.
Further, baggage stay between locations is more important than stay under a
reader’s activation range. So, in this chapter, the proposed data warehouse
introduces the concept of stay records where a stay record maintains the ob-
ject transitions between locations. The data warehouse also considers other
important dimensions for complex analysis on the baggage tracking data.
The designed data warehouse and cube also deal with the complex many-
to-many relationship between bag and flight. The chapter also discusses the
steps, complexities, and solutions of loading the data warehouse with the
appropriate tracking data from the source system. The proposed designs are
implemented with several technologies and the query processing times are
compared. The result shows that for some queries the cube is 7 times faster
compared to a relational data warehouse and 2300 times faster compared to
source data. Generally , a nontechnical user accesses and uses a data ware-
house and cube using some visualization tools. The chapter also shows that
the data warehouse and the cube can be accessed and visualized through a
very user friendly business intelligence tool called Targit BI suite [11]. The
proposed data warehousing concepts can be generalized for multi-site based
symbolic indoor, outdoor, and mixed indoor-outdoor tracking systems.

3.2 Chapter 3: Mining Risk Factors

Data mining is the process of extracting interesting patterns and knowledge
from large data sets [42]. In the baggage handling scenario, mining the bag-
gage handling data can disclose interesting patterns and reasons of baggage
mishandling. Chapter 3 presents a detailed methodology for mining risk
factors in RFID baggage handling data. For example, from the baggage han-
dling data, we may be interested in knowing, how the baggage mishandling
is related to the transit time, operating airport, day of week, and time in a
day and it might results in a rule that can disclose the probability that a bag
will be mishandled if it has 40 minutes transit time at Copenhagen airport on
Monday morning.

Before performing data mining, the data have to be well prepared such
that the gained knowledge is useful. As the baggage tracking data are at
low level, it requires some preprocessing to extract important and relevant
features before performing further analysis. Additionally, the baggage track-
ing data are generally highly imbalanced as the mishandling rate is very low
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compared to correctly handled bags. In our experimental data set, the mis-
handling rate is only 0.8%. Most of the data mining techniques suffer from
such imbalance problem in the data set. This makes the mining process bi-
ased towards predicting that all bags will be handled correctly by default and
makes it difficult to learn rules related to mishandled bags. Thus, in addition
to the preprocessing for feature extraction, special care has to be taken to deal
with this class imbalance problem to get patterns of higher quality.

Warehousing and mining techniques of RFID item tracking data in sup-
ply chain systems have been proposed in [41]. Like in other related work,
they also convert the raw RFID records into cleansed records containing the
first and last reading times of an object under the readers’ activation range.
As discussed in the previous section, in our data warehouse we introduce
stay records. In the case of data mining, we further refine the stay records
into FlightLeg records that capture different aggregated information from the
stay records including other dimensional information for a higher-level anal-
ysis. While traveling from origin to final destination, a bag may have to take
multiple flights. The journey between the source airport to the destination
airport for each flight is known as a leg for the entire journey of the bag, i.e.,
a bag taking two flights has two legs. A FlightLeg record of a bag includes
the from and to airports, transfer status of the bag, weekday, hour of the
flight time, available duration before the flight, status indicating whether a
bag took longer between any pair of locations, duration of the delay in arriv-
ing the flight at the transfer airport, total number of bags processed during
the flight hour, and final status of the bag, i.e., mishandled or not at that leg.
In the FlightLeg records, we maintain one record for each leg of a bag for its
journey from origin to final destination.

The problem of mining imbalanced data sets has been addressed fre-
quently in research [17, 28]. Mostly, the imbalance problem is solved by
re-sampling that includes under-sampling and over-sampling. Another ap-
proach is cost-sensitive learning. In our approach, we apply several data min-
ing techniques such as Decision Tree (DT) [71], Naive Bayes classifier (NB) [25],
KNN classifier (KNN) [25], Linear regression (LIR) [4], Logistics regression (LOR) [5],
and Support vector machine (SVM) [67] with different re-balancing techniques
such as under sampling and over sampling. Then, based on the area un-
der the curve (AUC) of ROC and the precision-recall (PR) curve we find out
which data mining techniques can provide us with the best models.

Before mining, we fragment the data set based on transit status (i.e.,
whether bag is in the transfer airport or not) and available transfer time
during the transit as most of the mishandling occurs during transfer. We per-
formed a comprehensive experiment and it shows that the proposed method-
ology can reveal interesting insights into the data set. The extracted patterns
show that bags are generally mishandled for shorter available processing time
before the flight. A bag is considered to be at high risk if it has less than 54
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minutes to catch the next flight at the transit airport. Further, the results also
show that different airports act differently for non-transfer bags. Moreover,
a longer stay between baggage handling locations and the busyness of the
airport are also important factors for mishandling bags.

3.3 Chapter 4: Online Risk Prediction

The proposed data warehouse mainly facilitates exploratory data analysis,
whereas, the proposed mining methodology can build prediction model and
automatically extract interesting patterns and reasons for baggage mishan-
dling. The outcomes from the data warehouse solution and the data mining
methodology discussed in Chapter 2 and Chapter 3, respectively, can lead
to taking actionable decisions for improving baggage handling quality and
other useful services. However, in a time critical application such as airport
baggage tracking, predicting the risk of a bag in real-time during their op-
eration at the airport can help to take immediate action so that the bag can
be saved from being mishandled. Chapter 4 presents a novel probabilistic
approach for online risk prediction for indoor moving objects, especially for
the baggage handling scenario.

In existing literature, mainly data mining is performed on the spatio-
temporal indoor and mixed indoor-outdoor tracking data for finding spa-
tiotemporal patterns, frequent and typical movements and walks [26, 69].
Further, they are mainly focused on the offline scenario. The chapter ad-
dresses a new perspective of indoor tracking data analysis, which is the on-
line risk prediction for indoor moving objects. An example of a real-time
request can be: "notify the baggage management team whenever a bag becomes
risky during its processing time at Copenhagen airport". Another request can be:
"which are the ten current bags with the highest risk of not reaching their plane on
time?" To answer these kinds of requests, the chapter proposes a probabilistic
flow graph (PFG) and an aggregated probabilistic flow graph (APFG) that
capture the historical object transitions and the durations of the transitions.
The probabilistic information is stored in a set of histograms called least du-
ration probability histogram (LDPH) and aggregated LDPH (ALDPH). The
histograms are annotated to the edges of the graphs. Then the graphs are
used for getting a risk score of an online object and uses the score for pre-
dicting the riskiness of the object. After building the models, a risk score
threshold is optimized for each of the pre-planned path sequences in the
data set. The chapter presents a cost model for obtaining the thresholds that
maximize the overall benefit of identifying and handling the predicted risky
objects. The thresholds are used for computing the maximum time limit of
an object for a particular transition. The online risk prediction system uses
a time trigger that fires when an object crosses the time limit. The proposed
prediction system also considers the available processing time of an object

8



3. Thesis Overview

(e.g., available processing duration of a bag before its flight) for risk predic-
tion that results in specialized risk score thresholds as well as time triggers
for each object. This specialization helps to predict the riskiness of an object
as early as possible as well as reduces false alarms.

The chapter reports a comprehensive experimental study with multiple
synthetic data sets following different distributions and a real baggage track-
ing data set. The results show that the prediction method can identify the
risky objects very accurately when the objects approach the bottleneck loca-
tion in their path. The methods work very well in a class imbalanced dataset.
Further, the risky objects are predicted well in advance such that they can
be saved from being mishandled. The results also show that the prediction
system can save 83.4% of the total cost in the case of our experimental data
set.

3.4 Chapter 5: Dense Location Extraction

Extracting the dense locations in large indoor spaces can benefit many appli-
cations by obtaining overloaded areas, for security control, crowd manage-
ment, indoor navigation, and so on. As discussed earlier, indoor tracking
data can be enormous. Further, they are not immediately ready for finding
dense locations. Chapter 5 presents some efficient data management tech-
niques for finding dense locations in symbolic indoor space.

There is research that addresses density queries and hot route queries
on road networks [52, 55]. However, it has been shown that the geomet-
ric polyline representation for outdoor trajectories is unsuitable for indoor
trajectories [47]. For example, consider an RFID tracking application where
RFID readers are deployed at the doors of different rooms in a large indoor
space. Each reader has a very limited tracking range that covers a small por-
tion of the room, e.g., only the door of a room. If an object containing an
RFID tag moves from one room to another, this produces two consecutive
tracking records of the object location in different rooms. Due to limitations
in indoor positioning technologies, the locations of the object between these
two records are not obtained. Moreover, in a constrained indoor movement,
such as baggage tracking, a reader is deployed at any point of a conveyor
belt or baggage handling location. So, it requires a mapping technique to
obtain the times when an object entered and exited a location. Furthermore,
the generated large volumes of data require efficient query processing tech-
niques. The chapter takes all these challenges into account and proposes an
efficient approach for finding dense locations in indoor tracking data.

Based on the path inside a location, the chapter divides the indoor spaces
into two categories. One is constrained path space, e.g., baggage handling
path in the conveyors of an airport, and another one is semi-constrained path
space, e.g., rooms in a building, different sections in an airport where peo-
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ple move from one section to another. Then the chapter proposes two graph
models for each kind of indoor spaces, respectively. The models are used
for mapping the indoor tracking records into mapping records, where each
mapping record represents the entry and exit times of an object in symbolic
locations. Then the mapping records are used for finding dense locations.
The chapter proposes a new efficient index structure called the Dense Loca-
tion Time Index (DLT-Index) that stores aggregate information, i.e., the num-
ber of (unique) objects entering, exiting, and present at a location at different
timestamps or time intervals. The chapter also presents some efficient data
processing techniques, including algorithms for DLT-Index construction and
updating, data pruning methods in the DLT-Index, and algorithms for find-
ing dense locations using the DLT-Index. The proposed index is also used
for efficient processing of aggregate point, interval, and duration queries. The
DLT-Index is generalized such that it can be used for indexing any type of
time intervals and it enables us to query for the distinct number of records at
a given time point, as well as for a given time interval. The chapter reports
a comprehensive experimental evaluation using both real and synthetic data.
The results show that the proposed solution is efficient and scalable. The
proposed DLT-Index can process the dense location queries very efficiently.
The results also show that the DLT-Index can process point queries 340 times
faster and interval queries 300 times faster compared to SQL in RDBMS.

3.5 Appendices A and B

Appendices A and B do not contain any new content compared to Chapter 5.
However, they are included in the thesis for completeness, as they have been
published as separate papers. Appendix A contains the graph model for
constrained indoor movements and a naive approach of dense location ex-
traction. Appendix B mainly presents the graph model for semi-constrained
indoor movements, the DLT-Index, and query processing using the DLT-
Index.

4 Structure of the Thesis

The thesis is organized as a collection of individual papers. Each chapter/ap-
pendix is self-contained and can be read in isolation. There can be some
overlaps of concepts, examples, and texts in the introduction and preliminar-
ies sections of different chapters as they are formulated in relatively similar
kind of settings. The chapters have been slightly modified during the inte-
gration such that, for example, their bibliographies have been combined into
one, and references to "this paper" have been changed to references to "this
chapter". Appendix A and B are the two published conference papers that
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are combined and extended for a journal paper which is presented in Chap-
ter 5. So, Appendix A and B do not contain any new content compared to
Chapter 5.

The papers included in this thesis are listed in the following. Chapter 2
is based on Paper 1, Chapter 3 is based on Paper 2, Chapter 4 is based on
Paper 3, Chapter 5 is based on Paper 4, Appendix A is based on Paper 5
and Appendix B is based on Paper 6. As mentioned earlier, Paper 4 is an
extended version of Paper 5 and Paper 6.
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Abstract

Today, airport baggage handling is far from perfect. Baggage goes on the wrong
flights, is left behind, or gets lost, which costs a lot of money for the airlines, as well as
frustration for the passengers. To remedy the situation, we present a data warehouse
(DW) solution for storing and analyzing spatio-temporal Radio Frequency Identifica-
tion (RFID) baggage tracking data. Analysis of this data can yield interesting results
on baggage flow, the causes of baggage mishandling, and the parties responsible for
the mishandling(airline, airport, handler,...), which can ultimately lead to improved
baggage handling quality. The chapter presents a carefully designed data warehouse
(DW), with a relational schema sitting underneath a multidimensional data cube,
that can handle the many complexities in the data. The chapter also discusses the
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Extract-Transform-Load (ETL) flow that loads the data warehouse with the appropri-
ate tracking data from the data sources. The presented concepts are generalizable to
other types of multi-site indoor tracking systems based on Bluetooth and RFID. The
system has been tested with large amount of real-world RFID-based baggage track-
ing data from a major industry initiative. The developed solution is shown to both
reveal interesting insights as well as being several orders of magnitude faster than
computing the results directly on the data sources.
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1 Introduction

A recent report1 discloses the enormous loss caused by baggage mishandling
in the aviation industry. Each year more than 31M passengers and 34M bags
are affected by baggage mishandling which costs the aviation industry 3,300
M USD. A passenger wastes on average 1.7 days of his vacation or business
trip waiting for the mishandled bag. Typical baggage mishandling problems
include flight delay, bag loss, wrong bag destination, failure to load bags at
the origin airport, missed connection at transit hubs, etc. During the travel
from the origin airport to the final destination, a bag is moved over different
places in multiple steps: check-in, screening, sortation, loading, transition,
arrival, etc. In these steps, a bag is handed over between a large number of
stakeholders. In contrast with the visibility of passengers’ movement steps
during the end-to-end journey, the baggage movement is considerably less
visible due to the very limited information to passengers. A single error or
inefficacy in a handover can cause a bag not to reach its intended destination
with its owner [75].

Radio Frequency Identification (RFID) technology is used in many appli-
cations for monitoring object movement. The use of RFID in baggage track-
ing systems enables to track a bag in an airport as well as along its travel
route cross airports. RFID tracking systems generate huge amounts of data.
For example, Walmart has recently started using tags at the item level and
research firm Venture Development Corporation predicts that this will gen-
erate up to 7 terabytes of data per day [38]. In RFID-based airport baggage
tracking systems, these huge amounts of RFID data can be very useful for
analyzing and mining purposes. Coupled with other kinds of information
about routes, transit airports, transit durations, flights and punctuality, air-
lines, handler, special events, etc., RFID baggage tracking data can reveal a
lot of information about baggage handling quality. Analyzing these data will
open the door to identifying the different problems in baggage handling and
finding solutions for the problems. This is exactly the goal of the BagTrack
project (www.daisy.aau.dk/bagtrack), within which this work took place.
Here, a number of important industry players have teamed up with our data
management team to revolutionize baggage handling using RFID.

In this chapter, we present a multidimensional database warehouse solu-
tion for RFID-based baggage tracking data. To the best of our knowledge,
this chapter is the first to design a multidimensional data warehouse, in-
cluding a relational DW schema with a data cube on top, for this important
domain. The proposed data warehouse contributes to the airline baggage
handling process by providing a framework for data analysis and answering
complex queries that can ultimately improve the baggage handling quality.

1SITA Baggage Report 2012 www.sita.aero/content/baggage-report-2012
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For example, the manager of Copenhagen airport may ask a query like how
many bags were sent to wrong destination from Copenhagen airport in the Easter
holidays of 2012. Another query can be find the average number of baggage travel-
ing from Copenhagen airport in the afternoon of each Sunday. Our data warehouse
supports such useful queries effectively and efficiently.

Our data warehouse design features several novelties. First, it captures
not only the RFID baggage tracking data but also baggage flow along dif-
ferent dimensions like airport, airline, date and time, all at several levels of
granularity. We also handle the complex many-to-many relationship between
bag and flight effectively. Second, our design treats date and time as different
dimensions, each with different hierarchical levels. Each date is localized to a
particular airport, to allow capturing special local events, like strikes, sports
games, etc. This localization makes it easy to ask complex queries about bag-
gage movement in a particular event or occasion. Third, our data warehouse
design supports powerful data analysis queries in a both easy and efficient
way. The relevant results enable the users (e.g., an airline) to find out the
places (e.g., a particular airport) where mishandling occurs most of the time,
and thus to determine the reasons of baggage mishandling. The chapter also
discusses the complexities of performing Extract-Transform-Load (ETL) to
load the DW from the source data, including our solutions to the encoun-
tered challenges.

The remainder of the chapter is organized as follows. Section 2 reviews
related work. Section 3 presents an overview of RFID-based airport baggage
handling process and the structure of RFID data. Section 4 presents the re-
lational data warehouse design and the multidimensional data cube design.
Section 5 represents the ETL steps to load the data from source schema into
the data warehouse. Section 6 presents the experimental results. Finally, Sec-
tion 7 concludes the chapter and points to the challenges for future work that
we encountered.

2 Related Work

Data warehousing, mining and work flow analysis techniques have been pro-
posed for RFID-based supply chain systems [36–38, 41]. Those proposals take
advantage of bulky movement of objects in supply chains to compress the
massive RFID data. Efficient storage scheme and encoding the object paths
are designed [53, 54] to support faster query performance for supply chain
RFID data. RFID data warehousing for tracking patients and drugs has been
studied [34]. The general challenges and solutions for RFID data manage-
ment are also discussed [27, 76].

The scenario of airport baggage management in this chapter differs from
the settings of previous research. Unlike objects in supply chain manage-
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ment, airport bags do not move in a bulky way. In addition, the bag locations
in airport baggage management are much more fine grained so that places
and reasons of mishandling can be identified at a satisfactory level. Further,
the time dimension in airport baggage management is also much more fine
grained so that complex time-dependent queries can be supported. Last but
not least, our data warehouse design considers other important dimensions
which enable complex analysis on baggage tracking data.

3 RFID-Based Airport Baggage Handling

In airport baggage management a bag needs to pass different stages to go
from origin to final destination. Suppose that Lisa needs to travel from
Aalborg Airport (AAL) to Arlanda Airport (ARN) via Copenhagen Airport
(CPH). First, Lisa has to check-in and handover her bag to the check-in desk
staff. Then the staff puts the bag into the conveyor belt for automatic baggage
sortation system. After passing all the stages inside AAL, the bag is loaded
into the aircraft using belt loader for the targeted flight. As the bag has to be
transferred to ARN, upon arrival at CPH it is shifted to the transfer system.
After all the required stages at CPH, the bag is loaded to the aircraft for its
next flight to ARN. After arriving at ARN, the bag is shifted to arrival belt
and finally Lisa collects the bag from the arrival belt.

Figure 2.1 shows an example of RFID reader deployment at different loca-
tions of a baggage management system. An RFID reader corresponds to the
location where it is deployed. For example, reader1 in Figure 2.1 corresponds
to check-in1, reader6 corresponds to Gateway-1 etc. The circles represent the
RFID reader and their activation range.

At check-in, an RFID tag is attached to the bag. The tag is then read by
readers is passes through their respective activation ranges. An RFID reader
continuously detects the tags, and the reader’s controller software determines
which actual records are stored: if the read rate is 1 sec, an object staying
under a reader for 30 sec will generate 30 records, unless it is specified that
only one record can be sent per 15 sec, which will yield only 2 records.

An RFID tag has small built-in memory that stores bag information.An ex-
ample of this data is {0123456789, 28APR, AAL, SK1234, 28APR, CPH, LH2345,
28APR, ARN}. The first 10 digits are the LicensePlate2. Specifically, the 1st
digit is a flag, the 2-4th digits state the bag issuer code (e.g., 117 for SK
(SAS)) and the 5-10th digits are the baggage tag number. Next, the flight
date is 28APR, the tag is printed in AAL(borg), the first flight leg is SK1234
on 28APR to CPH, the second leg is LH2345 on 28APR to ARN.

2The license plate is a unique 10 digit code encoding bag information. IATA specifies the rules
for using the (Baggage) License Plate in Resolution 740B of their Passenger Services Conference
Resolutions Manual.
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Fig. 2.1: RFID reader deployment for airport baggage handling

Due to the huge number of taggings, the 10 digit integer LicensePlate is
reused after some time. Thus, a BagID is added to uniquely identify a bag.
The records are stored in the format: 〈BagID, L, T, info〉, meaning that a reader
at location L detects a bag with ID BagID at timestamp T and the tag stores
the information info. Considering only location and time related informa-
tion, some example tracking records are shown in Table 2.1. The records are
represented in the form: 〈ReadingID, BagID, LocationID, ReadingTime〉.

Table 2.1: Raw Baggage Tracking RFID Data

〈 ReadingID, BagID, LocationID, ReadingTime 〉
(r1, b1, L1, 1) (r2, b2, L2, 2) (r3, b1, L3, 4) (r4, b1,
L3, 5) (r5, b2, L3, 5) (r6, b2, L3, 6) (r7, b1, L4, 8)
(r8, b1, L4, 9) (r9, b2, L4, 9) (r10, b2, L4, 10) (r11,
b2, L5, 14) (r12, b2, L5, 15) (r13, b1, L4, 19) (r14,
b1, L4, 20) . . .

As explained earlier, the raw readings contain many redundant records.
A LocationTrace table can be constructed from the raw tracking sequence after
eliminating the multiple readings. The format of the records in LocationTrace
table is: (recordID, BagID, LocationID, tin, tout), where recordID is the identifier
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of each location trace record and tin, tout respectively represent the times-
tamps of first reading and last reading of BagID by the RFID reader deployed
at location LocationID. This means that the bag was within the readers acti-
vation range during time tin, tout. An example of a table containing location
trace records from Table 2.1 is shown in Table 2.2. In this table the record rec3
represents, a bag b1 is observed by RFID reader at location L3 from time t4
to time t5, and record rec5 means that b1 is observed by reader at location L4
from time t8 to t9. This is a lossless compression with huge data reduction in
volume.

Table 2.2: Tracking records after duplicate elimination

ObjectID TrackingRecord〈RecordID,ObjectID, LocationID, tin, tout〉
b1 (rec1, b1, L1, 1, 1) (rec3, b1, L3, 4, 5) (rec5, b1, L4, 8, 9) (rec8,

b1, L4, 19, 20)
b2 (rec2, b2, L2, 2, 2) (rec4, b2, L3, 5, 6) (rec6, b2, L4, 9, 10) (rec7,

b2, L5, 14, 15)
... ...

4 Data Warehouse Design

To support business intelligence analysis using complex analytical queries,
we propose a data warehouse design, shown in Figure 2.2. The proposed
multi-dimensional data warehouse schema is a mixture of a star and a snow-
flake schema with one fact table and eight dimension tables. A star schema
is less complex compared to a snow-flake schema where the dimensions are
partly normalized, but in some places, a snow-flake schema is needed, as
discussed in the following. In the following, the different dimensions are
described, after which the fact table is introduced to link all the dimensions
to the facts and calculated measures. As seen in the Figure 2.2, all the di-
mension tables follows the standard data warehouse convention of having
auto-generated surrogate keys.

4.1 Dimension Descriptions

The different dimensions of the data warehouse presented in Figure 2.2 are
described in this section.

Date and TimeOfDay Dimension. As seen in Figure 2.2, date and time
has been split up into two dimensions in order to save records compared to
a combined dimension table. If date and time were modeled in one table
there could be over 86400 records for each day. In a year that would give
over 31 million records in the dimension which could result in a slow query

19



Chapter 2. A Data Warehouse Solution for RFID-Based Baggage Tracking Data
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Fig. 2.2: Relational Data Warehouse Schema

performance. Another reason for splitting up the two dimensions is that
queries are normally performed on either a date basis or a time of day basis.

The main hierarchy of the Date dimension consists of: Year, Month, and
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DayOfMonth. To allow more detailed analysis, the dimension includes the fol-
lowing attributes: HalfYear, Quarter, WeekNumberOfYear and DayOfYear. Day-
OfWeek is included as a one level hierarchy to specify the specific days of the
week. The HalfYear attribute indicates if it is the first or last half of the year.
The DayOfYear attribute enables queries on a specific day or range of days
(1..365). The WeekNumberOfYear attribute enables queries on specific weeks
of a year. The DayOfWeek makes it possible to query on a specific week-
day and the last attribute DayOfWeekType enables classification of days, e.g.
holiday, weekend, weekday, etc.

Location based events may occur on a particular date. For example Aal-
borg, Denmark celebrates a special occasion called Aalborg Carnival which
is one of the biggest carnivals in Europe. As a result lot of people from Eu-
rope come to Aalborg to celebrate this occasion. Another example can be a
strike in the city of an airport or conveyor belt broken of an airport etc. Ad-
ditionally, bad weather in the area of an airport should be captured to relate
baggage handling quality with the weather. So, it is very important to localize
each date to the airport for capturing these types of location based special
events and weather status. We use two special attributes: SpecialEvent, Event-
Type which allow queries on a specific event or type of event. For localizing
each date and date related information to a particular airport, we use Airpor-
tID as an attribute of the Date dimension. As a result the Date dimension has
to store a copy of same date for each airport. Figure 2.4b shows the hierarchy
of the Date dimension.

The Date dimension stores a copy of all stored dates for UTC which is
independent of the airport. We store a default AirportID, (AllAirports), which
indicates all airports and the other attributes also store default values for the
corresponding UTC date. An example of date localization concept is shown
in Fig. 2.5a. From Fig. 2.5a we can see that date May, 29, 2012 is localized
for each airport and as a result it is possible to capture an special event i.e.,
ConveyorBeltBroken at AAL airport.

The Time dimension called TimeOfDay consists of the three necessary at-
tributes to specify a time hierarchy down to a specific second: Hour, Minute,
and Second. Attribute TimeOfDayType indicates whether this is rush hour or
normal hour, and DaySections3Hours divides the 24 hours of a day into eight
3-hour sections. As a result it will be easier to analyze the baggage move-
ment at different parts of the day. Figure 2.3b shows the hierarchy of the
TimeOfDay dimension.

Location Dimension. In order to refer to different points of interest in the
airport, a hierarchy of seven levels is introduced to handle the various degrees
of detail. The lowest level in the hierarchy is denoted as a TagReaderLoca-
tion, which describes the specific location of an RFID reader like Check-in-1,
Sorter-1, Sorter-2, Gateway-1, Arrival-1 etc. A location belongs to a category
e.g., Sorter-1, Sorter-2 belongs to the location category Sorter. A number of
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location categories are grouped into an airport. The other levels of hierarchy
of Location dimension are showed in Figure 2.4a.

The location hierarchy enables queries for the baggage movement at dif-
ferent abstraction levels, e.g., from one tag reader location to another tag
reader location at the lowest level, and from one region to another region
at the top level. Here, the meaning of region indicates the baggage move-
ments between North America, Europe, Middle East and Africa (EMEA),
Latin America (LATAM) and Asia-Pacific etc,. The Location dimension is
snow-flaked at airport level and we use Dim_airport as an outrigger dimen-
sion [49] as some other dimensions like Dim_Date, Dim_Flight etc., depend on
the location at the airport level not at the tag reader level.

Status Dimension. The Status dimension captures the status of a bag
while moving from one location to another. The status domain is {WrongDes-
tination, OK, LeftBehind, TrackedInNonRouteAirport, StillTrackedInNonRouteAir-
port, LongerDurationThanExpected, UnexpectedReader}. To make a hierarchy,
another column StatusGroup is introduced which contain the group of the
status, e.g., WrongDestination, LeftBehind, TrackedInNonRouteAirport belong to
mishandled group etc. Figure 2.3a shows the hierarchy of Status dimension.

Bag Dimension. The Bag dimension contains the identifier of the bag,
LicensePlate and other planned travel information of bags like route, airline,
date of departure etc. To keep track of the bags planned to move together in
the same route and the same flight on the same date, we create a separate ID
called BagFlightRouteID. This ID is generated while loading the data from the
source schema. As a result, it creates a hierarchy in the Bag dimension. Each
BagFlightRouteID corresponds to a given combination of StartDateID, Flight-
String and RouteString. Here, StartDateID is the departure date, FlightString
contains a sequence of flights, e.g., "SK1202-QI1354-#"; RouteString contains
a sequence of airports of the route, e.g., "AAL-CPH-ARN-#". In both strings
’#’ indicates the end of the sequence. Use of these strings enables queries
on flight and route sequences more easily. For example, to find the number
of mishandled bags starting from AAL and ending at ARN, the route string
wild-card "AAL%ARN:#" can be used. Figure 2.3c represents the hierarchy
of Bag dimension.

Flight Dimension. In addition to the general information of a flight like
FlightID, Airline, FlightNumber, departure date and time etc., we also store the
source airport, destination airport, delay in departure, delay in arrival etc. Storing
this delay information enables queries that can give an idea about how bag-
gage mishandling is related with punctuality of flights. We store FlightNum-
berString which includes airline and flight number together e.g., "SK1202"
indicates a flight of SAS (SK) Airline with flight number 1202. Instead of
querying only on a flight number it is common to query on a flight based on
FlightNumberString which can be rolled up to the airline level. Hierarchy of
Flight dimension is represented in Figure 2.5b.
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Handler Dimension. While traveling from origin to destination a bag is
handled by many handler organizations at different stages of baggage move-
ment. So handler is an extremely important entity related to baggage man-
agement. The Dim_Handler table represents the Handler dimension. It con-
tains attributes HandlerID and Handler. The Handler dimension enables to
find relationship between baggage handling quality and handlers.

4.2 Many-to-Many Relationship Between Flight and Bag

A bag can travel in many flights and a flight can carry many bags, and there-
fore the relationship between bag and flight is many-to-many. Additionally
a sequence number is maintained when a bag is planned for traveling more
than one flight. It also includes a transit duration i.e., duration between
scheduled departure time of next flight and actual arrival time of the cur-
rent flight. If a flight is the final flight of a bag in its sequence of flights
then the transit duration is remain null. A standard approach of handling
many-to-many relationship is the use of a bridge table that use foreign keys
from both entities [50] e.g., Bag-Flight-Bridge〈BagID, FlightID, SequenceIndex,
TransitDuration〉 where BagID and FlightID are foreign keys taken from Bag
table and Flight table respectively.

However this type of implementation produces huge amount of data in
the bridge table which results a low query performance due to join lot of
data. In Figure 2.6 the bag-flight bridge table shows some examples of asso-
ciation between bags and flights. Even though bags B1, B2 and B6 follows
same flights with same sequences, due to the database design they have to be
inserted thrice. Moreover in the whole table there are 2 different collection of
pairs for 〈FlightID, Sequence〉 i.e., {〈F1, 1〉, 〈F1, 2〉}→ 1 and {〈F1, 1〉}→ 2. The
process of transformation this table is exemplified in Figure 2.6.

Specifically, we create a separate table called BagFlightRoute table. It con-
tains an ID BagFlightRouteID for each distinct set of pairs. Also, we store the
flight string and route string for each BagFlightRouteID. The features of these
two strings are described in the earlier sub section. For each BagFlightRouteID
the pairs and its related info is stored in the FlightRouteBridge table. Finally in
the bag table each bag is assigned with its relevant BagFlightRouteID. It makes
a one-to-many relationship between BagFlightRoute table and bag table. The
discussed transformation reduces huge amount of rows which results better
query performance.

4.3 Fact Table

The Fact_Stay is the fact table and it binds the tracking records to the relevant
entries in the dimensions. The relations to the TimeOfDay and Date dimension
are represented twice for each datetime attribute from the source data. This
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Fig. 2.6: Example of bag-flight many-to-many relationship

is to store both the wall clock time, and the UTC time when considering
tracking records from different sites, e.g. AAL where the standard time zone
is UTC/GMT+1 hour, Los Angeles International Airport (LAX) where the
standard time zone is UTC/GMT-9 hours etc. As an RFID reader does not
cover the whole area of a location, the value of tout in Table 2.2 does not
necessarily give us the time when an object actually get out from a location.
As in the airport baggage tracking scenario a bag moves from one symbolic
location to another symbolic location sequentially, instead of storing this tout
we store the timeend in the fact table which specify when the object reaches
another location.

Attributes FromLocation and ToLocation specify the baggage movement
from one tag reader location to the next tag reader location in its path se-
quence. Usually time_start and time_end of a particular bag indicates the
timein at FromLocation and timein at ToLocation, respectively. However for the
final location (which means there is no reading of a bag after this location),
FromLocation is same as ToLocation and time_end specify the last reading time
of the bag at this final location which is timeout at FromLocation. The duration
taken by a bag to go from FromLocation to ToLocation is stored in the Duration
attribute. If FromLocation to ToLocation both are from same airport then the
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value of Duration also represents the time spent by a bag at FromLocation.
We store HandlerID for each movement of a bag to track the responsible

handler of the bag for that specific location. If it takes longer than expected
to transfer the bag between the tracked location or the movement of the bag
is not correct, then it will be possible to know which handler actually han-
dled that section and this mishandling can be attributed to the quality of
that handler. The status of a bag at each stay is stored in StatusID attribute.
Storing both source and destination for each tracking record enables lot of
opportunity for analysis of baggage flow from one location to another in an
easy and efficient way. This technique also allows giving a status to each
movement of a bag from one tag reader location to another. The Responsible-
FlightID column points to the Flight dimension to keep track which flight is
responsible for the movement. It allows to find the baggage handling quality
of different flights and airline. Additionally we store FlightLegID that points
to Dim_FlightRouteBridge table. It helps to find how baggage handling quality
affects for transit duration.

4.4 Cube Design

A multi-dimensional cube is built on top of the data warehouse described
above. There can be various types of measures for answering different types
of analytical questions on RFID baggage data. We give a few examples of
analytical questions: a) Average time taken by bags to move from sorter to gateway
in Aalborg airport, b) Total number of bags handled by Copenhagen airport in the
Christmas holiday, c) Total number of bag sent to wrong destination from Göteborg
airport in weekends of January 2012, d) Maximum time taken by bags to go from
check-in to sorter in Stockholm airport. To answer these queries we used the
following measures.

Duration, maximum duration, minimum duration, average duration.
The duration column itself is used as measure and also enable other rele-
vant measures like maximum duration, minimum duration, total duration taken
by objects to go from one location to another. The Duration is also used for
a computed measure avg duration i.e., the average duration taken by objects
to move between locations. These measures are semi-additive and should be
used with appropriate dimension to get relevant results. Because this is not
meaningful to find the average, maximum, minimum duration without con-
sidering the FromLocation dimension. Moreover finding the sum of duration
regardless of Bag dimension is also not meaningful. The use of maximum
duration measure is shown in the following example MDX query in Q1. It
returns a matrix showing max time taken by all bags to go from one tag
reader location to another at AAL. In the query the parameter 2 for descen-
dants function indicates two levels down from the airport level i.e., the tag
reader level.
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Listing 2.1: Q1

SELECT DESCENDANTS ([ FromLocation ].[ LocationHierarchy
].[ Airport ].&[ AAL], 2) ON Axis (1),

DESCENDANTS ([ ToLocation ].[ LocationHierarchy ].[ Airport
].&[ AAL], 2) ON Axis (0)

FROM [cube_name]
WHERE [Measures ].[ Maximum Duration]

BagID distinct count. The number of distinct BagIDs in the fact table
and grouping this on interesting dimensions give lot of interesting results.
For example, the number of bags traveled from one tag reader location to
another, and one country to another or region to region, number of bags
mishandled at different airports, number of bags traveled in different routes,
etc. For example the following MDX query, Q2 shows the number of bags
mishandled at different airports and the result is ascending order based on
number of bag(s) mishandled.

Listing 2.2: Q2

SELECT [Measures ].[ Bagid Distinct Count] ON COLUMNS ,
ORDER(NonEmpty ([ FromLocation ].[ IATACode ]. members),[

Measures ].[ Bagid Distinct Count], DESC) ON ROWS
FROM [cube_name]
WHERE DESCENDANTS ([Dim Status ].[ Status Group ].&

Mishandled , 0)

Fact stay count. The number of stay records in the fact table can be used
for many types of computed measures like percentage calculation, average
calculation, etc. For example finding the average duration taken by bags to go
from one tag reader location to another at Aalborg airport can be calculated
by the following MDX query, Q3 where we use the measure Fact Stay Count.

Listing 2.3: Q3

WITH MEMBER[measures ].[ avgDuration]
AS ’[Measures ].[ Duration ]/[ Measures ].[ FactStayCount]’
SELECT DESCENDANT ([ FromLocation ].[ LocationHierarchy ].[

Airport ].&[ AAL], 2) ON Axis (1),
DESCENDANTS ([ ToLocation ].[ LocationHierarchy ].[ Airport

].&[ AAL], 2) ON Axis (0)
FROM [cube_name]
WHERE [Measures ].[ avgDuration]
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Incorporating Flight and Bag many-to-many relationship into the cube.
Incorporating many-to-many relationship into a cube needs extra care. Be-
cause improper relationship between the dimensions and measures produce
wrong aggregation results. As mentioned earlier we store both planned route
and actual route of bags. The actual route taken by a bag is found from the
tracking records stored in the fact table Fact_stay. On the other hand a long
chain of relational tables are maintained between Flight and Bag table for
planned route and flights. To get the aggregate results like the number of
bags planned for traveling by particular flight or airline, the Dim_Bag table is
used as fact table and a measure Bag Count is created on this fact. Here the di-
mensions to be used by the measure are Dim_Bag, Flight and BagFlightRoute.
As Dim_Bag and Flight is related by the Dim_FlightRouteBridge table through
BagFlightRouteID, an intermediate fact table is required to incorporate them
in the cube. So the Dim_FlightRouteBridge table is considered as an interme-
diate fact table where this fact is related with the Flight table by FlightID and
to the Dim_Bag table by BagFlightRouteID. Now the Bag Count measure of
Dim_Bag has a many-to-many relationship in the cube through the interme-
diate fact table Dim_FlightRouteBridge. The implementation of this concept in
MS Analysis Services can be seen in Appendix A.1. An example query on
this relation can be total number of bags planned to be carried by each airline and
this can be answered by the following MDX query Q4.

Listing 2.4: Q4

SELECT [Measures ].[ Dim Bag Count] ON COLUMNS ,
[Flight ].[ Airline ]. members ON ROWS

FROM [cube_name]

5 ETL Design

In this section, we present the Extract-Transform-Load (ETL) design for load-
ing relevant data from source databases to the data warehouse. The design
is shown in Figure 2.7.

First Dim_Location_Airport is loaded with the relevant airports as this table
is independent of any other dimension. This table is also loaded with a
default airport "AllAirports" and an airport "INVALIDAirport". The default
airport is used as a reference from the Date dimension to handle UTC date
and time. On the other hand INVALIDAirport is referred when there are some
records containing some invalid values or null values. The Dim_Location_Tag-
Reader is loaded with tag reader information from the source data. Here also
we have a default tag reader UnknownReader which points to INVALIDAirport.
The name of the tag reader is made self contained, e.g., check-in1 reader of
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5. ETL Design

ETL Steps

Load Dim_Location_Airport 
with relevant airports and a 
default airport “AllAirports”

Load Dim_TimeOfDay with 
all the hours, minutes and 

seconds of a day

Load Dim_Status with 
relevant status

Load Dim_Location_Tagreader with 
relevant tag reader locations 

information

Load Dim_Date with relevant dates 
for all airports and a copy each date 
for UTC with “AllAirports” as airport

Load Dim_Flight with 
relevant flights information 

Load Dim_Bag, BagFlightRoute and 
Dim_FlightRouteBridge. (The algorithm 

can be found in Appendix A-B)

Load Fact_Stay (The algorithm 
can be found in Appendix A-C)

Fig. 2.7: Steps of ETL operation

Aalborg Airport of Denmark is stored as ’DK.AAL.Check-in’.
The Date dimension is preloaded with relevant years and the TimeOfDay

dimension is preloaded with each second of a day. Both Date and TimeOfDay
dimension is loaded for the airports where RFID readers are deployed and
reading records are coming from these airports. There is a copy of Date for
the default airport which is discussed earlier.

The flight table is loaded directly from the source data where date and
time of departure and arrival is pointed to the Date and TimeOfDay dimen-
sion respectively. The departure airport and arrival airport points to the
Dim_Location_Airport table.

The Bag, BagFlightRoute and Dim_FlightRouteBridge are loaded together at
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the same time from the source data. The detailed algorithm can be seen in
Appendix A.2.

The fact table Fact_Stay is loaded by the tracking records and relevant
data from the source schema. Some preprocessing like creating some views
in the source data can make the loading steps much easier and faster. We
create two database view for this purpose. One view is created inside data
warehouse schema with structure: v_bag_flight〈BagID, FlightId, sequenceIndex,
FromAirportID, ToAirportID, ActualDepartureTimeUTC, FlightLegID〉 where the
columns are taken by joining Dim_Bag, Flight, Dim_FlightRouteBridge tables
of data warehouse schema. Another view is created inside source schema
with structure:v_track_airport〈BagID, LocationID, tin, tout, AirportID〉, where
the columns are taken from the location tracking records of Table 2.2 and
Airport Table of source schema. The v_track_airport includes AirportID which
helps to easily track, when actually a bag changed its airport as well as track-
ing the responsible flight of a bag for the tracked airport. The overall algo-
rithm to load the fact table can be seen in Appendix A.3.

BagId Distinct Count per Status. Status Value: OK, Wrong Dest, Left Behind

LeftBehind                                  OK WrongDestination

1,021  1%

138,492  97%

2,784  2%

(a) Overall baggage status

BagID distinct count per Time_Start-DaySectionsIn3Hours (Drill down to wrong destination status)

0-3            3-6           6-9            9-12        12-15       15-18       18-21        21-24          

3  0%

57  2%

518  18%
570  20%

380  13%

871  31%

887  14%

44  2%

(b) WrongDest/DaySectionsIn3Hours

Fig. 2.8: Some analysis results

6 Experimental Results

We implemented the relational data warehouse in SQL Server 2008 R2 and
the cube in SQL Server Analysis Services 2008 using MS Business Intelli-
gence Development Studio 2008. The source data is stored in Oracle 11g.
The ETL loads the source data from Oracle into the SQL Server DW and is
implemented in C# with .Net framework 4.0. For advanced querying and
visualization, TARGIT BI suite 2K11 is used. The experiments are conducted
on a laptop with an Intel Core i7 2.7 GHz processor with 8 GB main memory.
The operating system is Windows 7 64 bit. We use RFID-based airport bag-
gage tracking data collected from 57 RFID readers deployed at 57 different
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Fig. 2.9: Performance study

baggage handling locations at 7 airports in 7 cities in 2 countries. There were
149K bags with 4M filtered RFID readings. There was a huge data reduction
after conversion of the RFID readings into location tracking records where it
becomes 483K records. The readings were taken between 15-Dec-2011 and
17-Apr-2012 and the bags traveled on 36K flights.

Example Analysis Results We have generated many analysis results from
the cube using through TARGIT BI suite, some are described here. The bar
chart of Figure 2.8a shows bagID distinct count per Status where the status is
one of {OK, Left Behind, and WrongDestination}. This shows that 97% of the
bags are OK, 2% bags sent to the wrong destination, and 1% is left behind.
Figure 2.8b shows the value of bagID distinct count grouped by the dimensions
{Status, and TimeOfDay}. The status is drilled down to Wrong Destination and
the TimeOfDay is at the DaySectionsIn3Hours level. This shows that among
the 2% bags sent to wrong destination, 31% of the mishandlings happened
between 15 PM to 18 PM, i.e., improvement efforts should focus here.

Performance We tested the above MDX queries on the MS Analysis
Services cube and produced equivalent SQL queries for both of the source
database and the relational data warehouse. To allow direct comparison, the
source data was migrated from Oracle into SQL Server 2008. To observe MDX
query performance, MDX Studio [7] was used. To observe SQL query per-
formance, SQL Server 2008 Profiler was used and the queries is executed in
SQL Server Management Studio. Each query is executed 5 times and for each
execution, the query editor software is restarted and the cache is cleared. Fi-
nally, the average execution time is reported in Figure 2.9a and 2.9b for each
query.

Query Q1 and Q3 is reported together in Figure 2.9a as both of them
works with duration between tag reader locations of Aalborg airport. For
the source data the value of duration, FromLocation and ToLocation is calcu-
lated using complex SQL queries and some intermediate views on the filtered
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RFID readings. Due to the complexity some criteria e.g., the final location of
an object is not considered (In DW FromLocation and ToLocation is same
for the final location of an object). The results show that, for Q1, the CPU
time on cube is 7 times faster compared to relational data warehouse and
2.3K times faster compared to source data. For the same query CPU time on
relational data warehouse is 313 times faster compared to source data. Simi-
larly for other queries, the results show that, the CPU time for all of the cases
cube is significantly faster whereas the source database is significantly slower.
The queries on relational data warehouse are also much faster compared to
source database. The queries on the source database are very slow due to the
huge data volume which is also not structured for analysis purposes. On the
other hand, the proposed relational data warehouse is specially structured
for analysis purposes and we also have reduced the data volume. Finally, the
designed cube employs specialized MOLAP storage and has pre-computed
aggregate results, which make the queries much faster. The differences be-
tween the execution times will become even larger for larger data sets.

7 Conclusion and Future Work

In this chapter we proposed a data warehouse solution for analysis of RFID-
based airport baggage tracking data. We designed DW, including a number
of complex dimensions and measures, in order to provide insight into the
baggage tracking data and the reasons of baggage mishandling. We local-
ized each date to a particular airport to capture special events related to that
airport. We handled the many-to-many relationship between Bag and Flight
dimension effectively both in the relational data warehouse and cube the de-
sign. The proposed data warehouse concepts can be used in similar types of
indoor tracking application.

Future work will aim to solve the challenges encountered during this
work as well as planned work. One important aspect is to scale the solu-
tions to handle data from thousands of airport over long time periods, along
with more precise capturing of the bag movement. This will require develop-
ing new pre-aggregation techniques. Another important aspect is to develop
native support for spatio-temporal sequences, e.g., flight sequences, within the
DW and BI tools, in order to get both more seamless querying and better
performance.
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A Appendix

A.1 Implementation of Many-To-Many Relationship into Cube

Implementation of many-to-many relationship into cube in MS Analysis ser-
vices is shown in Figure 2.10. The figure shows the dimension usage of SQL
Server Business Intelligence Development Studio 2008 for the cube contain-
ing many-to-many relationship between Bag and Flight. For generating the
figure, a Visual Studio add-in BIDS Helper [2] is used. From the figure we
can see that Dim_Bag is used as both fact and dimension. Two measure
groups on Dim_Bag and Dim_FlightRouteBridge are created. For Dim_Bag
measure group the Flight dimension is used as many-to-many relationship
where Dim_FlightRouteBridge is used as intermediate measure group. The
BagFlightRoute is in regular relationship with the Dim_Bag measure group.
Here the dimension column is BagFlightRoute.BagFlightRouteID and measure
group column is Dim_Bag.BagFlighRouteID. Both Flight and BagFlightRoute di-
mension is in regular relationship with Dim_FlightRouteBridge measure group.
For BagFlightRoute dimension the dimension column is BagFlightRoute.BagFli-
ghtRouteID and measure group column is Dim_FlightRouteBridge.BagFlightRo-
uteID. On the other hand for Flight dimension the dimension column is
Flight.FlightID and measure group colum is Dim_FlightRouteBridge.FlightID.

Fig. 2.10: Incorporating Flight and Bag relationship into cube

A.2 Algorithm: LoadBag_BagFlightRoute_FlightRouteBridge

The algorithm for loading Dim_Bag, BagflightRoute and Dim_FlightRouteBridge
is shown in Algorithm 18 . In the algorithm at line 1, all the bags information
is stored into variableB in the form 〈BagID, LicensePlate, FlightDate, Priority〉
as BagID wise ascending order. It helps to track easily which bags are al-
ready inserted into the data warehouse. If any error/failure occurs at the mid
step during loading, we can quickly know which bags are already loaded by
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checking only the last inserted BagID. Putting additional condition: Where
BagID>Last inserted BagID in line 1 of the algorithm can avoid reloading of
existing bags and decreased the loading time. For each bag in the source
data the algorithm gets all the flight info and the sequence of flights the bag
has planned to travel. To find out the existence of a BagFlightRouteID for the
bag with exact same number of pairs of 〈FlightId, SequenceIndex〉 we use the
concept of relational algebra for exact relational division [63] or relational divi-
sion without reminder. A general relational division does not consider exact
number of pair. For example consider the data of table Bag-Flight Bridge of
Figure 2.6. Let us assume in Bag-Flight-Route Bridge table there be only one
BagFlightRouteID exist which is 1: {〈F1, 1〉, 〈F1,2〉}. To find out the existence of
BagFlightRouteID for bag B3 in Flight-Route Bridge table, the relational algebra
expression for general division operation can be:

ΠBagFlightRouteID,FlightID,Sequence〈Flight-Route Bridge〉
ΠFlightID,SequenceσBagID=B3〈Bag-Flight Bridge〉

For example the operation: {〈1, F1, 1〉, 〈1, F1,2〉}÷{〈F1, 1〉} results 1. It
seems that trying to find out the existence of BagFlightRouteID for bag B3
by the given general division operation returns 1 which is not correct. Be-
cause BagFlightRouteID 1 contains more flight sequences and we need to get
a BagFlightRouteID containing exactly the set of value pair〈FlightID, Sequence〉
of bag B3 i.e., { 〈F1, 1〉}.

To match the exact pairs it is important to count the number of pair(s)
at divisor and divide it only with those dividend which contain the same
number of pair(s) as the divisor. The concept of exact relational division is
implemented by a complex SQL query shown in line 6 of Algorithm 18. Get-
ting any row by executing this SQL indicates there exist a BagFlightRouteID
with the given set of pairs (U of line 5 in Algorithm 18). If the SQL re-
turns any BagFlightRouteID for this SQL, it inserts the bag with the returned
BagFlightRouteID into the Dim_Bag table (line 8). In contrast with that, if the
SQL does not return any BagFlightRouteID then a new record is inserted into
the BagFlightRoute table with a new BagFlightRouteID (line 11). In line 13 it
inserts the bag with this new BagFlightRoute.

A.3 Algorithm: LoadFactStay

The algorithm for loading the Fact table Fact_Stay is shown in Algorithm 25.
As mentioned in the chapter we have used some views to make the steps
easy. The structure of the views are: v_bag_flight〈BagID, FlightId, sequenceIn-
dex, FromAirportID, ToAirportID, ActualDepartureTimeUTC, FlightLegID〉 and
v_track_airport〈BagID, LocationID, tin, tout, AirportID〉. At the beginning of the
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Algorithm 1: LoadBag_BagFlightRoute_FlightRouteBridge()

1 B := Set of all bags from the source data in the form 〈BagID, LicensePlate,
FlightDate, Priority〉 in bagid wise ascending order;

2 BR := Set of routes of all the bags in the form 〈 Bagid, Flightid, Sequenceindex 〉
from the source data;

3 for each record bi ∈ B do
4 R := all the route info of bag bi.Bagid from BR;

5 U :=
⋃SizeOf(R)

j=1 〈 Rj.flightid, Rj.Sequenceindex〉;
6 result := ExecuteQueryInDataWarehouse 〈 "WITH pair AS ( SELECT U)
7 SELECT b.BagFlightRouteID as BagFlightRouteID
8 FROM Dim_FlightRouteBridge b LEFT JOIN pair p
9 ON ( b.SequenceIndex = p.SequenceIndex AND b.FlightID = p.FlightID )

10 GROUP BY b.bagFlightRouteID
11 HAVING count( CASE WHEN p.flightid IS NULL THEN 1 END ) = 0 AND

Count(*) = ( SELECT count(*) FROM pair )" 〉;
12 if result.RowCount 6= 0 then
13 Insert into Dim_Bag〈 bi.Bagid, bi.Licenseplate, result.BagFlightRouteID,

bi.Priority〉;
14 else
15 Generate FlightString and RouteString from BR and flight’s source and

destination information;
16 Add a new record to BagFlightRoute table with a new

BagFlightRouteID. This can be done by using database sequence or
auto generated identifier;

17 Add records to Dim_FlightRouteBridge table with all the values of U and
the new BagFlightRouteID. For TransferDuration subtract actual arrival
time of current flight sequence from the schedule departure time of
next flight. For the final flight of a BagFlightRouteID put
TransferDuration as 0 (Zero);

18 Insert into Dim_Bag〈bi.Bagid, bi.Licenseplate, The new BagFlightRouteID,
bi.Priority〉;

algorithm the tracking records, distinct BagID and flight info is loaded into
variables (lines 1-3).

For each bag the algorithm retrieves and determine necessary fields for
each tracking record and insert it into Fact_Stay table (lines 4-27). For each
bag the algorithm filters the records of the particular bag and keep them into
variables (lines 5-6). As for the final tracking record of a bag the FromLoca-
tion and ToLocation is same in the Fact_Stay table, we separate that tracking
record into a variable Rend (line 7). This record is handled separately for each
bag (lines 22-27). For each tracking record of a bag except Rend (line 8), the
algorithm determine the FromLocation and ToLocation (line 10), timestart and
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Algorithm 2: LoadFactStay()

1 TR := Set of all tracking records from v_track_airport in BagID and tin wise
ascending order;

2 B := Set of distinct BagID in TR on BagID wise ascending order;
3 BF := Set of all flight records from v_bag_flight in BagID and SequenceIndex wise

ascending order;
4 for each BagID bi ∈ B do
5 F := All records for bag bi from BF;
6 R := All tracking records for bag bi from TR;
7 Rend := Last record of R; seq := 1;
8 for each record ri ∈ R \ Rend do
9 fromLoc := ri.LocationID; toLoc:= ri+1.LocationID;

10 fromAirport := ri.AirportID; toAirport:= ri+1.AirportID;
11 timestart:=ri.tin;timeend:=ri+1.tin;
12 Duration := timeend - timestart; Status := "OK";
13 if fromAirportID = toAirportID then
14 Find the status of the movement and the responsible flight with the

help of F.;

15 else
16 if toAirportID 6= Airport of planned destination. Check this from F with

the help of seq then
17 Status := "WrongDestinaion";
18 Find ResponsibleFlightID from F with the help of seq;
19 seq++;

20 Insert a new record into the Fact table with bi, fromLoc, toLoc, StatusID
for Status, Duration, ResponsibleFlight, DateID and TimeID of timestart,
timeend for both UTC, fromAirportID and toAirportID;

21 Now for the last tracking record R_end, fromLoc := Rend.LocationID; toLoc :=
fromLoc;

22 timestart := Rend.tin; timeend := Rend.tout;
23 Duration := timeend - timestart; Status := "OK";
24 Find the status and other attributes based on the above logic;
25 Insert a new record into the Fact table with bi, fromLoc, toLoc, StatusID for

Status, Duration, ResponsibleFlight, DateID and TimeID of timestart, timeend
for both UTC, fromAirportID and toAirportID;

timeend (line 11), check whither the bag changes the airport or not (lines 13
and 16) and based on the information it determines the Status of that par-
ticular tracking record (lines 14 and 17). The variable seq is used to track
how many airport is changed by the bag which helps to retrieve flight info
for that particular sequence and also to determine the Status. For Rend the
operations are very similar to the other records except the value of ToLocation
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(line 21) and timeend (line 22). After retrieving and determining the values of
necessary fields a record is inserted into Fact_Stay (lines 20 and 25).
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Abstract

Airport baggage management is a significant part of the aviation industry. However,
for several reasons every year a vast number of bags are mishandled (e.g., left behind,
send to wrong flights, gets lost, etc.,) which costs a lot of money to the aviation in-
dustry as well as creates inconvenience and frustration to the passengers. To remedy
these problems we propose a detailed methodology for mining risk factors from Radio
Frequency Identification (RFID) baggage tracking data. The factors should identify
potential issues in the baggage management. However, the baggage tracking data
are low level and not directly accessible for finding such factors. Moreover, baggage
tracking data are highly imbalanced, for example, our experimental data, which is a
large real-world data set from the Scandinavian countries, contains only 0.8% mis-
handled bags. This imbalance presents difficulties to most data mining techniques.
The chapter presents detailed steps for pre-processing the unprocessed raw tracking
data for higher-level analysis and handling the imbalance problem. We fragment the
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data set based on a number of relevant factors and find the best classifier for each of
them. The chapter reports on a comprehensive experimental study with real RFID
baggage tracking data and it shows that the proposed methodology results in a strong
classifier, and can find interesting concrete patterns and reveal useful insights of the
data.
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1 Introduction

Aviation industry suffers from enormous loss due to baggage mishandling.
A recent report [10] shows that in 2013, 3.13 billion passengers traveled by
airlines and among them around 21 M passengers and 21.8 M bags were
affected by baggage mishandling that costs 2.09 billion USD to the airline
industry. It also creates frustration to the passengers during their vacation
or business trips. Common baggage mishandlings are: left behind at the
origin airport, missed connecting flight, bag loss, wrong bag destination, etc.
A bag has to follow several steps while traveling from the origin airport to
the final destination. The steps include check-in, screening, sorting, loading,
transfer at the transit airport, arrival, etc. Mismanagement at any of these
stages can be the reason for the bag being mishandled. The use of Radio
Frequency Identification (RFID) in the baggage management system enables
to track a bag while passing through different stages within an airport as well
as across the airports. The massive baggage tracking can be very useful for
analyzing and finding interesting patterns. Combining the tracking data with
other dimensions like route information, flights and punctuality, day hours,
week day, transit duration, etc., can reveal risk factors that are responsible for
baggage mishandling.

Data mining is the process of extracting interesting patterns and knowl-
edge from large data sets, and the acquired knowledge can be used for pre-
dicting unknown labels of new instances [42]. For example, from the baggage
tracking data, we may be interested in knowing, what is the probability that a
bag will be mishandled if it has 35 minutes transit time at Copenhagen airport on
Sunday morning? However, before performing any data mining the data has
to be well prepared such that the gained knowledge is useful. In the baggage
tracking scenario, the generated huge volume tracking data are very low level
and not directly suitable for further analysis. Therefore, relevant and impor-
tant features need to be extracted from the unprocessed raw tracking data.
Furthermore, the percentage of mishandled bags is very low (e.g., only 0.8%
in our experimental data set) as compared to the percentage of correctly han-
dled bags. It makes the data set highly imbalanced. This imbalance problem
in the data set makes the mining process biased towards predicting that any
bag will be handled correctly by default and makes it difficult to learn rules
related to incorrectly handled bags. Thus, we need to take special care of this
issue to get the mining techniques to work properly and to get patterns of
higher quality.

In this chapter, we propose a step by step methodology for performing
data mining tasks to find interesting patterns and risk factors that are highly
correlated with baggage mishandling. We present the essential steps for ex-
tracting a set of high-level features called FlightLeg Records for mining from
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the unprocessed raw RFID baggage tracking data. We have applied various
classification techniques on the data set and deal with the imbalance prob-
lem by applying several different re-balancing techniques for finding the best
predictive model. We also fragment the data set based on some important
factors and learn specialized classification models for each fragment. We
have conducted a comprehensive experimental study with a large amount
of real-world RFID baggage tracking data from a major industry initiative
called the BagTrack project (www.daisy.aau.dk/bagtrack). The data set has
been collected from several airports in the Scandinavian countries. The ex-
periment shows that fragmenting the data set helps to achieve better models.
We also analyze and report some interesting patterns and risk factors that
are discovered from the data set. The proposed methodology and techniques
can help the aviation industry for examining baggage management problems
and ultimately improving the baggage handling quality.

The remainder of the chapter is organized as follows. Section 2 presents
the preliminaries including the problem statement. Section 3 discusses the
steps of the solution. Section 4 reports the experimental results. Section 5
reviews related work. Section 6 concludes and points to future work.

2 Preliminaries

RFID-Based Baggage Handling In airport baggage management a bag has
to go through different steps to go from origin to final destination. Fig. 3.1
shows some airports and stages involved in baggage management at multiple
airports. Suppose that Nadia needs to travel from Aalborg Airport (AAL) to
Arlanda Airport (ARN) via Copenhagen Airport (CPH). First, Nadia has to
check-in and handover her bag to the check-in desk staff. Then the staff puts
the bag on the conveyor belt for the automatic baggage sortation system.
After passing all the steps inside AAL, the bag is loaded into the aircraft
using belt loader for the targeted flight. As the bag has to be transferred to
ARN, upon arrival at CPH it is shifted to the transfer system. After all the
required stages at CPH, the bag is loaded to the aircraft for its next flight
to ARN. After arriving at ARN, the bag is shifted to arrival belt and finally
Nadia collects the bag from the arrival belt. During this journey, the bag
has to go through up to 11 stages and there can be many baggage handlers
handling the bag at the different stages.

Fig. 3.2 shows an example of RFID reader deployment at different loca-
tions of a baggage management system. An RFID reader is deployed in a
fixed location and the position of the reader is recorded in the database. For
example, reader1 in Fig. 3.2 corresponds to check-in1, reader6 corresponds to
Gateway-1 etc. The circles represent the RFID readers and their activation
ranges.
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Fig. 3.1: Baggage flow in multiple airports

At check-in, an RFID tag is attached to the bag. The tag contains a small
built in memory that stores bag information including the bag identifier,
flights, route legs, date of departure, etc. While passing different stages,
whenever a bag enters into a reader’s activation range, it is continuously
detected by the reader with a sampling rate which generates raw reading
records of the form: 〈BagID, Location, Time, {info}〉, meaning that a reader at
location Location detects a bag with ID BagID at timestamp Time and the tag
stores the information info. Considering only location and time related infor-
mation, some examples of raw reading records are shown in Fig. 3.3a. In the
table, RID represents the reading identifier. As seen a bag can have several
readings at the same location and on the basis of a single record, it is also
not directly possible to compute how long an object spent in a particular lo-
cation. To overcome these problems and prepare the data for further analysis
we convert the raw reading records into stay records [15].

Stay Records A stay record is of the form: StayRecord〈BagID, FromLo-
cation, ToLocation, tstart, tend, Duration, {StayInfo}〉 which represents that a bag
with BagID first appeared at FromLocation at time tstart and then first appeared
at the next location ToLocation at time tend. It took Duration time to go from the
reader at FromLocation to the reader at ToLocation. The {StayInfo} represents a
set of other dimensional information related to the bag and to the transition
(e.g., bag status, next flight schedule, origin and destination airports, and
other flight-related information). For the final location of a bag, a special stay
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Fig. 3.2: RFID reader deployment in airport baggage tracking [15]

record is stored where the FromLocation and the ToLocation are same and the
tstart and tend represent the first and last times the bag appeared at that loca-
tion. The stay records compress the huge data volume of raw readings and
also enable to find abnormally long time spans between locations that may
lead to baggage mishandling. Fig. 3.3b shows the stay records for the raw
records of Fig. 3.3a. In the table, RecID represents the stay record identifier.
In Fig. 3.3b, Rec1 represents that bag B1 had a transition from AAL.Checkin-1
to AAL.Screening and it took 3 time units for the transition. The bag first ap-
peared at Checkin-1 at time 1 and then appeared at Screening at time 4. The
stay records mainly introduce a very important feature which is the duration
information. Nevertheless, it is still at a lower level for further higher level
analysis. We are more interested in a higher level analysis like the baggage
management performance at airport level, weekday, hour of day, and other
relevant factors. We take the duration feature including some other dimen-
sions from the stay records and create a table called FlightLeg Records which
is described below.

FlightLeg Records The attributes and their descriptions of the FlightLe-
gRecords table are shown in Table 3.1. For each flight of a bag we have one
instance in the FlightLegRecords table. It captures some important features
extracted from the Stay Records like {IsTransit, DurationBeforeFlight, IsLonger-
StayFound, TotalBagInThatHour, Status}. The way of calculating the value of
DurationBeforeFlight varies based on whether the record belongs to transit or
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(a)  Raw Reading Table 
RID BagID Location Time
R1 B1 AAL.Chkin1 1 
R2 B1 AAL.Screen 4 
R3 B1 AAL.Screen 5 
R4 B1 AAL.sorter1 8 
R5 B1 AAL.sorter1 9 
R6 B1 AAL.Gate2 15 
R7 B1 AAL.BltLd1 21 
R8 B1 CPH.Trans1 70 
R9 B1 CPH.Tran1 72 
R10 B1 CPH.Sorter2 80 
R11 B1 CPH.Sorter2 90 
R12 B1 CPH.Sorter2 100 

(b)  Stay Records 

Rec
ID 

Bag
ID 

FromLoc ToLoc tstart tend Dur.

Rec1 B1 AAL.Chkin1 AAL.Screen 1 4 3 
Rec2 B1 AAL.Screen AAL.sorter1 4 8 4 
Rec3 B1 AAL.sorter1 AAL.Gate2 8 15 7 
Rec4 B1 AAL.Gate2 AAL.BeltLd1 15 21 6 
Rec5 B1 AAL.BltLd1 CPH.Tran1 21 70 49 
Rec6 B1 CPH.Trans1 CPH.Sorter2 70 80 10 
Rec7 B1 CPH.Sorter2 CPH.Sorter2 80 100 20 
 

 

(c)  FlightLeg Records 
Bag 
id 

From 
Airpt. 

To 
Airpt. 

Is 
Tran. 

Weekday Flight 
Time 

DurBef. 
Flight 

IsLongSt
ayFound 

Delay 
InArr. 

TotBag 
ThatHr 

Status 

B1 AAL CPH 0 Monday 9-10 25 0 NULL 86 OK
B1 CPH ARN 1 Monday 10-11 30 1 -5 70 Mishan.

Fig. 3.3: Example of getting stay records from raw records and example of FlightLeg records

not (see description of IsTransit column). For a non-transit record, it is calcu-
lated from the first reading time of the bag at check-in and the actual depar-
ture time of the flight. Conversely, for a transit record, it is calculated from
the actual flight arrival time at the FromAirport and actual departure time of
the next flight to the ToAirport. The DurationBeforeFlight attribute is useful to
see the effect on baggage mishandling due to the operating duration before
departure. The value of IsLongerStayFound is determined by comparing the
movement of baggage between readers at FromAirport. For each distinct tran-
sition between a pair of locations in the Stay Records, the bags that followed
the top 5% longest durations are considered as longer than expected. The value
of DelayInArrival is calculated from the actual and scheduled arrival times of
the flight in the transit airport (i.e., FromAirport is a transit airport). For the
non-transit records DelayInArrival is NULL. The status of the bag indicates
whether the bag was mishandled or not in the FromAirport. The status of a
bag is extracted from the reading records of the bag at the readers at Fro-
mAirport, flight timing, route information, etc. If a bag has any reading in
the FromAirport after the corresponding flight departure time, then the bag
is considered as left behind. Conversely, if a bag has any reading from an
airport which is not in its planned route, then it is considered as wrong des-
tination. Fig. 3.3c shows an example of the content of FlightLegRecords. We
use the FlightLegRecords table for our further analysis.

Problem Statement Our primary goal is to find interesting patterns and
identify risk factors that are correlated to baggage mishandling and ideally
indicate appropriate corrective actions. We want to find bags with higher
probability of being mishandled.
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Chapter 3. Mining Risk Factors in RFID Baggage Tracking Data

Table 3.1: Description of the attributes of FlightLeg records

No. Name (Data Type) Description
1 FromAirport (Symbolic) Departure airport of the correspond-

ing flight
2 ToAirport (Symbolic) Destination airport of the corre-

sponding flight
3 IsTransit (Boolean) A Boolean value representing

whether it is a transit bag or not for
the corresponding flight

4 Weekday (Symbolic) Weekday of the corresponding flight
5 FlightTimeHour (Symbolic) Departure hour of the corresponding

flight
6 DurationBeforeFlight (Inte-

ger)
Available time (in minutes) for the
bag to catch the flight

7 IsLongerStayFound
(Boolean)

If any stay duration between readers
at the FromAirport is longer than ex-
pected then it is true, otherwise it is
false

8 DelayInArrival (Integer) Delay in arrival (in minutes) of the
arrival flight for the transit bag

9 TotalBagInThatHour (Inte-
ger)

Total number of bags read during the
departure hour of the flight at Fro-
mAirport

10 Status (Symbolic) Status of the bag i.e., ’OK’ or ’Mis-
handled’

Definition 1 (Risk Score). Given a set of FlightLeg records F and an instance
f∈F, the risk score r ∈ R is the probability estimate (PE) score for the instance
f being Mishandled.

Definition 2 (Rank). Given a set of FlightLeg records F with assigned risk
scores, the rank of a record f ∈ F is the position of f in the list of F sorted by
risk in descending order, i.e., the record with the highest risk score is ranked
first.

We are interested in finding the best predictive model that can produce
correct risk scores and the most accurate ranking of our data set.

3 Solution

For producing a risk score as well as a ranking we take the help of a clas-
sification algorithm. In order to find a risk score, the system has to learn
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from a set of training records and assign a risk score to each test example.
We use the Status attribute of the FlightLegRecords as the class column. How-
ever, in our data set around only 0.8% of the records belongs to ’Mishandled
(MH)’ and the remaining 99.2% of the records belongs to ’OK’. With such
an imbalanced distribution between the classes, the learning process gets
biased towards predicting OK for almost all the instances by default and fre-
quently misclassifies the MH instances. This is because a classifier tries to
make the classification rules more general and considers the MH records as
noise and discards the MH records. As a result, this imbalance problem should
be handled wisely to overcome poor quality results otherwise produced by
the classifier. It is also essential to choose an appropriate classification al-
gorithm which will provide a good quality result for the given data set. To
achieve the intended quality results from the raw baggage tracking data, we
follow some essential steps. The steps of our solution are given in Fig. 3.4
and discussed in the following.

Data 
Fragmentation

Raw 
reading 
records

Convert to 
Stay 

records

Generate
FlightLeg 

records

Data 
Preparation

Apply mining 
techniques and 
build models

Find best 
model for each 

fragment

Mining Process

Analyze 
and

Interpret 
the 

patterns

Experiment 
and Analysis

Re-sample the 
training set for 

handling 
imbalance 
problem

Fragment 
the data set

Generate 
Training 

and test set 
for each 
fragment

Fig. 3.4: Outline of the steps

3.1 Data Preparation

Before applying any data mining technique and finding patterns, we need
to pre-process the source data and select and construct relevant features. In
this step, the raw baggage tracking records are converted into Stay records
and then into the FlightLegRecords. The structure of the tables and steps of
preparing such tables were already described in section 2.
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Chapter 3. Mining Risk Factors in RFID Baggage Tracking Data

3.2 Data Fragmentation

Fragments The baggage management problem varies based on different im-
portant factors like whether the bag is in the transit airport or not, the du-
ration of the transit, etc. Based on some important factors we have divided
the data set into 5 fragments and applied data mining algorithms on each
of the fragments for finding patterns specific to each fragment. Moreover, as
the data set is imbalanced, the fragmentation allows examining the imbal-
ance problems for specialized cases. Fig. 3.5 shows the different fragments
of our data set, and the numbers inside the square bracket show the num-
ber of records and mishandling rate for the corresponding fragment in our
experimental data. The combined records (CR) contain all the records of
FlightLegRecords table. CR is divided into transit records (TR) and non-transit
records (NTR). To see the effect of transit duration on the baggage mishan-
dling rate, we have drawn Fig. 3.6. It shows that almost all the bags (80-100
%) are mishandled when the transit duration is ≤31 (minutes). Based on
transit duration, we have divided the TR into two different fragments. Transit
records containing DurationBeforeFlight≤31 belong to fragment Shorter Tran-
sit Records (STR) and other transit records belong to fragment Longer Transit
Records (LTR). Both of these fragments help to analyze the shorter and longer
transit baggage separately.

Combined records (CR) 
[874 K, 99.2% OK]

Transit records (TR) 
[202K, 97.32% OK]

Non-transit records (NTR) 
[672 K, 99.77% OK]

Shorter transit records (STR) 
[3 K, 24.66% OK]

Longer transit records (LTR) 
[199K, 98.44% OK]

Fig. 3.5: Fragments of the data set

Training and test set Before applying data mining techniques, we have to
prepare the training and test data sets. For each of the discussed fragments,
we have one partition for training or learning (P1), and another partition for
testing (P2). Strategies for obtaining the training and test sets are explained
further in the experimental evaluation section.
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Fig. 3.6: Mishandling rate with change in transit duration

3.3 Mining Process

Handling imbalanced data by re-sampling As discussed earlier, that the data
set is highly imbalanced and learning directly from the data set will produce
very poor quality patterns. To remedy these imbalance problems, we use 2
different kinds of sampling for the training data set (P1):
Undersampling technique (US): in this technique a subset of P1 is created by
randomly deleting OK records until we reach equal number of records with
class OK and class MH.
Oversampling technique (OS): in this technique a superset of P1 is created by
copying some instances or generating new instances of MH records until we
obtain an equal number of records for class OK and MH. We use Synthetic
Minority Over-sampling Technique (SMOTE) [28] for getting OS data.

Mining Techniques We apply Decision Tree (DT), Naive Bayes classifier
(NB), KNN classifier (KNN), Linear regression (LIR), Logistics regression (LOR),
and Support vector machine (SVM) on the training set P1 of the combined
records CR with the sampling strategies discussed above. We also do the
same directly to P1 without re-sampling (WS). Then we use different types
of measures (discussed in the next paragraph) for finding the classification
and sampling techniques that provide the best model for our data set. Then
the chosen techniques are used for generating models for the remaining frag-
ments. Note that we have deliberately chosen not to consider association
rules mining technique to find out rules based on confidence and support
scores, since this is an unsupervised technique, while our problem is super-
vised. We are only interested in modeling our target variable w.r.t. the other
variables. In some sense, decision tree induction can be considered as a form
of rule induction; every path from the root to a leaf actually represents an
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association rule.
Finding the best technique In general, a confusion matrix as shown in

Table 3.2 is used for assessing the performance of a classifier. The confusion
matrix shows how many test records are correctly and incorrectly classified
for both positive and negative classes.

Table 3.2: Confusion Matrix

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Typically the performance of a classifier is evaluated by its predictive ac-
curacy defined by, Accuracy = (TP+TN)/(TP+FP+TN+FN). However, for an
imbalanced data set the predictive accuracy is not an appropriate measure.
For example, in our case an accuracy of 99% does not make sense, as it may
misclassify all the examples as OK (negative) regardless of whether a record
belongs to Mishandled (positive) or not. Here actually the classifier is 99% ac-
curate in predicting the negative instances and 0% accurate in predicting the
positive instances.

In an information retrieval system, precision is the measure which rep-
resents the relevance of the retrieved results, whereas recall represents the
coverage of the relevant instances in the result. Precision is calculated as, Pre-
cision = TP/(TP+FP), and recall (also known as TP rate) is calculated as, Recall
= TP/( TP + FN). A precision-recall (PR) curve is a good way to visualize the
precision for a given recall. The points of a PR curve are calculated based
on the generated scores of the classifier. The scores are sorted in descending
order and each score is considered as a threshold for calculating the value of
the precision and recall to draw a point in the PR curve.

The receiver operating characteristic (ROC) curve [68] is a well-known
visualization of the performance of a ranker. The X-axis of an ROC curve
represents false positive rate (FP rate = FP/(FP + TN)) and the Y-axis repre-
sents true positive rate (TP rate). So, it shows the trade-off between the TP
rate and FP rate. The Area Under the ROC Curve (AUC) is a popular measure
for evaluating the quality of ranking produced by a classifier [82]. The max-
imum value of an AUC can be 1 and it means that all the positive examples
are placed in the top in the ranking. A classifier with AUC = 0.5 represents a
random classifier that randomly guesses the classes.

In our cases, we consider two classes ’OK’ and ’Mishandled’ for classifica-
tion and consider ’Mishandled’ as the positive class. In our scenario, misclas-
sifying a Mishandled bag as OK (false negative) is more severe than misclas-
sifying an OK bag as Mishandled. As such we are specifically interested in
algorithms with a high recall on the Mishandled bags rather than in merely
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optimizing the accuracy of the classifier. In our case, we use the AUC as the
main measure for choosing the model that provides the best ranking. We use
precision-recall curves for finding which threshold provides higher precision
for a good amount of recall.

4 Experimental Evaluation

We use KNIME V2.9.2 [3] for modeling our experimental work flows, apply-
ing data mining algorithms, producing and visualizing the results obtained
from our data set. For preparing the data set from the source data we use
different kinds of SQL queries and C# programs.

We use real RFID-based baggage tracking data, collected from 13 differ-
ent airports with a total of 124 RFID readers deployed. There are 196 M raw
reading records for 1.4 M bags collected for the period from January 1, 2012
until December 2, 2013. In the original data set there are a lot of incomplete
and erroneous records, e.g., missing flight and route information, unusual
reading time, reading from unknown readers, etc. It creates problems while
extracting different information about a bag like transit information, status
at different stages, delay in departure and arrival, flight time hour, etc. As
a relatively clean data set is an essential part for data mining, the problem-
atic bags with the above mentioned incomplete information are filtered out
during conversion into stay records, leaving us with 728K bags with 2.68 M
stay records. Among these bags, some bags have stay records only in the
arrival airports, which do not create any instances in the FlightLegRecords ta-
ble. Finally, after converting stay records into FlightLeg records we have 671,712
bags with 874,347 flight leg records for mining. Among them only 0.8% of the
records belongs to the class Mishandled (MH), the remaining 99.2 % belongs
to the class OK. For each fragment, the total number of records and percent-
ages of OK are shown in Fig. 3.5. Among the fragments, only STR contains a
higher number of MH records than OK records. In the rest of this section, we
will show how different classification algorithms (discussed in Section 3.3)
perform on the combined records with different kinds of re-sampling tech-
niques. Then we will identify the best classification and sampling technique
and discuss the obtained patterns and analysis results from the data.

For the Decision Tree Induction, the C4.5 algorithm is used with the Gini
index quality measure and the MDL pruning method. To reduce the number
of branches, the minimum number of records per node is set to 100. For
the KNN classifier, we tried with K=5 and K=7. As in both of the cases the
results were similar, we finally report for K=7. Before applying KNN, linear
regression, logistics regression, and SVM the structure of the input data table
is changed as these algorithms do not work with categorical attributes. In
these cases, we convert each value of a categorical attribute into a separate

51



Chapter 3. Mining Risk Factors in RFID Baggage Tracking Data

column and put Boolean 0 or 1 accordingly. An example of such conversion
for Fig. 3.3c is shown in Table 3.3. For the linear regression and the logis-
tics regression, the attributes with continuous values are normalized into the
[0;1] interval. In our data set all the FromAirports are within the Schengen
territory [8] and a person traveling within this territory does not require any
special passport control. Unlike FromAirports we have too many values in
the ToAirport column which creates many branches in the decision tree and
for other classification algorithms this column become useless. To make the
ToAirport column useful and make the learned pattern interesting we catego-
rized the ToAirports into three types: Domestic, Schengen, and Others.

Table 3.3: Converting string values into columns of Fig. 3.3c

AAL CPH IsTransit Monday 9-10 10-11 ....

1 0 0 1 1 0 ...
0 1 1 1 0 1 ...

In our experiments, we split the available data into a training and a test
set based on the date of the record. All records before 15- May-2013 were
included in the training set (P1) [Total: 615K, OK: 99.2%] and all records
from that date or later were added to the test set (P2) [Total: 259K, OK:
99.18%]. The reason we did not rely on a standard cross-validation approach
is because there exist dependencies between the bags. Bags that were on the
same plane are more likely to have similar properties, as well as a similar class
label. Therefore spreading bags of the same flight over both the training and
test set may cause a biased estimation of the performance due to overfitting.
By dividing the data based on date, we can guarantee that the training set
and the test set are independent, and we get an unbiased estimate of the
performance of the mined models.

Table 3.4: The table below lists the AUCs with the different types of classification algorithms
and re-balancing/re-sampling techniques for the combined records (CR)

Re-sampling DT NB KNN LOR LIR

WS 0.88 0.83 0.71 0.82 0.78
US 0.87 0.83 0.79 0.85 0.79
OS 0.81 0.83 0.78 0.83 0.74

Overall from Table 3.4 in all the cases we can see that the AUCs are bet-
ter than a random classifier predicting by default class OK for every bag.
It shows that the re-balancing technique (i.e., WS, US, and OS) has a high
impact on the AUCs of some classifiers, whereas it has almost no effect for
the Naive Bayes classifier. It shows that the decision tree produces the high-
est AUC compared to all the other classifiers. The AUCs produced by the
over-sampling (OS) technique shows that it is not helping to produce a better
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Fig. 3.7: Precision-recall curves for CWSM, CUSM, and COSM tested on the test set of the
combined records (CR)

ranking in our data set. The performance of over-sampling is unpredictable
given that without knowing the precise process that generated the data, it
is hard to generate good synthetic examples. During our experiments, we
found that the SVM learning process did not produce any results within a
reasonable time (several days). So, we do not report any AUC with SVM.
As the decision tree produces the highest AUC (i.e., the best ranking), we
consider it as the best classifier for our scenario. For our further experiments,
we will only use the decision tree without re-sampling (WS) and with US for
producing other models. We call the model generated by the decision tree
without re-sampling (WS) the Combined Without-sampling Model (CWSM),
with US the Combined Under-sampling Model (CUSM), and with OS the
Combined Over-sampling Model (COSM). Fig. 3.7 shows the precision-recall
(PR) curves for CWSM, CUSM, and COSM when applied to the CR. It shows
that CWSM produces the best PR curve that always gives a higher precision
for the different values of recall compared to the other two models. It shows
that for 50% recall, we can get 34% precision. It means that the ranking pro-
duced by the decision tree contains 35% of the actual MH records among the
top 50% predicted MH records.

After finding the best classification algorithm and short listing the re-
balancing techniques we conduct further experiments on the different frag-
ments. We learn decision tree models for NTR, TR, STR, and LTR without
re-balancing (WS) and respectively they are called:
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Table 3.5: AUCs for models built from different fragments and testing on relevant fragments

Sampling Model CR NTR TR STR LTR

CWSM 0.88 0.74 0.79 0.79 0.66
NTWSM - 0.74 - - -

WS TWSM - - 0.67 0.72 0.5
STWSM - - - 0.73 -
LTWSM - - - - 0.61
CUSM 0.87 0.67 0.82 0.54 0.77
NTUSM - 0.73 - - -

US TUSM - - 0.85 0.5 0.78
STUSM - - - 0.77 -
LTUSM - - - - 0.78

• Non-transit Without-sampling Model (NTWSM)

• Transit Without-sampling Model (TWSM)

• Shorter Transit Without-sampling Model (STWSM)

• Longer Transit Without-sampling Model (LTWSM)

We also learn decision tree models for the fragments with US and respec-
tively they are called:

• Non-transit Under-sampling Model (NTUSM)

• Transit Under-sampling Model (TUSM)

• Shorter Transit Under-sampling Model (STUSM)

• Longer Transit Under-sampling Model (LTUSM)

For all the cases, the training and test sets are taken by filtering the data
from P1 and P2 of the CR. Then we apply the models CWSM and CUSM to
the test sets of all these fragments. We also apply all the other models to the
relevant fragments for finding the best models for each of the fragments. Ta-
ble 3.5 shows the AUCs for the models and cross checking with the different
fragments. It shows that the individual models give a reasonable AUC with
their own fragment. The AUCs with the TR shows that both fragmenting
and re-balancing helps to achieve better models for the transit cases. For the
NTR, models without re-balancing (i.e, CWSM and NTWSM) produce better
ranking. Fig. 3.8 shows the PR curves of different models when applied to
the NTR. It shows that both CWSM and NTWSM gives very similar precision
for different values of recall. So, from the AUCs and PR curves we can con-
clude that both CWSM and NTWSM can produce better ranking and patterns
for the NTR compared to the other models. Table 3.5 shows that CWSM pro-
duces the highest AUC for the STR, and the next closer AUC is produced by
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Fig. 3.8: Precision-recall curves for different models tested on NTR

STUSM. Fig. 3.9 shows the PR- curves of these two models with the STR and
both of them produces very similar curves and for the higher value of recall
at some points CWSM produces higher precision. So, we can conclude from
the AUCs and PR-curves that CWSM is the best model for the STR. For the
LTR, it is clear that the data must be re-balanced before learning for this type
of cases. Fig. 3.10 shows the PR curves for CUSM, TUSM, and LTUSM when
applied to the LTR. It shows that TUSM produces the best PR curve. So, from
the AUCs and PR curves we can conclude that TUSM is the most appropriate
model for the LTR.

The fragmentation helps to build specialized models; however, it also re-
duces the training data size. To see the effect of training data size on the
AUC, we learned decision tree models with the CR (without re-balancing)
with different data size and the results are reported in Fig. 3.11. It shows that
for lower numbers of training data set like 20K and 40K the AUCs are low
and with increase in the number of training examples it becomes stable at
0.88.

From the comprehensive experiments, we can conclude that for achieving
an unbiased and good ranking the training data may need to be re-balanced
before applying the data mining tasks. In our data set the decision tree C4.5
algorithm is the most appropriate choice for classification and ranking. In our
case, re-balancing with under-sampling helps us to achieve a better model for
the transit bags. We also learn that for a better ranking, it may require learn-
ing specialized models for different groups of data in the whole data set like
we did for non-transit, transit, shorter and longer transit data. In our data set
for the non-transit records, longer transit records, and shorter transit records
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Fig. 3.9: Precision-recall curves for different models tested on STR

the chosen models are CWSM, TUSM, and CWSM respectively. Moreover, it
is also learned that a larger number of training records also important for a
better and stable ranking.

Extracted Rules and Analysis: We now explore the patterns found for
the different fragments by their chosen classifier and the assigned probability
estimate scores (risk scores) of each pattern. For each fragment, we report the
top 5 rules with the highest risk scores followed by analysis. For reasons of
confidentiality, the airport names in a pattern have been changed to A1, A2,
..., A6.
For NTR by CWSM:
Rule1: If DurationBeforeFlight≤2min⇒ MH [Score: 0.98]
Rule2: If DurationBeforeFlight>2min AND FromAirport=A8 AND IsLongerStayFound=1
AND TotalBagInThatHour> 192⇒ MH [Score: 0.88]
Rule3: If DurationBeforeFlight>2min AND FromAirport=A8 AND IsLongerStayFound=1
AND TotalBagInThatHour≤192 AND DurationBeforeFlight≤65min⇒ MH [Score: 0.66]
Rule4: If DurationBeforeFlight>2min AND FromAirport=A8 AND IsLongerStayFound=1
AND TotalBagInThatHour≤192 AND DurationBeforeFlight>65min⇒ OK [Score: 0.27]
Rule5: If DurationBeforeFlight>2min AND FromAirport=A2 AND DurationBeforeFlight-
Flight >40min⇒ OK [Score: 0.12]
For STR by CWSM:
Rule1: If DurationBeforeFlight≤2min⇒ MH [Score: 0.98]
Rule2: If DurationBeforeFlight>2min AND FromAirport=A2 AND DurationBeforeFlight
≤25min⇒ MH [Score: 0.93]
Rule3: If DurationBeforeFlight>2min AND FromAirport=A3 AND DurationBeforeFlight
≤ 9min⇒ MH [Score: 0.91]
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Fig. 3.10: Precision-recall curves for different models tested on LTR

Rule4: If DurationBeforeFlight>25min AND FromAirport=A2 AND TotalBagInThatHour>
145⇒ MH [Score: 0.71]
Rule5: If DurationBeforeFlight > 29min AND FromAirport=A2 AND IsLongerStayFound=1
AND TotalBagInThatHour>115 AND DurationBeforeFlight ≤ 35min⇒MH [Score: 0.63]
For LTR by TUSM:
Rule1: If DurationBeforeFlight≤54min⇒ MH [Score: 0.88]
Rule2: If DurationBeforeFlight>54min AND IsLongerStayFound=1 AND DurationBefore-
Flight≤75min⇒ MH [Score: 0.64]
Rule3: If DurationBeforeFlight>75min AND IsLongerStayFound=1 AND DurationBefore-
Flight ≤ 95min⇒ OK [Score: 0.45]
Rule4: If DurationBeforeFlight>95min AND IsLongerStayFound=1⇒ OK [Score: 0.28]
Rule5: If DurationBeforeFlight>54min AND IsLongerStayFound=0⇒ OK [Score: 0.18]

The above rules show that available baggage handling time before the
flight departure is always an important issue regardless of the category of
the bag. For the non-transit bags the departure airport is a very important
factor and based on the FromAirport the other risk factors like check-in time of
the bag before the flight, longer stay between locations, and total number of
bags during the flight hour have high influence on the baggage management
problem. Rules 4 and 5 of the NTR can be discarded as they have very low
risk scores. For the STR, it is considered to be mishandled by default. The
risk factors and the effect of transition duration for the STR also vary based
the transit airport. The rules show that when the transit duration increases,
the other factors like a longer stay between baggage handling locations and
number of bags during the flight hour take influence on the baggage manage-
ment problem. In case of longer transit records, a record with DurationBefore-
Flight ≤ 54min is directly classified as MH regardless of any other condition.
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Fig. 3.11: AUC with different size of training data

This condition also reflects Fig. 3.6 discussed earlier, where the mishandling
rate suddenly started increasing fast around this point, and it is almost 100%
when the duration ≤ 31min. The rules of LTR also show that if DurationBe-
foreFlight > 54min then a longer stay at a location is highly responsible for
baggage mishandling. The rules 3, 4, and 5 of the LTR can be discarded due
to their low risk scores.

5 Related Work

Related work falls into two main categories. One is to pre-process unstruc-
tured RFID-based tracking data, and another one is to perform data mining
task on imbalanced data set. Warehousing and mining techniques of RFID
data from supply chain systems have been proposed in [41]. They convert
the raw RFID records into cleansed record containing the first and last read-
ing times of an object under the readers activation range. They took the
advantage of bulky movement of objects for compressing the huge volume
of RFID data. A data warehouse for analyzing RFID-based baggage tracking
data is proposed in [15], where the raw tracking records are converted into
StayRecords along with other dimensions. In [14, 16] the raw reading records
are converted into mapping records containing the entry and exit times of an
object at a constrained (e.g., conveyor belts of airport baggage management)
and semi-constrained indoor symbolic locations (e.g., large hall, rooms, etc.,).
In the present chapter, we further refine the stay records into FlightLeg records
that capture different aggregate information from the stay records including
other dimensional information for a higher level analysis.

Several papers address the problems of mining with imbalanced data
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set [28, 59]. The main approaches of dealing with imbalanced data are re-
sampling (includes under-sampling [56] and over-sampling [28]) and cost-
sensitive learning [30]. Measuring the performance of classifiers and com-
paring models specially for imbalanced data set scenario have been discussed
widely [28, 59]. We use AUC as the main measure [24, 43, 56] for comparing
the models as well as present precision-recall curve as there is a deep relation
between ROC and PR space [29]. In the present chapter, we apply several
data mining techniques with different re-balancing techniques for finding
best classifier and re-balancing techniques that can provide a good ranking
in our data set.

6 Conclusion and Future work

In this chapter, we proposed a detailed methodology for finding risk factors
from the imbalanced RFID airport baggage tracking data. We presented the
pre-processing steps for preparing the raw RFID tracking data into FlightLeg
records. We estimated the risk score of a bag being mishandled. In order
to compute the risk scores, we learned classifiers that assigned scores and
then evaluated the quality of the scores with the AUC measure. We dealt
with the imbalance problem, applied different data mining techniques, and
based on AUCs and Precision-Recall curves we found that the decision tree
is the best classifier for our data set. We fragmented the data set into transit,
non-transit, shorter and longer transit and obtained the appropriate mod-
els for the different fragments. We also found that re-balancing the data set
by under-sampling helps to achieve a better predictive model for the longer
transit bags. We conducted comprehensive experiments with real baggage
tracking data, and it showed that fragmenting and mining each of the frag-
ments separately was a right choice. The extracted patterns show that overall
available handling time for a bag is a critical factor and; more specifically,
a bag is considered to be a high risk if it has less than 54 minutes in the
transit airport. For non-transit bags, the factors depend on the departure air-
port. It was also found that a longer stay between baggage handling locations
and the total number of bags during the flight hour are important factors to
predict mishandling as well. The proposed methodology can help the avi-
ation industry with examining baggage management problems for further
improvement in the system.

Several directions for future work exist. First, a more thorough study of
the root causes for mishandling, which is non-trivial, given the low probabil-
ity of Mishandled events. Second, analyzing baggage handling sequences for
finding problems in the system. Third, finding spatio-temporal outliers from
the RFID baggage tracking data. Fourth, developing native support from the
data mining tools like automatic methods for finding the most appropriate
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models.
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Abstract

Technologies such as RFID and Bluetooth have received considerable attention for
tracking indoor moving objects. In a time critical indoor tracking scenario such as
airport baggage handling, a bag has to move through a sequence of locations until it is
loaded into the aircraft. Inefficiency or inaccuracy at any step can make the bag risky,
i.e., the bag may be delayed at the airport or sent to a wrong airport. In this chapter,
we propose a novel probabilistic approach for predicting the risk of an indoor moving
object in real-time. We propose a probabilistic flow graph (PFG) and an aggregated
probabilistic flow graph (APFG) that capture the historical object transitions and the
durations of the transitions. In the graphs, the probabilistic information is stored in a
set of histograms. Then we use the flow graphs for obtaining a risk score of an online
object and use it for predicting its riskiness. The chapter reports a comprehensive
experimental study with multiple synthetic data sets and a real baggage tracking
data set. The experimental results show that the proposed method can identify the
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risky objects very accurately when they approach the bottleneck locations on their
paths and can significantly reduce the operation cost.
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1 Introduction

Technologies such as RFID and Bluetooth enable a variety of indoor, outdoor,
and mixed indoor-outdoor tracking applications. Examples of such applica-
tions include tracking people’s movement in large indoor spaces (e.g., airport,
office building, and shopping malls), airport baggage tracking, item move-
ment tracking in supply chains, and package tracking in logistics systems.
During the movement of the objects, these tracking applications record the
symbolic locations of the objects at different time points. For example, con-
sider an RFID baggage tracking application where RFID readers are deployed
at the different baggage handling locations such as check-in, screening, sorter,
etc. Each reader has a very limited tracking range that covers a small por-
tion of the location. If an object containing an RFID tag moves from check-in
to the sorter, this produces two consecutive tracking records of the object
location in different places. Due to limitations in indoor positioning tech-
nologies, the locations between these two records are not obtained. We call
this type of tracking Symbolic Location Tracking (SLT). An SLT system can
generate a massive volume of tracking data. This massive tracking data can
be very useful for analyses such as finding risk factors, problem discovery,
and decision-making. For example, in an airport baggage handling system, a
bag can be left behind in the airport (i.e., failed to catch the intended flight) or
can be sent to a wrong airport. In the baggage tracking system, the baggage
tracking data can be used to extract interesting patterns and find the reasons
for baggage mishandling. In a supply chain system, the item tracking data
can be used for finding the factors that lead items being returned or getting
rot. Some work has been carried out for the efficient management of such
tracking data and to analyze them in the offline scenario [16, 36]. However,
using such data for time critical online applications, such as online bags risk
prediction in the airports can be very useful for getting real-time notifications
for immediate handling of the risky bags. Moreover, online items risk dis-
covery in supply chain and production systems, online item risk prediction
in logistics systems, traffic jam prediction, etc., can also benefit from the in-
sights obtained from analyzing the online data. An example of a real-time
analysis request can be: "notify the baggage management team whenever a
bag becomes risky during its processing time at Aalborg airport". Another
request can be: "which are the 5 current bags with the highest risk of not
reaching their plane on time?".

The chapter has several contributions. First, to the best of our knowl-
edge this is the first chapter to propose a method for online risk prediction
for indoor moving objects. Second, we propose the concepts of least du-
ration probability (LDP), aggregated LDP (ALDP), LDP histogram (LDPH),
and ALDP histogram (ALDPH) where the histograms store probabilistic in-
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formation about the transition times of the historical objects. We propose a
probabilistic flow graph (PFG) and aggregated PFG (APFG) that capture the
flows of objects from one symbolic location to another and the edges of the
graphs contain corresponding LDPH and ALDPH, respectively. Third, an
online risk prediction (ORP) algorithm is proposed that uses the PFG and
APFG for obtaining a risk score for an online indoor moving object. The risk
score is used for predicting the riskiness of the object during its processing.
Fourth, as the total available processing time of an object is an important fac-
tor, we propose an approach for normalizing the available processing time
with the stay durations of objects at different locations for obtaining a better
risk score. Fifth, we present a cost model for obtaining the best risk score
threshold that can maximize the overall benefit of identifying and removing
the risky objects. Sixth, the chapter reports a comprehensive experimental
study with several synthetic data sets following different data distributions
and a real baggage tracking data set. The results show that the proposed
method can produce a very accurate risk score and identify the risky objects
very precisely in different types of data distributions.

The remainder of the chapter is organized as follows. Section 2 presents
the SLT systems and tracking data. Section 3 discusses the problem formula-
tion. Section 4 presents the solution and probabilistic flow graph. Section 5
presents online risk prediction steps and the algorithm. Section 6 reports the
experimental results. Section 7 reviews related work. Section 8 concludes
and points to future work.

2 Preliminaries

SLT Systems. In an SLT system, tracking devices are strategically deployed at
different fixed symbolic locations, such as different doors in an office space,
between sections in an airport, different locations in airport baggage man-
agement, etc. The objects contain tags or devices that can be tracked by the
tracking devices. For example, in the case of RFID technology, RFID readers
and RFID tags are used; in the case of Bluetooth systems, Bluetooth access
points and Bluetooth devices are used. After deployment of the tracking
devices, the positions are recorded in the database.

Fig. 4.1 shows an example of airport baggage tracking scenario. The up-
per part of the figure shows the top level path of a bag that traveling from
Aalborg Airport (AAL) to Brussels Airport (BRU) via Copenhagen Airport
(CPH). The bag has to go through several baggage processing steps inside
each airport. The bottom part of the figure shows the baggage processing
stages inside AAL. The circles represent the baggage tracking locations where
RFID readers are deployed for baggage tracking. Before handing over a bag
into the system, an RFID tag with some encoded information about the bag
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and the route is attached to the bag. Suppose the bag is intended for Flight1
and the preplanned path for the bag is: "check-in → Screening→ Sorter1 →
Gateway1→ BeltLoader1". Mismanagement or inefficiency at any one of these
transitions may result in the bag being mishandled, i.e., the bag might miss
the flight due to delay, or the bag might be sent to wrong flight. While pass-
ing through the different locations, the bag enters the activation range of an
RFID reader, it is continuously detected by the reader with a sampling rate,
and it generates raw reading records with the form: 〈obj, Loc, t〉. It means that
a reader placed at location Loc detects a moving object Obj in its activation
range at time t. An example set of raw reading records in an SLT system is
shown in Table 4.1.

Check-in Desks

l2:Screening

l3:Sorter1

l4:Sorter2 l6:Gateway2

l5:Gateway1

l8:BeltLoader2

l7:BeltLoader1Wagon

Wagon

Wagon

Wagon

Aalborg Airport
(AAL)

Copenhagen Airport
(CPH)

Brussels Airport
(BRU)

Enter
ExitEnter Exit Enter Exit

l1: Check-in
Flight1

Flight2

Fig. 4.1: Example SLT scenario in airport baggage tracking

Table 4.1: Raw Tracking Data

Obj 〈 Obj, Loc, t 〉
o1 (o1, l1, 1) (o1, l1, 3) ( o1, l1, 5) (o1, l2, 12) (

o1, l2, 14) (o1, l3, 25) (o1, l3, 27) ...
o1 ( o2, l1, 10) ( o2, l1, 12) (o2, l2, 26) o2, l3, 32)

(o2, l4, 39) (o2, l4, 41) (o2, l6, 46) (o2, l8, 55)
...

... ...
o1000 ...

StayRecords. As seen, the raw readings contain many redundant records.
If an object stays for t time units under the activation range of a tracking
device, it can generate t/sampling rate number of records for that stay. De-
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pending on the application scenario, the stay of an object under the activa-
tion range of a reader can vary. For example, in an airport baggage tracking
scenario a bag continuously moves from one location to another and usually
it stays very short period under the activation range. Whereas, in a supply
chain scenario an object can stay long (e.g., few hours, days) on a shelf and
can stay for a long period under a reader. However, in any SLT application,
an object moves from one symbolic location to another, and it is essential to
know the total duration spent by the objects between the locations. We create
a table StayRecord〈Obj, L f rom, Lto, ts, te, Dur〉, which represents that an object
Obj first appeared at location L f rom at time ts and then first appeared at the
next location Lto at time te. It took Dur time to go from the reader at L f rom
to the reader at Lto or in another way it spent Dur time between L f rom and
Lto. Table 4.2 shows an example of StayRecord table constructed for the raw
reading records shown in Table 4.1.

Table 4.2: Stay records from Table 4.1

Obj StayRecord〈Obj, L f rom, Lto, ts, te, Dur〉
o1 (o1, l1, l2, 1, 12, 11) (o1, l2, l3, 12, 25, 13)
o2 (o2, l1, l2, 10, 26, 16) (o2, l2, l3, 26, 32, 6) (o2,

l3, l4, 32, 39, 7) (o2, l4, l6, 39, 46, 7) (o2, l6, l8,
46, 55, 9)

... ...
o1000 (o1000, ..., .., ..., ..., ...) ...

3 Problem Formulation

We consider an application scenario where an object can be processed in a
single system or multiple subsystems throughout its journey from the origin
to the final destination. In the case of subsystems, when an object is reg-
istered in its origin, its identifier and the global route are shared within all
the subsystems for further processing. Depending on the application sce-
nario, an online risk prediction system can monitor the object throughout its
entire journey from origin to final destination or it can monitor the object
individually within each subsystem between its entry and exit times within
that subsystem. For example, in Fig. 4.1, the global path of the object is
AAL→CPH→BRU. The overall processing of the bag should be processed by
the three subsystems, i.e., first at AAL, second at CPH, and third at BRU.
Whenever the bag first registered at AAL, its identifier, route and flight infor-
mation is shared to CPH and BRU, so that they can recognize the bag when
it appears to their systems. In this context, each subsystem has its separate
online risk prediction system. Whenever a bag first detected by an RFID
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reader at AAL, the bag become online to the local risk prediction system and
it starts monitoring the bag until it exits AAL, or until it is confirmed that the
bag missed its flight. Similarly, when the bag is detected at CPH, it becomes
online at CPH and so on.

Definition 1. Online Object. An object is considered as an online object
to a system/subsystem at time t, if t falls in the time interval [tenter, texit],
where tenter is the first time the object tracked in a tracking device in the
system/subsystem and texit is the last time the object tracked by the last
tracking device in the system/subsystem or the time within which the object
is expected to exit the system/subsystem.

Problem Statement. Given a set of stay records R and a set of online
moving objects O, we are interested in building a predictive model from R
that can predict, as early as possible, whether an object oi∈O is at risk in
real-time.

For example, in baggage tracking, the model should be able to predict
whether a bag going through the baggage handling stages is at risk of being
delayed at the airport and the prediction should be made as early as it sees
the bag is being abnormally differed compared to other bags.

4 Solution

4.1 Solution Outline

The overall outline of the data collection and risk prediction steps is shown
in Fig. 4.2. The online object tracking data stream is passed into two sec-
tions. One of them stores the data offline for future analysis and model
building purpose and another uses it during the online risk prediction pro-
cess. The offline/historical reading records are processed and converted into
StayRecords. The stored StayRecords are used for building the probabilistic
model. The model, raw data stream and the preplanned path of the objects
are used by the Online Risk Prediction(ORP) for deciding which objects are at
risk. Finally, risky objects are notified by the ORP for special handling.

Let, L = {l1, l2, l3, ..., ln} be the set of locations available in the data set. A
set of durations taken by the transitions from location li to lj be Di,j={d1, d2,
d3, ... , dn}.

Definition 2. Least Duration Probability (LDP). A least duration probability
(LDP) for a movement li to lj with threshold duration dk∈Di,j is defined as,

LDP(li, lj, d>k ) =
Count(li, lj, d>k )

Count(li, lj)
(4.1)
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Fig. 4.2: Outline of the overall system

In Eq. (4.1), Count(li, lj, d>k ) = total number of objects that took at least dk
duration between li to lj and Count(li, lj) = total number of objects that have
a transition from li to lj.

Definition 3. Least Duration Probability Histogram (LDPH). A least dura-
tion probability histogram (LDPH) for transitions between li to lj is a his-
togram with transition durations Di,j on the X-axis, and LDPs for the transi-
tions on the Y-axis.

Table 4.3 shows an example summary of transitions from the stay records
in Table 4.2. Fig 4.3 shows the different LDPHs for the transitions shown in
Table 4.3. For example in Fig. 4.3a, LDP=0.7 represents that the probability
of transition from l1 to l2 with a duration ≥ 16 is 0.7. The figure also shows
that the LDP for duration 28 is very low (0.02).

4.2 Probabilistic Flow Graph (PFG)

We use a probabilistic flow graph (PFG) for modeling the movement of ob-
jects from one symbolic location to another. The PFG is formally defined by
a labeled directed graph G = (L, E, D, H, lbE), where:

1. L is the set of locations where each location is represented as a vertex
in G.

2. E is the set of directed edges: E = {(li,lj) | li, lj∈L}.
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Table 4.3: Transition Summary (C stands for Count)

Transition
tr (li → lj)

Dur (dk) C(li) C(tr) C(tr,d>k ) LDP (tr,d>k )

13 1000 1
l1 → l2 16 1000 1000 700 0.7

20 300 0.3
28 20 0.02
8 1000 1

l2 → l3 10 1000 1000 580 0.58
17 50 0.05
50 500 1

l3 → l4 65 1000 500 250 0.5
95 25 0.05
60 470 1

l3 → l5 70 1000 470 250 0.53
98 50 0.11
70 480 1

l4 → l6 75 500 480 280 0.58
99 30 0.06

l5 → l7 40 470 460 460 1
50 250 0.54

l6 → l8 45 480 455 455 1
48 200 0.44

3. D is the set of durations. Di,j ⊆ D represents the set of durations taken
by objects for the transitions from li to lj.

4. H is the set of LDPHs, where an LDPHi,j ∈ H is computed from the
number of transitions from location li to lj and the durations Di,j ⊆ D.

5. lbE is a function lbE: E→H that labels an edge by an LDPH, h ∈ H. An
edge (li, lj)∈E is labeled by an LDPH LDPHi,j∈H, where LDPHi,j is the
LDPH from li to lj.

Fig. 4.4 shows the PFG constructed from the transition summary shown
in Table 4.3. Two LDPHs of Fig. 4.4 is shown in Fig 4.3. However, all the data
for rest of the LDPHs are available in the LDP(tr, d>k ) column of Table 4.3.

5 Online Risk Prediction (ORP)
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Fig. 4.3: LDPHs for the transitions l1→l2 and l2→l3 in Table 4.3
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l1

LDPH1,2

Fig. 4.4: Probabilistic flow graph (PFG)

5.1 ORP Overview

In an SLT system, the movements of the mishandled objects are expected to
differ from the usual movement. They can take a wrong transition or can stay
longer between planned locations. As the PFG is learned from the historical
data, we use it for obtaining a probability score of an online object and use
the score for predicting the unusual movements.

We consider a scenario, where the path of a given online object is prede-
fined. For example, in case of the baggage tracking, all the bags intended for
a particular flight SK123 should follow the same path sequence starting from
the check-in desk up to the belt loader to the aircraft (e.g., l1→l2→l3→l5→l7).
If the object does not follow its preplanned path, it is triggered as risky. How-
ever, an object following its preplanned path, but unusual longer duration
for a transition can make the object risky. We use two different thresholds
to decide the riskiness of an object. The method of finding the threshold is
discussed at the end of this section. For each transition li→lj in the PFG, we
use an LDP threshold LDPth(li, lj), that helps to get the maximum acceptable
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stay duration (Durmax(li, lj)) of an object between li and lj. If an object spends
equal or more than Durmax(li, lj) between li and lj, the object is considered
at risk. Another threshold is called risk score threshold (RSth). After each tran-
sition of an object o, its combined duration probability (CDP) for the so far
traversed path is computed by Eq. (4.2). In Eq. (4.2), n is the total number of
transitions of o and LDP′i is the LDP for the stay duration of o obtained from
the LDPH for o’s ith transition. The value of CDP is converted into risk score
(RS) by, RS = 1-CDP. If RS≥RSth, we trigger that o is at risk. Maintaining the
value of RS helps to find the top-k risky online objects in the system.

CDP(o) =
n

∏
i=1

LDP′i (4.2)

Generally, when a PFG is learned from a large data set, the LDPHs should
contain most of the possible stay durations for the upcoming new objects.
However, if a new object o takes d duration for a transition li→lj and d is not
directly available in LDPH( li,lj), the value of LDP (li, lj, d>) is computed in
one of the following ways:

• If d < d f irst (the first entry of LDPH(li,lj)), then LDP (li, lj, d>) = LDP(li,
lj, d>f irst).

• If d > dlast (the last entry of LDPH(li,lj)), then LDP (li, lj, d>) = LDP(li,
lj, d>last).

• If d@ and dA are two consecutive entries in LDPH( li,lj) and d@ < d <

dA, the value of LDP (li, lj, d>) is computed by the linear interpolation
of the LDPs as shown in Eq. (4.3). The equation computes the rate of
decrease in the LDP between durations d@ and dA and then calculates
the total expected probability change for d from the distance between d
and d@. After that the expected probability change is subtracted from
LDP(li, lj, d>@) to get the expected value of LDP (li, lj, d>).

LDP′(li, lj, d>) = LDP(li, lj, d>@)−
LDP(li, lj, d>@)− LDP(li, lj, d>A)

dA − d@
× (d− d@)

(4.3)
Furthermore, as the new online object becomes part of the historical data

after its operation, its new duration is included in the PFG next time when
a new model is built. Now coming to the ORP, if LDPth(li, lj) is not di-
rectly available from LDPH(li, lj), we use Eq. (4.4) for computing the Durmax
for that transition. Eq. (4.4) is derived from Eq. (4.3). The equations are
mapped by considering, d = Durmax(li, lj) and LDP(li, lj, d>) = LDPth(li, lj).
The durations d@ and dA are retrieved from LDPH(li, lj) where they are
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the keys for two consecutive LDPs LDP@ and LDPA, respectively (where
LDP@<LDPth(li, lj)<LDPA).

Durmax(li, lj) =
⌈

d@ +
LDP(li, lj, d>@)− LDPth(li, lj)

LDP(li, lj, d>@)− LDP(li, lj, d>A)
× (dA − d@)

⌉
(4.4)

For example, consider an object o following a path: l1
17−→l2

17−→l3
60−→l5

40−→l7.
The labels in the arrows represent the duration taken for the transitions. Let
us consider that the object followed its preplanned path. As the LDPH(l1,l2)
has no entry for 17, its expected value by Eq. (4.3) is, LDP (l1,l2,17>) = 0.7-(0.7-
0.3)/(20-16)×(17-16) = 0.6. The full CDP for the object = LDP(l1, l2, 17>) ×
LDP(l2, l3, 17>) × LDP(l3, l5, 60>) × LDP(l5, l7, 40>) = 0.6×0.05×1×1 = 0.03.
Let us consider that, RSth = 0.8 and LDPth for each of the transitions is also
0.2. So, Durmax(l1, l2) by Eq (4.4) = d20+ (0.3− 0.2)/(0.3− 0.02)× (28− 20)e
= 23. Similarly, Durmax(l2, l3)=15. When o completes its first transition (i.e.,

l1
17−→l2), it passes both of the LDP and RS checks for that transition as the

spent duration 17<Durmax = 23 and RS = 1-CDP = 1-0.6 = 0.4�RSth=0.8.
So, the bag is not risky until the current state. When o reaches at l3 (i.e.,

l2
17−→l3), the spent duration 17≮Durmax = 15. Furthermore, the CDP of o up

to this location is 0.03 (0.6×0.05). So, RS = 1-0.03 = 0.97≥RSth=0.8. So, o is
considered as a risky object after this transition in terms of both Durmax and
RSth.

5.2 ORP Steps

The overall processing steps of the ORP are shown in Fig. 4.5. The process
continuously waits for new readings. When a new reading arrives, it checks
whether the object oi in the reading is new. If oi is new, it is inserted into a
hash table (HT) and its preplanned path is retrieved from the system. If oi
does not follow its preplanned path, it is marked as risky due to the wrong
location. However, if the path is correct, its CDP is initialized to 1. Based on
the LDPth of the current location lcurr and the planned next location lpnext , a
time trigger TToi (oi,tstart,temax ) is added with oi, where tstart is the first reading
time of oi at lcurr and temax =tstart+Durmax. As mentioned earlier, the value of
Durmax is extracted from the corresponding LDPH. If oi remains between
lcurr and lpnext until the clock time reaches temax , the time trigger TToi is raised
and the trigger mark oi as risky. Coming back to the starting point, if the
new reading contains an old object, the process checks whether the object
has changed its location. If it is in the same location, the process continues
waiting for a new reading and a raise of a time trigger. However, if the object
changes its location, its planned location is checked and based on that its
further processing such as CDP computation, RS checking, and time trigger
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Fig. 4.5: Online risk prediction steps

update, etc., are performed. The time trigger allows a fast notification about
a risky object as the process does not have to wait to complete the transition.

Algorithm 3 shows the processing of the ORP. It takes a hash table, RSth,
LDPth list, and PFG as the input and update the hash table as the result. The
algorithm continuously waits for a new reading or a raise of a time trigger
(lines 1-2). If a new reading arrives, based on the data in the new reading,
it updates the hash table HT. First, it checks whether the object in the new
reading is newly arrived in the system (line 5). If the object is new, it is
inserted in HT (line 6), and its preplanned path is checked (lines 6-9). If the
object is in the planned location, it is initialized to a safe object (lines 11-12).
Based on the next planned location and LDPth, its Durmax is extracted from
the PFG (lines 13-14), maximum clock time threshold temax is calculated (line
15), and a time trigger is registered for the object (line 16). If the new reading
does not contain a new object, it checks whether the object has changed its
location (line 17). If the object has not changed its location, the algorithm
continues waiting for a new reading or a raise in a time trigger. Conversely, if
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the object changes its location in the new reading, its planned path is checked
(lines 18-21). If it is in the planned path, its time trigger is updated with the
new information ( lines 22-25). After that, its stay duration for the transition
is computed, CDP and RS are calculated, and the RS is checked with the
RSth (lines 26-31). Besides, if a time trigger is fired, the corresponding object
is notified as risky (lines 33-35).

5.3 Recovery Scenario

The PFG cannot capture the possibility of a recovery of an object from its
risky state. For example, an object might take long duration between loca-
tion l1 to l2 that makes it risky. However, it might be handled very quickly in
its next transition l2 to l3 that recovered the object from being mishandled. To
capture this, we modify the PFG into aggregate probability flow graph (APFG).
Here, we additionally maintain an aggregate LDPH (ALDPH) for each path se-
quence S=lili+1li+3...ln, where li must be the first tracking location of at least
one object in the data set and i<n<=p (the length of the path sequence).
An ALDPH (S) contains all the aggregate LDPs (ALDP) for S. An ALDP(S,d>)
represents the probability of taking at least d duration by an object for com-
pleting the path sequence S. The value of an ALDP for the path sequence S
with a total duration d is computed by Eq. (4.5). In Eq. (4.5), Count(S, d>)
is the number of objects taking at least d duration to complete the path se-
quence S and Count(S) is the number of objects that traveled through path
S. Table 4.4 shows the ALDPs and data for ALDPHs for the path from l1 to
l7 in our example scenario.

ALDP(S, d>) =
Count(S, d>)

Count(S)
(4.5)

Table 4.4 shows the ALDPs and data for ALDPHs for our example sce-
nario. As the table grows, we skip providing detail for some of the paths.

The processing of the ORP with the APFG is very similar to the algorithms
discussed above with some additional conditions and operations. First, after
each transition, in addition to the CDP computation, the ALDP for the trav-
eled path is extracted from the corresponding ALDPH. If CDP<ALDP, then
CDP is updated with the value of ALDP to make the score less risky. Also
note that for the first transition the value ALDP and LDP is same. Second,
instead of using LDPth for each transition, we maintain an ALDPth(si) for
each path sequence si for each of the preplanned paths. In our example sce-
nario, for the path from l1 to l7, there will be ALDP thresholds for each of the
path sequences mentioned in Table 4.4. Third, the concept of Durmax(li, lj) is
changed to Durmax(si), where Durmax represents the maximum allowable du-
ration for an object to complete the path sequence si. The value of Durmax(si)
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Algorithm 3: ORP(HashTable HT, RSth, LDPThresholdList LDPth, PFG)
Result: Hash Table with Risk Status
1 while true do
2 wait for a new reading or a raise in a time trigger;
3 if a new reading rr arrives then
4 oi ← rr.Obj; lcur = rr.Loc;
5 if HT[oi] = NULL then
6 HT.Insert(oi); PP[oi]←PlannedPath(oi);
7 if lcur 6= PP[oi].POP() then
8 HT[oi].status← "Risky";
9 HT[oi].Reason←"WrongTran"; continue;

10 HT[oi].Loccur ← HT[oi].Locprev ← rr.Loc;
11 HT[oi].ts←rr.t;HT[oi].CDP←1;HT[oi].RS←0;
12 HT[oi].status←HT[oi].Reason←"NotRisky";
13 lpnext←HT[oi].LocpNext←PP[oi].POP();
14 Durmax←PFG.GetDur(LDPth, lcur, lpnext));
15 MaxTimeEnd temax ← rr.t+Durmax;
16 TT[oi]← TimeTrigger(oi, rr.t, temax );

17 else if HT[oi].Locprev 6= lcur then
18 lpcur ← PP[oi].POP();
19 if lcur 6= lpcur then
20 HT[oi].status← "Risky"; HT[oi].RS← 1;
21 HT[oi].Reason←"WrongTran"; continue;

22 lpnext←HT[oi].LocpNext←PP[oi].POP();
23 Durmax←PFG.GetDur(LDPth, lcur, lpnext ));
24 MaxTimeEnd temax ← rr.t+Durmax;
25 TT[oi]← TimeTrigger(oi, rr.t, temax );
26 SpentDuration dur← rr.t - HT[oi].ts;
27 HT[oi].Loccur←lcur; HT[oi].ts←rr.t;
28 HT[oi].CDP←HT[oi].CDP×LDP(HT[oi].Locprev, lcur, dur>);

HT[oi].RS← 1- HT[oi].CDP ;
29 if HT[oi].RS ≥ RSth then
30 HT[oi].status← "Risky";
31 HT[oi].Reason← "High RS";

32 HT[oi].Locprev ← lcur;

33 else if a time trigger is raised for the object oj then
34 HT[oj].status← "Risky";
35 HT[oj].Reason← "Long Stay Triggered";

can be extracted from the ALDPH(si) based on the ALDPth(si). Fourth, the
concept of the time trigger is updated with the concept of ALDP and its
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Table 4.4: Path Summary

Path (S) Dur (d) Count(S) Count(S,d>) ALDP(S,d>)
21 600 1
23 500 0.83

l1 → l2 → l3 24 600 300 0.5
30 150 0.25
33 30 0.05
81 470 1
83 415 0.88

l1 → l2 → l3 → l5 84 245 0.52
94 470 195 0.41
100 120 0.26
121 50 0.11
128 20 0.04
123 460 1
131 290 0.63

l1 → l2 → l3 → l5 134 235 0.51
→ l7 144 460 145 0.32

150 110 0.24
171 40 0.09
178 10 0.02
74 100 1

l1 → l2 →l3 → l4 83 100 80 0.8
86 50 0.5
119 5 0.05

l1 → l2 → l3 → l4 →
l6

- - - -

l1 → l2 → l3 → l4 →
l6 → l8

- - - -

24 400 1
26 385 0.96
28 195 0.49

l1 → l2 → l4 30 400 170 0.42
36 35 0.09
38 25 0.06
41 15 0.04

l1 → l2 → l4 → l6 - - - -
l1 → l2 → l4 → l6 →
l8

- - - -
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structure is changed to TToi (si, lpnext , tstart, temax ), where si is the so far com-
pleted path sequence by oi, lpnext is the next planned location, tstart is the
timestamp when oi first tracked in the system, and temax =tstart+Durmax(spnext),
where spnext is the path sequence up to lpnext (i.e., si → lpnext ). Then the rest of
the procedure is same as the above algorithm.

Consider the example discussed above where an object o followed a path:

l1
17−→l2

17−→l3
60−→l5

40−→l7. In the above example, o was marked as risky when it

completed the path up to l3 (i.e., l1
17−→l2

17−→l3). From Table 4.4, the ALDP up
to l3 is 0.05 (as the total duration=17 + 17 = 34). In terms of both LDP and
ALDP, o is at risk at that point. After the next transition (i.e., up to l5), the
ALDP is 0.41, thus RS = 1- 0.41 = 0.59 �RSth=0.8 (as total duration = 17 + 17
+ 60 = 94). However, the value of CDP up to l5 is 0.6 × 0.05 ×1 = 0.03. The
value of CDP either decreases or remains same while multiplying new LDPs.
The new score shows that the object recovered from its risky state as it was
processed quickly between l3 and l5. So, we update the CDP with the value
of ALDP and mark o as not risky. When o moves further, the time trigger
for o is also updated based on the traversed path sequence, preplanned path,
and ALDPth.

5.4 Time Constrained ORP

Generally, a slow processing of an object at a location makes the object risky.
This slow processing could also result in a dense location or traffic jam that
could hamper the processing of the upcoming objects. However, there are
many applications where an object has to reach a particular location within
a given timestamp. For example, in the baggage tracking, a bag has to be
loaded in the aircraft before the scheduled flight departure. So, the available
duration before the flight departure is an important factor for baggage risk
prediction. If a bag starts its processing well in advance before the flight de-
parture, it is less risky, even if it stays longer for a transition. Conversely, a
bag having a short duration before the flight makes it risky, even it is pro-
cessed relatively quickly in its transitions. So, the stay duration should be
normalized with the available processing time and use the normalized dura-
tion for taking the corresponding ALDP to reflect the actual riskiness of the
object.

Let us consider, tenter be the first time an object o detected in the system
and t f inal be the maximum timestamp when o should reach its final reading
point/location. So, the total available duration for o is da=t f inal-tenter. The
expected average duration of travel of an object is extracted from the ALDPH
for the full preplanned path of the object. We consider de be that expected
duration extracted from the ALDPH with ALDP = 0.5. After each transition of
o, its normalized total stay duration for the so far traversed path is computed
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by Eq. (4.6). In Eq. (4.6), duri is the stay duration of o for its ith transition. In
the equation, the value of offset is computed initially by subtracting the value
of da from de. Then, after the kth transition of o, its total travel time up to
that transition is added to the offset for obtaining the normalized duration.
So, instead of taking the ALDP directly for the total duration dt, we take the
ALDP for dn. Depending on the value of da and de, the value of offset as well
as dn can be negative. As discussed earlier about picking the LDP from an
LDPH for a given duration, the value of ALDP for dn is also taken in the
same way from the corresponding ALDPH.

dn(o) = Offset +
k

∑
i=1

duri, where offset = (de − da) (4.6)

O1, O2 : O3 :l1 l2 l3 l5 l7
17 17 94 50 l1 l2 l3 l5 l7

17 17 49 40

l1 l2 l1 l2 l3 l1 l2 l3 l5 l1 l2 l3 l5 l7

O1:da = 200, Offset 

= 134-200 = -66 

dn = -66+17 
= - 49

ALDP = 0.6, 
ALDPn = 1

dn = -66 + 34
 = -32

ALDP = 0.05, 
ALDPn = 1

dn = -66 + 128
 = 62

ALDP = 0.04, 
ALDPn = 1

dn = -66 + 178
= 112

ALDP = 0.02, 
ALDPn = 1

O2:da = 144, Offset 

= 134-144 = -10 
O3:da = 100, Offset 

= 134-100 = 34 

dn = -10+17 
= 7 

ALDP = 0.6, 
ALDPn = 1

dn = -10 + 34
 = 24

ALDP = 0.05, 
ALDPn = 0.5

dn = -10 + 128
 = 118

ALDP = 0.04, 
ALDPn = 0.13

dn = -10 + 178
= 168

ALDP = 0.02, 
ALDPn = 0.12

dn = 34+17 
= 51

ALDP = 0.6, 
ALDPn = 0.02

dn = 34 + 34
 = 68

ALDP = 0.05, 
ALDPn = 0.05

dn = 34 + 83
 = 117

ALDP = 0.88, 
ALDPn = 0.14

Already delayed 
in the previous 

step

O1

O2

O3

Fig. 4.6: Examples of normalizing durations

For example, consider an object o1 following its preplanned path and the

stay durations for the transitions are: l1
17−→l2

17−→l3
94−→l5

50−→l7. o1 has a total of
200 seconds to reach l7 from l1. So, da=200 sec. From Table 4.4, de=134 (as
ALDP for 134 is 0.51). So, offset=134-200 = -66. Now, for the first transition

l1
17−→l2, dn = -66 + 17 = -49. So, from Table 4.3, the value of ALDP or LDP for

the transition is 1. It shows that instead of taking the actual LDP for duration
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17 (which was 0.6 as computed earlier), we take the LDP for normalized du-
ration. As o has plenty of time to reach l7, the normalization makes the object
less risky. After the next transition to l3, dn = -66+17+17 = -32. So, the ALDP
after normalization is 1. Before the normalization, the ALDP was 0.05. How-
ever, after normalization the score says that the object is completely safe until
that transition. Similarly, when o1 reaches at l7, the total stay duration is 178
and the normalized duration is 112. Thus, before normalization the ALDP
was 0.02 and after normalization ALDP is 1. It shows that, even o1 takes
long for its transitions, the normalization marks it as a safe object as it has a
long available time to reach its destination. Fig. 4.6 shows the normalization
process for 3 different objects with different values for da. It also shows the
values of ALDPs before and after normalization (ALDPn). The process for o1
is already discussed. The figure shows that, the third transition of object o3,
gives very high ALDP (=0.88), whereas ALDPn is very low (=0.14). Thus, the
normalization can better capture the actual riskiness of the object.

Adjusting Durmax and Time Trigger. During processing of the ORP,
Durmax(si) is adjusted to the concept of normalization. The normalized max-
imum allowable duration of an object o for completing its path sequence si
is computed by, DurmaxN(si, o) = Durmax(si)−offset. As seen, if the value of
offset is negative, then DurmaxN allows more time to oi. Whereas, the higher
value of offset will reduce the value of DurmaxN for adjusting the riskiness
of o. Finally, temax in the corresponding time trigger is computed by, temax =
tstart+DurmaxN and is used for the risk prediction.

5.5 Finding the best thresholds

The optimal threshold depends on the particular goal of the system. We con-
sider mishandled as a positive class for classification. A prediction system,
giving too many false positives (FP) (i.e., predicting correctly handled objects
as the mishandled objects) or false negatives (FN) (i.e., predicting mishan-
dled objects as the correctly handled objects) can make the system useless
or not interesting. So, there should be a defined acceptable metric for de-
ciding the optimal operational threshold. We define a benefit function based
on the operation cost, where the costs for the different kinds of errors are
used for finding the threshold that maximizes the benefit. For example, In
the case of baggage tracking, if a bag is predicted as mishandled, it requires
a special manual handling so that the bag can reach the aircraft before the
flight. If an FP occurs, there will be a waste in the human resource cost for
the mistake. However, if an FN occurs, there will be a significant cost to de-
liver the bag to the passenger’s address and as well as insurance and other
operating costs are involved for such mistakes. So, in the baggage tracking
scenario, the cost for an FN is much more compared to that for an FP. During
model building and testing (discussed further in Section 6), we use Eq. (4.7)
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for obtaining the total benefit for each of the generated thresholds and use
the threshold that provides the maximum benefit. In Eq. (4.7), x= cost for
handling a mishandled object (i.e., positive case (P)), y=cost for handling a
predicted mishandled object (i.e., TP and FP), and #P= total number of posi-
tive cases in the data set. So, Eq. (4.7) can provide an idea how much money
can be saved by using the ORP system.

Benefit(x, y) = x× #P− (x× #FN + y× (#TP + #FP)) (4.7)

6 Experimental Evaluation

The PFG and APFG are implemented using a set of SQL statements and
the prediction is implemented in C#. For all SQL queries, we use a leading
RDBMS. The experiments are conducted on a laptop with an Intel Core i7 2.7
GHz processor with 8 GB RAM. The operating system is Windows 7 64 bit.

6.1 Data sets descriptions

We use both synthetic and real data for experimenting the different aspects
of the proposed systems. The real data set reflects a specific scenario and
contains a lot of erroneous readings, miss readings, and other anomalies.
So, only experimenting with such real data cannot provide the other aspects
of the prediction systems. Furthermore, synthetic data can be generated in
different ways to see how the models perform with different ratios and dis-
tributions. During model building and prediction, it is assumed that the data
set is cleaned.

Synthetic data sets. We generate 5 different data sets for the airport bag-
gage tracking scenario, where bags follow the paths shown in the floor plan
in Fig 4.1. There are two preplanned paths, P1: l1→l2→l3→l5→l7, and P2:
l1→l2→l3→l4→l6→l8. There are 20 flights a day and each flight departs after
every 30 to 60 minutes. The first flight of a day starts at 8:00 am. In each
of the data sets, there are a total of 5K flights carrying 100K bags. Each of
the flights has 20 registered bags. Each data set contains approximately 450K
stay records. Flight IDs and bag IDs are generated sequentially and the flight
with even IDs are allocated to path P1 and others to P2. Bags are checked in
at the earliest 3 hours and the latest 30 minutes before the flights. For each
possible transition, bags follow a realistic range of duration with different
distributions that will be discussed next. In our example scenario, the transi-
tions l1→l2 and l2→l3 have less influence on baggage mishandling, whereas
the sorters (i.e., l3→l5, l3→l4, and l4→l6) have higher influence. So, we put
relatively smaller time intervals for those transitions. The duration ranges (in
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Fig. 4.7: PR curves for comparing PFG vs. APFG, and with (WN) vs. without normalization
(WON) while using APFG

seconds) for different paths are, P1: l1
25−60−−−→l2

50−300−−−−→l3
120−9000−−−−−→l5

400−500−−−−→l7,

and for P2: l1
25−60−−−→l2

50−300−−−−→l3
120−2500−−−−−→l4

120−5400−−−−−→l6
400−500−−−−→l8.

Varying the distributions of the durations for the transitions and dura-
tions before the flights, we generate 5 different data sets (DS). Each data set
is divided into a training set (TRS) and a test set (TSS) containing 70K and
30K bags, respectively. It is also made sure that the bags for the same flight
are not be distributed between training and test set as it might give a biased
estimation due to overfitting. We also use validation sets from the TRS for
cross validation while finding the best value for RSth that will be discussed
later in this section. The data sets are described below:

• DS1: Transition durations and durations before flights are uniformly
distributed. DS1 contains 53% mishandled bags.

• DS2: Transition durations follow a normal distribution and durations
before flights follow uniform distribution. DS2 can show the effect in
the models when the transition durations are normally distributed com-
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pared to the uniform distribution of DS1. DS2 contains 54% mishandled
bags.

• DS3: Transition durations follow a log-normal distribution and dura-
tions before flights follow uniform distribution. As a log-normal dis-
tribution creates long tail, it generates less mishandled bags compared
to DS1 and DS2. This distribution reflects a more realistic scenario of
airport baggage tracking. The data set contains 12% mishandled bags.

• DS4: Transition durations follow a log-normal distribution with dif-
ferent µ and σ compared to DS3 and durations before flights follow a
normal distribution. The main intention is to reduce the mishandling
rate to below 2%. It also can expose how good the models are when the
mishandling rate is very low. DS4 contains 1.42% mishandled bags.

• DS5: The distributions of durations are similar to DS4. However, the
bags are flowed from the opposite direction. So, in DS5, P1=l7 → l5
→ l3 → l2 → l1, and P2=l8→l6→l4→l3→l2→l1. As seen, the change
in direction of the path brings the sorter in the earlier step. In the
sorter bags generally spend most of its operational time and considered
as the bottleneck of the system. The data set can show how bringing
bottleneck earlier in the path can affect the models. DS5 contains 1.53%
mishandled bags.

Real data sets (DSR). We use a small real RFID baggage tracking data
from an airport A1. For the reason of confidentiality, the airports’ names are
not disclosed. The bags are originated from A1 to the destination airport
A2. There are 6 RFID readers deployed. Two of them for arrival system and
4 of them are for departure system. Our application scenario is interested
only in the departure system. From the data set we derived three differ-
ent preplanned paths, Pr1: Check-in→Sorter→GateWay-1→BeltLoader, Pr2:
Check-in→Sorter→GateWay-1, and Pr3: Check-in→Sorter→BeltLoader. Af-
ter removing many noisy records, we have a total of 20.4K bags for 2.5K
different flights. There are only 75 mishandled (MH) bags which are only
0.35% of the total bags. The details for the training set are: total 15.9K, MH
29 ( 0.18%), Pr1-[total 1.5K, MH 7], Pr2-[total 10.1K, MH 4], Pr3-[4.3K, MH 18].
The test set details are: total 4.6K, MH 43, Pr1-[total 1.5K, MH 20], Pr2-[total
2.6K, MH 20], Pr3-[total 0.5K, MH 3].

6.2 Test cases

We build PFGs and APFGs from all the mentioned data sets and tested them
from various perspectives. The PFGs and APFGs are built from the com-
bined records (i.e., containing all the paths in the data sets) called C-PFG,
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and C-APFG, respectively. We also separately build PFGs and APFGs with
the records of each different path, e.g., P1-PFG, P1-APFG for P1 in synthetic
data, Pr1-PFG, Pr1-APFG for Pr1 in real data, etc. The PFGs and APFGs are
tested on the test set for the relevant paths. We test them both without nor-
malizing (WON) and with normalizing (WN) the durations before flights.

We apply the PFGs and APFGs on all the bags of the TSS and for each
bag, we obtain a risk score for each of its transitions based on their transition
duration. For each of the generated risk scores r, we compute the recall, where
recall(r)= # of mishandled bags having risk score ≥ r

#of mishandled bags . Conversely, for each r, we also compute
the precision, where precision(r)= # of mishandled bags having a risk score ≥r

#of bags having a risk score ≥ r . In our scenario,
a perfect precision score of 1 means that all the classified mishandled bags are
also actually mishandled. However, this precision score says nothing about
whether all mishandled bags are predicted correctly. Conversely, a perfect
recall score of 1 means that all the actually mishandled bags are classified
as mishandled. However, this recall says nothing about how many correctly
handled bags are wrongly predicted as mishandled. We draw precision-recall
(PR) curves that represent how precision and recall changes with the risk
scores. The perfect point in a PR curve is (1,1) that represents the predictions
for the mishandled bags are perfect and any correctly handled bags are not
predicted as mishandled.

We generate PR curves for the various test cases discussed above and
report only the cases that are interesting to analyze. For all the test cases we
analyze the PR curves for the different transition lengths, e.g., for path P1
there are 4 different lengths of transitions l1 to l2 (Len1), l1 to l3 (Len2), ..., and
l1 to l7 (Len4). Similarly, P2 has 5 different lengths of transitions. For the real
data, Pr1 has 3 different transitions, Pr2 and Pr3 have 2 different lengths of
transitions. The PR curves for the different test cases are reported in Fig. 4.7
and 4.8. The PR curves are analyzed from the different perspectives and
explained next. The PR curves for DS2 and DS3 are not reported as they
show the same behavior as others.

6.3 Analyzing the PR Curves

PFGs vs. APFGs. The PR curves for comparing the PFGs and APFGs are
shown in Fig. 4.7a and 4.7b. Fig. 4.7a reports the PR curves generated by ap-
plying P1-PFG and P1-APFG on the TSS for P1 in DS4. It reports the results
for Len3 and Len4. PFG-Len3 can be compared with APFG-Len3 and so on.
The results show that the APFGs always provide higher precisions compared
to the PFGs. As we found same type behavior for the other DSs, they are not
reported. Fig. 4.7b shows the similar experiments with DSR. For Len1 PFG
and APFG provide the same score. So, the lines are overlapped. However,
for Len2, the APFG provides relatively better results. Overall from the exper-
imental results, it is clear that the APFGs can better capture the riskiness and
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(b) C-APFG for DS4 tested on P2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Len1 Len2 Len3 Len4 Len5

(c) C-APFG for DS5 tested on P2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Len1 Len2 Len3

(d) C-APFG, DSR tested on Pr1

Fig. 4.8: Comparing the effect of path lengths and location types on APFGs while applying with
normalization

recovery of the objects and better differentiate between the correctly and in-
correctly handled bags. In rest of the experiments, we report only the results
with APFG.

With and without normalization. The PR curves for comparing the re-
sults with and without normalizing the duration before flights are presented
in Fig. 4.7c and 4.7d. In Fig. 4.7c, P2-APFG is applied on the records for P2
in DS1. In Fig. 4.7d, we use the same APFG used for Fig. 4.7b. In all cases,
the results show that the normalizing boosts the performance. In all the cases
except WN-Len1 (Fig. 4.7d), we can get almost a perfect classification, i.e.,
close to full precision with 100% recall when normalizing. The results for
WN-Len1 can be understood better in the next paragraph.

Influence of path length and location type. Fig. 4.8 reports the PR curves
for showing the effect of path length on the classification performance. Over-
all, the results show that the performance gets better with increasing the path
length. In the case of DS1 (Fig. 4.8a) and DS4 (Fig. 4.8b), Len1 and Len2 have
less influence on a baggage mishandling. These transitions also take very
short durations. As a result, the performance is poor up to those transitions.
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However, in the case of DS5, which contains the same distribution as DS4,
with the direction of the path is reversed, the performances from Len2 and
afterward are close to perfect classification. The main mishandling occurs
in the sorting system as a bag takes longer for completing its sortation. So,
it shows that the model can classify mishandled bags very accurately when
they come in the bottleneck in their path and the result continues getting
better as objects move forward. The result with DSR also shows the similar
behavior (Fig. 4.8d).

Combined model vs. specialized model for each path. Comparing the
results of Fig. 4.7c with Fig. 4.8a shows that testing the bags with path P2
by the C-APFGs and P2-APFGs provides the same result. All the cases in
our experiments we found that testing the bags with combined model and
specialized model provide the same results. However, it is also true that the
ALDPHs of a C-APFG become specialized for the different paths when they
start following different path sequences. In our generated data set, P1 and
P2 have a common path from l1 to l3. After that, they follow different path
sequences. So, it will be best to use only combined model, instead of building
many models for different paths.

Effect of data distribution and mishandle ratio. In general, the data
distributions do not change the overall behavior of the models. In DS1, the
mishandling rate is balanced. So, it starts giving very good precision from
Len1 (Fig. 4.8a) compared to the other cases where the mishandling rate is
extremely low (Fig. 4.8b to 4.8d). However, the models built from all our
different data set provide very good results. It also shows the proposed APFG
with normalization can perform very well in an imbalanced class situation
and does not get affected by the class imbalance problem.

6.4 Finding the best RSth

We use DS4 in this experiment. TRS of DS4 is divided into 4 folds for the
k-fold cross validation. Each fold contains 17.4K bags, where almost half of
them belong to P1. It is also made sure that the bags from the same flight are
not distributed to multiple folds. Iteratively, we learn APFGs from 3 folds and
use the 4th fold for testing. So, finally we have the test results for 4 APFGs.
We use Eq. (4.7) with x=$96 (according to [13]) and y=$15 (salary of a baggage
handler is app. $13/hour) for obtaining the benefit for the different RSs in
the results. For optimizing the RSth for each path length, we take the average
of the risk scores that provide the highest benefit in each of the 4 models.
Then the average RS is used as the RSth for predicting the riskiness of the
actual test bags. The test results are analyzed from two different perspectives.
In scenario1 (SC1), the predicted mishandled bags are not removed from the
system unless they automatically disappear when they are really mishandled.
It can show the actual benefit at different path lengths. In scenario2 (SC2),
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Table 4.5: Results based on the selected RSth

Pathlen RS th SBF Bnft-SC1 Bnft-SC2 pred-> P-SC1 N-SC1 P-SC2 N-SC2

Len1 1 30.6 168 168 Act-P 3 283 3 283
min Act-N 5 14709 5 14709

Len2 0.89 27.8 102 0 Act-P 2 283 0 283
min Act-N 4 14710 0 14709

Len3 0.08 26.9 1587 1419 Act-P 22 264 19 264
min Act-N 13 14701 8 14701

Len4 0.46 18.2 22701 21324 Act-P 281 0 264 0
min Act-N 4 14710 4 14697

Len5 0.48 10.3 5265 0 Act-P 65 0 0 0
min Act-N 0 14714 0 14697

at different path lengths, the predicted mishandled bags are removed from
the system such that they cannot be seen in the subsequent locations in their
path. It can show the total benefit if bags are saved whenever it is detected
as mishandled. The selected RSths, benefits, confusion matrices, and how
early the bags are saved before the flight (SBF) for the bags with preplanned
path P2 are reported in Table 4.5. As there are 286 mishandled bags, the total
cost without using the ORP will be $27456. The benefits with SC1 shows
that handling bags only at L4 can save 82.7% of the total mishandling cost.
Whereas, in SC2, 168+0+1419+21324+0

27456 ×100 = 83.4% of the total cost can be saved.
It also shows that all the mishandled bags are predicted within Len4 and at
least 18.2 minutes before the flights.

6.5 Scalability

We use DS4 for building PFGs and APFGs for showing the scalability regard-
ing their construction time and memory use. We use a set of SQL queries with
some DDL and DML operations for building PFGs and APFGs and they are
stored in the database tables. The SQLs queries for PFG and APFG are shown
in listing 4.1 and r̃efAPFGConstruction, respectively. Before prediction, a C#
program loads the PFG and APFG into main memory. The full PFG and
APFG construction and loading times are reported in Fig. 4.9a. In the case
of SQL query times, we clear the cache after executing each operation. In all
cases, we run the queries and code 3 times and report the rounded average
time. In both cases, the results show that the construction time increases lin-
early with the number of bags. We also report the memory use of LDPHs
and ALDPHs for the different numbers of bags. It shows that the size grows
linearly with the number of bags. It also shows that the total size of ALDPHs
is on average 84% higher than the total size of LDPHs. However, the total
size of the ALDPHs is very small, only 194 KB for 70K bags. So, it is feasible
even for a larger data set.
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Listing 4.1: PFG Construction

SELECT FromLocation , ToLocation , Duration , Count (*)
DurationCount

INTO PFGInfo FROM StayRecord WHERE BagId <=70000
GROUP BY FromLocation , ToLocation , Duration
ORDER BY FromLocation , ToLocation , Duration;

ALTER TABLE PFGInfo ADD TransitionCount int ,
CountDurGt int , LDP float;

UPDATE PFGInfo SET TransitionCount = (SELECT SUM(
DurationCount) FROM PFGInfo T1

WHERE T1.FromLocation=PFGInfo.FromLocation AND T1.
ToLocation=PFGInfo.ToLocation);

UPDATE PFGInfo SET CountDurGt = (SELECT SUM(
DurationCount) from PFGInfo T1

WHERE T1.FromLocation=PFGInfo.FromLocation and T1.
ToLocation=PFGInfo.ToLocation AND

T1.duration >= PFGInfo.duration);

UPDATE PFGInfo set LDP = ROUND(CountDurGt *1.0/
TransitionCount , 4);
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Listing 4.2: APFG Construction

SELECT BagID , PathString , TotalDuration ,
CompleteStatus , PathLength , FinalStatus INTO
APFGInfo

From StayRecord WHERE BagID <=70000 ORDER BY BagID;

SELECT distinct PathString , TotalDuration , COUNT (*)
CountPathDur INTO ALDPHInfo

FROM APFGInfo WHERE PathLength >1 GROUP BY PathString
, TotalDuration ORDER BY PathString , TotalDuration

ALTER TABLE ALDPHInfo ADD COUNTPath int ,
CountPathDurGt int , ALDP float;

UPDATE ALDPHInfo SET COUNTPath = (SELECT SUM(
CountPathDur) FROM ALDPHInfo T1 WHERE T1.PathString
= ALDPHInfo.PathString);

UPDATE ALDPHInfo SET CountPathDurGt =
(SELECT SUM(CountPathDur) FROM ALDPHInfo T1 WHERE T1.

PathString = ALDPHInfo.PathString AND T1.
TotalDuration >= ALDPHInfo.TotalDuration);

UPDATE ALDPHInfo SET ALDP = round(CountPathDurGt *1.0/
CountPath , 4);

6.6 General lessons

From the experimental results, we can say that APFG produces the best result
and the available processing duration must be normalized before producing
a risk score of an object. The prediction accuracy for the mishandled ob-
jects boost up when they reach the bottleneck locations in their paths. The
prediction system behaves in a similar way in a class imbalanced data sets.
The prediction system can save the cost for mishandling significantly. The
proposed APFG also scalable to large data set.

7 Related Work

Related work falls into two main categories. One is to pre-process raw indoor
tracking data and another one is to perform data mining on such tracking
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Fig. 4.9: PFG and APFG construction times and memory usage.

data. The RFID data management challenges and some solutions are dis-
cussed in [27, 76]. Data warehousing, mining, and workflow analysis are pro-
posed for RFID-based item tracking in the supply chain systems in [36, 37].
The authors convert the raw RFID records into cleansed record containing the
first and last reading times of an object under the readers activation range.
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In the present chapter, we use stay records discussed in [15], as it can cap-
ture the total stay duration between locations. Graph-based model for indoor
tracking is discussed in [16, 46]. In the present chapter, we extend graph
models for capturing the object flows with new probabilistic concepts such
as LDP, ALDP, and histograms.

Data mining is performed on the tracking data for finding frequent spatio-
temporal sequential patterns [26, 44], typical movements of objects in indoor
space [69], frequent trajectory patterns for activity monitoring [57], and fre-
quent walk in RFID-equipped warehouse [23]. Interesting spatio-temporal
rule mining applications, techniques and issues are discussed in [35]. The
present chapter introduces a new perspective which is for risk prediction in
indoor moving object. In [13], RFID baggage tracking data are analyzed for
mining risk factors in the offline scenario. The present chapter focuses on an
online risk prediction scenario that require more fine grained features such
as object transitions at the reader level and duration for each of the transi-
tions. Further, this chapter is more general as the used features are common
in many symbolic indoor and mixed indoor-outdoor tracking applications.

8 Conclusion and Future work

We proposed detailed steps and probabilistic models for predicting the risk
of online indoor moving objects. We converted the historical raw tracking
records into stay records and use them for constructing the probabilistic flow
graphs called PFG and APFG. The graphs capture the probabilistic informa-
tion about the transition times by using histograms called least duration prob-
ability histogram LDPH and aggregated LDPH (ALDPH). The flow graphs
are used for obtaining risk score of an online indoor moving object and for
predicting risks. A comprehensive experiment with synthetic and real data
showed that the proposed risk prediction method can differentiate risky ob-
jects from the correctly handled objects very accurately when the objects ap-
proach the bottleneck locations on their paths. We also proposed a cost model
for object mishandling and the experiments showed that using APFG with the
proposed normalization can significantly save the operation cost. The result
also showed that the risky objects are predicted early enough such that they
can be saved from being mishandled.

In future work, the proposed techniques can be expanded to more general
scenarios such as mixed indoor-outdoor object tracking. Further, predicting
risks for the objects in nondeterministic scenarios, where the paths of the
objects are unknown in advance, can be another future direction.
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Chapter 5

Finding Dense Locations in
Symbolic Indoor Tracking
Data: Modeling, Indexing,
and Processing

The paper is under revision for publishing in a Journal. This paper is an
extended version of our two previous conference papers [14, 16], which are
presented in Appendix A and B, respectively.

Abstract

Finding the dense locations in large indoor spaces is very useful for many applica-
tions such as overloaded area detection, security control, crowd management, indoor
navigation, and so on. Indoor tracking data can be enormous and are not immediately
ready for finding dense locations. This chapter presents two graph-based models for
constrained and semi-constrained indoor movement, respectively, and then uses the
models to map raw tracking records into mapping records that represent object entry
and exit times in particular locations. Subsequently, an efficient indexing structure
called Dense Location Time Index (DLT-Index) is proposed for indexing the time
intervals of the mapping table, along with index construction, query processing, and
pruning techniques. The DLT-Index supports very efficient aggregate point, interval,
and duration queries as well as dense location queries. A comprehensive experimen-
tal study with both real and synthetic data shows that the proposed techniques are
efficient and scalable and outperforms RDBMSs significantly.
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1 Introduction

Technologies like radio frequency identification (RFID) and Bluetooth enable
a variety of indoor tracking applications such as tracking people’s move-
ment in large indoor spaces (e.g., airports, office buildings, shopping malls,
and museums), airport baggage tracking, item movement tracking in sup-
ply chain systems, etc. The massive amount of tracking data generated by
such systems is very useful for analyses and decision-making in indoor ap-
plication scenarios. These analyses are useful for different kinds of location-
based services, finding problems in the systems, and further improvement in
the systems. Unlike GPS-based positioning for outdoor applications, indoor
tracking in our research provides the symbolic locations of the objects in in-
door space. Examples of symbolic locations are security and shopping areas
in airports, different sections or rooms in museum exhibitions, etc. In airport
baggage handling, the bags pass different symbolic locations such as check-
in, screening, sorting, etc. Detecting dense locations in a baggage handling
scenario can identify overloaded baggage handling locations, which in turn
can contribute to better baggage handling. By analyzing tracking data on
passengers in an airport, we can find out where and when passengers gather,
and such information can be used for crowd management in the airport.

It has been pointed out that the geometric polyline representation for
outdoor trajectories is unsuitable for indoor trajectories 47. For example,
consider an RFID tracking application where RFID readers are deployed at
the doors of different rooms in a large indoor space. Each reader has a very
limited tracking range that covers a small portion of the room, e.g., only the
door of a room. If an object containing an RFID tag moves from one room to
another, this produces two consecutive tracking records of the object location
in different rooms. Due to limitations in indoor positioning technologies, the
locations of the object between these two records are not obtained. Moreover,
indoor tracking systems like airport baggage and people movement generate
large volumes of data, making efficient query processing techniques essential.
Taking all of these challenges into account, this chapter proposes an efficient
approach for extracting dense locations from indoor tracking data.

The chapter has several contributions. First, two graph-based models
are proposed for capturing movements of objects inside symbolic indoor
spaces, one for constrained movements and another for semi-constrained
movements. Second, two kinds of mappings are designed, one for con-
strained and another for semi-constrained movements. The mappings are
used to map the indoor tracking records into mapping records capturing
the entry and exit times of the objects at different symbolic indoor locations.
The resulting mapping records can be used for dense location extraction as
well as for many other analyses, e.g., stay duration estimation. Third, two
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different types of densities, namely, count based density (CBD) and duration
based density (DBD), are defined for different application scenarios. Fourth,
an efficient indexing structure, the Dense Location Time Index (DLT-Index),
is proposed. It stores aggregate information, i.e., the number of (unique) ob-
jects entering, exiting, and present at a location at different timestamps or
time intervals. Fifth, efficient data processing techniques are proposed, in-
cluding algorithms for DLT-Index construction and updating, data pruning
methods in the DLT-Index, and algorithms for finding dense locations using
the DLT-Index. Efficient processing algorithms for aggregate point, interval,
and duration queries via the DLT-Index are also proposed. The developed
DLT-Index is generalized such that it can be used for indexing any types of
time intervals and it enables us to query for the distinct number of records at
a given time point, as well as for a given time interval. Sixth, a comprehen-
sive experimental evaluation using both real and synthetic data is conducted,
and the results show that the proposed solution is efficient and scalable.

This chapter is an extended version of our two previous conference pa-
pers [14, 16], which are presented in Appendix A and B, respectively. Most
importantly, it adds a new density definition (Section 2.2), related query pro-
cessing techniques for the new density definition (Section 5.3), and an ex-
perimental evaluation (Section 6.4) of the proposed query processing tech-
niques. In addition, the chapter adds algorithms for data mapping in con-
strained and semi-constrained path spaces (Section 3), algorithms for DLT-
Index construction (Section 4.3), and query processing algorithms for other
query types using the DLT-Index (Section 5). Further, the chapter also pro-
vides a formal definition of the proposed graph for semi-constrained path
spaces (Section 3.3), update strategy of the DLT-Tree (Section 4.4), and perti-
nent experiments with both synthetic and real data (Section 6).

The remainder of the chapter is organized as follows. Section 2 gives
the problem formulation. Section 3 describes the graph-based models and
the mapping of tracking records. Section 4 presents the general steps of
processing a dense location query and describes the DLT-Index. Section 5
presents the query processing and pruning techniques over the DLT-Index.
Section 6 presents the experimental evaluation. Section 7 reviews related
work. Finally, Section 8 concludes the chapter and points to future research.

2 Problem Formulation

2.1 Problem Scenario

The movements of objects inside indoor spaces vary with the structure of the
paths. Based on the path structure, we categorize the indoor spaces into two
categories.
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Constrained Path Space (CPS): In a constrained path space (CPS), objects
move continuously from one symbolic location to another. The objects cannot
move freely inside the locations, and the locations are in some sense one-
dimensional. The size of the locations inside a CPS is measured by length,
not by area.
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Fig. 5.1: Constrained path space

Fig. 5.1 shows an example of a CPS, which is a conveyor system of an
airport baggage handling system. The conveyor system is divided into dif-
ferent symbolic locations like check-in 1, check-in 2, screening, sorter-1, and
sorter-2.

Semi-Constrained Path Space (SCPS): In a semi-constrained path space
(SCPS), the objects move more freely than in a CPS. The objects move from
one symbolic location to another, and they can also stay some period of time
inside the locations. The locations are two-dimensional. The size of the loca-
tions inside a SCPS is measured by area, not by length.

Examples of the SCPSs include office spaces, museums, different sections
in airports, etc. Fig. 5.2 shows an example of SCPS. The indoor space is
divided into different symbolic locations, e.g., rooms, hallways, etc. An object
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has to cross the entry/exit points (e.g., doors) for entering and exiting a room.
Some entry/exit points are uni-directional, and some are bi-directional. The
arrows represent the uni-directional movements. Moreover, a large hallway
or corridor (e.g., l1 of Fig. 5.2, long corridor in an airport, etc.,) can be divided
into multiple sections where each section is considered as a separate location.

In our setting, the tracking devices are strategically deployed at different
fixed locations inside the indoor space, e.g., at a specific point of each section
of the conveyor belts, by the doors of a room, between sections of a hallway,
etc. Specifically, a location inside the CPS contains one tracking device de-
ployed at any point in the location, whereas for the SCPS a tracking device is
deployed at the entry and exit point of each location. The objects hold tags or
devices that can be tracked by the tracking devices. For example, in the case
of RFID technology, objects with RFID tags are tracked by RFID readers. For
the Bluetooth systems, Bluetooth access points track objects with Bluetooth
enabled devices. After deployment of the tracking devices, the positions are
recorded in the database. In Fig. 5.1 and 5.2 the circles represent the deploy-
ment of the RFID readers and their activation ranges. When an object enters
into the activation range of a tracking device, it is continuously detected by
the tracking device with a given sampling rate and it generates raw reading
records in the form: (TrackingDeviceID, ObjectID, t). This means that a track-
ing device TrackingDeviceID detects a moving object ObjectID in its activation
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range at timestamp t. A TrackingRecord(recordID, ObjectID, TrackingDeviceID,
timein, timeout) table is constructed from the raw tracking sequences, where
recordID is a record identifier and timein and timeout represent the timestamps
of the first and last readings of ObjectID by TrackingDeviceID in its activation
range, respectively. Table 5.1 shows a set of example tracking records of an
object o1 in the floor plan of Fig. 5.1. Here the record rec1 means that object o1
is observed by tracking device dev1 from time 4 to 5, and record rec3 means
that o1 is observed by dev3 from time 15 to 18. Due to the limitation of indoor
positioning systems, it is unknown at what position of o1 is between 6 and 14
without knowing the floor plan.

Table 5.1: Tracking Records of Indoor Moving Objects

RecordID ObjectID TrackingDeviceID timein timeout

rec1 o1 dev1 4 5
rec3 o1 dev3 15 18
rec5 o1 dev4 26 29
rec8 o1 dev4 51 54

2.2 Problem Definition

Let L be the set of all symbolic locations inside a large indoor space, L = {l1,
l2, l3, ... , lk}. We assume a discrete equi-distant time domain composed of
time points represented by integers. Depending on the requirements of the
application scenario, we pick the time unit (the granularity of the time points)
to be, e.g., 1, 5, or 15 minutes. A time interval is specified by the start and
end time points.

Definition 1 (Capacity). The capacity of a location li ∈ L, denoted as
capacity(li), is the number of objects that can be present in li during a time
unit.

For example, in Fig. 5.2, the time unit is 15 minutes and the capacity of
room l3 is 20 persons per time unit (i.e., 20 persons per 15 minutes). Similarly,
in Fig. 5.1, the time unit is 1 minute and the capacity of check-in 1 conveyor is
20 objects per time unit (i.e., 20 objects per minute).

Definition 2 (Count Based Density (CBD)). Let ni be the number of objects
present in location li during the time interval w = [tstart, tend] and capacity(li)
be the capacity of location li. The count based density (CBD) of location li for
interval w is defined as,

CBDi =
ni

∆t× capacity(li)
, where ∆t = tend − tstart (5.1)

Definition 3 (Duration Based Density (DBD)). Let, Oi = {obj1, obj2, obj3, ...
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, objn} be the set of objects present in location li during the time interval w
= [tstart, tend], and durobji be the time spent by object obji ∈ Oi at location li
within the time interval w. So, the total length of the stays of ni = |Oi| objects
in location li during the time interval w is: duri = ∑n

i=1 durobji . Let, capacity(li)
be the capacity of location li. The duration based density (DBD) of location li
for interval w is defined as,

DBDi =
duri

∆t× capacity(li)
, where ∆t = tend − tstart (5.2)

As seen, for both densities, the density is computed by dividing the actual
number of objects ( for CBD ) or their stay duration (for DBD) by the loca-
tion’s capacity. In both cases, this results in values normalized in the range
[0, 1].

An example scenario of capacity and computation of density is illustrated
in Fig. 5.3. In the figure, each empty box represents a free slot of the location
at the given time point. For example, at time t1, two slots are free. At time t3,
there are no empty slots. At t3, o1 exits the location and two objects o3 and
o4 enter the location. During the query time interval [t1, t3], a total of four
objects {o1, o2, o3, o4} present in the location, and the total length of the stays
by all the objects is 6. As seen, CBD considers only the number of objects
and not the stay duration of the objects, whereas DBD does. However, if
the average time spent by the objects at a location is one time unit, CBD is
equal to DBD. CBD is more appropriate for the scenario of the conveyor belts
system where objects move continuously with a constant speed. Whereas,
DBD is more suitable for the people movements in a semi-constrained indoor
scenario where the stay of a person at a location varies. As the duration part
is not considered in CBD, it always holds that CBD ≤ DBD.

o1
t1

o2
o1
t2

o4
o3
o2
t3

Capacity(li)= 
3 obj/time 

unit

ni = 4
duri = 2 (for o1) + 2 (for o2) + 1 (for o3)+ 1 (for o4) = 6
Δt = 3, CBDi = 4/(3x3) = 0.44, DBDi = 6/ (3x3) = 0.67

Fig. 5.3: Example of density computation

Definition 4 (Count Based Dense Location (CBDL)). Given a threshold θ,
a location li is considered as a count based dense location (CBDL) for interval w
if its CBD ≥ θ.

Definition 5 (Duration Based Dense Location (DBDL)). Given a thresh-
old θ, a location li is considered as a duration based dense location (DBDL) for
interval w if its DBD ≥ θ.

Definition 6 (Count Based Dense Location Query (CBDLQ)). A count based
dense location query (CBDLQ) finds all the CBDLs ⊆ L for a given time interval
w.
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Definition 7 (Duration Based Dense Location Query (DBDLQ)). A dura-
tion based dense location query (DBDLQ) finds all the DBDLs ⊆ L for a given
time interval w.

For example, consider Fig. 5.3. Let θ = 0.65. As a result, the location is
not a CBDL for the time interval w = [t1, t3], because its CBD = 0.44 � θ = 0.65.
Whereas, the location is a DBDL for the time interval w, because its DBD =
0.67 ≥ θ = 0.65.

3 Semantic Location Mappings

A location is typically not fully covered by a tracking device. Moreover a
tracking record contains only the first and last times an object appeared inside
the activation range of a tracking device. As a result, it is explicitly unknown
when an object actually entered and exited the corresponding location. To
this end, mapping strategies are required to retrieve such location and timing
information. We create a mapping table with mapping records that are derived
from tracking records, where a mapping record is in the form 〈 MappingID,
ObjectID, LocationID, timestart, timeend 〉. A mapping record represents that an
object ObjectID entered location LocationID at time timestart and exited at time
timeend.

3.1 Modeling Symbolic Locations

As discussed earlier the deployment of tracking devices varies between CPS
and SCPS locations. The model for CPS is more detailed as the tracking
device can be deployed at any point inside a location. For example, in Fig. 5.1
check-in 1 is represented by dev1. When a bag goes to sorter-1 it will be read by
dev4 and then it may go to sorter-2 or chute or it may circulate within sorter-1.
On the contrary, a location inside the SCPS may have many entry and exit
points where tracking devices are deployed. Moreover, the movement can be
both uni-directional and bi-directional. For example, in Fig. 5.2 the door with
dev1 can be used for both entering and exiting the location l1. However, the
door with dev6 can be used only to enter l2.

3.2 Modeling CPS

In order to map the tracking records with the semantic locations and the entry
and exit times of objects, an Extended Reader Deployment Graph (ERDG) is
constructed from the indoor plan (e.g., given in Fig. 5.1). Some definitions
are needed to understand the ERDG:

Definition 8 (Covered distance). Given a path p and a tracking device d,
the covered distance (CD) is the length of the part of p that is covered by d’s
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detection range. The CD for a tracking device dev1 is denoted as CD(devi).
For example, in Fig. 5.1 CD(dev1) = 2m shows the CD of dev1 at l1.

Definition 9 (Entry lag distance). The entry lag distance (ENLD) from loca-
tion lx to ly denoted as EN(lx, ly) is the distance from the ending point of lx
to the first reading point at ly.

For example, consider Fig. 5.1. The journey of an object o at location l3
can start from either points P1 or P2 depending on whether o is coming from
l1 or l2. While moving through l3, o will be first tracked by dev3 when it
arrives at point P3. Here, the distance between the point P1 and P3 is an
entry lag distance (ENLD) which is denoted as EN(l1, l3). A location ly can
have many ENLDs depending how many locations end at ly. In our example
EN(l1, l3) = 8m and EN(l2, l3) = 6m. A special notation EN(∗, ly) is used,
which indicates that the ENLD at ly is the same, regardless of where an object
is coming from. In our example, EN(∗, l4) = 5m is the ENLD of location l4
from any location ended at l4.

Definition 10 (Exit lag distance). The exit lag distance (EXLD) from location
lx to ly denoted as EX(lx, ly) is the distance from the last reading point at lx
to the exit point of lx that leads to location ly.

In Fig. 5.1, the journey of an object at location l3 ends when it passes the
point P5 and reaches location l4. While traveling through l3 the object was
last detected by dev3 when it was at point P4. Here, the distance between P4
and P5 is the exit lag distance (EXLD) of l3 which is denoted as EX(l3, l4). As
l3 has only one destination, the EXLD of l3 is always the same, regardless of
the destination. So in this case, EX(l3, ∗) is used instead of EX(l3, l4). In our
example, EX(l3, ∗) = 3m. Similar to ENLD, a location can have many EXLDs.
For example, an object can leave location l4 by going to l5 through point P7
or can circulate in l4 and leave through any point between P6 and P8. As a
result, l4 has two EXLDs: EX(l4, l5) = 8m and EX(l4, l4) = 22m.

The ERDG is formally defined by a labeled directed graph G = (L, E, T,
lbE), where:

1. L is the set of locations where each location is represented as a vertex
in G. If a location does not have any tracking device deployed in it, the
corresponding location is labeled as a virtual location lvx , where x is an
integer.

2. E is the set of directed edges: E = {(li,lj) | li, lj∈L}.

3. T is a set of tuples of the form 〈d, flag, CD(d), {EN}, {EX} 〉, where d is
a tracking device, flag indicates whether it is a constrained path (CP) or
not, CD(d) is the CD of d, {EN} is a collection of ENLDs, and {EX} is a
collection of EXLDs.

4. lbE is a function lbE: E→T that labels an edge by a tuple from T. An
edge (li, lj)∈E is labeled by a tuple Ti,j 〈dk, CP, CD(dk), EN(li, lj), EX(lj,
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*) 〉∈T where dk is a tracking device deployed at location lj, CD(dk) is
the CD for dk, EN(li, lj) is an ENLD, and the EXLD for all the out-going
locations from lj is shown as EX(lj, *). An edge is labeled by a tuple
Tvx ,j∈T if a virtual tracking device devvx is assumed to be deployed at
location lvx . Fig. 5.4 shows an example of the ERDG for the floor plan
of Fig. 5.1. Let us consider edge (l1, l3) where the tuple T1,3 is assigned.
Regarding the content of T1,3, dev3 is deployed at l3, CD(dev3) is the CD
for dev3, EN(l1, l3) is the ENLD from l1 to l3, and EX(l3, *) is the EXLD
from l3 to any next destination.

Desks
l1

l2

l3 l4

l5

T0,1

T0,2

T1,3

T2,3

T3,4

T4,5

T4,v1 

T 4
,4

 lv1

T5,v2 
 lv2

T0,1 = (dev1, CP, CD(dev1) = 2m, EN(*, l1) = 4m, EX(l1,* ) = 4m); 
T0,2 = (dev2, CP, CD(dev2) = 2m, EN(*, l2) = 4m, EX(l2,* ) = 4m);

T1,3 = (dev3, CP, CD(dev3) = 3m, EN(l1, l3) = 8m, EX(l3,* ) = 3m);

T2,3 = (dev3, CP, CD(dev3) = 3m, EN(l2, l3) = 6m, EX(l3,* ) = 3m);

T3,4 = (dev4, CP, CD(dev4) = 3m, EN(*, l4) = 5m, EX(l4,l5) = 8m, EX(l4,l4)=22m);

T4,4 = (dev4, CP, CD(dev4) = 3m, EX(l4,l5) = 8m, EX(l4,l4) = 22m); 

T4,v1 = (devv1, SCP);

T4,5 = (dev5, CP, CD(dev5) = 3m, EN(*, l5) = 3m, EX(l5,* ) = 22m); 

T5,5 = (dev5, CP, CD(dev5) = 3m, EX(l5,* ) = 22m);  

T5,v2 = (devv2, SCP); Tv1,9 = (dev9, SCP); Tv1,10 = (dev10, SCP)
Tv2,9 = (dev9, SCP); Tv1,10 = (dev10, SCP)

l9

l10

Tv2,9
Tv2,10 Tv1,10

Tv1,9

T5,5

Fig. 5.4: Graph-based model for CPS

Three mapping structures are defined: location to device-In L2DIn: L→D,
location to device-Out L2DOut: L→2D, and Device to Location D2L: D→L,
where L is the set of all locations and D is the set of all tracking devices. For
a location l, L2DIn(l) returns the tracking device deployed at l. From the
graph it returns the tracking device which is a label for any edge(s) where
l is the destination. L2DOut(l) returns all the tracking device which are the
labels for the edge(s) where l is the source. These devices are deployed in the
adjacent next locations of l. In the third mapping for a tracking device dev,
D2L(dev) returns the location of dev, the destination vertex of the edge that
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has dev in its label. For example in Fig. 5.4, L2DOut(l4) = {dev4, dev5, devv1},
L2DIn(l4) = dev4, and D2L(dev4) = l4.

Mapping for CPS Locations. In this phase the tracking records are mapped
into mapping records. In order to map the timein and timeout of an object o
at a tracking device dev into the timestart and timeend of o at location l, respec-
tively, the topological information described in the ERDG in Fig. 5.4 is used.
The value of timestart and timeend depend on the speed of o at l. Eq. (5.3), (5.4)
and (5.5) are used for deriving the speed, timestart and timeend, respectively.
In all these equations, timein and timeout are taken from tracking records at
L2DIn(l). In Eq. (5.3), CD (devx) represents the CD of L2DIn(l) = devx. As
seen in Eq. (5.3), for computing the speed of an object o, the equation divides
CD(devx) by the time spent by o at devx’s activation range during its move-
ment through the location D2L(devx). In Eq. (5.4) and (5.5), the ENLD and
EXLD depend on where the object is coming from and going to. The value
is taken from the tuple Tlprev ,l , where lprev is the immediate previous location
visited by o before visiting location l. In Eq. (5.4), the duration taken by o for
moving through the corresponding ENLD of l is calculated by dividing ENDL
by o’s speed. Then the calculated duration is subtracted from the correspond-
ing timein for computing timestart, i.e., the time when o entered at l. Similarly,
in Eq. (5.5), the time taken by o for moving through the corresponding EXLD
of l is calculated by dividing EXDL by o’s speed. Next, the duration is added
with the corresponding timeout for computing timeend, i.e., the time when o
exited the location l.

Speed :=
CD(devx)

(timeout − timein)
(5.3)

timestart := timein −
ENLD
Speed

(5.4)

timeend := timeout +
EXLD
Speed

(5.5)

For example, consider the tracking record 〈o1, dev3, 15, 18〉 in Table 5.1. From
the graph, CD of dev3 = CD(dev3) = 3 meters and D2L(dev3) = l3. So the speed
of o1 at l3 is 3

18−15 = 1 meter/time unit. Similarly we can find the timestart
of o1 in D2L(dev3) = l3. The previous record rec1 says that o1 was tracked by
dev1 before dev3. So from the ERDG we need the information from the edge,
E(D2L(dev1) = l1, D2L(dev3) = l3). The ENLD from l1 to l3 is EN (l1, l3) = 8m.
According to Eq. (5.3) and (5.4), the timestart = 15 - 8m

3m/(18−15) = 7.
If a location contains loop (e.g., l4, l5), a tracking device deployed at that

location can produce many tracking records for the same object. Thus, this
can result in many timeouts for the same object. Moreover, a location can have
a virtual destination and also many other regular destinations with readers.
Based on the topological connectivity of a location, the nodes of the ERDG
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are classified into five types, shown in Fig. 5.5. The node types and the way
of deriving the exit time of an object from each of the nodes are explained
next.

ldev1 devVx
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dev1

(a) Node Type 1
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(d) Node Type 4

l

dev2
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dev3
dev4

dev1

(e) Node Type 5

Fig. 5.5: Types of Nodes in CPS

Node Type 1. A location l is of Node Type 1 if L2DOut(l) = {devvx }. Fig. 5.5a
shows an example of Node Type 1. As the next location of such a node has no
tracking device deployed, an object leaves the location through devvx without
generating any tracking record. In Eq. (5.5) the timeout of an object oi at this
type of location li is taken from the tracking record of oi at L2DIn(li) and
EXLD EX(li, *) is taken from the tuple Tlprev ,li of edge(lprev, li).

Node Type 2. A location l is of Node type 2 if L2DOut(l) = {L2DIn(l),
devvx }. Fig. 5.5b shows an example of Node Type 2. In our example ERDG
(Fig. 5.4), l5 is Node Type 2. Here, an object can circulate within the location
which generates multiple tracking records and at the end the object leaves
the location through devvx . In Eq. (5.5), the timeout is taken and the speed is
calculated from the last tracking record of the object from the tracking device
of that location. Suppose an object o2 contains a single record from dev5: (o2,
dev5, 36, 39). It means that o2 did not circulate at D2L(dev5) = l5 and left the
location to any one of the chutes. It is not possible to know when the object
actually left l5. However, we can get the maximum possible value of timeend
with the help of EXLD from the edge (l5, l5) which is EX(l5, *) = 22m and CD
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for dev5 = CD(dev5) = 3m. So the timeend = d39 + 22m
3m/(39−36) e = 61.

Node Type 3. A location l is considered to be Node Type 3 if |L2DOut(l)|
>2 and {L2DIn(l), devvx }⊂L2DOut(l). Here, an object can circulate in the
same location and it can leave the location through devvx or other tracking
devices. Fig. 5.5c shows an example of Node Type 3. In our example ERDG,
l4 is this type of node. During mapping a location of Node Type 3, the value
of timeout from the tracking records is picked in the same way as for Node
Type 2. If the object has any tracking record from L2DOut(l) \ {L2DIn(l),
devvx } (where l is Node Type 3), we take the corresponding EXLD; otherwise,
we take the EXLD for the loop. For example, for l4, L2Dout(l4) = {dev4, dev5,
devv} where dev4 = L2DIn(l4). As the object o1 in Table 5.1 has no tracking
record from dev5, the object o1 should circulate at l4 and leave the location
through devvx without generating any tracking record. So, the timeend of
object o1 from l4: timeend = d54 + 22m

3m/(54−51) e = 76.
Node Type 4 and Node Type 5 do not contain any outgoing edge with devvx

in label. Node Type 4 contains a loop, whereas Node Type 5 does not. Fig. 5.5d
and Fig. 5.5e show examples of Node Type 4 and Node Type 5, respectively. In
our example ERDG, l1, l2, and l3 are Node Type 5. As Node Type 4 contains
a loop, during mapping, the value of timeout from the tracking records is
picked in the same way as for Node Type 2 and 3. However, the EXLD EX(l,
lnext) is taken from the edge(lprev, l). For Node Type 5, the timeout is directly
taken from the tracking record as there is no loop in it. The EXLD in Node
Type 5 is picked in the same way as in Node Type 4. In our running example,
the timeend of o1 from l3 is calculated as timeend = d18 + 3m

3m/(18−15) e = 21.
The algorithm for mapping the tracking records is shown in Algorithm 39.

The algorithm takes the tracking records TR〈ObjectID, TrackingDeviceID, timein,
timeout〉 and the graph as input and produce the mapping table MT〈
MappingID, ObjectID, LocationID, timestart, timeend〉 as output. All the tracking
records of an object is kept in a variable R in timein ascending order (line 3)
and the previous location of the object is initialized to l0 (i.e., the object is
outside of the system) (line 4). For each tracking record ∈ R of object oi, the
current location is determined by D2L() (line 6) and based on the node type
of the current location, the necessary values like timeout, EXLD, ENLD, and
other values are derived (lines 11-33). The variables ∆tin and ∆tout are used
for calculating the speed of the object when it is getting in and getting out,
respectively (line 35). The value of ∆tin is directly calculated from the first
tracking of an object at a location (line 8). However, ∆tout = ∆tin for locations
of Node Type 1 and 5 as they do not contain any loops (lines 12, 32). For the
locations containing loops (Node Type 2, 3 and 4), the value of ∆tout is calcu-
lated from the last tracking record of an object in that location (lines 16, 20,
28). As these types of locations may produce multiple tracking records, we
consider only the first and last tracking records from the tracking sequence
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at such locations and skip the intermediate tracking records (lines 15, 19, 27).
After deriving all necessary values, the timestart and timeend is calculated for
the object oi at lcurr (lines 36-37). Finally, the mapping record is inserted into
MT (line 38). After inserting the mapping records for all the objects, the map-
ping table MT is returned from the algorithm (line 39). Table 5.2 shows the
results after mapping from Table 5.1.

Algorithm 4: MappingCPS (TrackingRecords TR, ERDG G) Result:
Mapping table MT
1 O := Set of distinct ObjectID∈TR.ObjectID;
2 for each ObjectID oi ∈ O do
3 R := All records for object oi from TR in timein-ascending order;
4 lprev := l0;
5 for each record ri ∈ R do
6 lcurr := G.D2L(ri .TrackingDeviceID);
7 Inedge := G.E(lprev , lcurr);
8 ∆tin := ri .timeout - ri .timein ;
9 timein := ri .timein ;

10 ENLD := Inedge.EN(lprev , lcurr);
11 if lcurr is Node Type 1 then
12 ∆tout := ∆tin ; timeout := ri .timeout ;
13 EXLD := Inedge.EX(lcurr , *);

14 else if lcurr is Node Type 2 then
15 In the loop skip the next subsequent tracking records from R where oi was tracked by

ri .TrackingDeviceID until the last record from the same tracking device;
16 ∆tout := rlast .timeout - rlast .timein ;
17 timeout := rlast .timeout ; EXLD := Inedge.EX(lcurr , *);

18 else if lcurr is Node Type 3 then
19 In the loop skip the next subsequent tracking records from R where oi was tracked by

ri .TrackingDeviceID until the last record from the same tracking device;
20 ∆tout := rlast .timeout - rlast .timein ;
21 timeout := rlast .timeout ;
22 if oi has records from any device ∈ G.L2DOut(lcurr) then
23 EXLD := Inedge.EX(lcurr , llast+1);

24 else
25 EXLD := Inedge.EX(lcurr , lcurr);

26 else if lcurr is Node Type 4 then
27 In the loop skip the next subsequent tracking records from R where oi was tracked by

ri .TrackingDeviceID until the last record from the same tracking device;
28 ∆tout := rlast .timeout - rlast .timein ;
29 timeout := rlast .timeout ;
30 EXLD := Inedge.EX(lcurr , llast+1);

31 else if lcurr is Node Type 5 then
32 ∆tout := ∆tin ; timeout := ri .timeout ;
33 EXLD := Inedge.EX(lcurr , lnext);

34 CD := Inedge.CD(ri .TrackingDeviceID);
35 InSpeed := CD

(∆tin )
; OutSpeed := CD

(∆tout )
;

36 timestart := timein - ENLD× InSpeed;
37 timeend := timeout + EXLD×OutSpeed;
38 Insert〈oi , lcurr , timestart , timeend〉 into MT;

39 return MT;
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Table 5.2: Mapping table for Table 5.1 considering CPS

MappingID ObjectID LocationID timestart timeend

map1 o1 l1 2 7
map3 o1 l3 7 21
map5 o1 l4 21 76

3.3 Modeling SCPS

In contrast to CPS, there is no ENLD, EXLD and CD required for SCPS as
the tracking devices are deployed in the entry and exit points and speed
calculation is unnecessary. However, we also need to consider that there can
be multiple entry and exit points in an SCPS location. We use a Reader
Deployment Graph (RDG) for modeling the SCPS.

The RDG for SCPS is formally defined by a labeled directed graph G = (L,
E, D, lbE), where:

1. L is the set of symbolic locations where each location is represented as
a vertex in G.

2. E is the set of directed edges: E ={ (li,lj) | li, lj ∈ L}.

3. D is the set of all tracking devices.

4. lbE represents a labeling strategy of an edge by tracking device(s) from
D. An edge (li, lj) ∈ E is labeled by a set of tracking devices Dk ⊆
D if Dk are deployed between location li and lj and an object must be
detected by any device from Dk if it goes from li to lj. Fig. 5.6 shows
the RDG for the floor plan of Fig. 5.2

Mapping for SCPS Locations. We define a mapping function Dest: {l,
d}→l′ where l, l′∈L and d∈D. Dest(l, d) returns node l′ from G where d is
the label for the edge E (l, l′)∈E. It means that tracking device d is deployed
between location l and l′ and if an object goes from l to l′ then it will be de-
tected by d. For this mapping, each tracking record of an object o is accessed
and with the help of the Dest function it is determined where o is entering.
Then the timein in the tracking record becomes timestart and the timein of the
next tracking record becomes timeend for the entered location. For example,
let Table 5.1 be constructed from the movement in the floor plan of Fig. 5.2.
From rec1 we see that o1 was tracked by dev1 from time 4 to 5. The initial
location of o1 is considered as l0. From the graph in Fig. 5.6, Dest(l0, dev1)
= l1. From the tracking record, timestart = timein = 4. However, the timeend =
timein from rec3 is 15. So, the mapping record says that o1 was at l1 from time
4 to 15.
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Fig. 5.6: Graph-based model for SCPS

Algorithm 10 shows the steps of mapping the tracking records collected
from an SCPS. It takes tracking records TR and RDG G as input and produces
the mapping table MT for the given tracking records. For each object oi, it
takes the tracking records into R sorted in timein-ascending order (line 3). In
the beginning, the current location of the object is initialized to l0 (line 4).
Then for each tracking record of oi, the algorithm finds the entered location
using the Dest function with the help of G, and takes the timein as the timestart
(lines 5-7). The timeend is taken from the timein of next record as it ensures that
the object left the location after generating the next record (line 8). Finally, a
mapping record is inserted into MT from the generated information (line 9).
Table 5.3 shows the SCPS mapping results for Table 5.1.

4 Efficient Dense Location Extraction

The dense locations can now be extracted from the mapping records in the
mapping table. As seen, a mapping record contains the entire stay of an object
inside a location. For a CPS location like baggage on a conveyor belt, it is
not common that an object re-visit a location after visiting another location,
whereas it is common for an SCPS location. Moreover, the stay duration of
an object in a CPS location is always more or less the same, e.g., all bags
spend the same time at the sorter. In our setting, an object visiting a location
multiple times is treated as multiple objects for density computation for that
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Algorithm 5: MappingSCPS(TrackingRecords TR, RDG G) Result: Map-
ping table MT

1 O := Set of distinct ObjectID from TR.ObjectID;
2 for each ObjectID oi ∈ O do
3 R := All records for oi from TR in timein-ascending order;
4 Location l:= l0;
5 for each record ri ∈ R do
6 l := G.Dest(l, ri.TrackingDeviceID);
7 timestart := ri.timein;
8 timeout := ri+1.timein (i < |R|);
9 Insert〈oi, L, timestart, timeend〉 into MT;

10 return MT;

Table 5.3: Mapping table for Table 5.1 considering SCPS

MappingID ObjectID LocationID timestart timeend

map1 o1 l1 4 15
map3 o1 l4 15 26
map5 o1 l5 26 51
map8 o1 l4 51 ...

location since reappearance contributes to the density. However, the duration
based density (DBD) makes it more general for broader application scenarios
as the length of the stay of different objects also contribute to the density in
this case.

4.1 Dense Location Queries (DLQ)

A dense location query DLQ[qs, qe, θ] finds the dense locations between time
qs and qe where θ is the density threshold. In the inner part of a DLQ,
there is a density query, a count query (CQ) for CBDLQ, a duration query
(DQ) for DBDLQ, and a mapping record query (RQ). Fig. 5.7 and 5.8 show
the naive approaches for processing a CBDLQ and a DBDLQ, respectively.
When a CBDLQ[qs, qe, θ] is triggered, the system issues a count based den-
sity query CBDQ[qs, qe], the CBDQ[qs, qe] then issues a CQ[qs, qe] which is-
sues an RQ[qs, qe]. The RQ gets the mapping table from the database and
returns the mapping records that falls between the times qs and qe. From the
relevant mapping records, the CQ counts the number of objects at each loca-
tion. Next, the CBDQ computes the density of each location with the result
from CQ and the capacity of the corresponding location. Finally, the CBDLQ
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returns the locations with density > θ. However, for a DBDLQ[qs, qe, θ] de-
scribed in Fig. 5.8, there is no CQ. In this case a duration query DQ[qs, qe] is
processed which takes the mapping records for the interval [qs, qe] and com-
putes the total length of stay of the objects at each location within the query
time interval. Then the DBDQ[qs, qe] uses this duration information and the
capacities of the locations to compute the density of each location.
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Fig. 5.7: Query steps for count based dense location query (CBDLQ)
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Fig. 5.8: Query steps for duration based dense location query (DBDLQ)

A DLQ has to access aggregate information for a given time interval from
a large amount of data from the mapping table. We now present an indexing
technique to facilitate that. Its temporal part is inspired by the time index
described in [31]. Instead of indexing all the records of the mapping table,
we index all the intervals of each location using separate trees and store
aggregate values instead of pointers to the leaf nodes. Moreover, unlike the
B+-Tree, we link the nodes at intermediate levels. All these improvements
enable us to avoid accessing detailed data records and further offer significant
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pruning opportunities. This new index structure is called the Dense Location
Time Index (DLT-Index).

Table 5.4: Example mapping records at location l1

MappingID ObjectID LocationID timestart timeend

r1 o1 l1 2 7
r2 o2 l1 5 11
r3 o18 l1 8 20
r4 o15 l1 9 18
r5 o16 l1 11 20
r6 o12 l1 67 70
r7 o19 l1 22 26
r8 o20 l1 24 29
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c) Q[25] = Ctotal(24) = 2b) Q[6,12] = Ctotal(5)+Center(8)+Center(9)+Center(11)+Center(12)
= 2+1+1+1+0 = 5

a) Processing 
CBDLQ[10, 19, θ]: 

Convert θ to σ, Let σ =5
Level 1: 5+3 = 8 > σ
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Root of the DLT‐Tree for 
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Fig. 5.9: The DLT-Index with the DLT-Tree for location l1 of Table 5.4. The figure also shows
three examples of processing a) CBDLQ, b) interval query, and c) point query over the DLT-
Index.

4.2 The DLT-Index

In the DLT-Index we maintain a separate tree, called a DLT-Tree, for each
location. As a result, the DLT-Index is a collection of DLT-Trees. Let us
consider a set of mapping records at location l1 shown in Table 5.4. Fig. 5.9
shows an example of DLT-Index with the DLT-Tree constructed for the data
given in Table 5.4. An entry of a DLT-Tree contains a time point with some
aggregate information of objects at that time point. In the DLT-Tree of a
location l, each leaf node entry at time point ti is of the form: 〈ti, Ci〉, where
Ci〈ctotal , center, cexit〉 is a tuple with some aggregate information of the objects
at l valid during [ti,t+i ), where t+i is the next indexed time point after ti, ctotal
is the total number of objects present at l during ti, center is the total number
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of objects that entered l during ti, and cexit is the total number of objects that
exited l during ti-1. Besides, each non-leaf entry at time point ti contains a
tuple Cnl(ti) which is of the form:〈c′total , c′enter〉 and their values are described
as follows:

1. For the left-most entry at a level: c′total = c′enter = the total number of
objects that entered l until ti-1.

2. For the entries other than the left-most entry: c′total is the total num-
ber of objects present at l during interval [t−i , ti) and c′enter is the total
number of objects that entered l during interval [t−i , ti), where t−i is the
immediate left entry of ti at the same level.

In addition to Cnl , the right-most entry ti of each non-leaf level also con-
tains another tuple Cr〈c′′total , c′′enter〉, where c′′total is the total number of objects
present at l during ti to the max time stamp in the tree and c′′enter is the total
number of objects that entered l during ti to the max timestamp in the tree.

The tree construction and insertion of a new entry in the DLT-Tree is very
similar to their counterparts for the B+-Tree. The time points are the keys
and the aggregate information C are the data values. The value of C at the
leaf levels can be precomputed or can be computed while inserting. After
constructing the tree, the aggregate information of the non-leaf entries and
the links between the non-leaf nodes have to be established.

4.3 Tree Construction from Historical Data

During the tree construction, the historical data are indexed. Let the set of
all intervals available in the data set be, I = {I1, I2, ..., In}. For an interval Ii,
the value of Ii.ts and Ii.te represents the start time and end time, respectively.
Additionally, the value of Iai = Ii.te + 1 represents the timestamp after Ii.te.
The DLT-Index has to index all the time points of P that is defined as follows:

P = {ti|∃Ij ∈ I((ti = Ij.ts) ∨ (ti = Iaj ))}

For example, considering Table 5.4, the points that need to be indexed are
P = {2, 5, 8, 9, 11, 12, 19, 21, 22, 24, 27, 30, 67, 71}. As seen for MappingID r1,
the timeend = 7 is not included in P as we index the timestamp after 7 which
is 8. Also at time point 8, o18 has entered the location (MappingID r3). Before
the tree construction, all the time points of P are sorted in ascending order
into Ps. Each of the time points ti ∈ Ps additionally contains a Ci where center
and cexit are directly known while getting each element of Ps from the data
set. For example, at the time point 8: center = 1 and cexit = 1; at time point 21:
center = 0 and cexit = 2 as two objects have timeend at 21-1 = 20. The ctotal at
time point ti is calculated by Eq. (5.6). For example, at the initial stage C0 =
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〈0, 0, 0〉. For the first time point 2, center=1 and cexit = 0. So, ctotal = 0+1-0=1.
As a result, C1 = 〈1,1,0〉. Similarly for time point 5, ctotal = 1+1-0 = 2 and C2
= 〈2,1,0〉. The complete list of Cis is shown in the leaf nodes of the DLT-Tree
for the location l1 in Figure 5.9.

ctotal(ti) := ctotal(ti−1) + center(ti)− cexit(ti) (5.6)

The insertion of the time points is done in the same way as for a B+-Tree,
where the time points are the keys and C are the values. However, for the
entries of the intermediate levels the value of Cnl has to be calculated. Main-
taining the aggregate information in the leaf nodes gives advantage for such
calculations. For any non-leaf entry ti, if it is the left-most entry at its level,
the Cnl is calculated by Eq. (5.7). In the equation, the value of ctotal from the
left-most entry t1 at the leaf level is added with all the center after t1 until the
immediate left entry of ti at the leaf level.

Cnl(ti).c′total := Cnl(ti).c′enter := ctotal(t1) +
i−1

∑
j=2

center(tj) (5.7)

Besides, for any non-leaf entry ti, if it is not the left-most entry in its level,
the Cnl is calculated by Eq. (5.8) and (5.9). Let t−i be the entry immediately
before ti at its level and k be the position of t−i in the leaf node. Then,

Cnl(ti).c′total := ctotal(tk) +
i−1

∑
j=k+1

center(tj) (5.8)

Cnl(ti).c′enter :=
i−1

∑
j=k

center(tj) (5.9)

Similarly, for the right-most entry ti at a non-leaf level, Cr is calculated by
Eq. (5.10) and (5.11) as follows:

Cr(ti).c′′total := ctotal(ti) +
max

∑
j=i+1

center(tj) (5.10)

Cr(ti).c′′enter :=
max

∑
j=i

center(tj) (5.11)

In Eq. (5.10) and (5.11), tmax represents the maximum value of the indexed
time point at the leaf level.

For example in Fig. 5.9 at level 2, 8 is the left-most entry. So Cnl(8).c′total
= Cnl(8).c′enter = ctotal(2) + center(5) = 1+1 = 2. Considering 22 at level 2 which
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is not the left-most entry, Cnl(22).c′total = ctotal(11) + center(12) + center(19) +
center(21) = 4+0+0+0 = 4. In the example tree, 27 is the right-most entry of
level 2. The value of Cr(27).c′′total = ctotal(27) + center(30)+ center(67) +center(71)
= 1+0+1+0 = 2.

The algorithm for DLT-Index construction from historical data is shown in
Algorithm 12. The algorithm takes mapping records R and a set of locations
L as input and creates the DLT-Index as the result. For each location, all
the timestart and timeend+1 is taken from the data set and their union is stored
into P (lines 1-4). The value of Ctotal(P0 6∈ P) is initialized to zero for handling
the special case for the first time point P1 (line 4). Then for each time point
Pi ∈ P, the values of Center, Cexit and Ctotal are computed and the tuple C for
Pi is formed (lines 5-9). The tuple C is then inserted into the DLT-Tree for the
corresponding location like B+-Tree insertion, where Pi is the key and C is the
data value (line 10). After inserting all the values of the particular location,
the intermediate links within the nodes in the non-leaf levels are established
and the values of Cnl and Cr are filled in the DLT-Tree (lines 11-12).

Algorithm 6: TreeConstruction (MappingRecords R, Locations L) Re-
sult: DLT-Index
1 for each location li ∈ L do
2 Is := All timestart of li from R;
3 Ie := All timeend + 1 of li from R;
4 time points P := Is ∪ Ie; Ctotal(P0 6∈ P) : = 0;
5 for each time point Pi ∈ P do
6 Center(Pi) := Number of objects containing Pi as timestart ∈ Is;
7 Cexit(Pi) := Number of objects containing Pi-1 as timeend ∈ Ie;
8 Ctotal(Pi) := Ctotal(Pi−1) + Center(Pi) - Cexit(Pi);
9 C :=〈Ctotal(Pi),Center(Pi),Cexit(Pi)〉;

10 Insert into DLTIndex[li] just like B+-Tree insertion method with
Pi as key and C as a data value;

11 Create intermediate links within the nodes at the non-leaf levels ;
12 Fill the values of Cnl and Cr for each entry at the non-leaf levels;

4.4 Updating DLT-Index

In an update, a new time interval is to be inserted and the interval is not
necessarily greater than the existing time points of the tree. Here, a new entry
can be added between existing time points that can result in inconsistencies
in the aggregate information in some other entries. As a result, it requires
an adjustment operation for recalculating the aggregate information for the
affected entries. For any interval I[ts, te], the update algorithm has to insert
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I.ts and Ia = I.te + 1 separately. Initially, the time points I.ts and Ia contains
tuple 〈1, 1, 0〉 and 〈0, 0, 1〉, respectively. If these two points do not already
exist, they are added in the tree just like B+-Tree insertion. However, if I.ts
already exists in the tree, it increases the corresponding ctotal and center by 1;
and if Ia already exists, it decreases ctotal and increases cexit by 1. Finally, the
ctotal for each of the points in the leaf node entries that fall in the interval
I[ts, te + 1] need to be adjusted according to Eq. (5.6). Similarly, the values of
Cnl for each of the non-leaf entry that fall in the interval I[ts, t>e ] need to be
adjusted, where t>e is the immediate next entry after te at each level if te is
not present at that level, otherwise t>e = te.

5 Query Processing

Now we discuss how the aggregate point, interval, and duration queries are
processed by using our DLT-Index. Subsequently, we will show the CBDLQ
and DBDLQ processing with and without pruning.

5.1 Aggregate queries

There are three types of aggregate queries: a) point queries, b) interval
queries, and c) duration queries. A point query finds the total number of
objects at a particular time point. An interval query finds the total number of
objects that appeared in a particular time interval. A duration query finds the
total stay duration of objects in a particular time interval. For processing a
point query Q[qt], a B+-Tree like search is performed for finding the appro-
priate leaf node for qt. Then it finds the last entry ta ≤ qt in the node and
returns Ctotal(ta) as the result. For example, consider a point query Q[25].
The B+-Tree like search will find the node shown in Fig 5.9c. From the re-
sulting node, entry 24 is the last entry which is ≤ 25. So the query will
return ctotal(24) = 2. Conversely, for an interval query Q[qs, qe], it will first
process a point query Q[qs] and take Ctotal(ta). However, instead of return-
ing the result, it continues the processing and finds the last entry tb ≤ qe
from the leaf nodes. For this purpose, it may have to access consecutive leaf
nodes one after another. If ta = tb, it returns Ctotal(ta) as the result. Oth-
erwise, it adds all the Center for each entry after ta until tb. For example,
consider an interval query Q[6, 12]. The B+-Tree search will find the leaf
node containing {2, 5} as shown in Fig. 5.9b. Then it finds the entry 12 which
is the last entry ≤ 12. So the calculation of the result will be: Q[6, 12] =
ctotal(5) + center(8) + center(9) + center(11) + center(12) = 2+1+1+1+0 = 5. The
processing of an interval query is shown in Algorithm 5. The processing
steps of a duration query will be discussed in Section 5.3.
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Algorithm 7: IntervalQuery (Location l, Start time qs, End time qe) Re-
sult: Total number of objects during [qs, qe] at l

1 root : = DLT-Tree for location l;
2 Leaf node node : = B+-Tree search (qs) and find the leaf node

containing qs;
3 Find the last entry ta from the node where ta ≤ qs;
4 n : = Ctotal(ta)+∑c

i=b center(ti), where tb is the immediate indexed time
point after ta where ta ≤ qe and tc is the last indexed time point ≤ qe ;

5 return n;

5.2 Count Based Dense Location Query (CBDLQ)

The naive approach of processing a CBDLQ[qs, qe, θ] over the DLT-Index is
to just get the results of an interval query Q[qs, qe] for each of the locations,
compute the density from the results, and then determine which locations are
dense. However, in the naive approach, the query has to access the leaf nodes
and then compute the aggregate results by accessing all the leaf level nodes
that cover the query interval. The access of the nodes at the leaf level as well
as other levels can be reduced by our pruning technique. As described in
Section 4.2, the DLT-Index contains some aggregate information in the non-
leaf node entries for pruning purpose. We first introduce the following two
observations.

Observation 1: If the number of objects in an interval i1 is less than a
threshold k, a smaller interval i2 that is fully covered by i1 must have less
than k objects.

Observation 2: If the number of objects in an interval i1 is greater than
a threshold k, a larger interval i2 that fully covers i1 must have more than k
objects.

In our pruning technique, the first observation helps prune at the non-leaf
levels, whereas the second observation helps prune at the leaf level. Note that
the cases covered by observation 1 and observation 2 are mutually exclusive.
In a CBDLQ[qs, qe, θ], the given θ is a density threshold rather than a number
of objects. Before starting the query processing, we convert θ to a number of
objects threshold σi for each location li. The value of σ for a location li for
a CBDLQ[qs, qe, θ] is derived from the density formula Eq. (5.1) as shown in
Eq. (5.12). In Eq. (5.12), ∆t = qe − qs.

σ(li, θ) := ∆t× capacity(li)× θ (5.12)

While processing a CBDLQ[qs, qe, θ], the value of σ for each location has
to be calculated. The query has to traverse the DLT-Tree of each location.
The way of accessing the next level is similar to a B+-Tree search for qs. At
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each non-leaf level leveli of the DLT-Tree of a location li, the smallest interval
[ta, tb) that can cover [qs, qe] has to be found. After that, the total number of
objects n(leveli) during [ta, tb) is calculated from the aggregate information
stored in all the entries between ta and tb at level leveli. The value of n(leveli)
is compared with σ. If n(leveli) < σ, li is marked as ’Not Dense’ based
on observation 1 and further processing of the tree is avoided. However, if
n(leveli) 6< σ, the next level is accessed and further processing is done in a
similar way to the other levels. If the query reaches the leaf level, it starts
calculating the total number of objects during [qs, qe]. During the calculation,
at each step it compares the sum with σ and if sum ≥ σ then based on
observation 2 the location li is marked as ’Dense’. As a result, it skips the
access of the next entries and nodes and avoids further calculation. However,
if the query processing is not skipped, the full sum is calculated to decide
whether li is dense or not.

Consider Fig. 5.9a, where the processing of CBDLQ[10, 19, θ] is shown
for location l1. Let σ = 5 be derived from θ. At the root level, the smallest
interval that covers [10, 19] is [min, max), where min and max are the starting
and ending time points of the tree, respectively. For min, the Cnl .c′total from
the left-most entry is taken, and for max, Cr.c′′enter is taken from the right-most
entry of the current level. So in our case the total number of objects during
this period is Cnl(19).c′total + Cr(19).c′′enter = 5+3=8. As 8 6< σ, the query has
to go to the next level based on a B+-Tree like search for 10. At this level
[8, 22) is the smallest interval that covers [10, 19]. Now the total number of
objects for the period is Cnl(11).c′total + Cnl(22).c′enter = 3+1=4. As 4 < σ, the
location l1 is not dense during [10, 19]. As a result, it does not need to access
the next level and do further processing for l1. Now consider another query
CBDLQ[6, 12, θ] and let σ = 3. During the processing of this query on the
DLT-Tree for l1 shown in Fig. 5.9, the pruning with observation 1 does not
work and the query will access the leaf level. However, the query does not
have to fully compute the total number of objects during [6, 12] as the sum up
to time point 9 is: 2+1+1=4 (Fig. 5.9b) and 4 ≥ σ. So, it can be deduced that
the location is dense during time interval [6, 12] without further processing.

The processing of a CBDLQ including our pruning strategy is shown in
Algorithm 27. It takes the set of locations, a time interval and a threshold θ
as input, and returns the CBDLs for the given time interval. For each location
li, σ(li, θ) is calculated and the root of DLT-Tree is assigned into T (lines 1-2).
For each non-leaf level of T, it finds the first entry ta > qs and tb > qe. Then,
the total number of objects n during [t−a , tb) is calculated from the aggregate
information at the current level (lines 4-11), where t−a is the entry before ta. If
ta is the left-most entry, then t−a := min, where min is the smallest time point
in the tree. If both qs and qe are larger than or equal to the right-most entry
tb, the total number of objects during [tb, max] is taken from the Cr(tb).c′′total
(lines 5-6). After computing n, it is compared with σ and if the location is
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Algorithm 8: CBDLQ (StartTime qs, EndTime qe, Threshold θ, Locations
L) Result: CBDLs

1 for each location li ∈ L do
2 σ := σ(li, θ); T := DLT-Tree for li;
3 for each level leveli of T (B+-Tree like level access for qs) do
4 if leveli is non-leaf level then
5 if qs, qe≥ the right-most entry tb of leveli then
6 n = Cr(tb).c′′total ; Go to line 12;

7 ta := first entry of leveli which is > qs;
8 tb := first entry of leveli which is > qe;
9 n := Cnl(ta).c′total+∑b

j=a+1 Cnl(tj).c′enter;
10 if tb is the right-most entry of leveli then
11 n += Cr(tb).c′′enter;

12 if n < σ then
13 li.status := "Not Dense"; //Observation 1
14 break;

15 else
16 ta := last entry in the current node which is ≤ qs;
17 n := ctotal(ta);
18 for each entry tb>ta ∧ tb≤qe in the leaf level do
19 n += center(tb);
20 if n ≥ σ then
21 li.status := "Dense"; //Observation 2
22 break;

23 if n ≥ σ then
24 li.status := "Dense";

25 else
26 li.status := "Not Dense";

27 return the locations ⊆ L that are marked as "Dense";

not going to be a dense location, it is marked as ’Not Dense’ and the query
stops further processing for the current location (lines 12-14). If the query
processing is not pruned at any non-leaf level, at the leaf level it computes
the total number of objects n during [qs, qe] (lines 15-22). First, it finds the last
entry ta in the current node where ta ≤ qs and takes ctotal(ta) (lines 16-17).
Then, in a loop it starts adding center from each consecutive entry until tb
where tb>ta and tb≤qe. However, after adding information from each entry
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into n, it checks whether n ≥ σ or not. If the condition is true (i.e., n ≥ σ),
the location is marked as ’Dense’ and further calculation of n is pruned (lines
20-22). Otherwise, the final value of n is checked to determine whether the
location is dense or not (lines 23-26). For the tree of each of the locations,
the algorithm iterates according to the process described above. Finally, the
algorithm returns all the locations that are marked as ’Dense’ (line 27).

5.3 Duration based dense location query (DBDLQ)

In a DBDLQ[qs, qe, θ], the total length of stay by the objects within the interval
[qs, qe] is computed from the stored aggregate information in the leaf nodes of
the DLT-Tree of each location. Before discussing the processing of a DBDLQ,
we first discuss the processing of a duration query DQ[qs, qe, li] using our
DLT-Index. The processing steps of a DQ are shown in Algorithm 15. The
algorithm takes the query start time qs, end time qe and location li as input
and returns the total length of the stay Tdur by the objects at li during the
given time interval. During processing of a DQ, we incrementally maintain
the sum of the stay duration of objects between the query start time qs until
the accessed time point at the leaf level (lines 7-12). At first, a set of variables
including Tdur are initialized to zero (line 2). Variable Tobj is used to track the
number of objects staying between the time points, and variable EndFlag is
used to keep track of whether the tree has qe as an entry in a leaf node. A
B+-Tree like search for qs is performed to access the appropriate leaf node
in the DLT-Tree for the location li (line 3). From the leaf node, the last entry
≤ qs is assigned to ta (line 4). A variable tprev is initialized with qs to store the
previously accessed time point for computing the duration when accessing a
time point at the leaf level (line 5). For each entry tb (where tb>ta ∧ tb≤qe)
at the leaf level, the aggregate information is accessed and Tdur is computed
up to the accessed time point (line 8). Then the value of Tobj is updated with
the new information found at that time point and will be used for the next
iteration (line 9). During the final iteration of the loop, if tb = qe, EndFlag is
set to 1 to indicate that the Tdur is fully computed (lines 11-12). Otherwise,
Tdur is updated with the remaining time value (i.e., tprev to qe) that was not
added during the loop (lines 13-14). Finally, the final value of Tdur is returned
from the algorithm (line 15). From our DLT-Tree, we only know how many
objects entered, exited, and stayed in the location at different time points.
As a result, during the computation of the total duration, we cannot figure
out exactly which object entered or exited. However, as we incrementally
maintain the sum of the stays by the objects from the aggregate information
and carefully consider an increase and decrease in the number of objects at
each time point during the query time interval, the total duration computed
by our algorithm will remain the same.

An example of processing a duration query DQ[6, 23, l1] is shown in
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Tobj = 2+1‐0=3
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Tdur= 12+4x (12‐11)=16
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Tdur=16+3x (19‐12)=37
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Tdur=41+1x (23‐22)=42

At time 6 At time 8 At time 9 At time 11

At time 12

At time 19

At time 21

At time 22

At time qe=23

Processing a duration query, DQ [6, 23]a)
Processing DBDLQ [6, 23, θ ], Convert  θ to λ, let λ=25. Start processing DQ [6, 23]. The process 
will prune the rest of the calculation after computing Tdur up to time 19 as 37>25 and mark 
the location as Dense. 

b)

Fig. 5.10: Processing DQ and DBDLQ using the DLT-Index

Fig. 5.10a. The figure only shows the leaf level of the tree. After performing
a B+-Tree like search for 6, the query finds the leaf level node containing {2,
5}. As the location already contains two objects at time 6, the value of Tobj
is initialized with 2. The process subsequently accesses the next entries and
updates the value of Tobj and Tdur with the help of the aggregate information,
and the other values that are computed until the previous time point. As
there is no entry for 23 in the leaf nodes, the remaining duration is added
from the remaining objects and the computed value until time 22.

The naive approach processes a DBDLQ[qs, qe, θ] by processing a DQ[qs,
qe] for each of the locations, computing the density using Eq. (5.2) with the
help of the stay duration from DQ, and then determines which locations
are dense based on the threshold θ. Similar to Observation 2 that is used
for pruning at the leaf level for a CBDLQ, we have another observation for
DBDLQ for pruning.

Observation 3: If the total length of the stay duration of the objects in an
interval i1 is greater than a threshold k, the total length of the stay duration
of the objects in a larger interval i2 that fully covers i1 must also be greater
than k.

While processing a DBDLQ, Observation 3 helps prune a number of node
accesses at the leaf level if the corresponding location is dense. Like σ used
in the CBDLQ, we convert the density threshold θ into a duration threshold
λ. The duration threshold λ is derived from Eq. (5.2) as shown in Eq. (5.13).
In Eq. (5.13), ∆t = qe − qs.

λ(li, θ) = ∆t× capacity(li)× θ (5.13)

For a DBDLQ[qs, qe, θ], if the total length of the stays of the objects dur-
ing the interval [qs, qe] at location li is greater than or equal to λ(li, θ), the
location li is marked as ’Dense’. While processing a DBDLQ[qs, qe, θ], a du-
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Algorithm 9: DQ (StartTime qs, EndTime qe, Location li) Result: Total
stay duration by objects at li during [qs, qe]

1 T := DLT-Tree for li;
2 Tdur := 0; Tobj := 0; EndFlag := 0;
3 node := leaf level node of T containing qs; //Obtained by B+-Tree like

search for qs
4 ta := last entry in node which is ≤ qs;
5 tprev := qs;
6 Tobj := ctotal(ta);
7 for each entry tb>ta ∧ tb≤qe in the leaf level do
8 Tdur := Tdur + Tobj × (tb - tprev) ;
9 Tobj :=Tobj + center(tb) - cexit(tb);

10 tprev := tb ;
11 if tb = qe then
12 EndFlag := 1;

13 if EndFlag = 0 then
14 Tdur := Tdur + Tobj × (qe - tprev) ;

15 return Tdur;

ration query DQ[qs, qe, li] is performed for each location with an additional
condition on the value of Tdur, described as follows. During the processing
of the DQ, at each step the incremented value of Tdur is compared with λ.
If the query finds the current value of Tdur ≥ λ, the corresponding location
is marked as ’Dense’, and further processing for the location is pruned. For
example, in Fig. 5.10b the processing of DBDLQ[6, 23, θ] is shown. Suppose
after converting θ to λ the value of λ is 25. In this case, the query has to
compute until time point 19 as the value of Tdur =37 ≥ 25. As a result, the
query does not need to calculate the value of Tdur further, and the location is
marked as ’Dense’ according to Observation 3.

The processing of a DBDLQ including our pruning strategy is shown in
Algorithm 9. The algorithm takes a query interval [qs, qe], a density threshold
θ and a set of locations L as input, and returns the set of dense locations ⊆ L
as the result. For each location li, the value of λ is calculated (line 2) and
a duration query DQ[qs, qe, li] is processed with some additional condition
in its steps (line 3). During processing the DQ, the new value of Tdur at
each step is compared with λ. If Tdur ≥ λ, the location is marked as ’Dense’
and further processing about the location is skipped (based on Observation 3).
However, if the processing is not skipped, based on the final value of Tdur, it
is determined whether the location is dense or not (lines 4-8). Finally, all the
dense locations are returned as the result of the query (line 9).
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Algorithm 10: DBDLQ (StartTime qs, EndTime qe, Threshold θ, Loca-
tions L) Result: Set of dense locations

1 for each location li ∈ L do
2 λ := λ(li, θ) ;
3 Conditionally process DQ[qs, qe, li] and after computing Tdur at each

step (see line 8 of Algorithm 15) compare it with λ. If at any step
Tdur ≥ λ then mark li.status := "Dense" and skip further processing
for li;

4 If the processing for li was not skipped in the above steps then
compare the final value of Tdur with λ.

5 if Tdur ≥ λ then
6 li.status := "Dense";

7 else
8 li.status := "Not Dense";

9 return the locations ⊆ L that are marked as "Dense";

6 Experimental Study

6.1 Experimental Setup

The mappings for both CPS and SCPS are implemented and the aggregate
information from the mapping records are precomputed using C#. The DLT-
Index is implemented using C. A leading RDBMS is used for all SQL queries,
that are compared with. The experiments are conducted on a laptop with
an Intel Core i7 2.7 GHz processor with 8 GB main memory. The operating
system is 64-bit Windows 7.

6.2 Mappings

Mapping CPS: We use real RFID-based baggage tracking data from the trans-
fer system of terminal-3 of Copenhagen Airport (CPH). It has 11 CPS loca-
tions with 11 RFID readers deployed. After filtering the erroneous records,
there are 2.1M tracking records for 220K distinct bags collected during the
period from Dec 21, 2011 to Dec 02, 2013. As most of the locations contain
loops, after converting the 2.1M tracking records there are 787K Mapping
records. Fig. 5.11a shows the execution time of the CPS mapping algorithm
(Algorithm 39) for different numbers of tracking records. It shows that the
mapping time scales linearly with the number of tracking records.

Mapping SCPS: We generate 2M tracking records for 300K distinct objects
in a floor plan with 50 different symbolic locations. For each object there are
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on average 6 tracking records produced. After passing the tracking records
into the mapping algorithm (Algorithm 10), there are 2M mapping records.
Fig. 5.11b shows the execution time of SCPS mapping algorithm for different
numbers of tracking records. It shows that the mapping time scales linearly
with the number of tracking records.
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Fig. 5.11: Performance of Mapping algorithms

6.3 DLT-Index

The page size is set to 4KB and each entry of the DLT-Tree is 20 bytes. This
yields 204 entries per node. We use both real data as well as synthetic data
for experimenting with different aspects of the DLT-Index. We use the above
mapping table produced from the airport baggage tracking data and scales it
to 10M mapping records. For scaling, Max(ObjectId) is added to the existing
ObjectIds for uniqueness, and a random time between 50 to 120 seconds is
added to the timestart and timeend for each record. The semi-real data contains
3M distinct objects and a total of 17.3M distinct time points distributed over
the 11 symbolic locations.

While generating synthetic data, On the other hand, we focus on data vol-
ume instead of focusing on the real world scenario. We generate 10M map-
ping records distributed over 50 different symbolic locations. For each loca-
tion, we generate 200K objects and around 20 objects appearing per minute.
In the mapping table there are on average 197K distinct time points created
per location and a total of 9.8M distinct time points distributed over 50 loca-
tions.

First, the tree construction and update costs are investigated, and then
the query processing cost is studied. As part of the investigation of query
processing cost, we measure the total number of node accesses with and
without pruning. Then we proceed to measure the query processing times
of point, interval and other types of queries in our DLT-Index, and then
compare with the query times using SQL over the RDBMS.
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Tree Construction: Before the tree construction the aggregate information
C for each time point is precomputed. Then the trees are constructed for the
time points including the aggregate information. The full tree construction
time including the aggregate information generation time for the synthetic
data is reported in Fig. 5.12a and 5.12b. For generating Fig. 5.12a, the total
mapping records are kept fixed to 2M. Even though the DLT-Index main-
tains a tree for each location, Fig. 5.12a shows that the number of locations
has no effect on the tree construction time. On the other hand, Fig. 5.12b
shows that the tree construction time increases linearly with the number of
mapping records. In both cases, generating the aggregate information takes
approximately 89% of the time during the tree construction as it has to access
each record for finding distinct time points, sort and union them to compute
the values of ctotal , center and cexit at each time point. Similarly, Fig. 5.13a
shows the effect of the number of mapping records on the full tree construc-
tion time for the semi-real data. The tree construction takes more time for the
semi-real data compared to the synthetic data as the semi-real data contains
more distinct time points. Overall, we can see that the tree construction cost
depends on the number of records as well as the number of time points but
not on the number of locations. The main reason behind this is that the to-
tal tree construction time is mainly influenced by the aggregate information
generation that in turns depends mainly on the number of records and time
points.
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Fig. 5.12: Tree construction cost for synthetic data

Update: We test the update cost of the DLT-Index with the semi-real
data. First, trees are constructed from 4M mapping records. Then, the trees
are updated by inserting new records. The number of inserted records is
increased gradually. Fig. 5.13b shows that the update time scales linearly
with the number of mapping records. The update cost with the synthetic
data is not tested as it is enough to understand the effect from the semi-real
data.
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Fig. 5.14: Processing CBDLQ in the DLT-Index.

6.4 Query Processing

For experimenting with the different aspects of the query processing by the
DLT-Index, we have generated a set of random queries. For creating the
random queries, a built-in function of the RDBMS is used to get random
time points from the mapping table. Then we add the necessary durations
with the time points to create intervals for the queries.

Three random CBDLQs are generated for semi-real data and are processed
with pruning (P) and no pruning (NP). The node access for each of them is
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reported in Fig. 5.14a and 5.14b. In all the cases, P accesses much fewer nodes
compared to NP. In Fig. 5.14a the query time interval is kept fixed, and the
density threshold(θ) is changed. It shows that, for NP, a query has to access
the same number of nodes regardless of the value of θ, as it always has to
compute the total number of objects for the full interval. However, for P,
when the value of θ is increased, the number of node accesses decreases as
the number of dense locations decreases due to an increase in the value of
σ (effect of pruning with observation 1). However, the number of node ac-
cesses becomes constant after some time. In Fig. 5.14b, θ is kept fixed and the
time interval length is changed. It shows that for NP, node access increases
with the length of the intervals as the query has to cover more time points
to complete the interval. However, for P, node access decreases and becomes
constant at some point. Here, any of the observations (observation 1 or obser-
vation 2) can be the reason depending on the number of dense locations. The
query is affected by observation 1 if the number of dense locations decreases
and by observation 2 if the number of dense locations increases.

We also generate three random CBDLQs for synthetic data and process
with both P and NP, and the node accesses are reported in Fig. 5.14c and
5.14d. Fig. 5.14c shows a similar effect as shown in Fig. 5.14a. For P, the node
access is less at the beginning as an effect of the pruning with observation
2. The node access also decreases with the increase in θ as the number of
dense locations decreases and σ increases (effect of pruning with observation
1). Fig. 5.14d shows, for NP, the query accesses more nodes with the increase
in the duration, whereas the number of node accesses decreases for P. It
shows that for P, the number of node accesses becomes stable at some point.

We generate three random DBDLQs for synthetic data and process them
with both P and NP. The number of node accesses for each of them is re-
ported in Fig. 5.15a and 5.15b. In all the cases, P accesses fewer nodes com-
pared to NP. In Fig. 5.15a the query time interval is kept fixed, and the density
threshold(θ) is changed. It shows that for NP, a query has to access the same
number of nodes regardless of the value of θ, as it always has to compute the
total duration of objects stays for the complete time interval. However, for
P, the number of node accesses increases with an increase in the value of θ,
as the locations become less dense and Observation 3 becomes less effective.
Moreover, Fig. 5.15a shows that for P, the number of node accesses becomes
stable when it reaches the total node accesses for NP. In Fig. 5.15b, θ is kept
fixed and the time interval length is changed. It shows that for both P and
NP, the number of node accesses increases with the interval length as the
query has to cover more time points to complete the interval. However, the
number of node accesses is always less for P than for NP. We also generate
three random DBDLQs for semi-real data and process both with P and NP.
The effects on the node accesses are reported in Fig. 5.15c and 5.15d. In all
cases, they show the same effect as for the synthetic data.
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Fig. 5.15: Processing DBDLQ in the DLT-Index.

We generate three random CBDLQs and DBDLQs for synthetic data and
report the number of dense locations for each of them in Fig. 5.16a, 5.16b, and
Fig. 5.16c. It shows that, for the lower values of thresholds, the total number
of dense locations is the same for both CBDLQ and DBDLQ. However, when
the threshold is increased, the DBDLQ always reports more dense locations
than CBDLQ. This is also obvious from the definition that, for any location,
always DBD ≥ CBD as a CBD considers only the number of objects whereas
a DBD considers both the number of objects and the stay duration of each
object.

We also process three random queries that find the number of objects at
each location for one month interval with a given condition on the aggregate
results (like GROUP BY with HAVING condition in SQL) to see the effect
of P on larger interval in the DLT-Index. Fig. 5.16d shows that P accesses
significantly less number of nodes compared to NP.
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Fig. 5.16: Comparing the number of dense locations in CBDLQ and DBDLQ, pruning effects in
processing the interval queries in the DLT-Index, and Interval and point query processing times
in the DLT-Index and SQL in RDBMS.
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Listing 5.1: SQL1

SELECT location , COUNT (DISTINCT ObjectID)
FROM [mapping table] m
WHERE (m.timestart BETWEEN qs AND qe)

OR (m.timeend BETWEEN qs AND qe)
OR (qs BETWEEN m.timestart AND m.timeend)

GROUP BY location
HAVING COUNT (DISTINCT ObjectID) > threshold

We randomly generate three point queries and also three interval queries
that find the number of objects at each location for a given time interval. The
interval queries are for one year interval. The queries are processed by both
the DLT-Index and the relational DBMS. An example interval SQL query is
shown in Listing 5.1. First, we process the queries inside the DBMS without
creating any indices in the mapping table. Then we create both clustered and
non-clustered indices on different columns and on combination of relevant
columns. Further, the SQL queries are processed over the created indices in
the RDBMS. However, we find the queries are fastest without any indices in
the RDBMS. So, we have reported the query processing durations without
without any indices in the RDBMS. For a fair comparison, the first query
processing time for each query in the SQL is ignored for warm-up and data
loading into main memory. Then we execute each query five times and take
the average query time. Fig. 5.16e and 5.16f show that the point query pro-
cessing in the DLT-Index is more than 340 times faster, and in some cases the
interval query processing time is around 300 times faster.

7 Related Work

Indoor space modeling for tracking of moving objects has been proposed
in [46, 61, 79]. Modeling indoor spaces for the purpose of RFID data cleansing
are proposed in [18, 19]. Our ERDG and RDG are inspired by the graph-based
indoor space model [46]. That model converts the raw RFID readings into
tracking records containing the first and last time when an object appeared
within a reader’s activation range. In our earlier work [15], we converted
the tracking records into stay records containing the transition time between
readers. In another earlier work [13], RFID baggage tracking records are
converted into FlightLeg Records for analyzing baggage status at the airport
level. In the present chapter, the tracking records are converted into mapping
records showing when an object actually entered and exited the correspond-
ing location.

Much work has been carried out on managing and analyzing the data
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from RFID-based indoor and mixed indoor-outdoor tracking applications.
Methods for managing and accessing RFID based tracking data have been
proposed in [27, 76]. Techniques for storing RFID-based tracking data for
analyzing at different levels of abstraction have been proposed in [38, 41].
Methods for finding frequent indoor paths have been proposed in [22, 69].
A number of different kinds of queries for the indoor tracking scenario and
their processing techniques have been proposed in [60, 80, 81], where [80]
focuses on distance aware join processing, [60] focuses on distance aware
query processing, and [81] focuses on nearest neighbor query processing. In
the present chapter, we model both constrained and semi-contained indoor
movements, provide the algorithms for mappings as well as efficient process-
ing techniques of a new type of indoor query called dense location query.

There are works [40, 45, 52, 55] that address density queries and hot route
queries on road networks. However, the geometric space and the distances
used in outdoor road networks do not apply to the indoor space and symbolic
indoor tracking data in our settings.

There are spatio-temporal data access methods for point and interval
queries on temporal dimension in outdoor settings [62, 70, 73, 74] and in
indoor settings [47]. These indexing techniques are capable of efficiently
accessing individual records for a range of locations as well as for a time
period. However, for a DLQ, aggregate information for each location has
to be accessed. Our DLT-Index itself contains aggregate information and
avoids accessing individual data records. There are also works for indexing
spatio-temporal data for aggregate queries [58, 64]. The aRB-tree [64] stores
the aggregate information in the tree nodes. However, it counts the same
objects multiple times if the objects remain in the same location in several
timestamps during the query interval. This problem is solved by an approx-
imate approach in [72]. In contrast to the traditional range and point queries
where a query generally does not access all the locations, the DLQ has to
access all the locations’ information to determine whether each location is
dense or not. So like the aRB-Tree, we also maintain a separate tree for each
location. However, we do not use the R-Tree part of the aRB-Tree which
uses MBRs. The distance functions in the symbolic space are different from
the Euclidean distance, so the MBRs cannot approximate the distances well.
Thus, the MBR used in aRB-Tree is not applicable in our case. Although our
temporal indexing structure is motivated by [31], we extend it to a symbolic
spatio-temporal space and we additionally maintain necessary aggregate in-
formation in nodes to facilitate counting distinct objects for a time interval.
The aggregate information stored in the non-leaf nodes helps achieve effec-
tive pruning in processing DLQs as well as intervals and SQL like GROUP
BY queries with HAVING conditions.
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8 Conclusion and Future Work

Indoor tracking applications generate a massive volume of tracking data that
are at a very low level for further analysis. Preparing such low-level data
and use it for finding dense locations can be useful for detecting overloaded
areas, crowd and security control, and other location based services. In this
chapter, we proposed an approach to extract the dense locations from indoor
tracking data. We developed two graph-based models for constrained and
semi-constrained indoor movements. The models are useful for mapping the
tracking records with the semantic location so that it is possible to know
the entry and exit times of an object at a symbolic location. Then we intro-
duced an indexing technique, the Dense Location Time Index (DLT-Index),
which indexes aggregate information with the time points. We also proposed
efficient methods for index construction and updating, processing point, in-
terval, duration, and dense location queries including pruning strategy on
the DLT-Index. Our experimental evaluation on large amounts of real and
synthetic data shows that the DLT-Index can process queries efficiently and
several orders of magnitude faster than an RDBMS. The DLT-Index is also
useful for general time interval indexing, which enables efficient processing
of queries like asking for the number of distinct records for a specified time
point or time interval.
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Chapter 6

Summary of Conclusions and
Future Research Directions

Abstract

This chapter summarizes the conclusions and directions for future work presented in
Chapters 2-5, Appendices A and B.

1 Summary of Results

The thesis presented different kinds of analytics on indoor moving objects,
especially for the airport baggage handling scenario. The Ph.D. study was
supported by a major industry initiative called the BagTrack project. The
aim of the project is to build a global IT solution to significantly improve the
worldwide aviation baggage handling quality. Typical baggage mishandling
includes delayed baggage or baggage left behind at the origin airport, missed
connecting flight, bag loss, wrong bag destination, etc. The Ph.D. thesis pre-
sented a number of data management and mining techniques for efficient
analysis of baggage tracking data as well as other general indoor tracking
data. In addition to other types of analysis such as indoor dense location
extraction, the thesis focused on finding the reasons of baggage mishandling
and also predicting risk of baggage in real-time so that the bag can be saved
from being mishandled. Further, as analyzing and querying the unstructured
raw data is very slow and it is sometimes impossible to get answers in a rea-
sonable time, the thesis took scalability and efficiency into consideration. To
solve the efficiency problem as well as facilitating other opportunities, the
thesis presented a data warehousing solution and an indexing solution. The
developed technologies and concepts were general enough such that they
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could be applied to different spatio-temporal data management systems and
tracking applications. In the following, each of the presented chapters is
summarized with its corresponding important results. Finally, the overall
contributions of the PhD thesis are discussed at a higher level of abstraction.

Chapter 2 presented an efficient data warehouse solution for analysis of
RFID-based airport baggage tracking data. The presented data warehouse
considered relevant and complex dimensions and measures to facilitate com-
plex multidimensional queries and to provide insight into the baggage track-
ing data as well as finding the reasons of baggage mishandling. In the data
warehouse, the huge unprocessed raw RFID tracking data were converted
into stay records which resulted in a huge data reduction making it suitable
for further analysis, e.g., analyzing the baggage stay durations between loca-
tions. The data warehouse introduced the concept of date localization where
each date was localized to a particular airport for capturing the special events
related to the particular airport. Furthermore, the many-to-many relationship
between Bag and Flight dimensions was handled effectively both in the rela-
tional data warehouse and the cube design. The chapter also discussed the
necessary steps for the ETL operation and solved the complexities of the ETL
operation for loading the data warehouse with the appropriate data from the
data source. The proposed data warehouse and cube were implemented and
the query processing times in the relational data warehouse, cube, and the
source database were compared. The results showed that some queries in the
cube were 7 times faster compared to the relational data warehouse and 2300
times faster compared to source data. The chapter also reported some anal-
ysis results using a very user friendly BI tool called Targit BI Suit 2K11 and
it showed that the data warehouse can reveal interesting insights in the data
set. The proposed data warehouse solution can benefit the aviation industry
significantly for storing and analyzing baggage handling data as well as tak-
ing actionable decisions for service improvement. The concepts presented in
the chapter can be generalized for other kinds of multi-site based symbolic
indoor, outdoor, and mixed indoor-outdoor tracking systems.

Chapter 3 presented a detailed methodology for mining risk factors in
RFID baggage tracking data. The primary goal was to find interesting pat-
terns and identify risk factors that are related to baggage mishandling. The
chapter presented the required pre-processing steps for preparing the low-
level RFID tracking data into FlightLeg records for a higher level analysis. Sev-
eral data mining techniques such as Decision Tree (DT), Naive Bayes classifier
(NB), KNN classifier (KNN), Linear regression (LIR), Logistics regression (LOR),
and Support vector machine (SVM) were used for learning predictive models
that assigned a probability score called a risk score to each bag representing
the probability of being mishandled. The scores were also used for ranking
the bags in the data set. The chapter dealt with the class imbalance prob-
lem present in the real data set. Based on the AUCs and the precision-recall
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curves we found that the Decision Tree was the best classifier for the data
set. The data set was fragmented into transit, non-transit, shorter and longer
transit records and appropriate models for the different fragments were ob-
tained. It was found that re-balancing the data set by under-sampling helped
to obtain a better predictive model for the bags with longer transit durations.
The chapter reported a comprehensive experimental study and it showed
that fragmenting and mining each of the fragments separately was the right
choice. The extracted patterns were also reported and they showed that the
total available handling time for a bag before its flight is an important factor.
They showed that a bag is normally at high risk of being mishandled if it has
less than 54 minutes transfer time in the transit airport. Furthermore, a long
stay between readers or baggage handling locations and the busyness of the
airport, i.e., the number of bags handled during the flight hour are also im-
portant factors related to baggage mishandling. The proposed methodology
revealed interesting concrete patterns in the data set, thus, the methodology
can help the airline industry for examining the problems in baggage man-
agement for further improvement in the system.

Chapter 4 presented an online risk prediction system for indoor mov-
ing objects. Here, the stay records are used for constructing a probabilistic
flow graph (PFG) and the aggregated PFG (APFG). In the graphs, a set of
histograms called the least duration probability histogram (LDPH) and ag-
gregated LDPH (ALDPH) is used for capturing the probabilistic information
about the object transition times. The risk prediction system uses the graphs
for obtaining risk scores for the online moving objects and uses the obtained
risk scores to predict the riskiness of the objects. The chapter also presented a
cost model for finding the risk score thresholds that maximize the benefit of
detecting and removing the predicted risky objects. The presented risk pre-
diction system considered the total available processing time of an object and
performed a normalization for specializing the maximum allowable duration
of an object for each of its transitions. This normalization and specialization
facilitate predicting the risky objects as soon as possible as well as reduce
false positives. A comprehensive experiment was conducted with synthetic
and real data. The results showed that the proposed risk prediction method
can identify the risky objects very accurately when the objects approach the
bottleneck locations on their paths. Results showed that APFG with normal-
ization can significantly reduce the operation cost (83.4% in the experimental
data set). Further, the experimental results also showed that the prediction
system can predict the risky objects well in advance such that they can be
saved from being mishandled. The proposed risk prediction system can help
the aviation industry for predicting risky bags during their processing at the
airport and can significantly reduce the mishandling rate and related opera-
tional cost. The system also can be applied to predict the risks of the objects
for similar kinds of time critical applications.
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Chapter 5 presented an efficient approach for finding dense locations
in indoor tracking data. Indoor spaces were categorized into two types,
constrained path space (CPS) and semi-constrained path space (SCPS). The
chapter presented two graph models: Extended Reader Deployment Graph
(ERDG) and Reader Deployment Graph (RDG) to capture the topological
information of the CPS and SCPS, respectively. The graphs are used for map-
ping the tracking records of indoor moving objects into the mapping records
representing the entry and exit times of the objects at different symbolic lo-
cations. The mapping records can be used for dense location extraction as
well as for other kinds of analysis. The chapter introduced a new index-
ing technique called the Dense Location Time Index (DLT-Index), which
indexes aggregate information about the objects with the time points from
the mapping records. The chapter also presented efficient algorithms for in-
dex construction and updating, pruning methods, processing point, interval,
duration, and dense location queries through the DLT-Index. The chapter
reports a comprehensive experimental study with large synthetic and real
data. The results showed that the DLT-Index can process queries efficiently
and the query processing times are several orders of magnitude faster than
an RDBMS. Further, the index construction and updating times also showed
that the solution is scalable. The DLT-Index is also useful for general time in-
terval indexing, which enables efficient processing of queries such as finding
the number of distinct records for a specified time point or time interval.

Appendix A and B do not contain any additional content compared to
Chapter 5. Appendix A discussed the graph model ERDG for constrained
indoor space (CPS). It also presented the mapping techniques for the objects
moving in a CPS. Appendix A also discussed the naive approach of pro-
cessing a dense location query for the CPS scenario. Appendix B extended
Appendix A by adding graph model RDG for semi-constrained indoor space
(SCPS), mapping techniques for the moving objects in an SCPS, the DLT-
Index, and dense location query processing techniques. Chapter 5 extended
Appendix A and B significantly by adding new density definition, mapping
algorithms, and algorithms for index construction, updating, and different
kind of query processing. Additionally, Chapter 5 presented an experimental
study showing several aspects of the proposed methods.

In summary, indoor spaces touch several aspects of our lives. The track-
ing data produced by the indoor tracking systems are enormous and can be
very useful for decision making, location-based services, problem finding,
and system improvement. However, unprocessed huge raw indoor track-
ing data are nontraditional and complex in nature, thus, making it difficult
for further analysis. The thesis proposed a number of data management
techniques for efficient and effective analysis of indoor tracking data. The
Ph.D. study focused on airport baggage tracking scenario, as studies showed
that the aviation industry lost more than 3,300M USD/year and they face a
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major challenge to solve the problem of mishandled bag. Although the bag-
gage tracking scenario inherits the general problems of indoor tracking, it be-
comes more unique in nature due to the constrained movements of baggage
in conveyor belts and the locations and times are much more fine-grained.
Due to the complex nature and high volume, the query processing on the
RFID baggage tracking data was very slow and very often impossible to get
more insight into the data. The presented data warehouse in Chapter 2 took
all the complexities into consideration and solved the problems. It enables
multidimensional data analysis for gaining more insight into the RFID bag-
gage tracking data and made it suitable for a nontechnical user such that
they can access, visualize, and analyze the data very easily. Overall, the
data warehouse facilitates complex and advanced analytical query process-
ing very efficiently over the baggage tracking data. Although the proposed
data warehouse offers manual data exploration, however, cannot find the hid-
den patterns that are co-related to baggage mishandling. The presented data
mining methodology in Chapter 3 facilitates automatic extraction of interest-
ing patterns and factors that are closely related to baggage mishandling. The
methodology also discussed how to deal with a class imbalanced data. Over-
all, the presented data mining methodology can help the aviation industry
by finding interesting patterns and factors that are co-related to baggage mis-
handling. However, the presented data mining methodology considered the
analysis of the tracking data in an offline scenario. Chapter 4 offers an online
risk prediction (ORP) system that can facilitates real-time notifications about
the online risky indoor moving objects, e.g., notifying risky bags during their
operation in the airport. It features immediate actions to the predicted risky
bags such that they can be saved from being mishandled. As a result, the
ORP system can considerably reduce the baggage handling problem and re-
duce the cost of baggage mishandling significantly. In Chapter 5, the thesis
presented an efficient approach for finding dense locations in indoor tracking
data as it can facilitates finding overloaded indoor locations which can help
to change the infrastructure, balancing loads, crowd management, and other
location based services. The chapter defined three different kinds of indoor
dense locations and two different graph models which covers various aspects
of indoor settings. Moreover, the proposed indexing technique supports sev-
eral kinds of queries very efficiently. Overall, the proposed methods can
extract indoor dense locations from large indoor tracking data efficiently. In
brief, the thesis has presented several aspects of analytics on indoor moving
objects and special focus was given to the airport baggage handling scenario.
The thesis resolved the many complexities in RFID baggage tracking data by
different efficient data management techniques and made it suitable for ad-
vanced analysis and obtaining more insight into the data. A number of novel
data management techniques were proposed that can significantly contribute
to the aviation industry as well as to the spatio-temporal data management
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and data mining research.

2 Future Research Directions

Several directions for future work exist for the methods and techniques pre-
sented in this thesis. In the following, future research directions for each of
the presented chapters are summarized.

There is a number of future advancements on the data warehouse con-
cepts presented in Chapter 2. New pre-aggregation strategies are required to
scale the proposed data warehouse solution for thousands of airports main-
taining more precise bag movements over long time periods. Considering
the complex movements of baggage from the origin to the final destination,
new research on building data cubes on spatio-temporal data with complex
topologies is an interesting future work. More efficient representations of
spatio-temporal sequences, e.g., flight sequences, route sequences, etc., in the
data warehouse will be interesting for query processing on such sequences.
Efficient indexing structures also should be designed on such sequences as
well as other spatio-temporal dimensions. Moreover, in order to get both
more seamless querying and better performance, native support for spatio-
temporal sequences within DW and BI tools should be developed. Technolo-
gies on real time data warehousing and ETL operation also need to be studied
in the baggage tracking or similar types of context.

There are several directions for future work on the data mining methodol-
ogy presented in Chapter 3. There should be a more thorough study for min-
ing the non-trivial root causes for baggage mishandling, given the low Mis-
handled rate. Another work will be analyzing baggage handling sequences
for finding bottleneck in the system. Additionally, finding spatio-temporal
outliers from the RFID baggage tracking data will be an interesting work.
Furthermore, developing native support from the data mining tools like au-
tomatic methods for finding the most appropriate models will be another
future work.

There is a number of future advancements on the risk prediction system
presented in Chapter 4. The presented system formulated for constrained in-
door movements. In the future, the proposed techniques should be expanded
for capturing more general scenarios such as semi-constrained indoor move-
ments and mixed indoor-outdoor tracking. In addition to that, predicting
risks for the objects in a scenario where the paths of the objects are not known
in advance will be another future direction. It is also interesting to see the
behavior of the risk prediction models when adding more dimensions such
as weekday, daytime, etc.

In the case of Chapter 5, mining dense or busy time periods for different
locations in a day or different week days will be an interesting future research
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direction. Further, continuous query processing for dense location detection
in online indoor tracking data will be another research direction.

Overall, the thesis addressed several issues in indoor tracking data man-
agement, especially in the baggage tracking scenario. However, there can be
a variety of future interesting research topics. In future, we will continue and
explore this field further by conducting research on a wide range of topics
related to indoor moving objects. First, we will explore the baggage handling
scenario to propose data management solutions and build predictive models
to resolve the transfer baggage problems. Second, RFID baggage tracking
data can become very large if they are collected from thousands of airports
for a long time period. So, it will be very challenging to access, manage,
process, and use the big RFID baggage handling data for analysis. In future,
we will explore the challenges of big RFID baggage handling data analytics.
Third, RFID and similar kinds of indoor tracking systems are error-prone
by nature. There is research that addresses data cleansing methods for in-
door RFID settings [18–20]. In future, we will integrate data cleansing meth-
ods with the proposed solutions. Fourth, we will perform analytics on the
big tracking data coming from moving objects in indoor and mixed indoor-
outdoor spaces. Moreover, we will also consider other, more general indoor
and mixed indoor-outdoor tracking scenarios for social relation analysis. It
will be interesting to perform multidimensional sequential pattern mining
for finding typical travel patterns in large indoor spaces that can help to op-
timize operations and changes in the infrastructure. Moreover, we will also
study the tracking data for finding interesting patterns that can create new
business opportunities and new location based services. Moreover, enabling
more useful operational queries in the tracking data, finding efficient routes
or shortest path with given constraints, etc., will be other future directions.
In addition to the offline data analysis, focusing on real-time or online appli-
cations will be more interesting for future advancement.
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Abstract

Finding the hotspots in large indoor spaces is very important for getting overloaded
locations, security, crowd management, indoor navigation and guidance. The track-
ing data coming from indoor tracking are huge in volume and not readily available for
finding hotspots. This chapter presents a graph-based model for constrained indoor
movement that can map the tracking records into mapping records which represent
the entry and exit times of an object in a particular location. Then it discusses the
hotspots extraction technique from the mapping records.
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1 Introduction

Technologies like RFID, Bluetooth, etc., enable a variety of indoor tracking
applications like people’s movement tracking in large indoor space (e.g., air-
port, shopping mall, museum, etc.), airport baggage tracking, items move-
ment tracking in supply chain system, etc. The huge amount of tracking data
generated by these types of systems is very useful for analyzing and deci-
sion making. Detection of hotspots in an indoor space like airport baggage
tracking will help the authority to manage the overloaded locations of the
baggage handling and handle the bags efficiently. In case of airport people
movement, detection of hotspots will give the idea about where and when
most of the peoples generally gather that can help the authority to manage
the crowd and for business it can be a good idea for different location-based
services.

It is unsuitable for indoor trajectories to use the geometric polyline rep-
resentation that is used for outdoor trajectories. For example if an object
moves from one room to another then we will get two consecutive tracking
records which represent the object location in different rooms. But due to the
drawback of indoor positioning technologies, the locations between these two
records are not obtained. As a result, it is not easily available when an object
enters and exits a particular location. Thus, it is also not easily available how
dense a location is. We take all of these complexities into consideration and
propose an approach for extracting hotspots from indoor tracking data. To
the best of our knowledge, this is the first chapter to consider how to capture
hotspots from indoor tracking data with constrained object movement.

Indoor space modeling for tracking of moving objects has been proposed
in [46, 79]. We propose a graph based model which is highly motivated by
the model proposed in [46]. Their model converts the raw RFID readings
into tracking records containing the first and last time of an object appeared
within a reader’s activation range. In our previous work [15], we converted
the tracking records into stay records containing the transition time between
readers. In the present chapter, the tracking records are converted into map-
ping records showing when an object actually entered and exited the corre-
sponding location. There are many works available for online density queries
and hot route queries on road networks [40, 45, 55]. However, the scenario of
symbolic indoor tracking is different from outdoor tracking as the geometric
position of the object is not available in the indoor setting.

The remainder of the chapter is organized as follows. Section 2 dis-
cusses the problem formulation. Section 3 describes the mapping of tracking
records for semantic locations with graph-based model. Section 4 presents
the hotspot queries. Finally, Section 5 concludes the chapter and discusses
possible future research.
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Fig. A.1: Constrained Path in airport baggage management

2 Problem Formulation

Problem Scenario. We assume a setting where the paths between the loca-
tions are constrained and objects are continuously moving from one location
to another. We call such location as constrained path (CP) symbolic location.
The objects cannot move freely and the locations are in some sense one di-
mensional. The size of a CP symbolic location is measured by length not by
area. Fig. A.1 shows an example of a CP, which is a conveyor of an airport
baggage handling system. The conveyor is divided into different symbolic
locations like check-in 1, check-in 2, screening, sorter-1, sorter-2 and chutes.
More detail about the baggage tracking process can be found in [15]. In our
setting, the tracking devices are strategically deployed at different fixed loca-
tions inside the indoor space, e.g., each section of conveyor belts. The objects
contain tags or devices which can be tracked by the tracking devices. For
example, in case of RFID technology, the tracking devices are RFID readers
and the objects contain RFID tags. Different tracking devices have different
sensing ranges. After deployment of the tracking devices, their positions are
recorded in the database. In Fig. A.1 the circles represent the deployment
of the RFID readers and their tracking ranges. When an object comes un-
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der a tracking device’s activation range, it is continuously detected by the
tracking device with a sampling rate and it generates raw reading records
with the form: (trackingDeviceID, ObjectID, t). It means that a tracking device
trackingDeviceID detects a moving object ObjectID in its activation range at
timestamp t. A TrackingRecord(recordID, ObjectID, TrackingDeviceID, tin, tout)
table [15] is constructed from the raw tracking sequence, where recordID is
tracking record identifier and tin, tout respectively represent the timestamps
of first reading and last reading of ObjectID by TrackingDeviceID in its activa-
tion range. An example of a table containing tracking records of an object o1
from Fig. A.1 is shown in Table A.1. In this table the record rec1 means that
object o1 is observed by tracking device dev1 from time 4 to 5, and record rec3
means that o1 is observed by dev3 from time 15 to 18. Due to the limitation
of indoor positioning systems, it is unknown what position of o1 is between
6 and 14 without knowing the floor plan.

Table A.1: Tracking Records of Indoor Moving Objects

RecordID ObjectID TrackingDeviceID tin tout

rec1 o1 dev1 4 5
rec3 o1 dev3 15 18
rec5 o1 dev4 26 29
rec8 o1 dev4 51 54
... ... ... ... ...

Problem Definition. Let L be the set of all symbolic locations inside a
large indoor space, L = {l1, l2, l3, ... , lk}. The capacity of location li is denoted
by ci = capacity(li). The capacity of a CP symbolic location is a function of
length. For example, the capacity of check-in 1 conveyor in Fig. A.1 depends
on its length.

Definition 1 (Capacity). The capacity of a location li is the numbers of
objects that can be reside at li during a defined time unit.

For example, the capacity of check-in 1 conveyor in Fig. A.1 can be 20 objects
per minute.

Definition 2 (Density). Let ni be the number of distinct objects at location
li during the time interval, w = [tstart , tend] and ci = capacity(li) be the capacity
of location li. Then density of location li for interval w is defined as,

di = ni
∆t×capacity(li)

×100%, where ∆t = tend - tstart.
From the definition we can see that, the value of density gives us how

dense a location is as a percentage value.
Definition 3 (Hotspot). A location li can be considered as a hotspot for

interval w if di exceeds a given threshold θ.
Definition 4 (Hotspot Query). Find all the hotspots H ⊆ L, for time inter-

val w.
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3 Semantic Location Mappings

A tracking device covers a very small portion of a location. As a result it is
not sufficient to know when an object actually entered (timestart) and exited
(timeend) the corresponding location. So there must be a mapping strategy for
retrieving such location and timing information.

Modeling Symbolic Locations. In our setting each symbolic location con-
tains only one tracking device deployed in it. For example in Fig. A.1 check-in
1 is represented by dev1. After passing dev1 and dev3 when a bag goes to
sorter-1 it will be read by dev4 and then it may go to sorter-2 or chute or it may
circulate within sorter-1. For mapping between tracking records and the se-
mantic locations, a reader deployment graph (RDG) can be constructed from
the indoor plan given in Fig A.1. Relevant details about the concept of reader
deployment graph can be found elsewhere [46]. Although an RDG is capable
of mapping the location of an object from the tracking records, it does not
provide sufficient information for mapping the tracking entry and exit time
to the actual entry and exit time. For more precise entry time and exit time
we extend the RDG with a more detailed model called the Extended Reader
Deployment Graph (ERDG). For this, some definitions are needed:

Definition 5 (Covered distance). Given a path p and a tracking device d,
the Covered distance (CD) is the length of the part of p that is covered by d’s
detection range. CD for a tracking device devi is denoted as ldi. For example
in Fig. A.1 ld1 = 2m shows the CD of dev1 at L1.

Definition 6 (Entry lag distance). The entry lag distance (ENLD) from lo-
cation Lx to Ly denoted as lx,ys

is the distance from the ending point of Lx to
the first reading point at Ly.

For example, consider Fig. A.1. The journey of an object at location L3 can
start from either points P1 or P2 depending on whether the object is coming
from L1 or L2. While moving at L3 the object will be first tracked by dev3
when it comes at point P3. Here the distance between the point P1 and P3
is the Entry lag distance (ENLD) which is denoted as l1,3s and similarly ENLD
between P2 and P3 is denoted as l2,3s. It can be seen that a location Ly can
have many ENLDs depending how many locations end at Ly. In our running
example l1,3s = 8m and l2,3s = 6m. However we use a special notation l∗,ys,
which indicates that the ENLD at Ly is same regardless of where an object is
coming from. In our example l∗,4s = 5m is the ENLD of location L4 from any
location ended at L4.

Definition 7 (Exit lag distance). Conversely the exit lag distance (EXLD)
from location Lx to Ly denoted as lx,ye

is the distance from the last reading
point at Lx to the exit point of Lx that leads to location Ly.

Similar to ENLD, let us consider Fig. A.1. The journey of an object at
location L3 ends when it passes the point P5 and reaches location L4. While
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traveling through L3 the object was last detected by dev3 when it was at point
P4. Here the distance between P4 and P5 is the Exit lag distance (EXLD) of L3
which is denoted as l3,4e. As L3 has only one destination, the EXLD of L3 is
always same regardless of destination. So instead of using l3,4e we use l3,∗e
in this case. In our example the value of l3,∗e is 3 meters. Similar to ENLD, a
location can have many EXLDs. For example an object can leave location L4
by going to L5 through P7 or can circulate in L4 and leave within any point
between P6 and P8. As a result L4 has two EXLDs l4,5e = 8m and l4,4e = 22m.

The ERDG is formally defined by a labeled directed graph G = (L, E, T,
lbE):

1. L is the set of locations where each location is represented as a vertex in
the graph. If a location does not contain any tracking device deployed
in it then the corresponding location is labeled as a virtual location Lvx

where x is an integer.

2. E is the set of directed edges: E = {(li,lj) | li, lj∈L}.

3. T is a set of tuples of the form 〈D, Flag, Ldx, {Ls}, {Le} 〉, where D is a
tracking device, Flag indicates whether it is a CP or not, {Ldx} is the CD
of D, {Ls} is a collection of ENLDs and Le is a collection of EXLDs.

4. lbE is a function lbE: E → T that labels an edge by a tuple from T. An
edge (li, lj) ∈ E is labeled by a tuple Ti,j〈dk, ldk

, li,js, lj,∗e〉 ∈ T where dk is
a tracking device deployed at location lj, ldk

is the CD for dk, li,js is an
ENLD and EXLD for all the out-going locations from lj is shown as lj,∗e
. An edge is labeled by a tuple Tvx ,j ∈ T if virtual tracking device devvx

is assumed to be deployed at location Lvx . Fig. A.2 shows an example
of the ERDG of the floor plan of Fig. A.1. Let us consider edge (L1,L3)
where the tuple T1,3 is assigned. The content of the tuple is the tracking
device dev3 which is deployed at L3, ld3 which is CD for dev3, l1,3s is
the ENLD from L1 to L3 and l3, ∗e is the EXLD from L3 to any next
destination.

Desks
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L2
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L4
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T0,1

T0,2

T1,3

T2,3

T3,4

T4,5 T4,v1

T 4
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Fig. A.2: Extended Reader Deployment Graph (ERDG)
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We define three mapping structures: location to device-In L2DIn: L→ D,
location to device-Out L2DOut: L → 2D and Device to Location D2L: D →
L, where L is the set of all locations and D is the set of all tracking devices.
For a location l, L2DIn(l) returns the tracking device deployed at l. From the
graph it returns the tracking device which is labeled in any edge(s) where l
is the destination. Since a CP location contains only one tracking device, all
the incoming edges of a location will be labeled by same tracking device. On
the other hand L2DOut(l) returns all the tracking device(s) which are labeled
in edge(s) where l is the source. These devices are deployed in the adjacent
next locations of l. In the third mapping for a tracking device dev, D2L(dev)
returns the location of dev, that means the destination vertex of the edge that
has dev in its label. In the running example of Fig. A.2 L2DOut(L4) = {dev4,
dev5, devv1}, L2DIn(L4) = dev4, and D2L(dev4) = L4.

Mapping for CP Symbolic Locations. For mapping the timein and timeout
of an object o at a tracking device dev into the timestart and timeend of o at loca-
tion l we use the topological information described in the ERDG in Fig. A.2.
However both of these values depend on the speed of o at l. We use Eq. (A.1),
(A.2) and (A.3) for deriving the speed, timestart and timeend respectively. In all
these equations timein and timeout are taken from tracking records at L2DIn(l).
In Eq. (A.1) CD (devx) represents the CD of L2DIn(l) = devx. In Eq. (A.2) the
ENLD depends on where the object is coming from and the value is taken
from tuple TprevLoc,l . In Eq. (A.3) the EXLD is taken from tuple Tl,nextLoc.

Speed :=
CD(devx)

(timeout − timein)
(A.1)

timestart := timein −
ENLD
Speed

(A.2)

timeend := timeout +
EXLD
Speed

(A.3)

For example, consider the second tracking record 〈o1, dev3, 15, 18〉 of Table
A.1. From the graph, CD of dev3 = 3 meters and D2L(dev3) = L3. So the
speed of o1 at location L3 is : speed = 3

18−15 = 1 meter/second (we assume the
duration is measured in seconds). Similarly we can find the timestart of o1
in D2L(dev3) = L3. The previous tracking record says that the object o1 was
tracked at dev1 before dev3. So from ERDG we need to get the information
from the edge, E(D2L(dev1) = L1, D2L(dev3) = L3). The ENLD from L1 to L3
is l1,3s = 8m. Now with the help of Eq. (A.1) and (A.2), the timestart = 15 -

8m
3m/(18−15) = 7.

Depending on the topological structure of the location, an object may
have many timeouts from the same tracking device. For example L4 and L5
has loops where an object can circulate in the location which may results in
multiple tracking records for same object from the devices L2DIn(L4) and
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Fig. A.3: Types of Nodes in CP symbolic locations

L2DIn(L5). Based on the topological connectivity of a location we classified
the nodes of the deployment graph into five types. Fig. A.3 shows the five
node types. Different types of nodes and the way of deriving the exit time of
objects from that node is explained next.

Node Types. Node type 1 contains only one outgoing edge and the out-
going edge is labeled by devvx . A location l falls in Node type 1 if L2DOut(l)
= {devvx }. Fig. A.3a shows an example of Node type 1. As the next location
of this type of node has no tracking device deployed, it is certain that the
object left the location through virtual tracking device devvx which actually
does not generate any tracking record. In Eq. (A.3) the timeout of an object oi
at this type of location li is taken from the tracking record of oi at L2DIn(li)
and EXLD li, ∗e is taken from the tuple TLprev ,li of edge(Lprev, li).

Node type 2 contains two outgoing edges. One outgoing edge is la-
beled by devvx and another one is a loop. A location l falls in Node type 2
if L2DOut(l) = {L2DIn(l), devvx }. Fig. A.3b shows an example of Node type 2.
In our example, L5 is this type of node. Here an object can circulate within
the location which generates multiple tracking records and at the end the ob-
ject leaves the location through devvx . The timeend of the object is calculated
using Eq. (A.3), where timeout is taken and speed is calculated from the last
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tracking record of the object from the tracking device of that location. Sup-
pose an object o2 contains a single record from dev5: (o2, dev5, 36, 39). It
means that o2 did not circulate at D2L(dev5) = L5 and left the location to any
one of the chutes. It is not possible to know when the object actually left L5.
However we can get the maximum possible value of timeend with the help of
EXLD from the edge (*, L5) which is l5,∗e = 22m and CD for dev5 = ld5 = 3m.
So the timeend = d39 + 22m

3m/(39−36) e = 61.
Node type 3. In addition to the two outgoing edges like Node type 2, it

has one or more edge(s) where destination locations have tracking devices
deployed. A location l is considered to be Node type 3 if |L2DOut(l)| > 2
and {L2DIn(l), devvx }⊂L2DOut(l). Here an object can circulate in the same
location and it can leave the location through devvx or other tracking devices.
Fig. A.3c shows an example of Node type 3. In our running example L4 falls
in this type of node. As the object may circulate within the location we take
timeout in the similar way of Node type 2. However, the EXLD in Eq. (A.3)
depends on the destination of the object. If the object has any tracking record
from L2DOut(l) \ {devvx } (where l is Node type 3) then the object did not
leave the location l through devvx . Otherwise it has left the location through
devvx without generating any tracking record. For the first case we take the
corresponding EXLD otherwise we take the EXLD for the loop. For example,
for L4, L2Dout(L4) ={dev4, dev5, devv} where dev4 = L2In(L4). As the object o1
in Table A.1 has no tracking record from dev5, the object o1 should circulate
at L4 and left the location through devvx without generating any tracking
record. So, the timeend of object o1 from L4: timeend = d54 + 22m

3m/(54−51) e = 76.
Node type 4 and Node type 5 do not contain any outgoing edge with

devvx in label. These two node types are very similar except that Node type
4 contains a loop and Node type 5 does not. Fig. A.3d and Fig. A.3e show
examples of Node type 4 and Node type 5 respectively. In our running example
L1, L2, L3 falls in Node type 5. As Node type 4 contains a loop, the timeend of
an object o from a location l of Node type 4 is calculated from the last timeout
from the tracking records like Node type 2 and 3. However the EXLD ll,Lnexte is
taken from the edge(Lprev, l). For Node type 5 the timeout is directly taken from
the tracking record as there is no loop in it. The EXLD in Node type 5 is taken
similarly as in Node type 4. In our running example the timeend of o1 from L3
is calculated as: timeend = d18 + 3m

3m/(18−15) e = 21.
Table A.2 shows the results after mapping from Table A.1.

4 Hotspot Queries

The hotspots can now be extracted from the tracking records after mapping
into MappingTable. A hotspot query HQ[qs, qe, θ] finds the hotspots between
time qs and qe where θ is the density threshold. In the inner part of a HQ,
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Table A.2: MappingTable for Table A.1

MappingID ObjectID LocationID timestart timeend

map1 o1 L1 2 7
map3 o1 L3 7 21
map5 o1 L4 21 76

there is a density query (DQ), a count query (CQ) and a tracking record query
(RQ). Fig. A.2 shows the approach for processing a hotspot query. When a
HQ[qs, qe, θ] query is asked, the system issues a DQ[qs, qe], the DQ[qs, qe] then
issues a CQ[qs, qe] which issues an RQ[qs, qe]. The RQ gets the mapping table
from the database and returns the mapping records where [timestart, timeend]
intersects with [qs, qe]. From the relevant records, the CQ counts the number
of objects for each location. The DQ then finds the density of each loca-
tion from the count results with the help of capacity of the corresponding
location. The HQ then returns the locations with density>θ. All of these
queries can be combined into a single query and can be executed jointly. For
a relational database the joint query becomes the following SQL statement.
In the joint query, the RQ becomes the part of the WHERE condition, the
COUNT(DISTINCT ObjectID) is used for CQ, the DQ is represented in the
column list and is computed with the help of CQ and a Capacity(Location)
function. The results are grouped based on location using GROUP BY and
temporary stored in an inline view. Finally the HQ is completed with the
help of a WHERE condition on the results from the inline view.

Hotspot Query 
HQ[qs, qe, θ ]

Density Query 
DQ[qs, qe]

Count Query 
CQ[qs, qe]

Tracking Record 
Query RQ[qs, qe]

Database

Mapping Table

Issue 

Issu
e 

Issue Request 
data

Return 
Mapping Table

Return number 
of objects for 
each location

Return density for 
each location

Return locations 

where density>θ

What are the 
hotspots between 

time qs and qe 

where the density 
threshold is θ

Issue 

Return tracking 
records for [qs, qe] 

Fig. A.4: Query steps

SQL: SELECT location, density FROM (SELECT location, (COUNT (DIS-
TINCT ObjectID) (te-ts)) Capacity (location) * 100 AS density FROM Map-
pingTable m WHERE (m.tin BETWEEN ts AND te) OR (m.tout BETWEEN ts
AND te) OR (ts BETWEEN m.tin AND m.tout) GROUP BY location) WHERE
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density > θ

5 Conclusion and Future Work

We proposed an approach to extract the hotspots from indoor tracking data.
We developed a graph-based model for mapping the tracking records with
the semantic location so that it is possible to know the entry and exit times of
an object at a constrained path symbolic location. Then the mapping records
are used for hotspots extraction. The mapping records are also very useful
for other kind of analyses e.g., stay duration, travel time estimation etc.

Future work will be to model more complex indoor topologies for map-
ping the same information we did for constrained path. An indexing tech-
nique for efficient query processing can be developed. Hotspot query for
online indoor tracking data will be another relevant future work.
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Abstract

Finding the dense locations in large indoor spaces is very useful for getting over-
loaded locations, security, crowd management, indoor navigation, and guidance. In-
door tracking data can be very large and are not readily available for finding dense
locations. This chapter presents a graph-based model for semi-constrained indoor
movement, and then uses this to map raw tracking records into mapping records
representing object entry and exit times in particular locations. Then, an efficient
indexing structure, the Dense Location Time Index (DLT-Index) is proposed for in-
dexing the time intervals of the mapping table, along with associated construction,
query processing, and pruning techniques. The DLT-Index supports very efficient
aggregate point queries, interval queries, and dense location queries. A compre-
hensive experimental study with real data shows that the proposed techniques can
efficiently find dense locations in large amounts of indoor tracking data.
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1 Introduction

Technologies like RFID and Bluetooth enable a variety of indoor tracking ap-
plications like tracking people’s movement in large indoor spaces (e.g., air-
port, office building, shopping mall, and museums), airport baggage track-
ing, items movement tracking in supply chain system, etc. The huge amount
of tracking data generated by these types of systems is very useful for anal-
yses and decision making. These analyses are useful for different kinds of
location-based services, finding problems in the systems, and further im-
provement in the systems. Unlike GPS based positioning for outdoor sys-
tems, indoor tracking provides the symbolic locations of the objects in indoor
space. Examples of symbolic locations include security and shopping areas
in airports, and the different sections of rooms in museum exhibitions. In
airports, the bags pass different symbolic locations in each step like check-in,
screening, sorting, etc. Finding the dense or overloaded baggage handling
locations helps handling bags more efficiently. For passengers moving in an
airport, detecting dense locations shows where and when passengers gather,
and can be used for crowd management and providing location-based pas-
senger services.

In our previous short paper [14], we proposed a graph based model
and mapping technique for capturing dense locations in constrained indoor
movement only. In the present chapter, we additionally model semi-constrai-
ned indoor movement and provide technique that maps the indoor tracking
records into mapping records with the entry/exit times of an object at a sym-
bolic location. The derived mapping records can be used for finding dense
locations as well as for other analyses like stay duration estimation, etc. We
also propose an efficient indexing structure, the Dense Location Time Index
(DLT-Index), which stores aggregate information like the number of objects
entering, exiting, and present at a location at different timestamps or time in-
tervals. Additionally, we provide efficient techniques for index construction
and processing dense location queries (as well as point and interval queries)
on large data sets, and an efficient pruning technique for the DLT-Index. Fi-
nally, we perform a comprehensive experimental evaluation with real data
showing that the proposed solutions are efficient and scalable.

The remainder of the chapter is organized as follows. Section 2 gives
the problem formulation. Section 3 describes the graph-based models and
the mapping of tracking records. Section 4 presents the DLT-Index and the
associated query processing and pruning techniques. Section 5 presents the
experimental evaluation. Section 6 reviews related work. Finally, Section 7
concludes the chapter.
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2 Problem Formulation

The movements of objects inside indoor space varies with the structure of the
paths. Based on the path structure we categorize the indoor spaces into two
categories.

Constrained Path Space(CPS): In a constrained path space (CPS), objects
move continuously from one symbolic location to another. The objects cannot
move freely inside the locations and the locations are in some sense one
dimensional. The size of locations inside CPS is measured by length not
by area.

Example of a CPS can be the conveyor belt system of an airport baggage
handling system. The conveyor is divided into different symbolic locations
like check-in belts, screening belts, sorter belts, etc. More detail about the
constrained indoor movement can be found in [14] and about the baggage
tracking process in [15].

Semi-Constrained Path Space (SCPS): In a semi-constrained path space
(SCPS), the objects move more freely compared to a CPS. The objects move
from one symbolic location to another and they can also stay some period
of time inside the locations. The locations are two-dimensional. The size of
SCPS locations is measured by area not by length.

Examples can be movement of people between rooms in office space or
museums, different sections in airports etc. Fig. B.1 shows an example of
an SCPS. The indoor space is divided into different symbolic locations e.g.,
rooms, hall ways etc. For entering and exiting a room, an object has to cross
the entry/exit points (e.g., doors). Some entry/exit points are unidirectional
and some are bi-directional. The arrows represent the unidirectional move-
ments.

In our setting, the tracking devices are strategically deployed at different
fixed locations inside the indoor space, e.g., each section of conveyor belts,
door of a room, between sections of a hallway etc. The objects contain tags
(e.g., RFID tags, Bluetooth devices, etc.,) that can be tracked by the track-
ing devices (e.g., RFID readers, Bluetooth access points etc.,). In Fig. B.1
the circles represent the deployment of the RFID readers and their tracking
ranges. When an object comes under a tracking device’s activation range,
it is continuously detected by the tracking device with a sampling rate and
it generates raw reading records with the form: (trackingDeviceID, ObjID, t).
It means that a tracking device trackingDeviceID detects a moving object Ob-
jID in its activation range at timestamp t. A TrackingRecord(recordID, ObjID,
TrackingDeviceID, timein, timeout) table is constructed from the raw tracking
sequence, where recordID is record identifier and timein, timeout respectively
represent the timestamps of first reading and last reading of ObjID by Track-
ingDeviceID in its activation range. An example table for tracking records of

161



Paper B. Finding Dense Locations in Indoor Tracking Data
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Fig. B.1: Semi-constrained space

an object o1 at floor plan of Fig. B.1 is shown in Table B.1. Here, the record
rec3 means that o1 is observed by device dev3 from time 15 to 18.

Table B.1: Tracking Records of Indoor Moving Objects

RecordID ObjID TrackingDeviceID timein timeout

rec1 o1 dev1 4 5
rec3 o1 dev3 15 18
rec5 o1 dev4 26 29
rec8 o1 dev4 51 54

Problem Definition. Let L be the set of all symbolic locations inside a
large indoor space, L = {l1, l2, l3, ... , lk}. The capacity of location li is denoted
by ci = capacity(li).

Definition 1 (Capacity). The capacity of a location li is the numbers of
objects that can appear in li during a given time unit.

For example, the capacity of room L3 of Fig. B.1 can be 20 persons per 15
min.

Definition 2 (Density). Let ni be the number of objects appearing in lo-
cation li during the time interval, w = [tstart, tend] and ci = capacity(li) be the
capacity of location li. Then the density of location li for interval w is defined
as,
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di = ni
∆t×capacity(li)

×100%, where ∆t = tend - tstart.
Thus, the density shows how dense a location is, as a percentage value.
Definition 3 (Dense Location). A location li can be considered as a dense

location (DL) for interval w if di exceeds a given threshold θ.
Definition 4 (Dense Location Query). A dense location query (DLQ) finds

all the dense locations ⊆ L, for time interval w.

3 Semantic Location Mappings

A location is typically not fully covered by a tracking device. Moreover,
a tracking record contains only the first and last times an object appeared
inside the activation range of a tracking device. As a result it is not directly
available when an object actually entered (timestart) and exited (timeend) the
corresponding location. So mapping strategies are required for retrieving
such location and timing information.

As mentioned earlier, in our previous short paper [14] we modeled con-
strained indoor movement like CPS and described how to convert tracking
records into mapping records that contain the entry time (timestart) and exit
time (timeend) of objects at different locations. For CPS, some locations con-
tain only one tracking device deployed at any point in each of them and some
adjacent locations may not contain tracking devices. An extended reader
deployment graph (ERDG) was proposed that contains various topological
information like entry lag distance(ENLD), exit lag distance(EXLD), covered
distance(CD) etc. The timing information from the tracking records and the
corresponding CD from the ERDG is used to calculate the speed of the object
at the corresponding location. Depending on the topological structure, the
nodes were categorized into 5 types. All this information helped for finding
the entry and exit time of an object at a CPS location. All details can be found
in [14].

In an SCPS, a tracking device is deployed at each entry and exit points
of a location. Moreover, the movement can be both uni-directional and bi-
directional. For example in Fig. B.1 the door containing dev1 can be used
for both entering and exiting the location L1 and the door with dev6 can be
used only to enter L2. Since in SCPS the tracking devices are deployed in
the entry and exit points of a location, it is easier to find the entry and exit
times of objects for this type of locations from the tracking records compared
to CPS. Thus, calculating the speed of the objects is not needed and thus
the parameters ENLD, EXLD and CD are not useful for SCPS. However, we
also need to consider that there can be multiple entry and exit points in an
SCPS location. A Reader Deployment Graph (RDG) [46] is used for modeling
SCPS. Fig. B.2 shows the RDG for the floor plan given in Fig. B.1. The RDG
is a directed graph where each symbolic location is represented as node and
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the connection between the locations are represented as edge. Each edge is
labeled by the tracking devices deployed between the locations. For mapping,
we define a mapping function called Dest: {l, d}→l′, where l, l′∈L and d∈D.
The functionDest(l, d) returns node l′ from the graph where d is the label for
the edge E (l, l′)∈E. It means that, an object traveling from l to l′ should be
detected by d. For mapping, initially the location of an object o is assumed
to be in the outdoor location L0. Then each tracking record of o is accessed
and it is determined where o is entering with the help of Dest function. Then
the timein in the tracking record becomes timestart and the timein of the next
tracking record becomes timeend for the entered location. For example in
Table B.1, record rec1 represents that o1 was tracked by dev1 from time 4 to
5. The initial location of o1 is considered as L0. From the graph in Fig. B.2,
Dest(L0, dev1) = L1. From tracking record, timestart = timein = 4. However, the
timeend = timein from rec3 = 15. So the mapping record says that o1 was at L1
from time 4 to 15. Table B.2 shows the SCPS mapping results for Table B.1.
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Fig. B.2: Graph based model for SCPS

Table B.2: MappingTable for Table B.1 considering SCPS

MappingID ObjectID LocationID timestart timeend

map1 o1 L1 4 15
map3 o1 L4 15 26
map5 o1 L5 26 51
map5 o1 L4 51 ...
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MapID ObjID LocID timestart timeend

r1 o1 L1 2 7
r2 o2 L1 5 11
r3 o18 L1 8 20
r4 o15 L1 9 18
r5 o16 L1 11 20
r6 o12 L1 67 70
r7 o19 L1 22 26
r8 o20 L1 24 29

(a) Example mapping records of location L1
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Fig. B.3: Example mapping records and DLT-Index

4 Efficient Dense Location Extraction

The dense locations can now be extracted from the mapping records in Map-
pingTable. As seen, a mapping record contains the entire stay of an object
inside a location. For a CPS location like baggage on a conveyor belt, it is
not common an object appears multiple times at same location whereas it is
common for an SCPS location. In our setting, an object visiting a location
multiple times is treated as multiple objects for density computation for that
location, since a reappearance contributes to the density.

A DLQ has to access aggregate information for a given time interval from
a large amount of data from the mapping table. We develop an indexing
technique for that, where the temporal indexing part is motivated by the time
index described in [31]. Instead of indexing all the records of the mapping
table we index all the intervals of each location using separate trees and store
aggregate values instead of pointers to the leaf nodes. Moreover, unlike the
B+-tree we link the nodes of intermediate levels. All these improvements let
us avoid accessing detailed data records and further offers significant pruning
opportunities. This new index structure is called the Dense Location Time Index
(DLT-index).
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4.1 The DLT-Index.

In the DLT-Index for each location, we maintain a separate tree, called DLT-
tree. Let us consider a set of mapping records at location L1 shown in
Fig. B.3a. Fig. B.3b shows the DLT-Index constructed for the data given
in Fig. B.3a. In our DLT-tree, each leaf node entry at time point ti is of the
form: 〈ti, Ci〉, where Ci〈ctotal , center, cexit〉 is a tuple with some aggregate infor-
mation of the objects valid during [ti,t+i ) where t+i is the next indexed time
point, ctotal and center are the total number of objects available and entered at
ti respectively and cexit = total number of objects that exited at ti-1. Besides,
each non-leaf entry at time point ti contains a tuple Cnl(ti) which is of the
form:〈c′total , c′enter〉 and their values can be described as:

1. For the left-most entry of a level: c′total = c′enter = total number of objects
entered or available until ti-1.

2. For the entries other than left-most entry: c′total and c′enter are the total
number of objects available and entered during interval [t−i , ti) respec-
tively, where t−i is the immediate left entry of ti in the same level.

In addition to Cnl , the right-most entry ti of each non-leaf level also con-
tains another tuple Cr〈c′′total , c′′enter〉 where c′′total = total number of objects avail-
able from ti to max time stamp in the tree and c′′enter = total number of objects
entered from ti to the max time stamp in the tree.

Tree construction and insertion of a new entry in the DLT-tree is very
similar to the B+-tree. The time points are keys and aggregate information C
are the data values. The value of C for the leaf levels can be precomputed or
can be computed while inserting. After constructing the tree, the aggregate
information of the non-leaf entries and the links between the non-leaf nodes
have to be established.

4.2 Tree Construction from Historical Data

During the tree construction the historical data are indexed. Let the set of
all intervals available in the data set be I = {I1, I2, ..., In}. For an interval Ii,
the value of Ii.ts and Ii.te represents the start and end time respectively. Ad-
ditionally the value of Iai = Ii.te + 1 represents the next timestamp after Ii.te.
The DLT-Index has to index all the time points of P where P can be defined
as follows:

P = {ti|∃Ij ∈ I((ti = Ij.ts) ∨ (ti = Iaj ))}

For example, considering the table in Fig. B.3a, the points that need to be
indexed are P = {2, 5, 8, 9, 11, 12, 19, 21, 22, 24, 27, 30, 67, 71}. As seen for
MapID r1, the timeend =7 is not included in P as we index the next timestamp
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of 7 which is 8. Also at time point 8, o18 has entered the location (MapID r3).
Before the tree construction all the time points of P are sorted in ascending
order into Ps. Each of the time point ti∈Ps additionally contain a Ci where
center and cexit are directly known while getting each element of Ps from the
data set. For example, at the time point 8: center = 1 and cexit = 1, at time
point 21: center=0 and cexit = 2 as two objects has timeend at 21-1 = 20. The
ctotal at time point ti is calculated by Eq. (B.1). For example, at initial stage C0
= 〈0, 0, 0〉. For the first time point 2, center=1 and cexit = 0. So, ctotal = 0+1-0=1.
As a result C1 = 〈1,1,0〉. Similarly for time point 5 ctotal = 1+1-0=2 and C2 =
〈2,1,0〉. The complete list of Ci can be found in the leaf nodes of Fig. B.3b.

ctotal(ti) := ctotal(ti−1) + center(ti)− cexit(ti) (B.1)

The insertion of the time points are now same as B+-tree where the time
points are keys and C are the data values. In addition to the insertion, the
nodes at the non-leaf levels have to be linked like level 2 of Fig. B.3b. More-
over, for the entries of the non-leaf levels, the values of Cnl and Cr have to
be calculated. Maintaining the aggregate information in the leaf nodes gives
advantage for such calculation. For any non-leaf entry ti, if it is the left-most
entry in its level then the Cnl can be calculated as follows:
Cnl(ti).c′total = Cnl(ti).c′enter = ctotal(t1) + ∑i−1

j=2 center(tj)

Besides, for any non-leaf entry ti, if it is not the left-most entry in its level
then the Cnl can be calculated as follows:

Let t−i be the entry immediately before ti in its level and k be the position
of t−i in the leaf node entries. Then,

Cnl(ti).c′total = ctotal(tk) + ∑i−1
j=k+1 center(tj)

Cnl(ti).c′enter = ∑i−1
j=k center(tj)

Similarly for the right-most entry ti of a non-leaf level, Cr can be calculated
as follows:

Cr(ti).c′′total = ctotal(ti) + ∑max
j=i+1 center(tj)

Cr(ti).c′′enter = ∑max
j=i center(tj)

where tmax represents the maximum value of the indexed time point in the
leaf level.

For example in Fig. B.3b at level 2, 8 is the left-most entry. So Cnl(8).c′total
= Cnl(8).c′enter = ctotal(2) + center(5) = 1+1 = 2. Considering 22 of level 2 which
is not the left-most entry, Cnl(22).c′total = ctotal(11) + center(12) + center(19) +
center(21) = 4+0+0+0 = 4. In the example tree 27 is the right-most entry of
level 2. The value of Cr(27).c′′total = ctotal(27) + center(30)+ center(67) +center(71)
= 1+0+1+0 = 2.
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4.3 Query Processing

Here we will discuss how an aggregate point and interval query can be exe-
cuted from our DLT-Index and then show the dense location query process-
ing with and without pruning.

Aggregate query: There are two types of aggregate queries: a) point
queries b) interval queries. A point query finds the total number of objects
at a particular time point. An interval query finds the total number of objects
in a particular time interval. For processing a point query Q[qt], a B+-tree
search is performed for finding the appropriate leaf node for qt. Then it finds
the last entry qa ≤ qt in the node and returns Ctotal(qa) as the result. For
example consider a point query Q[25]. The B+-tree search will find the node
shown in Fig B.3bc. From the resulting node, entry 24 is the last entry which
is ≤ 25. So the query will return ctotal(24) = 2. Conversely for an interval
query Q[qs, qe], it will first process a point query Q[qs] and take Ctotal(qa).
However, instead of returning the result it continues further processing and
finds the last entry qb ≤ qe from the leaf nodes. For this purpose it may has
to access consecutive leaf nodes one after another. If qa = qb then it returns
Ctotal(qa) as result. Otherwise it adds all the Center for each entry after qa until
qb. For example consider an interval query Q[6, 12]. The B+-tree search will
find the leaf node containing {2, 5} as shown in Fig. B.3bb. Then it finds the
entry 12 which is the last entry ≤ 12. So the calculation of the result will be:
Q[6, 12] = ctotal(5) + center(8) + center(9) + center(11) + center(12) = 2+1+1+1+0
= 5.

Dense Location Query: The naive approach of processing a DLQ[qs, qe, θ]
over the DLT-Index is to just get the results of an interval query Q[qs, qe] for
each of the locations, compute the density from the result, and then deter-
mine which locations are DLs. However, for each of the cases, the query has
to access the leaf nodes and then compute the aggregation. The access of the
nodes of the leaf level as well as other level can be reduced by our pruning
technique. As described the DLT-Index contains some aggregate informa-
tion in the non-leaf node entries for pruning purpose. We first introduce the
following two observations.

Observation 1 (obs 1): If the number of objects in an interval i1 is less
than a threshold k, a smaller interval i2 that is fully covered by i1 must have
less than k objects.

Observation 2 (obs 2): If the number of objects in an interval i1 is greater
than a threshold k, a larger interval i2 that fully covers i1 must have more
than k objects.

In our pruning technique the first observation helps to prune out the non-
leaf levels, whereas the second observation helps to prune at the leaf level.
Note that the cases covered by obs 1 and 2 are mutually exclusive. In a
DLQ[qs, qe, θ] the given θ is a density threshold, not a number of objects. Be-
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Fig. B.4: Experimenting with different aspects of the DLT-Index.

fore starting the query processing we convert θ to a number of object thresh-
old σi for each location li. The value of σ for a location Li for a DLQ[qs, qe, θ]
can be derived from the density formula which is given below:

σ(Li, θ) = ∆t×capacity(Li)×θ
100 , where ∆t= qe - qs.

While processing a DLQ[qs, qe, θ], the value of σ for each location has to
be calculated. The query has to traverse the tree of each location. The way of
accessing the next level is similar to B+-tree search for qs. At each non-leaf
level li of the DLT-tree of a location Loci, the smallest interval [ta, tb) that can
cover [qs, qe] has to be found. After that, the total number of objects n(li)
during [ta, tb) is calculated from the Cnl stored in all the entries between ta
and tb in level li. The value of n(li) is compared with σ. If n(li) < σ then
Loci is marked as ’Not DL’ based on obs 1 and further processing of the tree
is pruned. However, if n(li) 6< σ then the next level is accessed and continue
further processing in the similar way. If the query reaches the leaf level then
it starts calculating the total number of objects during [qs, qe]. During the
calculation, at each step it compares the sum with σ and if sum > σ then
based on ’emphobs 2 the location Loci is marked as DL. As a result it skips
the access of the next entries and nodes and avoids further calculation. If the
condition sum ≤ σ then the full sum is calculated to decide whether Loci is
DL or not.
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Consider Fig. B.3ba, where the processing of DLQ[10, 19, θ] is shown for
location L1. Let σ = 5 be derived from θ. At the root level, the smallest
interval that covers [10, 19] is [min, max) where min and max are the starting
and ending time points of the tree respectively. For min the Cnl .c′total from
the left-most entry is taken, and for max Cr.c′′enter is taken from the right-most
entry of the current level. So in our case the total number of objects during
this period is Cnl(19).c′total + Cr(19).c′enter = 5+3=8. As 8 6< σ, the query has
to go to the next level based on B+-tree search for 10. In this level [8, 22)
is the smallest interval that covers [10, 19]. Now the total number of objects
for the period is Cnl(11).c′total + Cnl(22).c′enter =3+1=4. As 4 < σ is true, the
location L1 is not a DL during [10, 19]. As a result, it does not need to access
the next level and do further processing for L1. Now consider another query
DLQ[6, 12, θ] and let σ = 3. During the processing of this query on the tree
for L1 shown in Fig. B.3b, the pruning with obs 1 does not work and the query
will access the leaf level. However, the query does not have to fully compute
the total number of objects during [6, 12] as the sum up to time point 9 is:
2+1+1=4 (Fig. B.3bb) and 4 > σ. So, it can be deduced that the location is a
DL during [6, 12] without further processing.

5 Experimental Study

Experimental Setup: We implemented the mapping for CPS and pre-comput-
ed the aggregate information from the mapping records using C# and the
DLT-Index using C. For all SQL queries, we use a leading RDBMS. The exper-
iments were conducted on a laptop with an Intel Core i7 2.7 GHz processor
with 8 GB main memory. The operating system is Windows 7 64 bit.

We use real RFID based baggage tracking data from the transfer system
of terminal-3 of Copenhagen Airport (CPH). It has 11 CPS locations with 11
RFID readers deployed. After filtering some erroneous records there are 2.1
M tracking records for 220 K distinct bags collected during Dec 21, 2011 to
Dec 02, 2013. As we do not have the exact values, the parameters ENLDs and
EXLDs are generated. As most of the locations contain loops, after converting
2.1 M tracking records there are 787K Mapping records produced.

DLT-Index: The page size was set to 4KB and each entry of the DLT-tree
was 20 bytes. This yields 204 entries per node.We use the above mapping
table produced from the airport baggage tracking data and scaled it to 10M
mapping records. For scaling, Max(ObjId) is added with existing ObjId for
uniqueness and random time between 50 to 120 seconds are added with both
timestart and timeend for each record. The semi-real data contains 3M distinct
objects and total 17.3 M distinct time points distributed to the 11 symbolic
locations.

Tree Construction: Before the tree construction the aggregate information
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C for each time point is precomputed. Then the trees are constructed for the
time points including the aggregate information. Fig. B.4a shows the effect
of number of mapping records on the full tree construction time along with
the aggregate information generation time. It shows that the tree construc-
tion time increases linearly with the increase in number of mapping records.
Generating the aggregate information takes good amount of time as it has to
access each record for finding distinct time points, sort and union them and
compute the value of ctotal , center and cexit at each time point.

Query Processing: Three random DLQs are generated for semi-real data
and are processed with both pruning (P) and without pruning (NP). The node
access for each of them is reported in Fig. B.4b and B.4c. In all cases, pruning
accesses much fewer nodes compared to without pruning. In Fig. B.4b the
query time interval is kept fixed and the density threshold(θ) is changed. It
shows that, for without pruning, a query has to access same number of nodes
regardless of change in θ as it always has to compute total number of objects
for full interval. However, for pruning, the number of node access decreases
with increase in θ as the number of dense location decreases and σ increases
(effect of pruning with obs 1) and at some point it becomes constant. In
Fig. B.4c, θ is kept fixed and the time interval length is changed. It seems that
for without pruning, node access increases with increase in interval length as
the query has to cover more time points to complete the interval. However,
for pruning, node access decreases and become constant at some point. Here,
any of the observation (obs 1 or obs 2) can be the reason depending on the
number of dense locations. The query is effected by obs 1 if number of dense
location decreases and by obs 2 if number of dense location increases. We also
process three random queries that finds number of objects at each location
for one month large interval with a given condition on the aggregate results
(like group by with having condition in SQL) to see the effect of pruning on
larger interval in the DLT-Index. Fig. B.4d shows that the pruning technique
access significantly less number of nodes compared to without pruning.

We randomly generate 3 point queries and also 3 interval queries that
find number of objects at each location for a given time interval. The interval
queries are for one year large interval. The queries are processed by both the
DLT-Index and the relational DBMS. At first we have processed the queries
inside the DBMS without creating any indices in the MappingTable. Then
we have created both clustered index and non-clustered index on different
columns and on combination of columns and processed the queries. How-
ever, the queries were fastest without any indices. So, we have reported the
query processing durations without an index. For the fair comparison, the
first query processing time for each query in the SQL is ignored for warm
up and to load the data into main memory. Then we execute each query five
times and take the average query time. Fig. B.5a and B.5b shows that the
point query processing in DLT-Index is more than 340 times faster and some
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cases the interval query processing time is around 300 times faster.
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Fig. B.5: DLT-Index vs. RDBMS

6 Related Work

Several papers address density queries and hot route queries on road net-
works [45, 55] in outdoor spaces. There are spatio-temporal data access
methods for point and interval queries on temporal dimension in outdoor
settings [70, 73] and in indoor settings [47]. These indexing techniques are ca-
pable to efficiently access individual records for a range of locations as well as
for a time period. However, for a DLQ, aggregate information for each loca-
tion has to be accessed. Our DLT-Index itself contains aggregate information
and avoids accessing individual data records. There are also works for index-
ing spatio-temporal data for aggregate queries [64]. The aRB-tree [64] stores
the aggregate information in the tree nodes. However, it counts same objects
multiple times if the objects remain in the same location in several times-
tamps during the query interval. This problem is solved by an approximate
approach in [72]. Unlike to the traditional range and point queries where the
query generally does not access all the locations, the DLQ has to access all the
locations’ information to determine whether each location is a DL or not. So
like the aRB-tree, we also maintain a separate tree for each location except the
R-Tree part. The distance functions in the symbolic space are very far from
the Euclidean distance, so the MBRs cannot approximate the distances well.
Thus, the MBRs used in aRB-tree is not applicable in our case. As mentioned
earlier our temporal indexing structure is motivated by [31], but we extend
it to a symbolic spatio-temporal space and we additionally maintain neces-
sary aggregate information in nodes to facilitate counting distinct objects for
a time interval. The aggregate information stored in the non-leaf nodes helps
achieve effective pruning in processing DLQs as well as interval and group
by with having conditions.
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7 Conclusion

We proposed an approach to extract the dense locations from indoor tracking
data. We developed a graph-based models for mapping the tracking records
with the semantic location so that it is possible to know the entry and exit
times of an object at a symbolic location. Then we proposed an indexing
technique, the Dense Location Time Index (DLT-Index), that indexes aggre-
gate information with the time points. We also proposed efficient techniques
for index construction and query processing and pruning, for dense location
queries on the DLT-Index. Our experimental evaluation on large amounts of
real data shows that the DLT-Index can process queries efficiently and much
faster than an RDBMS. The DLT-Index is also useful for general time interval
indexing for efficient processing of queries like the number of distinct records
for a specified time point or time interval.
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