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Preface
This dissertation conjoins and summarizes research carried out during my joint
PhD fellowship at the Department of Mathematical Sciences, Aalborg Uni-
versity, and the Department of Haematology, Aalborg University Hospital. It
concludes a multidisciplinary effort in biostatistics, bioinformatics, and com-
puter science applied to molecular cancer biology and clinical research.

The thesis concerns statistical methods investigating high-dimensional ge-
nomic data and their implementation in statistical software. The methods were
primarily developed with applications in genetics of haematologic cancers in
mind but are suited for many other problems. As high-dimensional genomics
entails a number of statistical and practical speed-bumps, the thesis has a
strong focus on reproducibility and data integration of multiple experiments.

The thesis is primarily intended for (bio)statisticians. Some preliminary
background in molecular and cancer biology is therefore provided for uniniti-
ated readers. Along with this background material, this thesis consists of a
collection of five scientific papers and three statistical software packages for
the programming language R. All the papers are self-contained with separate
bibliographies and numbering of sections, figures, tables, and equations. A
short preface giving further context and extended discussion is given before
each paper and to each software package.

There are numerous people that I need to acknowledge. First and foremost,
I wish to express my sincere gratitude to my supervisors Martin Bøgsted and
Poul Svante Eriksen for their pleasurable guidance and commitment to the
project. You have been far to lenient with my unannounced office visits; I
do not recall a single instance of you being too busy to answer my trivial
questions. My office mate Steffen Falgreen deserves special thanks for helpful
suggestions, comments, and friendship. As does Torben Tvedebrink, Mikkel
Meyer Andersen, Julie Støve Bødker, Sara Correia Marques, and Lasse Hjort
Jakobsen. Next, Hans Johnsen, Karen Dybkær, and Søren Højsgaard also
deserve explicit recognition for giving me the opportunity. I thank also the
rest of my colleagues at the Department of Mathematics and Department of
Haematology for their help in various matters.

Thanks to Carel F. W. Peeters and Wessel N. van Wieringen for my two
excellent and enjoyable stays in Amsterdam at the Department of Biostatistics
& Epidemiology, VU University Medical Center, and the Department of Math-
ematics, VU University. The stays were gratefully supported by the Danish
Cancer Society and the host institutions.

Anders Ellern Bilgrau
Aalborg, September 17th, 2015
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To my friends and family.
And to The National, for All The Wine.
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Abstract
High-dimensional data and statistics permeate modern science and technology.
The dimension of data can be loosely defined as the number of measurements
within each observation and is considered ‘high’ when it exceeds the number of
observations. Today’s biotechnology can measure millions of genetic markers
and provides an unprecedented detailed view of human diseases. In clinical
research, such high-dimensional data has brought a yet unfulfilled promise of
personalized medicine, tailor-made drugs, and clinical decisions based on our
genetic makeup and history. The analysis of these data-intensive experiments
presents some of the biggest challenges in the field of statistics.

From a statistical perspective, high-dimensionality is accompanied by a
host of theoretical, technological, and practical problems and pitfalls, which
may lead to spurious findings, irreproducible results, and invalid conclusions
for careless researchers. Indeed, concerns of irreproducible findings have been
raised in high-dimensional genetics and the overlap in findings between stud-
ies have been described as disappointingly small. This thesis explores various
aspects of (bio)statistics related to the reproducibility of genetic findings.

A straightforward way of increasing reproducibility is integrating data from
multiple experiments. This is desirable as genetic studies are costly and often
have small sample sizes. Following this, Paper I discusses a previously proposed
model for integrating data from multiple studies and quantifying the degree of
reproducibility. The paper improves upon a more general model and provides
a substantially faster software implementation. Paper II assesses the impact on
genetic profiling when cryopreserving cells. Cryopreservation is an important
and convenient tool for storing cells which assumes that findings will reproduce
if fresh cells are used instead.

One proposed explanation for the poor reproducibility are the common
gene-by-gene screenings that, too simplistically, consider genes independent.
Instead, genes are highly dependent, operating in tightly regulated networks.
However, statistical network analysis is known to be highly unstable and thus
often irreproducible. To this end, Papers III and IV propose methods for identi-
fying gene networks by aggregating information across multiple datasets. This
is feasible as genetic data often is made publicly available in large online reposi-
tories. Combining data from multiple datasets may increase the sensitivity and
stability of the estimated networks yielding more reproducible results. Again,
fast and easy-to-use software implementations are freely available.

The poor reproducibility has partly been acknowledged as genetic screenings
are often called hypothesis generating, implying a need for validating findings
in independent experiments. However, as discussed in Paper V, the analysis
of the gold-standard validation experiments can be overly optimistic; a highly
undesirable property for validation.
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Dansk Resumé
Høj-dimensionel data og statistik gennemsyrer moderne videnskab og teknologi.
Dimensionen af data kan løst defineres som antallet af m̊alinger i hver obser-
vation og den anses for at være ‘høj’, n̊ar den overstiger antallet af observa-
tioner. Moderne bioteknologi kan m̊ale millioner af genetiske markører, der
giver et hidtil uset detaljeret billede af sygdomme. I klinisk forskning har
høj-dimensionelle data bragt et endnu uopfyldt løfte om personlig medicin,
skræddersyede lægemidler og kliniske beslutninger, baseret p̊a vores genetiske
sammensætning og historie. Analysen af s̊adanne data-intensive eksperimenter
hører til nogle af de største udfordringer inden for statistik.

Fra et statistisk synspunkt er høj-dimensionel data ledsaget af et væld af
teoretiske, teknologiske og praktiske problemer og faldgruber, som kan føre til
falske fund, ikke-reproducerbare resultater, og ugyldige konklusioner for ufor-
sigtige forskere. Faktisk er bekymringer om ikke-reproducerbare fund blevet
rejst i høj-dimensionel genetik, og de overlappende resultater mellem under-
søgelser er blevet beskrevet som skuffende f̊a. Denne afhandling omhandler
forskellige aspekter af (bio)statistik og reproducerbarheden af genetiske studier.

En simpel m̊ade at øge reproducerbarheden p̊a er at integrere data fra flere
eksperimenter. Dette er hensigtsmæssigt, da genetiske undersøgelser er dyre og
ofte har sm̊a stikprøvestørrelser. Med hensyn til dette diskuterer Artikel I en
model, der kan integrere data fra flere studier samt kvantificere graden af re-
producerbarhed. Artiklen præsenterer en mere generel model og en væsentligt
hurtigere softwareimplementering. Artikel II vurderer indvirkningen p̊a de
genetiske profiler, n̊ar celler kryopræserveres. Kryopræservering er et vigtigt og
praktisk værktøj til opbevaring af celler, under forudsætningen at resultaterne
vil kunne reproduceres, hvis der anvendes friske celler i stedet.

Én foresl̊aet forklaring p̊a den d̊arlige reproducerbarhed er de almindelige
gen-for-gen screeninger, som alt for forsimplet antager at gener er uafhængige.
Gener er i stedet yderst afhængige og opererer i tæt regulerede netværk. Statis-
tisk netværksanalyser er imidlertid meget ustabile og er derfor ofte ikke repro-
ducerbare. Til dette form̊al foresl̊ar Artikel III og IV metoder til at identifi-
cere gen-netværk ved, at samle oplysninger p̊a tværs af flere datasæt. Dette
er muligt, da genetiske data ofte gøres offentligt tilgængelige i store online
databaser. Kombinationen af flere datasæt kan øge følsomheden og stabiliteten
af de estimerede netværk, og dermed ogs̊a reproducerbareheden af resultaterne.
Ogs̊a her er hurtigt og nemt software frit tilgængeligt.

Den d̊arlige reproducerbarhed er delvist blevet anerkendt, da de genetiske
screeninger ofte kaldes hypotesegenererende. Dette indebærer et behov for valid-
ering af resultaterne i uafhængige forsøg, men som omtalt i Artikel V, kan
analysen af ‘guldstandard’ valideringseksperimenter være alt for optimistiske;
en særdeles uønsket egenskab i validering.
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Introduction
The completion of the Human Genome Project in 2003 highlights a new era in
biology and clinical medicine with vast amounts of data [31, 64]. More than a
decade earlier, the project set out to identify the sequence of our roughly 3.3
billion base pairs of DNA and 20 thousand genes; the human genome. The
decade long $3 billion effort, generated some 500 gigabytes of biological data.
Today, the same feat can be accomplished in a matter of days for less than
$10,000 in the race towards the nicknamed $100-genome. These biotechno-
logical advances of rapid data collection, dubbed high-throughput, has evolved
from genomics into a wide range of omics-fields. Genomics, transcriptomics,
proteomics, metabolomics, lipidomics, all provide unprecedented detail of the
remarkable molecular machinery of life and invaluable information about hu-
man evolution, development, physiology, and effective medicine.

High-throughput biotechnology allow researchers to perform genome-wide
searches and speed up the traditional slow research process. A tremendous
focus has been put on searching for genetic markers amongst the large number
of candidates to classify diseases, understand the pathogenesis, and provide a
prognosis or even a prediction of the outcome of the disease. This has brought
a still unfulfilled promise of personalized medicine that can offer tailor-made
clinical decisions and drugs based on the genetic makeup of the patient [4].

However, the scientific principle of reproducible research has been somewhat
neglected and concerns have been raised of non-reproducible genetic findings
and studies [4, 18, 29, 30]. Several possible explanations exist for the poor
reproducibility. High-throughput data is accompanied by a host of techno-
logical, experimental, and theoretical problems as well as the practical ones,
all of which will substantially deteriorate or destroy the reproducibility when
aggregated.

Technological and experimental issues include a tremendous number of lab-
oratory variables, disparate technological platforms, and artifacts hereof. From
the statistical viewpoint, high-throughput data has many theoretical proper-
ties working against reproducibility and researchers. Added to this mix comes
cumbersome handling of the experimental data with plentiful choices in prepro-
cessing and analyzing the data. All these lessen the expected reproducibility,
as the heterogeneity of the experiments increases. Moreover is the inherently
difficult and complex biological systems studied which are hard to control as
indicated in the following section. For careless researchers these issues—though
separately minor—often imply spurious findings, ultimately irreproducible re-
sults, and possibly invalid conclusions.

It is worth noting that high-throughput technologies are not unique to bi-
ology. Nearly all fields, including chemistry, economics, astronomy, physics,
forensics, and computer science, have increasingly made use of the fashionable
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‘big data’ and its data-intensive applications. High-dimensional data and its
problems are ubiquitous in all of modern science, technology, and statistics.

1 Molecular cancer biology and biotechnology

This section establishes basic preliminary knowledge and terminology of molec-
ular biology necessary for understanding the DNA microarray technology used
throughout the thesis. The section also provides some additional subject-
matter context to the statistical methods considered in the papers.

1.1 Nucleic acids, proteins, and genes

Within the nucleus of each cell resides a full copy of the schematics and complete
set of instructions for its development and function. This information is con-
tained within our DNA (deoxyribonucleic acid) which are very large polymers
consisting of contiguous nucleotides as illustrated in Figure 1. The instructions
are thus encoded linearly in millions of DNA nucleotides, wound into the dou-
ble helix, and tightly organized in large structures called chromosomes. Each
human somatic cell contains 23 pairs of such chromosomes amounting to 46
molecules of DNA.

The DNA backbone is two chains of alternating phosphate groups and de-
oxyribose sugars. Attached to this backbone are so-called bases, which comes in
the four chemical flavors of guanine (G), adenine (A), cytosine (C), and thymine
(T). The sequence of the bases carries our genetic information as the back-
bone of the DNA is the same everywhere. DNA is double-stranded where a
given base of one strand is always paired with its complementary base of the
other; A is complementary to T while C is complementary to G [42]. As the
information-storing molecule, DNA is stable and long-lived.

RNA (ribonucleic acid), on the other hand, is much like a single stranded
version of DNA with a markedly shorter life. RNA is distinguished from DNA
by using ribose instead of deoxyribose as the sugar in its backbone and the
base uracil (U) replaces T [42]. As will be apparent, the RNA is the executive
molecule of the body.

For reasons not explained, DNA and RNA are directional with a so-called
5′-end (read 5-prime-end) and 3′-end. This directionality is important as the
enzymes that read, transcribe, and translate the genetic information do so in
the 5′ → 3′ direction. The two complementary strings of DNA run in reversed
directions, and the terms up-stream and down-stream refer to bases toward the
3′- and 5′-ends, respectively. In essence, DNA can be illustrated by two strings
of the letters representing the base pairs;

Reading direction

5′ · · · ACG ACA TGG GAG TGC CTC AAT TCA TAT TTT · · · 3′

3′ · · · TGC TGT ACC CTC ACG GAG TTA AGT ATA AAA · · · 5′

Note, that only one strand is needed for all the genetic information.

4



1 Molecular cancer biology and biotechnology

For particular stretches of the DNA, each three-base sequence serve as codes,
called codons, for particular amino acids. Thus, DNA directly encodes proteins,
which are polymer chains of amino acids. A gene can be defined as region of
DNA from which functional RNA or protein can be created. As such, it is
the basic unit of heredity. The length of a gene is typically in the range of
1,500–100,000 base pairs, although, genes that are two million base pairs long
are known to exist. The upper half of Figure 1 illustrates these relationships
between cells, chromosomes, DNA, and genes.

1.2 Central dogma of molecular biology

The central dogma of molecular biology describes the principal flow of the
genetic information encoded in our DNA into working proteins [10, 11]. In
its simplest and most widely known form by Watson et al. [66], DNA can be
replicated or it can be transcribed into RNA and RNA can be translated into
protein as depicted by the solid arrows below:

DNA RNA Protein

replication

translationtranscription

DNA replication is essential for cell division to provide cells with identical copies
of all chromosomes. Transcription and translation are the basic processes con-
verting the genetic information in the DNA into functional RNA molecules or
proteins. More precisely, transcription is the process of transcribing DNA into
precursor messenger RNA (pre-mRNA) molecules called transcripts. Besides
proteins, genes can also code for functional RNA molecules such as transfer
RNA (tRNA) and ribosomal RNA (rRNA), both used in the translation pro-
cess. The three enzymes RNA-polymerase I, II, and III transcribe the rRNA,
pre-mRNA, and tRNA, respectively. A splicing process then converts pre-
mRNA into mRNA, which can leave the nucleus and wander to the ribosomes.
In the ribosomes, the codons of the mRNA is translated to the amino acid chain
that makes up the protein using tRNA and rRNA [42]. At last, the amino acid
chain folds into the active functional protein. The molecules and steps from
DNA to RNA to protein are seen illustrated in Figure 1.

However, as hinted by the dashed arrows above, many other processes exist
which can alter how the standard transcription and translation takes place.
Since Watson et al. [66] and Crick et al. [10] the central dogma has been ex-
tended and often contradicted. Today, many known processes such as reverse
transcription, (alternative) splicing, the existence of alternative transcription
start-sites, introns, non-coding RNAs, and epigenetic mechanisms such as DNA
methylation and histone modification have been realized and the view above
is now regarded as an over-simplified yet useful model [22, 25, 39]. Long non-
coding RNAs and microRNAs (miRNA) are currently highly researched ex-
amples of transcripts of DNA that does not encode protein but does possess
regulatory functions [39]. Alternative splicing enables a single gene to produce
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Fig. 1: Illustration of the structure of the chromosomes, DNA, RNA, and the central dogma
of molecular biology. Note, that the chromosomal structures depicted are only present near
cell division in the so-called meta-phase.
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1 Molecular cancer biology and biotechnology

many different proteins which immensely expands the variety of manufactured
proteins to the order of two million from our approximately 23 thousand genes
[31, 64].

1.3 Gene activity and expression

The expression of a gene can be loosely defined as the degree to which it
manifests itself. In this sense, the expression of a gene is almost synonymous
to its activity. Genes that are highly active produce many mRNA transcripts
that yield more translated protein, and causes the gene to be highly expressed.
Conversely, genes which are (nearly) inactive produce very few or no transcripts
and thus have a low expression. Relative to healthy tissue, the expression
of a gene can therefore be high or low in cancer tissue, for example. The
identification of such up- or down-regulation of gene expressions is an archetypal
exercise in molecular cancer biology and of central interest as they hint at the
pathogenesis. Section 2.1 provides a brief review of this task.

However, the expression of a gene depends on an enormous set of factors
as alluded above. At each stage from DNA to the gene product, there ex-
ists a multitude of other gene products that, directly or indirectly, control and
regulate the processes [50]. Such regulation might be activation or inhibition
of genes. Micro-RNAs are one example of functional non-coding RNA which
can inhibit the translation process and thereby turning off the gene expression.
Other examples of regulation are alteration of the mRNA degradation speed
and modification of the affinity for specific alternative pre-mRNA splicing vari-
ants. Since such regulation mechanisms are carried out by molecules from other
genes and their expression, all gene expressions are conducted through a tightly
regulated concert to carry out their functions. A manifestation of this com-
plex network of gene interactions has perhaps been seen by poor concordance
of mRNA and protein levels [14, 37]. Schwanhäusser et al. [50], however, as-
cribed the poor correlation to technical difficulties and concluded that protein
abundance is predominantly controlled at the translation level. In any case, it
is unsurprising that gene expressions exhibit a complex network of dependen-
cies. Papers III and IV of this thesis presents statistical models attempting to
elucidate these gene networks. Section 1.5 explains how the gene activity and
expression are routinely measured by the DNA microarray technology.

1.4 Diffuse large B-cell lymphoma

Cancer is characterized by abnormal cell growth that aggressively spreads and
invades other parts of the body. Unlike benign tumors, the intrusive cancer-
ous cells often spread through the blood and lymphoid systems and metastasize
where they again proliferate. The uncontrolled growth destroys and kills neigh-
boring tissue, organs, and ultimately the patient if left unchecked.

It is believed that cancer arises from a single cell with one or more genetic
changes that cause uncontrolled cell division and proliferation. Such a progres-
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sively damaged cell may acquire sufficient genetic changes and dysregulation as
to, e.g., disable or circumvent the pathway of apoptosis; the (healthy) process
of programmed cell death.

Approximately 90% of lymphomas are non-Hodgkin’s lymphomas of which
the largest subgroup is diffuse large B-cell lymphomas (DLBCL) [28, 58]. Two
major molecular subgroups of DLBCL has been identified by Alizadeh et al.
[1] named activated B-cell-like (ABC) and germinal center B-cell-like (GCB)
after their resemblance in gene expression profiles with these cells. Patients of
the GCB type show a clinically significant favorable overall survival compared
those of the ABC type [1, 48]. Although these DLBCL subtypes were identified
more than a decade ago, they are still treated as a singular disease in clinical
practice. Differentiated treatments have only recently started to appear in
clinical trials [41, 49].

Besides many associative differences, relatively few biological and func-
tional differences between the subtypes are known. Some of the known onco-
genic mechanisms known to distinguish the subtypes include recurrent t(14:18)
translocation in GCBs, trisomy 3 in ABCs, deletion of the inhibitor of kinase
4A-alternative reading frame (INK4A/ARF) locus, and activation of the anti-
apoptotic NF-κB signaling pathway [34, 58].

I remark here, that patients who are classified as neither ABC nor GCB
have inconsistently been deemed unclassified (UC) [e.g. 65] or type III [e.g. 48]
in the literature. Discussions as to whether a third type really exists or not are
ongoing. However, in the statistical classification system of the subtypes by
e.g. Wright et al. [67], using a näıve Bayes classifier, a distinct third subtype
is meaningless by construction; the only sensible name here is UC. In this
setup, samples are assumed either ABC or GCB, and failing to be classified
as either does not necessarily imply a third type. The classification scheme
by [8] used in Paper IV has three subtypes by construction. Each sample is
given a probability of belonging to ABC, GCB, and Type III and the class
corresponding to the largest probability is selected. This raises a slippery slope
of questions of a fourth subtype if neither probability is much larger than 1/3.

1.5 Gene expression profiling by DNA microarray

Today’s mass-market DNA microarrays simultaneously measures the gene ex-
pressions of thousands to millions of gene sub-units. They are simple, powerful,
and comprehensive tools for systematically exploring the genome [7]. Manu-
facturers claim the microarrays to be whole-genome as they investigate nearly
all human genes.

As illustrated by Figure 2, a microarray is a silicon chip on which probes
are placed in a rectangular grid of spots. Each spot is a collection of custom
designed probes—so-called oligonucleotides of single stranded complementary
DNA—that investigate specific DNA fragments of interest.

To quantify the gene expressions using microarrays, the sample of a cancer-
ous tumor, say, is first prepared by purifying the mRNA. The prepared sample
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1 Molecular cancer biology and biotechnology

Microarray

spots

~125 mm

~1
25

 m
m

cDNA probe clusters

Fig. 2: Simplified illustration of a microarray. From left to right: A microarray and approx-
imate dimensions of the chip. Magnification of the array, showing a 17× 17 area of spots of
clusters of replicated single stranded complementary DNA. Magnification of four spots and
showing the nucleotides of each single stranded complementary DNA in each cluster.

is then converted into tags by first fragmenting the mRNA, breaking it into
smaller pieces, subsequently converting the mRNA fragments into DNA by
reverse transcriptase, and lastly ‘labeling’ the DNA by appending fluorescent
molecules. The labeled tags are then applied to the microarray where the tags
complementary to probes are allowed to hybridize. After this hybridization the
excess remaining DNA material is rinsed off and the gene expressions are ready
to be measured.

The central premise of microarrays is that the amount of material hybridized
to the probes is proportional to the number of transcripts in the original sam-
ples; a very active gene is expected to produce a high number of mRNA tran-
scripts, and thus, many tags are expected in the prepared sample. The number
of tags attached to each probe then provides a surrogate measure of the relative
gene expressions. The actual measurements are made by capturing the fluores-
cence intensity of each probe with an image while illuminating the microarray
using laser light. The expression level is then be obtainable as the reemission
intensity reflects the abundance of hybridized tags at each spot. Figure 3 shows
an such an image and Figure 4 illustrates the conceptual molecular workings
explained above. Using image processing, the expression of a particular gene is
derived from the pixel intensities, e.g. of Figure 3, corresponding to the known
locations of the probes. As easily imagined, the procedure and data quality
depends on a huge set of factors including sample purity, efficiency of labeling
and RNA purification, non-uniform images, etc., all of which are unwanted
sources of noise and variation. The set of obtained expression estimates for a
given sample is called a gene expression profile (GEP).

The microarrays used in this thesis are manufactured by Affymetrix by
lithographically directly synthesizing the probes onto the chip. They are man-
ufactured by sequentially assembling the probes using masks in an bottom-up
fashion. The microarray is first masked and the partly exposed chip is then
covered in a solution of, for instance, G nucleotides. The G nucleotides are then
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Fig. 3: An image produced by the Affymetrix GeneChip HG-U133 plus 2.0. Each dot
corresponds to a single spot of probes. There are approximately 1,355,000 spots on the
microarray.
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Fig. 4: Illustration of an illuminated microarray. From left to right. Part of the illuminated
microarray. Magnification of nine spots showing the clusters of complementary DNA that
make them up, some hybridized with the florescent tags from the sample. Magnification of
a single simplified spot and the nucleotides of each single stranded cDNA. The fluorescent
tags from the samples hybridize to the probes of the spot if they are complementary.
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2 Statistical analysis of microarray data

synthesized using light onto the starting anchor or previous partial DNA chains
in the locations specified by the mask. Next, the microarray is rinsed to remove
excess G nucleotides and the whole process is repeated, building the probes in
parallel until the desired sequences are constructed.

In compromise between production costs, probe uniqueness, and binding
strength, the probe lengths on both the GeneChip Human Exon 1.0 ST (exon)
and GeneChip Human Genome U133 plus 2.0 (U133) arrays are 25 nucleotides.
Short or less unique probes and low binding strength allows tags to hybridize
to probes that are partially matching. Probes mismatching at the middle nu-
cleotide have been introduced on the U133 chip to gauge this so-called cross-
hybridization. From the probe-pair of the perfectly matching probe (PM ) and
the corresponding mismatching probe (MM ), the degree of non-specific binding
can be estimated. The use of the MM probes, however, has stopped, as they
seem to introduce more noise than they remove [68]. For example, MM probes
often perplexingly shows a higher expression than their PM counterpart.

The probe pairs are organized into probe sets, each of which investigate
particular a gene or gene sub-unit. There are approximately 1.3 million probes
on the U133 array, which are arranged into probe sets of 11 probe pairs. On
average, the U133 array has eleven probes for each probe set which amounts to
some 55 thousand probe sets. In contrast, the exon array consists of 6.5 million
probes with four probes per probe set on average [52, 55].

Preprocessing is the extraction of the raw image data and conversion to
biologically meaningful data. It consists of image processing and a statistical
model summarizing the probe sets into gene expression levels. Simultaneously,
preprocessing aims to remove much of the introduced noise [68].

As introductory mentioned, DNA sequencing platforms are increasingly
popular. Such platforms works by determining the sequence of hundreds of
millions of fragments of DNA in parallel. Here, the estimated expression level
is the number of times a given sequence is observed. In addition and contrary
to microarrays, no prior knowledge about the specific sequences to investigate
is required for these technologies. Although sequencing certainly looks to be
the future, the usage of microarrays is still well established and widespread
following Figure 5.

2 Statistical analysis of microarray data

This section covers two broad approaches to the analysis of microarray data
that are considered in this thesis.

2.1 Differential gene expression

The perhaps most archetypal analysis of gene expression profiles is the so-
called analysis of differential gene expression [17]. Searching PubMed.gov for
‘differential expression analysis’ yields some 43 thousand articles as of
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Fig. 5: The number of publications each year using microarray and the statistical
analysis hereof as found by PubMed.gov. The searches were carried out using the
queries ‘(microarray* OR gene-chip* OR genechip*)’ and ‘(microarray* OR gene-chip* OR
genechip*) AND (statistical method* OR statistical techniq* OR statistical approach*
OR statistical analy* or statistical pro*)’ for the categories all microarray papers and
statistical microarray papers, respectively. This is, essentially, an updated plot of Mehta
et al. [40] attempting to not count sequencing papers.

August, 2015. In the canonical example, gene expression profiles are collected
for a case (e.g. treatment) and a control (non-treated) group. The genes of re-
search interest then answers the question: ‘Which genes are changed due to the
treatment?’ Usually, each gene is investigated individually and independently
by testing the statistical hypothesis of no mean difference in gene expression.
This allows researchers using microarrays to quickly screen all human genes for
differential expression and provides a list of genes ordered by relevance.

The näıve approach to this problem employs gene-by-gene t-tests therefore
computing t-statistics

tg =
µ̂case
g − µ̂ctrl

g

seg
, (1)

for each gene g where µ̂jg is the estimated expression level of gene g in group j
and seg is the standard error of the numerator.

By thresholding the corresponding p-values, the most significant genes can
be considered. The first problem of this methodology of testing thousands to
millions of statistical hypotheses is that it considerably increases the probability
of sporadic false findings due to the so-called multiple hypothesis testing prob-
lem. This problem often riddles the detected biomarkers with false positives.
To combat this, p-value corrections are employed in an attempt to control the
false positive rate or false discovery rate. The two most popular corrections for
adjusting the p-values are the Bonferroni or Benjamini-Hochberg corrections
[5] though many exists. Multiple hypotheses testing is an inevitable part of
analyzing high dimensional data.

Other properties in addition to the multiple testing problem make the anal-
ysis of microarray data less trivial. For instance, the signal-to-noise ratio in-
creases with increasing expression level and the expression variance are often
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2 Statistical analysis of microarray data

gene-specific. Therefore, a less näıve approach is the moderated t-tests em-
ployed by using the statistic given by

tg =
µ̂case
g − µ̂ctrl

g

seg + s0
(2)

where s0 is some positive moderating constant. Various choices of s0 have been
suggested [47, 53, 61]. Tusher et al. [61] uses the median of the distribution
of standard deviations for all genes as moderation and derives p-values by
permutation. Smyth [53] estimates s0 in context of an empirical Bayesian
model.

Differences in experimental settings and technology among different exper-
iments also makes analysis, especially meta-analysis and data integration, of
cancer microarray data challenging.

2.2 Network analysis of gene expression

The standard methodology of differential expression ignores the fundamental
network structure of genes. Higher accuracy and precision in the findings can
therefore potentially be achieved if genes are modeled as a network. In addition,
such network modeling might yield much more specific evidence for causal
regulatory pathways rather than the more associative results of differential
expression analysis.

There is a large number of different approaches to the problem of network
estimation. See e.g. Markowetz and Spang [38] for a review or the introductions
of papers III and IV. Many of these fall under the category of so-called graphical
models. Graphical models utilize graphs to specify the (in)dependence struc-
ture of the genes. Informally, a graph is a collection of vertices and edges as
depicted below:

6

2

3

4

5

1

Formally, a graph G is an ordered pair G = (V,E) of sets where V = {1, . . . , p}
is a set of p vertices and E ⊆ {(u, v)|u, v ∈ V } is a set of edges which are pairs
of elements of V . If the edges of E are all ordered, it is a directed graph. If the
edges are unordered, then the graph is undirected. The graph above is directed
and ignoring or omitting the arrows results in an undirected graph. In graphical
models, a variable corresponds to a particular vertex and a dependency to an
edge. Independencies then correspond to the absence of edges. However, the
exact meaning of the edges vary widely and corresponds to different classes of
models.

A graphical models is defined by the conditional (in)dependencies of the
genes where the chosen scheme of conditioning give rise to different classes
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of models and meaning of edges. More precisely, suppose the random vector
X = (X1, . . . , Xp) corresponds to the vertices of G. An edge is then defined to
be absent between vertex i and j if and only if Xi is conditionally independent
of Xj . Formally, the edge (i, j) is present if and only if

Xi 6⊥⊥ Xj

∣∣ XS

where S is some subset S ⊆ V . The defining property of the class of models
considered is the choice of vertices S one conditions on.

If we condition on nothing, i.e. S = ∅, then marginal independence is con-
sidered. This leads to so-called correlation networks, relevance networks, or
co-expression networks, where each edge correspond to a dependent gene-pair
or, equivalently, a non-zero (marginal) correlation [26].

If S = V \ {i, j} then so-called Markov random fields or Markov networks
are considered. An edge in this case corresponds to a pair of genes which
are dependent conditional on all remaining genes, or, equivalently have a non-
zero partial correlation. Hence, edges are present whenever the question ‘can
the correlation between Xi and Xj be explained by all other genes?’ can be
answered in the negative. If X is assumed to be multivariate Gaussian then
the class of Gaussian graphical models (GGM) is considered [15, 32]. This is
the class of models considered in papers III and IV.

Likewise, if S = V \{k} is used for all k 6= i, j, then edges are defined as the
negative answers to ‘can the correlation be explained by any other gene?’ Such
a network is called a first order conditional network which generalizes easily to
higher orders.

Lastly, if no restriction is put on S we arrive at Bayesian networks which
asks ‘can the correlation be explained by any set of other genes?’ Unlike the
previous models, this has the added property that a direction often can be
inferred but it requires the true underlying network to be acyclic.

Network analysis is however much more challenging than differential expres-
sion analysis. Results are harder to visualize, present, and interpret. In general,
estimation of networks is much more variable and unstable than gene-by-gene
analyses. One obvious way to obtain more stable results is to increase the
sample size. However, large gene expression are costly with small samples sizes
compared to the number of genes. We have therefore focused on gathering and
integrating multiple datasets to obtain more stable network estimates. This
strategy is possible as many gene expression datasets now are publicly avail-
able in large online data repositories. To this end, Papers III and IV describe
models for estimating precision matrices, and thus GGMs, in multiple datasets
or classes of data. Another interesting alternative method to this integration
problem was proposed by Li et al. [36]. Their method searches for so-called
recurrent heavy subgraphs among many co-expression networks.

Additional stability can potentially be achieved by using prior knowledge
of gene networks also available in online databases. The method of Paper IV
also allows for integrating such prior knowledge.
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3 Reproducibility of genetic experiments

3 Reproducibility of genetic experiments

The reproducibility of experimental findings in high-throughput molecular bi-
ology have been disputed and challenged [18, 24, 29, 30]. Ein-Dor et al. [18]
claimed that thousands of samples are needed to achieve the desired robust-
ness and reliability of the gene list, in context of predicting clinical outcomes
of breast cancers. They noted that while different research groups identify sets
of genes with good prognostic performance, the number of common genes in
these lists is ‘disappointingly small’. The same seems true for even replicated
experiments [59].

In contrast, Zhang et al. [70] argue that the lack of reproducibility is an
apparent one. In high-dimensional setups, multiple hypothesis testing is usually
employed to select candidates for further research. As such, the multiple testing
problem superficially seems an important culprit that riddles the gene lists with
false discoveries. However, Zhang et al. [70] showed that the false discovery
rate (FDR) in separately determined lists can be very low. This suggests that
various degrees of co-expression, induced or biological, between genes may be
a principal cause for the poor number of overlapping genes. Co-expression
introduces dependency between tests which make attempts to control the type
I error rate very challenging in practice. The simple Bonferroni correction is
nearly always too conservative. Frequently the same holds for the Benjamini-
Hochberg corrections. This again motivates the more realistic modelling of
genetic data through network analysis. Confer Zhang et al. [70] for a more
in-depth discussion of the apparent lack of reproducibility.

3.1 Reproducibility and its flavors

The principle of reproducibility is considered a hallmark of science. Its im-
portance was emphasized in the 17th century by Robert Boyle, but only later
was it firmly established as part of the scientific method by Karl Popper and
Ronald Fisher [21, 51]. Popper [43] wrote ‘only when certain events recur in
accordance with rules or regularities, as is the case with repeatable experiments,
can our observations be tested—in principle—by anyone.’ Today the principle
seems self-evident: Only research with the ability to be reproduced allows for
confirmation of the claims and conclusions of the researchers. Research without
this ability can be attributed to either (1) mistakes, errors, random chance, (2)
malicious fraud, or (3) that the results are valid only under certain conditions.
The first two imply that the supposed findings are, in fact, wrong, whereas the
latter yield new knowledge about the conditions under which it holds true [20].

However, there are many ways to reproduce experiments. In machine learn-
ing research, Drummond [16] argues to separate reproducibility from ‘its poor
cousin’ of replicability. In essence, reproducibility refers to the desirable trait of
simply being able to reproduce the conclusions of a study. One can easily imag-
ine results and conclusions reproduced using an entirely different experimental
design, technology, and statistical methodology. In contrast, replicability refers
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Table 1: Suggested terminology and flavors of reproducibility.

Term Explanation
Repetition Rerun exactly what others have done, reusing their

experimental data.
Replication Redo the exact experiment and data analysis of what

others have done.
Variation Redo or replicate what others have done, but with

slight modifications in experimental setup or data
analysis.

Reproduction Recreate the spirit of what others have done.
Corroboration Arrive at the same conclusions using an entirely dif-

ferent experimental design and/or data analysis.
Validation Confirm specific results from a previous analysis in

an independent experiment.

to the ability to exactly replicate the results and output of a given study, i.e.
reproduce exactly the results given the experimental outcome. However, we
must commit the yet more detailed terminology heavily inspired by Feitelson
[20] presented in Table 1. The essence of some of the terms have been modified
slightly to suit our needs along with the addition of validation. Note, the terms
are used inconsistently in the literature. Within the papers of this thesis, only
reproducibility in its general sense is used and the appropriate specific term can
be substituted depending on the context.

It is also worth stressing the meaning of internal and external which can
be prefixed to the terms Table 1. Internal replication refers to replications by
the same researchers, whereas external necessitates independent researchers to
perform the replication.

3.2 A continuum of reproducibility

There is, of course, no exact well-defined criteria of repeatability, replicability,
and reproducibility. Though distinct, the terms may be quite overlapping in
many cases. Likewise, each term is not a dichotomy. A given experiment and
its analysis is not simply repeatable or not. Instead a continuous scale can
be imagined which indicate the degree to which they submit to the term. For
repeatability of the analysis, the scale indicates how easy when given raw data,
the results, output, and hence scientific conclusions are repeated. At one end
of this scale, the results and output are repeated automatically by the press of
a button. At the other end are poorly documented and disconnected workflows
distributed on many collaborating researchers contributing via different analy-
sis platforms. Examples are graphical user interfaces, where the exact actions
are hard to document, and thus errors are very likely to go unnoticed. The
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latter offers virtually no possibility on retracing and replicating mistakes and
errors. Baggerly and Coombes [2] discussed the frighteningly real consequences
of opaque, sloppy, and non-replicable research of Potti et al. [44] and related
papers and their time-consuming use of ‘forensic bioinformatics’ to infer the
methods used in the poorly documented research with unhelpful researchers.
Potti et al. [44] used microarrays and cell line drug sensitivity data to predict
the sensitivity of patients to various chemotherapeutics that, if true, presented
a significant step towards personalized medicine. The publication ultimately
instigated clinical trials potentially putting patients at risk However, following
Coombes et al. [9] the case evolved into the infamous Duke University scandal,
and the articles have since been retracted and the clinical trials stopped. Even
though the case also included fraud, which is arguably rare [16, 23], the poorly
documented research unfortunately is not a one-off [3, 27, 56].

For replicability, the scale indicates how well described the experimental
setup, statistical methods, etc., are. Exact replicability may often be infeasible
or impossible as patients can die, emigrate, or otherwise fail to participate in a
replication study. On the other hand, using exactly the same patients are hardly
implied when talking about replication studies; this might more naturally fall
under the repetition term.

As statistical methods analyzing high-dimensional data, biological or oth-
erwise, are often quite involved requiring many steps of data preprocessing,
analyses, and output generation, replicability in the form of a completely doc-
umented workflow is very desirable. The many statistical and probabilistic
pitfalls only serve as further arguments as to why replicability is needed on the
road to reproducibility. Non-repeatable or non-replicable mistakes and errors
are many times worse than repeatable and replicable ones.

Repeatability and replicability

Sonnenburg et al. [54] advocate for complete open source as the means for
reproducibility while Drummond [16], however, concludes ‘that replicability is
a poor substitute for scientific reproducibility. There may be other good reasons
for the collecting of software and scripts that are the basis of the experimental
results published in papers but scientific reproducibility is not one.’

There is no doubt a hierarchy of importance of the terms. While repro-
ducibility is the main property, replicability is not as futile a goal as Drum-
mond [16] makes it seem. It is desirable in itself and worth the extra effort
as exemplified above. Indeed, replicability is no substitute for reproducibility.
Replicability does not imply reproducibility, nor does reproducibility imply
replicability. Replicability is necessary for others to ascertain the precise de-
tails of the scientific work, which is often not of particular interest in itself.
It is, however, of interest precisely when others cannot reproduce the scientific
work. Particularly, it allows elucidating why the experimental results do not
reproduce and, better yet, determine under which conditions the results do
hold true. Drummond [16] argues the only seeming value of replicability is for
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prevention of scientific fraud, which is a minor one due to the rareness of it.
There are indeed plenty of other good reasons for collecting software and

scripts. The improved replicability from computer code greatly increases trans-
parency and provides exact documentation. Sonnenburg et al. [54] argues that
it also implies faster scientific progress, reduced costs, and quicker detection
and correction of scientific mistakes and software bugs.

3.3 Reasons for poor reproducibility

The precise reason(s) for the discrepancies in scientific results are poorly un-
derstood. Among the numerous proposed explanations are: (1) The number of
explanatory variables p always far exceed the sample size n, i.e. p� n, which
renders all practical sample sizes comparatively small. Very large sample sizes
are infeasible for most research groups due to heavy costs, time constraints,
computational costs, or lack of biological material. (2) Relatively few signals
are often truly present in the underlying stochastic process from which the data
is created. (3) The data are subject to substantial variability by a vast num-
ber of biological and technical factors. (4) Crucial genes near the significance
threshold may often be left out. (5) Experiments differ on an important, possi-
bly confounding, factor, e.g. age of cohort or the technology used. (6) Differing
statistical methodologies. While the latter may decrease the apparent level
of reproducibility, it should not destroy it completely. Surely, true biological
findings should be reasonably robust to different statistical methodologies and
experimental setup. Indeed this can also be said for the other reasons listed.

Lastly, there seems to be a general tendency in high-throughput biological
experiments for money to be invested in newer profiling technologies, deeper
sequencing, broader searches, or more subgroups, rather than simply obtaining
a larger sample size. This tendency, also noted by Robinson and Smyth [47,
p. 2881], further amplifies the problems of reproducibility.

At the heart of the high-dimensional p � n problems is also the risk of
overfitting. By the sheer number of observations, the variable of interest can
always be perfectly explained by some combination of them—even by random
noise. This is, essentially, the so-called overfitting where the statistical model
incorporates random noise rather than the true underlying relationship. Hence,
high-throughput screenings and searches are prone to produce false scientific
findings, since low signal-to-noise ratios are intrinsic to such experiments.

3.4 Fishing for significance and publication bias

Other sources of irreproducibility are publication bias and researcher bias, con-
sciously or unconsciously, for statistically significant results. The former is a
well-known problem driven by the tendency of scientific journals to accept pos-
itive (statistically significant) results with a higher likelihood [24, 57]. This is
coupled with reluctance to submit negative results by the scientists. It is also
known as the file drawer problem as many ‘negative’ results are often consid-
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ered uninteresting and unpublishable, and thus they end their lives in dusty
file drawers. The problem may easily be trivialized, but it is hugely important
due to the observation that the majority of all results likely are negative [12].
Hence, the systematic omission of negative results potentially greatly increases
the likelihood of false positive findings in published results. Furthermore, pub-
lishing negative results is also important, as they indicate what does not work.
A number of journals, listed in da Silva [12], exclusively devoted to negative
results have been made to combat the file drawer problem.

The researcher bias has also been more descriptively called fishing for sig-
nificance or even p-value hacking [24]. The problem is, that researchers often
report results from an optimization process searching for methods (or variants
of the method) that work better, yield results that are more significant, lower
error rates, or whatever measure that suit the application. This process can
be entirely subconscious. If it is conscious it can be benign; malicious intent
is not necessarily implied. After all, there is nearly always an element of trial-
and-error in developing good statistical methods [6]. The problem is that it is,
in essence, the multiple hypothesis testing problem in disguise—‘If you torture
the data long enough, it will confess’ as famously put by Ronald H. Coase.
Boulesteix [6] argues that the difficulty in publishing negative results might
actually encourage and amplify this p-hacking tendency.

Boulesteix [6] gives a good summarization of these issues and concludes
that publishing scripts for replicability and reproducibility contributes to more
transparent research and rapid unbiased validation of results. For example,
parameters that were tuned, consciously or subconsciously, are more easily
identified. It does not ensure that authors have not overfitted or p-hacked; it
ensures that these issues are more easily tracked down.

3.5 Tools for replicability and data integration

In the statistical programming language R [45], the concept of easy replicability
is not novel. Sweave [33], later extended by knitr [69], is based on the literate
programming paradigm that integrates R with LATEX, HTML, mark-down and
other mark-up languages. This serves as easily replicable results incorporated
into the manuscripts, reports, or books. It also has the added benefit of an
instantaneously updated manuscript if e.g. mistakes and errors in the raw data,
method, or software are corrected.

There are many other tools available towards the goal of exact and easy
replication of results. The R-package packrat aids in managing the version of
the used software packages and their dependencies [62]. Online code repositories
and version control hosting sites such as bitbucket.org and github.com provide
excellent means for moving toward complete open sourced science and easier
collaboration with other researchers.

Online data repositories also increase the replicability of studies allowing
other researchers to download the publicly available data. One example is the
Gene Expression Omnibus (GEO) from the National Center for Biotechno-
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logy Information (NCBI), which currently holds nearly 4,000 public datasets
amounting to more than 1.5 million samples. The R-package GEOquery [13]
provides a programmatic interface to GEO.

Considerable effort has been invested to make the papers of this thesis, the
replication of the results, and the raw data easily and publicly available to the
biological and statistical community via some of the tools above. To this end,
the package DLBCLdata is an attempt to provide preprocessing of DLBCL
gene expression datasets in an easy, automated, and reproducible manner.

3.6 Data integration and meta-analysis

Meta-analysis and data integration seek to aggregate information across mul-
tiple studies to achieve a higher sensitivity and specificity. As such, both hold
important aspects of reproducibility.

Traditional meta-analysis works on combining summary quantities such as
test statistics, confidence intervals, p-values, etc. The GMCM of Paper I can
alternatively be thought of as a novel method for aggregating or combining test
statistics. A variation of meta-analysis is pooling the raw data of the studies in
a sometimes so-called mega-analysis [See e.g. 46]. Papers III and IV presents
methods for mega-analysis in network analysis.

Meta-analysis is not entirely uncontroversial [19]. In all meta-analyses, the
publication bias is a well-known issue. However, the comparability of the stud-
ies should also be considered, as to not compare apples and oranges. Using the
raw data of large-scale microarray studies publication bias is likely less of an
issue and the p-hacking issue seems to vanish.

3.7 Validation experiments

The poor reproducibility of high-dimensional experiments has manifested itself
as a widespread acknowledgement of the need of validation experiments. Al-
ready in 1999, near the introduction of microarrays, Brown and Botstein [7]
stressed that microarray analyses are exploratory, not driven by hypotheses,
and should therefore be as independent of the model as possible. In this view,
the statistical screenings are viewed as hypothesis generating ; the statistical out-
comes are nothing more than a prioritized list of promising candidates. Hence,
the most interesting suggestions from the screenings needs to be validated in
independent experiments using the traditional gold-standard methods.

The term hypothesis generating for high-dimensional screens is particularly
useful in avoiding many reproducibility issues. The name directly implies the
need for validation as only hypotheses are created from high-dimensional screen-
ings.

Paper V is central to this subject and provides a correction to the potentially
overly optimistic statistical analysis of so-called qPCR experiments.

20



4 Overview of the thesis

4 Overview of the thesis

In the following part of this thesis the main papers are presented. The papers
have been reformatted and minor grammar and spelling corrections have been
made. An introductory preface have been added to each paper relating the
material presented above. Following the papers, a preface to the statistical
software packages written is also given.
Paper I & II Paper I discusses two classes of so-called Gaussian mixture
copula models (GMCM). The first GMCM was proposed by Li et al. [35] and a
generalized GMCM was independently proposed by Tewari et al. [60], dubbed
the special and general model, respectively. GMCMs are attractive as they
are highly flexible. The former special model was proposed for quantifying the
degree to which genes of two or more gene-lists agree. In this sense, the special
model is capable of aggregating evidence across multiple studies of differential
expression. However, a number of issues were identified in the rather slow
implementation in the R-package idr by Li et al. [35]. Paper I and Package I
serve as an introduction to GMCMs, solves some of the identified issues, and
provides very fast estimation procedures. The special model was also applied
to the data of Paper II as a secondary analysis example.

The general model of Tewari et al. [60] was also incorporated and suggested
for general purpose unsupervised clustering. One point of expansion of the
general GMCM is to apply the model in the closely related discriminant analysis
also discussed and applied in Paper III.

Paper II is an applied paper concerned with differential expression of genes
between cryopreserved (frozen) and non-cryopreserved (fresh) samples of white
blood cells. Cryopreservation is a very convenient tool for biological researchers
to store tissue or cells and thus postpone analysis or use. It is a fundamental
part of bio-banks that store biological samples and tissue. Naturally, a premise
of using cryopreserved samples in research is that the results would be largely
unchanged had fresh tissue been used instead. Or, results will reproduce when
using cryopreserved tissue compared to that of fresh tissue. This paper inves-
tigates the validity of that premise and concludes that few genes are changed
due to the cryopreservation.
Paper III & IV The papers III and IV in this thesis describe statistical
models usable in the attempt to elucidate genetic networks described above.
They can both be used in Gaussian graphical modelling or for identifying cor-
relation networks across many datasets. As network estimation is known to
be quite variable, these papers attempt to integrate the information of many
datasets to stabilize the estimation and arrive at more reproducible results.
Paper V Paper V describes an easily corrected omission in the standard sta-
tistical analysis of so-called qPCR experiments; the gold standard often used
to validate findings from high-throughput experiments. The current statistical
methods ignore a potentially important source of variation that leads to overly
optimistic analyses. Besides providing ways to incorporate the omitted vari-
ance, the paper also provides a unified statistical framework for analyzing such
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qPCR data.
Package I The R-package GMCM is the accompanying software to Paper I.
Package II The R-package DLBCLdata is used in papers III and IV. It auto-
mates the otherwise very cumbersome process of manually downloading data-
sets and scripting the preprocessing hereof. This results in completely replicable
analyses. The package ‘features’ 12 large-scale gene expression datasets of dif-
fuse large B-cell lymphoma (DLBCL) cancer but should work for most GEO
datasets using Affymetrix platforms.
Package III The R-package rags2ridges is the accompanying implementa-
tion of [63] and now also Paper I. Much of the base-code in rags2ridges were
rewritten in C++ to accommodate the more computationally demanding fused
variant of ridge precision estimation.
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Preface: This paper generalizes work by Li et al. [21] along the lines of Tewari
et al. [33]. The paper discusses the class of so-called Gaussian mixture copula
models (GMCM), how to estimate the parameters hereof, and the software
implementation. A GMCM is a multivariate Gaussian mixture model that
is invariant to all monotone marginal transformations. This property comes
from the fact that the model only cares about the marginal rankings of the
observations—and it makes the model quite flexible, but also harder to fit.

The Li et al. [21] special case attempts to quantify the level of reproducibility
for each gene in ranked lists of genes from different experiments. The quantity
is an irreproducibility discovery rate which can be thought of as an integrated
score used to infer genes as either reproducible or irreproducible. The irrepro-
ducibility discovery rates are essentially local false discovery rates also used in
Paper IV. The generalized model of Tewari et al. [33] uses analogous quantities
for determining the classes in unsupervised clustering.

The GMCM may be adopted for discriminant analysis, also used in Paper
III, as one point of extension. Further work could be determination of the
number of clusters from data or a regularized GMCM, similar to Paper IV or
otherwise.

The accompanying R-package GMCM, also presented in Package I, is freely
available on CRAN (the comprehensive R archive network) at

http://cran.r-project.org/package=GMCM
while the development branch is found at

https://github.com/AEBilgrau/GMCM.
The package is open-source and this paper is also found as a package vignette
by following the former link.

© 2015 Journal of Statistical Software The layout has been revised.

http://cran.r-project.org/package=GMCM
https://github.com/AEBilgrau/GMCM
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Unsupervised Clustering and Meta-Analysis using
Gaussian Mixture Copula Models

Abstract

Methods for unsupervised clustering is an important part of the sta-
tistical toolbox in numerous scientific disciplines. Tewari et al. [33]
proposed to use so-called Gaussian Mixture Copula Models (GMCM)
for general unsupervised clustering. Li et al. [21] independently dis-
cussed a special case of these GMCMs as a novel approach to meta-
analysis in high-dimensional settings. GMCMs have attractive proper-
ties which make them highly flexible and therefore interesting alternatives
to well-established methods. However, parameter estimation is hard be-
cause of intrinsic identifiability issues and intractable likelihood functions.
Both aforementioned papers discuss similar expectation-maximization-
like (EM) algorithms as their pseudo maximum likelihood estimation
procedure. We present and discuss an improved implementation in R of
both classes of GMCMs along with various alternative optimization rou-
tines to the EM algorithm. The software is freely available through the
accompanying R package GMCM. The implementation is fast, general,
and optimized for very large numbers of observations. We demonstrate
the use of GMCM through different applications.

1 Introduction

Unsupervised cluster analysis is an important discipline in many fields of sci-
ence and engineering for detection of clusters of data with similar properties.
Gaussian mixture models (GMM) is perhaps the most widely used method for
unsupervised clustering of continuous data. However, the assumption of jointly
normally distributed clusters in GMMs is often violated. Tewari et al. [33] pre-
sented the semi-parametric class of Gaussian mixture copula models (GMCM)
for general unsupervised clustering and highlighted them as a flexible alter-
native to GMMs when obvious non-normally distributed clusters are present.
The attractiveness of the GMCMs is predominantly due to an invariance under
all monotone increasing marginal transformations of the variables. This scale
invariance of the variables stems from the rank-based nature of copula models
and make the GMCMs highly versatile.

The GMCMs have found some success in applications after Li et al. [21]
independently proposed using a special-case for a non-standard meta-analysis
methodology named reproducibility analysis. Their method have been adopted
by the ENCODE project [4, 34] and applied on ChIP-sequencing data. The
meta-analysis approach with GMCMs works by clustering genes or features
that agree on statistical evidence and those that do not. In other words, the
features are clustered into a reproducible and an irreproducible group. The
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flexibility of the GMCMs make them suitable for meta-analysis of multiple
similar experiments.

The work of Li et al. [21] is especially important in genomics as both data
and results are subject to substantial variability due to limited samples sizes,
high dimensional feature spaces, dependence between genes, and confounding
technological factors. This high variability have brought into question the relia-
bility and reproducibility of many genomic results [13, 17, 32]. Others, however,
argue that the lack of reproducibility is only superficial [37]. Together with a
rapid evolution of many different high-throughput technologies and vast online
repositories of publicly available data, this motivates the need for a robust and
flexible meta-analysis toolbox, which can evaluate or aggregate results of multi-
ple experiments even across confounding factors such as differing technologies.

The high flexibility of the GMCMs comes at a cost, however. The likelihood
is difficult to evaluate and maximize, partly because of intrinsic identifiability
problems as we describe in detail later. We have solved some of the issues and
implemented them in the package GMCM for R [27].

Although copula theory is an elegant way of approaching rank-based meth-
ods, we present the GMCMs in a more traditional fashion. We refer to the
general model of Tewari et al. [33] simply as the general model or general
GMCM and the special case model of Li et al. [21] is referred to as the special
model or special GMCM.

In the following, we present the general GMCM followed by the special case
and the derivation of the likelihood function. Subsequently, the key features of
the GMCM software package are presented and compared to the idr package.
The technical details of the problematic maximization of the likelihood are then
discussed. Finally, our package is evaluated by different applications before
concluding with a discussion of GMCMs.

This document was prepared and generated using knitr [36], a dynamic
report generation tool inspired by Sweave [19], and the R-packages Hmisc [15]
and RColorBrewer [24]. The simulation study was carried out using parallel
computing with doMC [28] and foreach [29].
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2 Gaussian mixture copula models

2.1 The general GMCM for unsupervised clustering

We consider a large p× d matrix [xgk] of observed values where the rows are
to be clustered into m groups. The general GMCM assumes an m-component
Gaussian mixture model (GMM) as a latent process, Z = (Z1, . . . , Zd)

>, with
the following distribution

GMM:

{
H ∼ Categorical(α1, . . . , αm)
Z|H = h ∼ Nd(µh,Σh)

(1)

where H ∈ {1, 2, . . . ,m} corresponds to the class and α1, . . . , αm are the mix-
ture proportions satisfying

∑m
h=1 αh = 1. Thus, the latent GMM is parame-

terized by

θ = (α1, . . . , αm,µ1, . . . ,µm,Σ1, . . . ,Σm).

We denote the joint and k’th marginal cumulative distribution functions (cdf)
of the GMM by

Γ(z;θ) =

m∑
h=1

αhΦ(z;µh,Σh) and Γk(z;θ) =

m∑
h=1

αhΦk(z;µh,Σh),

respectively, where Φ and Φk are the joint and k’th marginal cdfs of the mul-
tivariate normal distributions, respectively. Analogous equations hold for the
joint and marginal probability density functions (pdf) which we denote by
lower-case γ and γk.

Let X = (X1, . . . , Xd)
> be an observation with known marginal cumulative

distribution functions F1, . . . , Fd and assume the relationship

Xk = F−1
k

(
Γk(Zk;θ)

)
, ∀k ∈ {1, . . . , d} (2)

between the observed and the latent variables. By Equation 2 and the proba-
bility integral transform the vector U = (U1, . . . , Ud)

> where Uk = Γk(Zk) =
Fk(Xk) have uniformly distributed marginals.

When F1, . . . , Fd are known we can derive an expression for the likelihood
of this model. For later use we simplify the notation by introducing the vector
functions Γ◦ : Rd ×Θ→ Rd and F◦ : Rd → Rd defined by

Γ◦(Z;θ) =
(
Γ1(Z1;θ), . . . ,Γd(Zd;θ)

)>
and F◦(X) =

(
F1(X1), . . . , Fd(Xd)

)>
,

where Θ is the parameter space. The vector function Γ◦ applies the k’th
marginal transformation Γk on the k’th entry of the observation and simi-
larly does F◦. Again by the probability integral transform, Z is transformed
by Γ◦ into the marginally uniformly distributed random vector U with cdf

C(u;θ) = Γ
(
Γ−1
◦ (u;θ);θ

)
.
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The pdf c of U is computed by the change of variables theorem or by differ-
entiation of C using the multivariable chain rule. If we abbreviate notationally
by not explicitly stating dependence on parameters θ, the pdf is given by

c(u;θ) = γ
(
Γ−1
◦ (u)

) ∣∣∣JΓ−1
◦

(u)
∣∣∣ =

γ
(
Γ−1
◦ (u)

)∏d
k=1 γk

(
Γ−1
k (uk)

) (3)

since the Jacobian matrix JΓ−1
◦

(u) is diagonal. The cdf C and pdf c are the so-
called copula and copula density of the GMM model, respectively [23]. Hence
U is distributed according to the Gaussian mixture copula density c, and the
observation X is some marginal transformation of U. The model is thus com-
pletely specified by

GMCM:


H ∼ Categorical(α1, . . . , αm)
Z|H = h ∼ Nd(µh,Σh)
U = Γ◦(Z;θ)
X = F−1

◦ (U).

(4)

From this, we see the GMCM operates on three levels, a latent level Z, a copula
level U, and an observed level X. Figure 1 (A-C) illustrates the three levels of
a 2-dimensional 3-component GMCM. Here, F◦ and F−1

◦ maps panel A to B
and B to A, respectively. Likewise, Γ◦ defines the mappings between panels C
and B.

To assess the class of an observation, Tewari et al. [33] proposed using

κh = P (H = h | u,θ), (5)

which is the a posteriori probability that the observation was generated from
component h. To decide the class for the observation, the maximum a posteriori
(MAP) estimate can be used. That is, the h corresponding to maxh(κh).

2.2 The special-case GMCM for meta-analysis

In the Li et al. [21] reproducibility analysis, the p × d matrix [xgk] consists
of test-statistics or p-values interrogating the same null hypothesis for a large
number p of e.g., genes for each of d ≥ 2 studies. Rows corresponds to genes,
indexed by g, and columns to experiments, indexed by k. Without loss of gener-
ality, large values are considered to be indicative of the alternative hypothesis.
A prototypical example in genomics is a matrix of transformed p-values for the
hypothesis of no differential expression of genes between treatment and control
groups for two or more experiments. The task is here to determine which genes
g are commonly significant in all experiments. Ordinary meta-analysis method-
ologies involve combining confidence intervals of effect sizes, test-statistics, or
p-values in a row-wise manner and assessing the significance whilst controlling
the number of false positives [25].

Li et al. [21] proposed a special case of Equation 4 with m = 2 components
corresponding to whether the null or alternative hypothesis is true, where h = 1
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corresponds to spurious signals and h = 2 to genuine ones. Hence α1 and
α2 = 1 − α1 is the fraction of spurious and genuine signals, respectively. Li
et al. [21] further assumes the following constraints on the parameters

µ1 = 0d×1 = (0, 0, . . . , 0)>,

µ2 = 1d×1µ = (µ, µ, . . . , µ)>, µ > 0
(6)

and

Σ1 = Id×d =

1 0 · · ·
0 1 · · ·
...

...
. . .

 , Σ2 =

 σ
2 ρσ2 · · ·

ρσ2 σ2 · · ·
...

...
. . .

 , (7)

where ρ ∈ [−(d−1)−1, 1] and σ2 > 0. The lower bound on ρ is a requirement for
Σ2 to be positive semi-definite. In other words, if the null-hypothesis is true,
the latent variable is a d-dimensional standard multivariate normal distribution.
If not, it is an latent d-dimensional multivariate normal distribution with equal
means and a compound symmetry covariance structure. Figure 1 (D-F) shows
an example of the observed, copula, and latent levels of the special GMCM
where d = 2.

With the above constraints the special model is parameterized by only θ =
(α1, µ, σ

2, ρ) whereby the dimensionality of the parameter space is substantially
reduced. Furthermore, all marginal cdfs are equal, Γ1 = · · · = Γd, and similarly
are all pdfs equal, γ1 = · · · = γd.

Li et al. [21] defines the local irreproducibility discovery rate of an observa-
tion as

idr(u) = κ1 = P (H = 1 | u,θ), (8)

analogously to the local false discovery rate (Lfdr) of Efron [10, 11, 12]. Notice,
that Equation 5 coincide with Equation 8 for the special model. As the multiple
testing problem is present when more observations are obtained, an adjusted
irreproducibility discovery rate was also defined by Li et al. [21]:

IDR(α) = P (H = 1 | u ∈ Iα,θ), (9)

where Iα = {u | idr(u) < α}, i.e., the probability of a gene being non-
reproducible while in the rejection region. The adjusted IDR(α) relates to
idr in the same manner as marginal false discovery rate (mFDR) relates to the
Lfdr.

2.3 The GMCM likelihood function

Suppose we have observed p i.i.d. samples

x1 = (x11, . . . , x1d), . . . ,xp = (xp1, . . . , upd)
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from Equation 4 which can be arranged into the observation matrix intro-
duced in Section 2. From these, the marginal uniform variables u1 = F◦(x1) =
(u11, . . . , u1d), . . . ,up = F◦(xp) = (up1, . . . , upd) are computed and are indepen-
dent and identically distributed according to the copula density of Equation 3.
The log-likelihood is thus given by

(̀
θ;{xg}pg=1

)
∝
(̀
θ; {ug}pg=1

)
=

p∑
g=1

log c(ug;θ) (10)

=

p∑
g=1

log

m∑
h=1

αh√
(2π)d|Σh|

exp

(
−1

2

(
Γ−1
◦ (ug)− µh

)>
Σ−1
h

(
Γ−1
◦ (ug)− µh

))

−
p∑
g=1

d∑
k=1

log

m∑
h=1

αh√
2πΣhkk

exp

(
− 1

2Σhkk

(
Γ−1
k (ugk)− µhk

)2)
,

since the Jacobian arising from transformation F◦ is not dependent on θ (and
thus constant when optimizing with respect to θ).

In practice, F1, . . . , Fd are unknown and estimated by the empirical cdf

F̂
(p)
k (x) =

1

p

p∑
g=1

1[xgk ≤ x].

Hence the pseudo-observations

ûgk = F̂
(p)
k (xgk) =

1

p
rank(xgk) (11)

of ugk are plugged into the log-likelihood and the maximizing parameters are

found. However, since p is large, F̂
(p)
k is a good estimate of Fk and thus

ûgk = F̂
(p)
k (xgk) ≈ Fk(xgk) = ugk. The GMCM is rank-based since plugging

a variable into its empirical cdf corresponds to a particular ranking scheme
in which the lowest value is awarded rank 1 and ties are given their largest
available rank. To avoid infinities in the computations ûgk is rescaled by the
factor p

p+1 .
The usage of ûgk violate the assumption of independent observations as

the ranking introduces dependency between the observations. The introduced
dependency is arguably negligible when p is large. We ignore this problem and
refer to Chen et al. [6] and the references therein for a more detailed discussion
about this problem which is common to all copula model estimation procedures.

3 The GMCM package

3.1 Package overview

The GMCM package currently have 14 user visible functions of which the ma-
jority are for convenience. The functions are presented in Table 1 and the
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Fig. 1: From left to right the observed, copula (or rank), and latent process is shown.
The first and second row of panels illustrate 10,000 realizations from the general and special
model, respectively. The component from which the realizations come are visualized by
colour and point-type. Each dimension in the special model corresponds to an experiment
where simultaneously high values in both experiments are indicative of good reproducibility.
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Table 1: Overview of the visible user functions and their purpose in approximate order
of importance. Confer the documentation (e.g., help("Uhat")) for function arguments and
return types. Relevant equations are right-justified.

Function Description
fit.full.GMCM Fit the general model (4)
fit.meta.GMCM Fit the special model (4)(6)(7)
get.prob Get class probabilities for the general model (5)
get.IDR Get class probabilities (idr and IDR) for the special model (8)(9)
SimulateGMCMData Generate samples from a GMCM (4)
SimulateGMMData Generate samples from a GMM (1)
Uhat Rank and scale the columns of the argument. (11)
choose.theta Choose starting parameters in the general GMCM.
full2meta Convert from theta-format to par.
meta2full Convert from par-format to theta.
rtheta Generate random theta.
is.theta Test if theta is correctly formatted.
rmvnormal Generate multivariate gaussian observations.
dmvnormal Fast evaluation of multivariate Gaussian pdf.

GMCM reference manual. Two different parameter formats are used depend-
ing on use of the special or general model. In the general model a specially
formatted list of parameters is used, named theta in function arguments and
documentation. The rtheta function generates such a prototypical list with
random parameters and is.theta conveniently tests if the argument is prop-
erly formatted. If the special model is to be used, the required parameters
are simply given in a numeric vector (α1, µ, σ, ρ) of length 4, named par in
arguments and documentation. The useful functions meta2full and full2meta
provide easy conversion between the general theta and the special par format.

The most important functions fit.full.GMCM and fit.meta.GMCM fit the
general and special GMCMs, respectively. The method argument of these func-
tions specify the optimization routine to be used. If the general model is used
get.prob returns a matrix of posterior probabilities κgk defined in Equation 5.
In the special model, the get.IDR is used to compute local idr (i.e., the pos-
terior probability of belonging to the irreproducible component) and adjusted
IDR values.

The SimulateGMMData and SimulateGMCMData functions provide simulation
of observations from the models specified in Equations 1 and 4, respectively.

Beside the following tutorial, a small usage example of the special model
is also found in help("GMCM"). All simulations and computations were carried
out on a regular laptop (1.7 GHz Intel Core i5, 4GB DDR3 RAM).

3.2 Using the package

We proceed with a small tutorial on the package. As an illustration, we load the
package and simulate 10,000 observations from a 2-dimensional 3-component
GMCM with randomly chosen parameters in the following manner:
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Fig. 2: Panel A shows realizations from the latent process and panel B the corresponding
marginally uniformly distributed process. Note, that while B shows true realizations from
the GMCM ug the ranked observed values ûg are almost visually identical because of the
relative large number of observations.

> library("GMCM")
> set.seed(100)
> n <- 10000
> sim <- SimulateGMCMData(n = n, theta = rtheta(m = 3, d = 2))

The sim object is a list containing the matrix of the realized latent pro-
cess (sim$z), the matrix of true realizations from the GMCM density (sim$u),
the formatted parameters (sim$theta), and the component from which each
observation is realized (sim$K). Figure 2 shows the realized data.

Subsequently, we select a starting estimate from the data, fit the ranked
observed data using Nelder-Mead (NM), and compute the posterior probabilities
of each observation belonging to each component:

> ranked.data <- Uhat(sim$u)
> start.theta <- choose.theta(ranked.data, m = 3)
> mle.theta <- fit.full.GMCM(u = ranked.data, theta = start.theta,
+ method = "NM", max.ite = 10000,
+ reltol = 1e-4)
> kappa <- get.prob(ranked.data, theta = mle.theta)
> Khat <- apply(kappa, 1, which.max)

The function Uhat ranks and rescales as described in Section 2.3. The
choose.theta function uses the k-means algorithm on the rank-level to find
an initial set of parameters. From the k-means clustering, crude estimates of
the mixture proportions, mean values, and variances can be computed. The
correlations in all components are taken to be zero. This usually provides rea-
sonable initial parameters. Objections may be made to using such a procedure
on the rank and not latent level. However, as we are only interested in the
relative position of the components this often serves as a reasonable starting
parameter. The fit.full.GMCM does the actual optimization of the likelihood
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Table 2: Confusion matrices of GMCM and k-means clustering results.

Ĥ (GMCM) Ĥ (k-means)
1 2 3 1 2 3

H
1 2747 0 0 2693 54 0
2 0 2276 6 5 2270 7
3 0 57 4914 26 882 4063

Fig. 3: Panel A shows the estimated class labels of the observations by colour and point-
type. As a model control panel B and C shows 10,000 realizations from the GMM and
GMCM using the fitted parameters.

to arrive at the MLE. The default Nelder-Mead (NM) procedure converged in
499 iterations in about 6 seconds.

In serious applications the starting values should be chosen carefully and
the algorithm ought to be started at different positions of the parameter space
to investigate the stability and uniqueness of the maximum likelihood estimate.
The estimate with the largest likelihood should then be chosen.

The confusion matrix for the GMCM clustering, seen in Table 2, yields an
accuracy of 99.4%. In (unfair) comparison, the k-means algorithm have an
accuracy of 90.3%. Figure 3 shows the clustering results and simple model
checks by simulation from the fitted parameters. Though a high clustering
accuracy is achieved, we see from the model check in Figure 3B compared to
Figure 2A that the underlying parameters are not really identifiable. However,
we see from panel C, that the fitted parameters model the observed ranks
closely and thus provide a high predictive accuracy.

3.3 Runtime and technical comparison

For the special model, the GMCM package implements an arbitrary number
of dimensions (or experiments) d to be included whereas the idr package only
supports d = 2. The GMCM package considerably decreases the per iteration
runtime of the pseudo expectation-maximization (PEM) algorithm compared
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Table 3: Runtime comparisons of the idr and GMCM packages with increasing number of
observations p. The benchmarked optimization procedures are the pseudo EM algorithm
(PEM) and the Nelder-Mead (NM) method. The runtime is given in seconds. The last
column shows the relative speed per iteration compared to the fastest procedure.

p / Package Algorithm Runtime (s) Iterations (n) s/n Rel. speed

1,000
idr PEM 3.03 22 0.138 50.4
GMCM PEM 1.27 125 0.010 3.7
GMCM NM 0.75 275 0.003 1.0

10,000
idr PEM 17.64 15 1.176 143.7
GMCM PEM 4.16 163 0.025 3.1
GMCM NM 1.94 237 0.008 1.0

100,000
idr PEM 257.63 17 15.155 304.2
GMCM PEM 40.79 258 0.158 3.2
GMCM NM 10.71 215 0.050 1.0

to the idr package. The optimization procedures such as Nelder-Mead (NM),
simulated annealing (SANN), and others which only rely on evaluations of the
likelihood further reduce the runtime compared to the PEM.

Run and iteration times for an increasing number of observations are seen
in Table 3 on a simulated dataset with parameters (α1, µ, σ, ρ) = (0.7, 2, 1, 0.9).
The algorithms were all run with the starting values (0.5, 2.5, 0.5, 0.8). The pa-
rameters were chosen such that the idr package does not converge prematurely.

To assess the optimization routines in the idr and GMCM packages, 1000
datasets with 10,000 observations were simulated from the special model with
parameters θ = (0.9, 3, 2, 0.5). The special model was fitted to each of the
datasets using each of the available routines with random initial parameter
values. Figure 4 shows the results from the fitting procedures. The maximum
number of iterations were set to 2,000. The SANN procedure was given 3,000
iterations.

The clusters of parameter estimates away from the true values seen in Figure
4 presumably corresponds to local maxima of the likelihood. Hence many of the
procedures are fairly often caught in such local maxima. Interestingly, while the
estimates of the standard deviation σ̂ and correlation ρ̂ for the PEM algorithm
seem to be biased, the algorithm achieved a high clustering accuracy. We also
see that the PEM algorithms in GMCM and idr behave quite differently. The
maximal number of iterations, 2000, was hit only by the PEM algorithm 274
and 18 times for the idr and GMCM packages, respectively. Also notable is
the factor 555 reduction in total runtime from between the fastest and slowest
fitting procedures.

All warnings produced by the PEM algorithm in idr was "NaNs produced".
PEM in GMCM only warned that the maximum number of iterations was
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Fig. 4: Parameter fitting results for the different optimization procedures. From left to right,
the first four panels show plots of the fitted parameter estimates. The true parameter values
are plotted as vertical lines. Next, the mean clustering accuracy (and standard deviation),
total run time in minutes for all 1000 fits, and the number of warnings and errors are shown.
The last panel shows the number of iterations for each fit. The black vertical lines indicate
the median.

reached. The errors produced by SANN and L-BFGS-B seemingly arise as
the estimates of the covariance matrix became singular. The vast majority
of the errors by L-BFGS were divergence to non-finite likelihood values. The
only unique error thrown by PEM (idr), "missing value where TRUE/FALSE
needed", seems to stem from a simple bug.

Considering computational efficiency and robustness, accuracy, and preci-
sion of parameter estimates, we chose the Nelder-Mead as the default optimiza-
tion procedure.

3.4 Availability of the package

The GMCM package is open-source and available both at the CRAN (Com-
prehensive R Archive Network) and at the GitHub repository https://github.
com/AEBilgrau/GMCM.git for bug reports as well as easy forking and editing.

4 Maximum likelihood estimation

4.1 Maximizing the likelihood

The optimization of the likelihood function in Equation 10 is non-trivial. There
exists no closed form expression for Γ−1

k . Furthermore there are intrinsic prob-
lems of identifiability of the GMCM parameters. These problems will greatly
affect any estimation procedure.
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4 Maximum likelihood estimation

Both Li et al. [21] and Tewari et al. [33] make use of a pseudo EM (PEM)
algorithm to find the maximizing parameters. Tewari et al. [33] use the PEM
as a “burn-in” and switch to a gradient descent algorithm. Both authors derive
the likelihood function of the GMM, `GMM, specified by Equation 1 and the
estimators for the corresponding EM algorithm. The PEM algorithm then it-
eratively alternates between estimating pseudo-observations ẑgk = Γ−1

k (ûgk;θ)
and subsequently updating θ by an E and M step. While this intuitively is a
viable approach, it effectively ignores the Jacobian of Equation 3 as the trans-
formation Γ−1 depends on the parameters θ. In short, the wrong likelihood is
thus optimized and a pseudo (or quasi) maximum likelihood estimate is found.
This may yield an inefficient optimization routine and biased parameter esti-
mates. This problem of the PEM is appreciated by Tewari et al. [33].

A fundamental problem with the PEM algorithm is the alternating use of
pseudo-observations and parameter updates. The pseudo data is not constant
in the `GMM which implies no guarantee of convergence nor convergence to the
correct parameters.

To clarify, let θ(m) denote the m’th estimate of θ. From θ(m), pseudo data
is estimated by

ẑ
(m)
gk = Γ−1

k

(
ûgk;θ(m)

)
, g ∈ {1, . . . , p}, k ∈ {1, . . . , d}.

The PEM algorithm alternates between updating parameter estimates and
pseudo data which results in the following log-likelihood values,

. . ., `GMM

(
θ(m)

∣∣{ẑ(m)
g }g

)
, `GMM

(
θ(m+1)

∣∣{ẑ(m)
g }g

)
,

`GMM

(
θ(m+1)

∣∣{ẑ(m+1)
g }g

)
, `GMM

(
θ(m+2)

∣∣{ẑ(m+1)
g }g

)
, . . . ,

given in the order of computation. Conventionally, convergence is established
when the difference of successive likelihoods is smaller than some ε > 0. The
implementation of Li et al. [21] through the package idr for R determines con-
vergence if

`GMM

(
θ(m+1)

∣∣{ẑ(m+1)
g }pg=1

)
− `GMM

(
θ(m)

∣∣{ẑ(m)
g }pg=1

)
< ε,

where ε > 0 is pre-specified. However, an increase in successive likelihoods is
only guaranteed by the EM algorithm when the (pseudo) data are constant.
Since both the pseudo data and parameter estimate have changed the above
difference can be, and often is to our experience, negative. In the idr package
this sometimes happens in the first iteration without warning. Such cases
arguably stops the procedure prematurely since a negative difference obviously
is smaller than some positive ε. The EM algorithm only guarantees that the
difference

`GMM

(
θ(m+1)

∣∣{ẑ(m)
g }pg=1

)
− `GMM

(
θ(m)

∣∣{ẑ(m)
g }pg=1

)
is non-negative and thus might be more suitable for determining convergence.
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The PEM convergence criterion used by Tewari et al. [33] is when the differ-
ence in successive parameters estimates is sufficiently small while recording the
highest observed likelihood estimate which partly remedy the problem. How-
ever, the PEM still inherits the conventional problems of the EM algorithm.
It often exhibit slow convergence and offers no guarantee for finding the global
optimum.

Our software package GMCM offers fast optimization of both the general
and special models. Our implementation of the PEM algorithm supports vari-
ous convergence conditions. By default, it determines convergence when∣∣∣`GMCM

(
θ(m+1)

∣∣{û(m)
g }pg=1

)
− `GMCM

(
θ(m)

∣∣{û(m)
g }pg=1

)∣∣∣ < ε.

and returns the parameters which yield the largest likelihood. This is not neces-
sarily the one obtained in the last iteration. The internal function
PseudoEMAlgorithm is called when fit.full.GMCM or fit.meta.GMCM are run
with method = "PEM".

Instead of the EM approach, however, we propose optimizing the GMCM
likelihood function in Equation 10 using procedures relying only on likelihood
evaluations. To make this a feasible approach considerable effort has been put
into evaluating the log-likelihood function of Equation 10 in a fast manner by
implementing core functions in C++ using Rcpp and RcppArmadillo [8, 9, 14].
With fast likelihood evaluations the standard optim optimization procedure
in R is used with various optimization procedures, such as Nelder-Mead (the
amoeba method), simulated annealing, and BFGS quasi-Newton methods.

When the parameters are passed to optim we use various transformations
to reformulate the optimization problem as an unconstrained one. We logit-
transform the mixture proportions. In the general model, a Cholesky decompo-
sition combined with a log-transformation is used to ensure positive definiteness
of the covariance matrices. In the special model, the variance σ2 is ensured pos-
itive by a log-transform. The restriction on the correlation ρ to the interval
[−(d− 1)−1, 1] is guaranteed by an affine and logit function composition.

Additional speed have also been obtained by fast inversion of the marginals
Γk. Similarly to Li et al. [21], we linearly interpolate between function evalu-
ations. However, we distribute the default 1,000 function evaluations to each
component according to the current estimate of the mixture proportions. The
determined number of function evaluations for component h within the k’th
dimension is then sampled equidistantly in the interval µhk ± a

√
Σhkk where

a = 5 by default. Lastly, the monotonicity of Γk is used to quickly invert
the function by reflection around the identity line. Furthermore, we approx-
imate the mixture cdf Γk by using the approximation of the error function
erf(x) ≈ 1 − (a1t + a2t

2 + a3t
3) exp(−x2) where t = 1/(1 + bx) and a1, a2, a3,

and b are constants [1, p. 299; 16].
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4 Maximum likelihood estimation

Table 4: Equivalent optima in pure noise. A dot (·) denotes an arbitrary value. The given
values need only to be approximate.

Situation α1 µ σ ρ
1 1 · · ·
2 0 · · 0
3 · 0 1 0

4.2 Identifiability of parameters

The model suffers from unidentifiable parameter configurations. As a conse-
quence of the GMCM invariance to translations only relative distances between
the location parameters µ1, . . . ,µm can be inferred. We arbitrarily anchor the
first component at µ1 = 0 as a partial solution. To account for scaling invari-
ance, the first component is required to have unit variance in each dimension,
that is Σ1kk = 1 for all k. However, problems of identifiability persists in a
number of scenarios. In cases where two or more components in the latent
GMM are well-separated from each other the relative distances and component
variances are not identifiable for all practical purposes. For example in the
special GMCM, the parameter configuration θ = (0.5, 10, 1, 0), say, will be in-
distinguishable from (0.5, 100, 1, 0). The ranking destroys all information about
the relative variances and distances between the well-separated components.

The clustering might also easily fail when the location and variation pa-
rameters for two or more components are similar along the same dimension.
Suppose for example that µ1 = (0, 0), µ2 = (4, 0), and Σ1 = Σ2 = I2×2 where
the location and variation parameters equal along the ordinate axis. In such
cases, the ranking will create a homogeneous cluster which cannot be easily be
separated.

Even though the parameters may not be fully estimable in all cases, the
general model can still be an effective clustering algorithm if measured by
clustering accuracy.

Table 4 describes three situations in the special model where the parameter
estimates and thus the following clustering should be carefully interpreted. If
the parameter estimate approaches any of the given numbers then the remaining
parameters, represented by dots, are effectively non-identifiable. For example
in Situation 1, if the mixture proportion α1 approaches 1 then the remaining
parameters can easily diverge as they no longer contribute to the likelihood. In
Situation 2 where θ = (0, ·, ·, ρ) extra caution should be displayed if ρ becomes
substantially different from zero as all observations will be deemed reproducible.
While the above corrections somewhat remedy these issues, the three situations
can still be observed, especially when data consisting of nearly pure noise is
supplied.
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5 Applications

5.1 Reproducibility of microarray results

In molecular biology, microarrays are often used to screen large numbers of
candidate markers for significant differences between case and control groups.
Microarrays simultaneously probe the DNA composition or transcribed RNA
activity of multiple genes in a biological sample. The number of probes ranges
in the orders of 10,000 to 6,000,000, depending on the specific microarray.

In the study of haematological malignancies it is of biological interest to
know how normal B-lymphocytes develop [18, 20, 30]. Hence, B-cells from
removed tonsil tissue of six healthy donors were sorted and isolated using
fluorescence-activated cell sorting (FACS) into five subtypes of B-cells: Näıve
(N) B-cells, Centrocytes (CC), Centroblasts (CB), Memory (M) B-cells, and
Plasmablasts (PB). As part of the immune response to an infection, the CBs
proliferate rapidly and become CCs within the so-called germinal centres (GC).
The 6× 5 samples were profiled with Affymetrix GeneChip HG-U133 plus 2.0
(U133) microarrays [See 3, for further details].

It is e.g., of interest to identify which gene expressions have been altered
within the GCs from which the CCs and CBs come. We therefore tested the
hypothesis of no difference in genetic expression between CC and CB samples
against N, M, and PB samples for all the gene expressions present on the U133
array.

Since gene profiling technologies are rapidly evolving the experiment was
later repeated with new donors and on the newer GeneChip Human Exon 1.0
ST (Exon) microarray.

The 30 samples on the U133 arrays and the 30 samples on Exon arrays
were preprocessed and summarized to gene level separately and independently
using the RMA algorithm with the R/Bioconductor package affy using custom
CDF-files [7]. This preprocessing resulted in the genetic expression levels of
37,923 probe-sets for the U133 array and 19,750 probe-sets for the Exon array
both annotated with Ensembl gene identifiers (ENSG identifiers).

Each experiment was analysed separately using a mixed linear model and
empirical Bayes approach using the limma package [31] to test the hypothesis
of no differential expression for each gene between the CC + CB and the N +
M + PB groups. The tests yield two lists of p-values for the U133 and Exon
arrays.

The p-value lists were reduced to the 19,577 common genes present on both
array types and combined into a matrix [xgk]19577×2 where xgk is one minus the
p-value for varying gene expression for gene g in experiment k ∈ {U133,Exon}.

To determine the genes which are reproducibly differentially expressed, the
special GMCM was fitted with the Nelder-Mead optimization procedure using
fit.meta.GMCM. The procedure was started in 3 different starting values and
the estimate with the largest log-likelihood was chosen. The best estimate
converged in 311 iterations. Subsequently, the local and adjusted IDR values
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Fig. 5: Panel A shows a plot of the scaled ranks of p-values for the exon experiment against
the scaled ranks of the p-values for the U133 experiment. Presumably, genes located in
the upper left or lower right of the plots are false positive results in either experiment.
Panel B shows the estimated latent GMM process. The fitted parameters shown are used to
marginally transform panel A into the B.

were computed with get.IDR. A total of 3546 genes (18.1%) were found to
have an adjusted IDR value below 0.05 and deemed reproducible. The results
are illustrated in Figure 5 along with the parameter estimates. The algorithm
successfully picks p-values which are high-ranking in both experiments.

If the MAP estimate, corresponding to a local idr value less than 0.5, is used
then 4510 genes, corresponding to 23%, are deemed reproducible. This agrees
with the estimate of the mixture proportion of the null component α1 = 0.71.

Note, since no biological ground truth is available, the accuracy cannot be
determined. However, since genes which are not differentially expressed are
expected to be irreproducible the accuracy may be high.

For comparison, the number of genes marginally significant at 5% signifi-
cance level after Benjamini-Hochberg (BH) correction [2] is 3968 and 6713 for
the U133 and Exon experiments, respectively. The number of commonly sig-
nificant genes (i.e., simultaneously significant in both experiments) is 3140 or
16%. This corresponds to the common approach of using Venn diagrams.

The list of reproducible genes, which can be ranked by their idr-values, pro-
vides a more accessible list of genes for further biological down-stream analyses
than the unordered list of genes obtained by the Venn diagram approach.

The p-values from the experiments are available in GMCM using
data("u133VsExon").

5.2 Effects of cryopreservation on reproducibility

Cryopreservation is a procedure for preserving and storing tissue samples by
cooling them to sub-zero temperatures. It is convenient for researchers and
a crucial component of biobanking. Cryopreservation is usually assumed by
default to alter the biological sample since many cryopreserving substances
are toxic, the freezing procedure may damaged the sample due to ice crystal-
lization, and it may induce cellular stress response. Fresh is therefore consid-
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Fig. 6: Results from the reproducibility analysis of cryopreserved samples. Panel A shows the
p-values pg for the test of no differential expression between the pre- and post germinal centre
groups for fresh and frozen samples. Panel B shows the corresponding ranked p-values ûg ,
and panel C shows the estimated latent process ẑg . The estimated level of reproduciblity for
each probe set is colour coded according to the legend in panel C. Genes significantly different
across fresh and frozen samples are plotted as red squares regardless of the reproducibility
level.

ered favorable to cryopreserved tissue. Few studies have analysed the effect of
the cryopreservation on phenotyping and gene expression. Recently, we stud-
ied cryopreservation to gauge the actual impact of the cryopreservation on
global gene expression in a controlled comparison of cryopreserved and fresh
B-lymphocytes. Similarly to the above, the B-cells were prepared from periph-
eral blood of 3 individual healthy donors and FACS sorted into 2 × 4 B-cell
subtypes, Immature (Im), Näıve (N), Memory (M), and Plasmasblasts (PB).
Half of the samples were cryopreserved and thawed prior to the gene expres-
sion profiling using the Exon array while the other half was profiled fresh. The
resulting data was preprocessed using RMA [See 26, for further details]. As
a supplement to the manuscript, we performed a reproducibility analysis us-
ing the special model which however was omitted due to our concerns about
complexity and added length to the manuscript.

If cryopreservation has relatively negligible effects on global screenings, then
a high reproducibility should be expected for differential expression analyses
within the fresh and frozen samples – however only for the true differentially
expressed genes. For each probe set, the samples were analysed using linear
mixed models as described in Rasmussen et al. [26] and the hypothesis of no
differential expression between pre (Im + N) and post germinal centre (M +
PB) cells was tested for both fresh and cryopreserved samples separately to
mimic the situations where only fresh or frozen samples are available. The spe-
cial GMCM was fitted using the resulting absolute value of the test-statistics
to determine the level of reproducibility of each probe set. Local and ad-
justed irreproducible discovery rates were computed for all probe sets and this
level of reproducibility was discretized into three groups: highly reproducible
(IDRg < 0.05, cf. Equation 9), reproducible (idrg < 0.5, cf. Equation 8), and
irreproducible (idrg ≥ 0.5).
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The best parameter estimate of 40 fits was

θ = (α1, µ, σ, ρ) = (0.73, 1.08, 1.32, 0.86)

. The reproducibility analysis deemed 1,667 (8.9%), 1,402 (7.5%), and 15,639
(83.6%) genes highly reproducible, reproducible, and irreproducible, respec-
tively. Figure 6 shows these classifications of the p-values for differential ex-
pression between pre and post germinal cells for the fresh and frozen samples.
The total of 3,069 (16.4%) reproducible probe sets seems quite high and agree
with the estimated mixture proportion of 0.73. Again, the model correctly
captures the genes with simultaneously low p-values. Recall also that non-
differentially expressed genes are expected to be irreproducible and the actual
accuracy is thus much higher although it (again) cannot easily be estimated
when no biological ground truth is available.

Naturally, one might wonder whether genes changed due to cryopreser-
vation to a large extent are deemed irreproducible. The paired design al-
lowed us to investigate this hypothesis. The hypothesis of no difference in
expression between fresh and frozen samples for each gene was therefore tested
and the significant BH-adjusted p-values at the 5% level are highlighted in
Figure 6. The expectation above was then tested using a test for non-zero
Spearman correlation between the p-values and idr-values which yielded a non-
significant correlation (ρ = 0.009, p = 0.21). In other words, high evidence
for a change between fresh and frozen is not associated with greater irrepro-
ducibility (idr). Alternatively, a Fisher’s exact test also did not yield a dif-
ference in odds (odds ratio = 0.67, 95 % CI = (0.36, 1.32), p-value = 0.23) of
having a BH-adjusted significant change due to cryopreservation in the re-
producible group (odds = 48/(15591 − 48)) compared to the irreproducible
(odds = 14/(3055− 14)). Thus there is no evidence for an over-representation
of the irreproducible genes among the significant one. We might thus conclude
that though some genes change due to cryopreservation, the differential anal-
ysis between subgroups to a great extent still yields the same results whether
the samples are fresh or frozen.

Lastly, notice that some genes in the lower-left of Figure 6 (A-C) near the
origin are also being deemed reproducible. This is an artifact of the model due
to the high correlation of ρ = 0.86 in the reproducible component.

The p-values and test scores are available in GMCM using
data("freshVsFrozen").

5.3 Image segmentation using the general GMCM

In computer vision and graphics, image segmentation is useful to simplify and
extract features of pictures. To illustrate the flexibility of the model and the
computational capability of the GMCM package a 1.4 Mpx (965 × 1500 px)
image of the Space Shuttle Atlantis, seen at the top of Figure 7, was segmented
into 10 colours.
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The JPEG image can be represented as a 1,447,500× 3 matrix where each
column corresponds to a colour channel in the RGB colour space and each row
corresponds to a pixel and observation in the GMCM. The values are in this
case on the interval [0, 1].

A 3-dimensional, 10-component GMCM was fitted using the PEM algorithm
which resulted in the middle image of Figure 7. The segmented colours were
chosen using the location estimates µ̂1, . . . , µ̂10. That is, the three dimensional
vector F̂−1

◦ (Γ◦(µ̂h;θ)) ∈ [0, 1]3 in the RGB space was used as the colour of
cluster h. Alternatively, the average RGB value of each cluster could be used.

For comparison the 1.4 Mpx image was also segmented with the k-means
algorithm. The results are seen at the bottom of Figure 7. The final colours
given to each cluster was the means estimated by the algorithm.

As seen, the k-means and GMCM yield quite different segmentations and
different details of the image are captured. For example, the GMCM seem
to capture more details of the bottom of the orange external tank. However
perhaps erroneously, the GMCM also cluster the black left edge of the photo
together with a light cluster. The superior method is dependent on the appli-
cation at hand. We acknowledge that disregarding spatial correlations between
pixels is quite näıve. However, this example should illustrate the computa-
tional capability of the package of handling large datasets with a high number
of clusters.

The package jpeg was used to read, manipulate, and write the JPEG image
from R [35].

6 Concluding remarks

The software for the gradient descent algorithm used by Tewari et al. [33] to
arrive at a maximum likelihood estimate is written in the proprietary language
MATLAB but not provided as open source. Hybrid procedures, similar to the
one proposed by Tewari et al. [33], can easily be constructed with the GMCM
package. The GMCM package solves some of the previously described issues re-
garding the maximum likelihood estimation and provides a considerable speed-
up in computation times. However, there seems to be no complete remedy for
all of the challenges of the GMCMs. As stated, the transformation into uniform
marginal distributions by ranking will result in a loss of information about the
distance between components that are well separated.

The intrinsic identifiability problems of GMCMs may in practice often not
be a big issue. Even though the parameters of the assumed underlying GMM
can be difficult to estimate due to the flat likelihood function, the clustering
accuracy can still be very high. Furthermore, the actual parameters, except
perhaps the mixture proportions, does often not seem of particular interest in
applications. Hence, the merit of the GMCMs should be measured by predictive
accuracy which still remains to be explored. In this respect, we believe that the
theoretical and practical properties of the special GMCM and IDR approach
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Fig. 7: Top: The original 1.4 Mpx JPEG image of the space shuttle Atlantis’ climb to orbit
during mission STS-27 in December 1988. Middle: The image segmented into 10 colours by
the GMCM. Bottom: The image segmented into 10 colours by k-means clustering. Image
credit: NASA.
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should be studied further and compared to common p-value combining meta
analyses, such as the methods of Fisher, Stouffer, Wilkinson, Pearson, and
others, see e.g., Owen [25]. Interestingly and perhaps of slight concern, it can
be seen that the IDR approach would be deemed unreasonable by Condition
1 in Birnbaum [5] whenever ρ 6= 0. It is unclear whether the method fulfills
properties such as admissibility [5] and relative optimality in Bahadur’s sense
[22].

The simulation study in Section 3.3 revealed relatively many errors thrown
by the GMCM package. We are committed to pinpoint the exact sources of the
errors and provide fixes in future versions. We suspect the errors encountered
are due to divergence of the parameters and should therefore be treated as
such. With this in mind we believe that software should fail loudly with error
or warning when it indeed fails.

In conclusion, the GMCM package provides a fast implementation of the
flexible and widely applicable tool for reproducibility analysis and unsupervised
clustering. The flexibility and applicability is however gained at the cost of a
complicated likelihood function.
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Preface: This applied paper substantiates a basic premise of cryopreserva-
tion. Cryopreservation conserves biological samples by cooling them to sub-zero
temperatures and halting their chemical reactivity. As such, it is an indispens-
able component in bio-banking and convenient as it enables analyzing biological
samples in batches. The premise is that cryopreserved samples are largely un-
changed compared to fresh samples. Hence, this application investigates which
gene expressions (and cell populations sizes) differs between fresh and frozen
B-cell subsets. Alternatively, it can be framed as a study of reproducibility:
Do analyses carried out on frozen samples yield the same results as those on
fresh samples?

The work is important for Dybkær et al. [11] which uses both fresh and
frozen samples.

One obvious critique of the paper comes back to the old statistical adage
that one fails to reject and not accept the null hypothesis—or, absence of
evidence is not evidence of absence. In this paper, the lack of significance
differences between the fresh and frozen samples might well simply be a lack of
statistical power. This was one reason we performed the extra reproduciblity
analysis included in Section 5.2 of Paper I.

© 2015 Cytometry Part B: Clinical Cytometry The layout has been revised.
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Stable Phenotype of B-cell Subsets Following
Cryopreservation and Thawing of Normal Human

Lymphocytes Stored in a Tissue Biobank

Abstract

Background Cryopreservation is an acknowledged procedure to store
vital cells for future biomarker analyses. Few studies, however, have
analyzed the impact of the cryopreservation on phenotyping.
Methods We have performed a controlled comparison of cryopreserved
and fresh cellular aliquots prepared from individual healthy donors. We
studied circulating B-cell subset membrane markers and global gene ex-
pression, respectively by multiparametric flow cytometry and microarray
data. Extensive statistical analysis of the generated data tested the con-
cept that“overall, there are phenotypic differences between cryopreserved
and fresh B-cell subsets”. Subsequently, we performed a consecutive un-
controlled comparison of tonsil tissue samples.
Results By multiparametric flow analysis, we documented no signif-
icant changes following cryopreservation of subset frequencies or mem-
brane intensity for the differentiation markers CD19, CD20, CD22, CD27,
CD38, CD45, and CD200. By gene expression profiling following cryop-
reservation, across all samples, only 16 out of 18708 genes were signif-
icantly up or down regulated, including FOSB, KLF4, RBP7, ANXA1
or CLC, DEFA3, respectively. Implementation of cryopreserved tissue
in our research program allowed us to present a performance analysis,
by comparing cryopreserved and fresh tonsil tissue. As expected, pheno-
typic differences were identified, but to an extent that did not affect the
performance of the cryopreserved tissue to generate specific B-cell subset
associated gene signatures and assign subset phenotypes to independent
tissue samples.
Conclusions We have confirmed our working concept and illustrated
the usefulness of vital cryopreserved cell suspensions for phenotypic stud-
ies of the normal B-cell hierarchy; however, storage procedures need to
be delineated by tissue specific comparative analysis.

1 Introduction

Glycerol as a cryoprotective agent for gametes was introduced in 1949 [23].
Since then the storage of cells in liquid nitrogen has evolved into a frequently
used and well-documented technique for human tissue. Modern standard cryop-
reservation procedures for hematopoietic cells include a rate controlled freezing
in dimethyl sulfoxide (DMSO) and storage of vital cells in the vapor phase of
liquid nitrogen until thawing and use in therapy [1, 7]. Recent improvements in
technology have increased our understanding of cellular and molecular events
involved in cancer pathogenesis. Translation of such knowledge into clinical
work requires the establishment of biobanks with access to stored biomaterial
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and standardized technologies before validation and implementation of new
biomarkers into patient care. Cryopreservation of collected single cell tissue
samples from patients suffering from hematological disorders is convenient for
subsequent scientific validation experiments. However, it is crucial that the
cryopreserved tissue after thawing reflects the corresponding fresh samples in
order not to introduce analytical bias.

Our research interest lies in the identification and characterization of the
normal and malignant B-cell hierarchy including studies of the pre- and post
germinal center transcriptional gene regulations and the cell of origin for diag-
nostic classification [17, 19]. However, we have recognized that studies of the
potential biological impact of cryopreservation are insufficient and do not take
into consideration the impact of the still evolving analytic technologies. There
is a need to move from the simple storage of samples to a new level of sample
handling and analysis complexity including high quality processed samples with
associated analytic data and phenotypic characteristics to enable development
of tools to make use of them. This point to the future of a well organized
biostatistical activity to provide access and tools for data analysis to be stored
in the biobank associated data base. This is illustrated by the present con-
trolled comparative study including an extensive statistical evaluation of the
analytic data with the purpose to investigate the impact of long or short term
cryopreservation. The data available were from multiparametric flow cytom-
etry (MFC) based identification of surface expressed membrane markers and
the microarray (MA) based global gene expression profiling (GEP) of sorted B-
cell subsets from cryopreserved and fresh peripheral blood, prepared in parallel
from individual healthy donors. Our expectation was that the outcome of the
statistical analysis most likely would identify significant phenotypic differences
between cryopreserved and fresh B-cell subsets, however, of minor impact that
would allow for the generation of standard operating procedures for storage of
high quality biomaterial.

2 Material and Methods

2.1 Donor blood and tonsil tissue

All blood samples were collected following the national guidelines for transfu-
sion medicine, by the local blood bank, Aalborg University Hospital and tonsil
tissue samples were collected in accordance with the research protocol MSC-
NET (Myeloma Stem Cell Network), accepted by the local ethical committee
(N-20080062MCH). Biological material included into the study was peripheral
blood from a total of 9 healthy donors and tonsil tissue obtained from routine
tonsillectomies of 17 healthy donors as previously described [19]. Mononuclear
cells (MNC) were isolated following Ficoll-Paque Plus (GE Health Care, Up-
psala, Sweden) gradient centrifugation in accordance with the manufacturer’s
instructions and used immediately or following cryopreservation as described.
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2.2 Multiparametric flow cytometry (MFC) analysis

Peripheral blood from 6 healthy donors was analyzed by FCM in parallel of
fresh and cryopreserved cells. For each of the 6 blood samples approximately
3 × 106 MNC were suspended in 100µl phosphate-buffered saline (PBS) in-
cluding 2% fetal bovine serum and stained by a direct immunofluorescence
technique. Samples were incubated for 30 minutes on ice in the dark in an
analytic 5-color combination set up with the following monoclonal antibody
panel: 4µl per test of CD20 clone 2H7 conjugated with pacific blue (ExBio,
Vestec, Czech Republic), 5µl per test of CD45 clone HI30 conjugated with Pa-
cific Orange (Invitrogen, Denmark), 5µl per test of CD38 clone HB7 conjugated
with fluorescein isothiocyanate (BD Biosciences, San Jose, CA), 20µl per test
of CD22 clone S-HCL-1 conjugated with phycoerythrin (BD Biosciences, San
Jose, CA), 5µl per test of CD27 clone O323 conjugated with peridinin chloro-
phyll protein/cyanine 5.5 (BioLegend, San Diego, CA), 5µl per test of CD19
clone SJ25C1 conjugated with phycoerythrin/cyanine 7 (BD Biosciences, San
Jose, CA), 5µl per test of CD200 clone OX104 conjugated with allophycocyanin
(eBioscience, San Diego, CA).

Tonsils from 17 healthy donors were analyzed as either fresh or cryopre-
served samples of 1-3 × 106 MNCs incubated for 30 minutes on ice, in the
dark, and in an 8-color combination set up [19] with the following monoclonal
antibody panel: 20µl per test of CD20 clone 2H7 conjugated with pacific blue
(eBioscience, San Diego, CA), 5µl per test of CD45 clone 2D1 conjugated with
Anemonia majano cyan (AmCyan; BD Biosciences, San Jose, CA), 10µl per
test of CD3 clone SK7 conjugated with fluorescein isothiocyanate (BD Bio-
sciences), 20µl per test of CXCR4 clone 12G5 conjugated with phycoerythrin
(Beckman Coulter, Brea, CA), 5µl per test of CD44 clone IM7 conjugated
with peridinin chlorophyll protein/cyanine 5.5 (eBioscience), 10µl per test of
CD10 clone HI10a conjugated with phycoerythrin/ cyanine 7 (BD Biosciences),
10µl per test of CD27 clone L128 conjugated with allophycocyanin (BD Bio-
sciences), and 10µl per test of CD38 clone HIT2 conjugated with Alexa Fluor
700 (AF700) (ExBio, Vestec, Czech Republic). Following incubation the cells
were centrifuged (500g, 5 min) and the cell pellet was washed and resuspended
once with 3 ml of staining buffer by centrifugation (250g, 10 min). Finally,
cells were resuspended in 0.5 ml of stain buffer for analysis. Before analysis
the cytometer went through a setup and tracking application in the BD FACS-
Diva software according to the manufacturer’s instructions. Samples were ac-
quired by using FACSDiva software (BD Biosciences) on a 3-laser (488, 633, and
405nm) FACS Canto II (BD Biosciences, San Jose, CA) [18]. Compensation
was automatically calculated by the FACSDiva software using single stained
control samples with the monoclonal antibodies previously listed.
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2.3 Fluorescence-activated cell sorting (FACS)

Peripheral blood from 3 healthy donors was analyzed as paired samples of fresh
and cryopreserved samples. MNC were sorted following the preparation proce-
dure as for immunophenotypic characterization but stained with the following
panel per 3 × 106 MNC/100µl staining volume: 10µl per test of CD20 clone
2H7 conjugated with pacific blue (eBioscience, San Diego, CA), 5µl per test
of CD45 clone 2D1 conjugated with Anemonia majano cyan (AmCyan; BD
Biosciences, San Jose, CA), 5µl per test of CD10 clone HI10a conjugated with
phycoerythrin cyanine 7 (BD Biosciences, San Jose, CA), 20µl per test of CD19
clone SJ25C1 conjugated with peridinin chlorophyll protein/cyanine 5.5 (BD
Biosciences, San Jose, CA), 3µl per test of CD27 clone L128 conjugated with
allophycocyanin (BD Biosciences, San Jose, CA) and 4µl per test of CD38
clone HIT2 conjugated with Alexa Fluor 700 (AF700) (ExBio, Vestec, Czech
Republic). Samples were acquired and sorted by using FACSDiva software (BD
Biosciences) on a 3 laser (488, 633, and 405nm) FACSAria (BD Biosciences,
San Jose, CA) [18]. Before the actual sorting, a total of 50,000 events per tube
were acquired to define the gating regions and sort a minimum of 10,000 B-cells
per subset as defined below.

2.4 Identification and enumeration of B-cell subsets

Immediately after staining, 1 × 106 events per test tube were acquired for i)
scatter properties to eliminate debris, doublets, and dying cells and ii) fluores-
cent signals to define MNC leukocytes and B-cell subsets as delineated below.

• For the peripheral blood FCM analysis set (N = 6):

– Immature (Im): CD45+, CD19+, CD20+, CD27−, CD38++, CD200+, CD22dim/+;

– Naive(N): CD45+, CD19+, CD20+, CD27−, CD38−, CD200+, CD22+;

– Memory (M): CD45+, CD19+, CD20+, CD27+, CD38−, CD200−/dim, CD22+;

– Plasmablasts (PB): CD45+, CD19+, CD20−, CD27++, CD38++, CD200−, CD22−.

• For the peripheral blood paired FACS set (N = 3):

– Immature (Im): CD45+, CD19+, CD20+, CD10+, CD27−, CD38++;

– Naive (N): CD45+, CD19+, CD20+, CD10−, CD27−, CD38−;

– Memory (M): CD45+, CD19+, CD20+, CD10−, CD27+, CD38−;

– Plasmablasts (PB): CD45+, CD19+, CD20−, CD10−, CD27++, CD 38++.

• For the tonsils FCM analysis and FACS set (N = 17):

– Naive (N): CD20+, CD44+, CD10−, CD27−, CD38−;

– Memory (M): CD20+, CD44+, CD10−, CD27+, CD38−;

– Plasmablasts (PB): CD20+, CD44+, CD10−, CD27++, CD 38++;

– Centroblasts (CB): CD20+, CD44dim+, CD10+, CD38+, CD27het, CXCR4+;

– Centrocytes (CC): CD20+, CD44dim+, CD10+, CD38+, CD27het, CXCR4−.
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For enumeration, the leukocyte fraction was identified based on CD45 pos-
itivity and cell scatter properties. Owing to the higher fluorescence intensity,
the CD19+ for peripheral blood and CD20+ expression for the tonsils were
used to delineate the overall number of total B-cells for a minimum of 106
leukocytes per tube used for quantitation of B-cell subsets by a minimum of
100 positive events i.e. a counting accuracy of coefficient of variation < 10%.

2.5 Freezing and thawing procedure

For the 9 analyzed peripheral blood samples, each individual had 6 vials with
107 MNC, 2 were analyzed fresh, 4 were cryopreserved and 2 were thawed after
24 hours as well as 2 after 336 hours (2 weeks). For the 9 tonsils analyzed,
each sample with a minimum of 5 vials with 107 MNC were cryopreserved and
thawed at varying storage time (weeks to months). From each sample, the
vials of 107 MNC in 1ml suspension of 10% fetal bovine serum were cryopre-
served by adding 0.5ml of 20% dimethyl sulfoxide (DMSO). Inversion of the
vial ensured homogenous mixing of cells and cryopreservation medium and the
samples were then subjected to decrease in temperature from room tempera-
ture to −196◦C by a controlled rate liquid nitrogen freezer (Planer Biomed,
Sunbury-on-Thames, UK) and finally stored in liquid nitrogen. Thawing of the
cryopreserved cells was done in a 37◦C water bath until no ice clumps were
detectable and then added to a 37◦C mixture of RPMI-1640 medium with 30%
fetal bovine serum and 1% antibiotics. The cells were then resuspended and
centrifuged (400g, 5 min) at room temperature and the pellet was added to the
medium before staining, analysis and sorting as described above.

2.6 Microarray (MA) procedures for analysis of blood
and tonsil subsets

Circulating B-cell subsets were sorted in lysis/binding buffer (Miltenyi Biotech,
Bergisch-Gladbach, Germany) and stored at −20◦C as previously described [6].
Messenger RNA (mRNA) was isolated using the µMACS technology (Miltenyi
Biotech, Bergisch-Gladbach, Germany) and eluate was concentrated by a vol-
ume reduction step using a speedVac Concentrator 5310 (Eppendorf, Hamburg,
Germany). For exon MA analysis, mRNA was converted to cDNA using polyT
and random priming and amplified with Ovation Pico WTA system (NuGEN
Technologies, Inc., San Carlos, CA). After the amplification the cDNA prod-
uct was purified using the QIAquick PCR purification kit (QIAGEN, Hilden,
Germany) and the yield and purity was measured on the NanoDrop (Thermo
Fisher, Wilmington, CA). In addition, the quality of the amplified cDNA prod-
uct was analyzed with the RNA 6000 Nano LabChip (Agilent technologies, Inc.,
Palo Alto, CA). Three µg of amplified and purified cDNA (antisense-sense ori-
entation) was converted to sense transcript cDNA (ST-cDNA) using the WT-
OvationTM Exon module (NuGEN Inc.). Five µg of ST-cDNA was fragmented
and biotin labelled using EncoreTM Biotin Module (NuGEN Inc.) and hy-
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bridized to GeneChip Human Exon 1.0 ST Arrays (Affymetrix). However, one
frozen PB sample was not hybridized due to insufficient ST-cDNA. Following
an 18h hybridization step at 45◦C, the array was washed and stained according
to the standard procedure (fluidic protocol FS450 0001, Affymetrix.com).

Tonsil B-cell subsets [6] were sorted directly into lysis buffer and mRNA was
isolated and amplified using µMACS mRNA isolation kit (Miltenyi Biotechnolo-
gies, Bergisch Gladbach, DE) and WT-Ovation Pico RNA Amplification Sys-
tem (NuGEN, San Carlos, CA, USA), respectively, according to manufacturer’s
description. Cryopreserved and fresh samples were prepared for hybridization
to GeneChip HG-U133 Plus 2.0 (Affymetrix) and Human Exon 1.0 ST Arrays
(Affymetrix), respectively.

Processed arrays for all samples were scanned at 532nm using the GeneChip
Scanner 3000 7G and CEL-files were generated by Affymetrix GeneChip Com-
mand Console Software (AGCC).

2.7 Analysis of MFC and MA data

For the MFC data analysis we used the Infinicyt software (Cytognos SL, Sala-
manca, Spain) [28]. Statistical analysis for gene expression was performed
using Bioconductor packages [14] which are add-on modules for the statistical
software R [24].

The effect of cryopreservation on frequencies of B-cell subsets by MFC was
graphically assessed using correlation plots and Bland-Altman limits of agree-
ment analysis [8]. A linear mixed model (LMM) with logit-transformed frac-
tional numbers as outcome, cell subpopulation and type of cryopreservation as
fixed effects, and donor as random effect, was used to test the null hypothesis
of no differences in the logit transformed fractional numbers comparing fresh
and 24h as well as 336h cryopreservation. These hypotheses were tested for
both individual and pooled cell subsets. The pooled effect is a mean of Im, N,
M, PB, and B subsets and is used to study the main effect of cryopreservation
while the test within the individual subsets investigates interaction effects be-
tween subsets and cryopreservation. The model was fitted by the lme4-package
[2, 21]. The contrasts of interest were computed by the multcomp-package [16].
The assumptions of the model of the population frequencies were checked by
appropriate residual plots [21].

The MA data from blood were background corrected, quantile normal-
ized, and summarized into 18,708 genes using the R/Bioconductor package
aroma.affymetrix [3, 4] following the recent guidelines of Rodrigo-Domingo
et al. [25]. As above, for MA data correlation plots and Bland-Altman lim-
its of agreement analysis were made to evaluate the agreement between the
different sample preparations for comparison. LMMs were fitted, analogously
to the above, for each gene to test the null hypothesis of no differential log2

expression between fresh and cryopreserved samples for the ‘pooled’ and in-
dividual subsets with cell subset and type of cryopreservation as fixed effects
and a random donor effect. To control the false-positive rate the P-values were
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adjusted by the Benjamini-Hochberg procedure [5].
The B-cell subset associated gene signatures (BAGS) were generated from

the cryopreserved tonsil samples as previously described [17] and subsequently
used to classify the fresh samples. To do this we had to convert the GeneChip
HG-U133 Plus 2.0 array to the probe sets of the HuEx 1.0 ST v2 array based
on the file U133PlusVsHuEx Complex.txt downloaded from Affymetrix.com.
For each probe set used in the classifier the conversion was performed as an
average of the probe sets on the fresh tonsil HuEx 1.0 ST v2 array data with
a percent match above 90 using the percent match as weights. The GEP data
were then probe set-wise centered to have a median of zero and scaled to have
variance equal to the cryopreservation data on the HG-U133 plus 2.0 array.
The result of the classification was assessed by the classification accuracy.

3 Results

In order to investigate the usefulness of vital cryopreserved cell suspensions
for phenotypic studies of the normal B-cell hierarchy as an alternative to fresh
processed samples, we performed a controlled comparison of cellular aliquots
prepared from individual healthy persons by comparing frequency and mem-
brane intensity as well as global gene expression for CD marker defined B-cell
subsets in peripheral blood. Thereby, we attempt to minimize unwanted vari-
ation in the procedure by a) using the same donors, b) the same analysis and
sorting equipment, c) the same antibodies and reagents and sorting strategy,
and d) parallel handling of the paired samples after sorting for RNA-extraction
and subsequent steps. Subsequently, we compared cryopreserved/thawed and
fresh non-paired tonsil tissue to validate the use of stored biobank samples in
biomarker research.

3.1 Immunophenotyping of circulating B-cell subsets

The total B-cell compartment defined as CD45+/CD19+ MNC were enumer-
ated in fresh samples with frequencies having a median of 6% (range 4–12%)
of which the Im subset had a median of 7% (range 7–9%), the N subset a me-
dian of 69% (range 56–78%), the M subset a median of 16% (range 6–25%),
and the PB subset a median of 1% (range 0.2–2%). A statistical comparison
of the B-cell subset frequencies for fresh, 24h, and 336h stored MNC samples
was performed with the results given in Table 1. The analysis by LMM docu-
mented no difference for Im, N, M, PB, or total B-cells. These results were in
agreement with a visual inspection of cryopreserved/thawed and fresh subset
sizes by the logit-transformed subset sizes as illustrated in Figure 1 and a high
correlation (> 0.9) between cryopreserved and fresh subset frequencies, which
were observed in Supplementary Figure 5A–B. Finally, the level of agreement
is seen in Supplementary Figure 5C–D by corresponding Bland-Altman plots.
Weak evidence (unadjusted P-value of 0.07 in Table 1) was seen for the seem-
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Table 1: Comparison of fresh, 24, and 336 h stored cryopreserved (Froz24 and Froz336,
respectively) samples of peripheral blood MNC used for enumeration by MFC immunophe-
notyping (N = 6). The linear mixed model (LMM) documented no significant differences
at the 5% significance level. The pooled category is a combination of the Im, N, M, PB,
and B-cells which corresponds to a main effect of cryopreservation. The individual subsets
correspond to interactions between cryopreservation and that subset.

Mean diff. 95% CI z P Adj. P

Pooled
Froz24 - Fresh = 0 −0.030 (-0.33,0.27) −0.20 0.840 1.00
Froz336 - Fresh = 0 −0.031 (-0.33,0.27) −0.21 0.840 1.00

Immature
Froz24 - Fresh = 0 0.250 (-0.41,0.92) 0.75 0.460 1.00
Froz336 - Fresh = 0 0.190 (-0.47,0.85) 0.56 0.580 1.00

Naive
Froz24 - Fresh = 0 −0.043 (-0.71,0.62) −0.13 0.900 1.00
Froz336 - Fresh = 0 0.072 (-0.59,0.74) 0.21 0.830 1.00

Memory
Froz24 - Fresh = 0 0.052 (-0.61,0.72) 0.15 0.880 1.00
Froz336 - Fresh = 0 −0.090 (-0.75,0.57) −0.27 0.790 1.00

Plasmablast
Froz24 - Fresh = 0 −0.600 (-1.3,0.063) −1.80 0.076 0.91
Froz336 - Fresh = 0 −0.200 (-0.86,0.47) −0.58 0.560 1.00

B-cells
Froz24 - Fresh = 0 0.190 (-0.48,0.85) 0.55 0.580 1.00
Froz336 - Fresh = 0 −0.130 (-0.79,0.53) −0.38 0.700 1.00

ingly systematic drop for PBs from fresh to 24 h frozen in Figure 1, which is
accentuated in Supp. Figure 5C. The membrane marker fluorescence intensity
(FI) was studied in a step by step comparison of the FI measured for each CD
specific marker with only minor differences identified as illustrated in Figure
2A–D. Overall, FI’s of CD45, CD19, CD20, CD27, CD38, CD22, and CD200
differ slightly, but not substantially, comparing corresponding cryopreserved
vs. fresh samples.

3.2 Global gene expression of circulating B-cell subsets

The comparison of gene expression data for cryopreserved/thawed versus fresh
samples (N = 3) across sorted subsets are given in Table 2, presenting signifi-
cantly up- and down-regulated genes with a fold-change above 2 (i.e. log2(FC) >
1) for the LMM. A group of a priori selected B-cell specific genes of differentia-
tion markers (CD) and transcription factors (TF) were inspected by the LMM
z-scores for differential expression across the 4 subsets and gave the results
shown in Supplementary Figure 6. The analysis identified 4 genes affected in the
Im subsets, 14 genes in N, 13 genes in M, and 3 genes for the PB subsets. These
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Fig. 1: Comparison of estimated frequencies for circulating B-cell subsets. Plot of the logit-
transformed fractional sizes of the cryopreserved, and fresh blood B-cell subsets. Immature,
Naive, Memory, Plasmablasts, and total B-cells reveal no substantial differences. The donor
identity (ID B239–B244) for each of the six blood samples is also shown. The axes on the
left and right, respectively, show the percentages on the original and logit scale.

Fig. 2: A–D: Comparison of membrane CD intensity of circulating B-cell subsets. Graphical
comparison of the fluorescent intensities of normal circulating B-cell population defining CD
markers in fresh versus 24h/336h cryopreserved subsets from the peripheral blood FCM anal-
ysis set (N = 6), based on CD45, CD19, CD20, CD27, and CD38 expression supplemented
with CD22, CD200, and CD81. Corresponding populations (fresh vs. frozen) are displayed
as software overlaid and normalized densities with the mean values for each single of the 6
samples indicated as a square. The color codes for each fresh, 24h, and 336h cryopreserved
subsets are: Fresh (light color tone), 24h frozen (medium color tone), 336h frozen (dark color
tone).
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Table 2: Following cryopreservation we identified 16 out of the total number of 18, 708 genes
to be significantly different across all sample. This table gives the 11 and 5 significantly up- or
down-regulated genes, respectively, from the LMM model analysis with a fold change above
2. Presented is the probe set ID (Probe set ID), the mean log2 expression value for the
cryopreserved (µfro) and fresh (µfre) samples, the estimated log fold change (logFC) and its
estimated standard error (SE), the 95% confidence interval (CI), and the Benjamini-Hochberg
corrected P-value (Adj. P). DEF? refers to DEFA3/DEFA1/DEFA1B.

Frozen vs. Fresh
ID µfro µfre logFC SE CI Adj. P

Up-regulated
FOSB 3836266 8.66 7.08 1.51 .159 (1.19,1.82) 5.71·10−17

FOS 3544525 9.65 8.05 1.49 .197 (1.11,1.88) 2.07·10−10

KLF4 3219215 8.09 6.72 1.32 .204 (0.92,1.72) 3.24·10−07

LGALS2 3960174 9.45 7.75 1.64 .318 (1.01,2.26) 4.62·10−04

RBP7 2319550 7.82 6.64 1.07 .213 (0.65,1.49) 6.99·10−04

ANXA1 3174816 9.64 8.16 1.44 .302 (0.85,2.03) 1.68·10−03

CPVL 3043648 7.75 6.59 1.09 .245 (0.61,1.57) 6.03·10−03

ID2 2468622 7.44 6.07 1.27 .314 (0.65,1.88) 2.43·10−02

CSTA 2638869 9.79 8.46 1.26 .314 (0.65,1.88) 2.43·10−02

CLEC7A 3444009 7.47 6.19 1.23 .308 (0.63,1.83) 2.76·10−02

MS4A6A/MS4A4E 3374934 8.57 7.23 1.28 .324 (0.65,1.92) 2.84·10−02

Down-regulated
CLC 3862108 4.72 6.94 −2.22 .375 (-2.96,-1.49) 8.71·10−06

DEF? 3122763 4.02 7.49 −3.43 .697 (-4.80,-2.06) 9.74·10−04

DEF?/DEFA11P 3122805 4.17 7.58 −3.36 .687 (-4.71,-2.01) 9.97·10−04

DEF? 3122784 4.41 7.62 −3.17 .653 (-4.45,-1.90) 1.08·10−03

TAS2R42 4053709 4.35 5.32 −1.02 .257 (-1.53,-0.52) 2.76·10−02

tests were, however, not adjusted for multiple testing. Most importantly, the
genes KLF4 and c-jun were recurrently up-regulated by the freezing/thawing
procedure compared to the fresh samples. Note, KLF4 also appear in Ta-
ble 2. In general, a high correlation (> 0.9) between cryopreserved/thawed
and fresh RMA normalized gene expressions were observed, as illustrated in
Supplementary Figure 7A–D. The level of agreement was documented by the
corresponding Bland-Altman analysis as illustrated in Supplementary Figure
8A–D. The percentage of genes outside the 99% limits of agreement was 2.6,
2.6, 2.1, and 2.5% for Im, N, M, and PB, respectively. The figure also shows
that the defensin (DEF) gene family appear frequently with high fold-changes.
Again, this may not be surprising as the DEF genes also appear in Table 2.
In summary, the statistical analyses support our concept, but only a minor
number of genes have changed expression following cryopreservation.

3.3 Implementation and performance of cryopreserved
tonsil tissue

In our studies of normal B-cell subset in tonsil tissue, we have generated ana-
lytic data comparing cryopreserved biobank material (N = 9) and fresh tissue
(N = 8) from consecutive but unpaired samples. The total B-cell compartment
was defined as CD45+/CD20+/CD3- MNC and enumerated in cryopreserved

70



3 Results

Fig. 3: A–E: Comparison of membrane CD intensity of tonsil tissue B-cell subsets. Graphical
comparison of the fluorescent intensities of B-cell subpoplation defining CD markers in fresh
versus cryopreserved normal tonsil tissue B-cell subsets, based on CD45, CD20, CD27, and
CD38 expression as backbone markers supplemented with markers for tissue specific B-cells
like CD44 and CXCR4, and the exclusion marker CD3. Corresponding merged populations
(fresh vs. frozen) are displayed as software normalized and overlaid histograms for each CD
marker with the population mean values for each single sample indicated as a square. The
color codes for each set of fresh/cryopreserved subsets are: Fresh (light color tone), fro- zen
(dark color tone).

and fresh samples with frequencies of median 74% (range 63–77%) and 57%
(range 39–64%), respectively. However, the enumeration of the defined B-cell
subsets in cryopreserved versus fresh samples did not differ: first, estimated for
N to be of median 59% (range 46–63%) and 55% (range 43–63%); second, esti-
mated for germinal center cells to be of median 18% (range 14–27%) and 17%
(range 4–26%) including CB being either of median 1.5% (range 1–4%) and
5% (range 2-13%) or for CC a median of 15% (range 11–26%) and 12% (range
1–15%), respectively. Finally, we estimated for M a median of 21% (range
17–29%) and 26% (range 18–31%) and for PB median of 1% (range 1–4%)
and 0.5% (range 0.2–1.2%), respectively. In a step by step comparison of the
membrane FI measured for each CD specific marker only minor differences
were identified as illustrated in Figure 3A–E. Overall, FI’s of CD45, CD20,
CD27, CD38, and CD10 differ slightly comparing corresponding cryopreserved
vs. fresh samples, most prominent, however, for the CB subset (Figure 3A).
Comparison of the defined subsets by multiparametric analysis of data gave
the results as illustrated in Supplementary Figure 9A–B. In brief, the single
tube data files were merged by the ‘Infinicyt software’ as described elsewhere
[28]. Supplementary Figure 9A illustrates the best PCA separation view of the
B-cell clusters composing the five B-cell subsets and their relation to each other
based on the contribution of each fluorescence parameter to the separation of
the clusters; and in comparison to the classical CD38 versus CD27 illustration
for the classical B-cell subsets as defined by CD38 and CD27 expression from
N, M, PB, and CB as well as CC illustrated in Supplementary Figure 9B.

To evaluate the performance of cryopreserved cell suspensions in MA studies
of global gene expression, we analyzed the transcription level of the selected CD
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Fig. 4: A, B: The transcriptional level of the selected CD markers used to identify and sort
the tonsillar B-cell subsets. Heat maps of the transcription level of CD marker probe sets
and hierarchical cluster analysis for FACS sorted cryopreserved (A) samples on Affymetrix
GeneChip HG-U133 Plus 2.0 and fresh (B) samples on the Human Exon 1.0 ST arrays. The
mapped clusters illustrate that there is no substantial changes in the transcription level of the
CD membrane marker due to cryopreservation or use of array platform. Each row represents
one probe set and each column a separate B-cell subset as defined and isolated by cell sorting
(A: N = 8 and B: N = 6). The heat map is color coded according to the log2 gene expression
level (red is high, blue is low) as shown in the color key.

markers used to identify and sort each of the B-cell subsets. The hierarchical
cluster analysis is illustrated in Figure 4A-B for sorted cryopreserved (A) and
fresh (B) samples. The clustering validates the performance as expected with
a substantial concordant robust transcription level expression of the membrane
markers. In parallel the BAGS classifier generated by cryopreserved sample
analysis was applied on the fresh samples and showed a perfect classification ac-
curacy of 1.00 (with classification probabilities being in the range of 0.88–1.00).
In summary, comparison of cryopreserved and fresh cell suspensions from ton-
sils revealed membrane and gene expression with differences of no major impact
for tissue phenotyping, which will allow implementation of cryopreserved stored
samples in studies of the normal B-cell hierarchy.
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4 Discussion

By collecting and storing well-characterized sets of patient tissue, the same sam-
ples can be used in many different projects, reduce inconvenience to the donors,
and allow more effective use of research biomaterial and funds. Studies of stan-
dardized storage of different tissues in biobanks can be continually extended as
technologies and assays improve or more information becomes available about
variables of particular interest in specific diseases. In this way comprehen-
sive information can accumulate for well characterized and standard collected
samples, which will ultimately increase the value of any subsequent future in-
vestigation. One fundamental problem with biobanking is to determine which
samples should be collected and how they should be stored. Studies of somatic
genetic changes that may have arisen during life, for example in tumor tissue,
naturally require nucleated cells from the relevant tissue to be sampled. Con-
sequently, collection and cryopreservation of single cell samples from normal
donors and patients suffering from hematological disorders are a demand for
future scientific experiments. However, in order not to introduce biological or
technical bias it is crucial that the cryopreserved tissue after thawing reflects
the corresponding fresh samples and most important potential tissue specific
storage induced alterations are studied and delineated.

It is evident that the reinfusion of cryopreserved bone marrow cells reconsti-
tutes the hematopoiesis indicating that no major damage of engrafting stem or
early progenitor cells are introduced by cryopreservation. However, cryopreser-
vation has been shown to cause chemical and physical cell stress due to the
exposure to cryoprotectant as DMSO, and/or to the rate-controlled freezing
and/or thawing procedure itself. A few publications have suggested that such
sub-lethal damage may result in detectable changes in the expression of certain
membrane markers associated with acute leukemia measured by flow cytom-
etry underestimating some variables like CD5 and CD23 positivity in chronic
lymphatic leukemia [9, 10]. The observed changes seem not only to be due
to a selective loss of cells, but rather to unknown alterations of fragile surface
expressed molecules that mechanically break off, are biological internalization
upon stress or stable anchored into the membrane [12, 13, 15, 22, 26]. These
findings are in accordance with our findings and it should be kept in mind
that not all markers or B-cell subsets are equally robust when retrospective
immunophenotypic studies of cryopreserved tissue are planned.

In parallel, it has been indicated by in vitro stimulation studies of activated
cells that the functional potential of cryopreserved compared to fresh cells are
equal by assessing the kinetics of proliferation, cell viability, cytokine, and mem-
brane marker expression [20, 27]. In the present study, our primary goals were
to describe the impact of cryopreservation on membrane markers and genes in
normal blood B-cell subsets. In a controlled strategy, we compared fresh and
cryopreserved aliquots from individual donor cells analyzed by MFC and GEP
attempting to identify significant changes to challenge our concept that there
are consequences of cryopreservation on B-cell subset membrane marker and
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gene expression. Following an extensive statistical approach, our main findings
were that circulating B-cells had only minor if any common traits that vary
between cryopreserved and fresh cells, concluding that storage of nucleated
cells induce a risk for inaccurate estimation of minor subset compartments and
membrane molecule intensities—depending on some specific CD marker. Also,
we identified single transcripts in nucleated blood cells including FOSB, KLF4,
RBP7, ANXA1, CLC and DEFA3 at risk for cryospecific deregulation, which
therefore should be avoided in biomarker studies in blood. These minor com-
mon traits have allowed us to implement the use of cryopreserved samples in
our studies of normal B-cells and the performances illustrated for tonsil derived
B-cell subsets characterized by the combination of MFC, FACS and GEP in
our attempt to generate novel B-cell associated gene signatures [17, 19].

So far, our interpretation of the present results leads us to conclude that
controlled vital cryopreserved cell samples can be used for future studies of
subset specific gene signatures of the normal B-cell hierarchy.

Our conclusion may help in defining guidelines and recommendations for
optimal tissue collection and storage but also for optimal interpretation of the
gene expression results. To guarantee the highest possible quality of banked
tissue samples and analytic databases in the future, each component of the
activities and procedures needs to be studied in a quality assessment strategy
generating standard operating procedures for tissue preparation, storage, anal-
ysis, and data handling—to obtain high quality biomaterial of clinical value.
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Fig. 5: Correlation and agreement of subset frequencies. The figures illustrate the correlation
of the frequencies of the defined subsets for cryopreserved and fresh peripheral blood samples
assessed by Pearson’s, Spearman’s, and Kendall’s correlation coefficients. Panels A and
B illustrate fresh versus 24 hours or 336 hours cryopreserved sample data for all subsets,
respectively. Panel C and D illustrates the corresponding Bland-Altman plots with 95%
limits of agreement and arithmetic mean difference as dashed lines.
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Frozen vs. Fresh

Fig. 6: Differential expression of B-cell specific differentiation and transcription markers Il-
lustration of the analysis by the LMM z-scores for differential expression across the 4 periph-
eral blood B-cell subsets comparing cryopreserved and fresh samples (N = 3) for literature
identified genes including CD markers and transcription factors. The list of genes expected
to be expressed in the sorted B-cell subsets Im, N, M,and PB are shown on the left. Note,
the stippled lines, showing the 95% acceptance regions, are not adjusted for multiple testing.
The numbers in the upper right of each panel show the number of significant z-scores, i.e.
genes outside the acceptance region.
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Fig. 7: Correlation of gene expression in B-cell subsets. Scatter plots of the log2-transformed
probe set intensities for cryopreserved versus fresh peripheral blood samples for (A) imma-
ture, (B) memory, (C) näıve, and (D) plasmablast FACS sorted cells. The Pearson’s and
Spearman’s correlations coefficients are also shown.
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A Supplementary Figures

Fig. 8: Agreement of gene expression in B-cell subsets. Bland-Altman plots for each sub-
population corresponding to Supplementary Figure 7 with 95% and 99% limits of agreement
and the arithmetic mean of the difference in log2 expression visualized as dashed lines. A
solid line is drawn for the value of zero. This figure is essentially Figure 7 rotated 45 degrees.
The number (and percentage) of genes above and below the 99% limits of agreement are
shown. Furthermore, the 15 largest differences are annotated with the gene symbol.
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Fig. 9: Comparison of immunophenotyping of consecutive but unpaired tonsil tissue samples.
Illustration of A: PCA results from a MFC multi-tube summary file merged from individual
data files (N = 18) from fresh and cryopreserved tissue samples and B: MFC multitube
summary file clusters displayed in the classical CD27 CD38 plot view. Classical B-cell subset
clusters are color coded as in Figure ?? and the squares show the mean value for the software
gated B-cell subsets.
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Preface: This paper was a first attempt in modeling the covariance matrices
(or their inverses) of multiple groups or studies. The aim was a tool for aggre-
gating the covariance information across multiple studies. As such, it provides
a more sophisticated alternative to the pooled covariance (and its inverse).

The model is a hierarchical model inspired by traditional random effects
models and the paper explores its properties and estimation is presented. The
two latent parameters of the model control the population covariance matrices
of each group and their similarity. As it is a hierarchical model, it utilizes the
EM algorithm to estimate the parameters.

While the model is relatively simple much of the mathematics quickly be-
comes cumbersome. However, we notably arrived at a very simple expression
for an intra-class correlation coefficient analogue.

An obvious point of dispute is the model’s ability to explain the inter-group
variation by a single parameter. The model is strictly low-dimensional in the
sense that the total number of samples need be larger than the dimension. The
premise of the application, however, was that a sufficient number of samples
could be gathered from online databases.

The paper can also be found at
http://arxiv.org/abs/1503.07990

and the statistical implementation in C++ and R is available at
https://github.com/AEBilgrau/correlateR

in the currently unfinished R-package correlateR. The DLBCLdata package
(Package II) was also used in this work.
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Estimation of a Common Covariance Matrix for Multiple
Classes with Applications in Meta- and Discriminant

Analysis

Abstract

We propose a hierarchical random effects model for a common covari-
ance matrix in cases where multiple classes are present. It is applicable
where the classes are believed to share a common covariance matrix of
interest obscured by class-dependent noise. As such, it provides a basis
for integrative or meta-analysis of covariance matrices where the classes
are formed by datasets. Our approach is inspired by traditional meta-
analysis using random effects models but the model is also shown to be
applicable as an intermediate between linear and quadratic discriminant
analysis. We derive basic properties and estimators of the model and
compare their properties. Simple inference and interpretation of the in-
troduced parameter measuring the inter-class homogeneity is suggested.

1 Introduction

The fundamental problem in statistics of accurately and precisely estimating
the covariance matrix (or its inverse) is notoriously difficult. The usual bias-
corrected maximum likelihood estimator (MLE), the sample covariance ma-
trix, has long been known to perform poorly in general due to high variability
[6]. The sample covariance becomes increasingly ill-conditioned as the number
of variables p approaches the sample size n and singular when p exceeds n.
Because of its central statistical role the list of statistical methods and appli-
cations utilizing the estimated covariance matrix is exceedingly long. Beside
the many standard statistical methods such as principal component analysis
(PCA), linear discriminant analysis (LDA), and quadratic discriminant anal-
ysis (QDA), examples of direct applications include gene and protein network
analysis [2], spectroscopic imaging [22], functional magnetic resonance imaging
(fMRI), financial forecasting, and many more. Among this expanding list of
applications is also an increasing number of high-dimensional applications and
datasets publicly available at online repositories.

In high-dimensional datasets the number of features p often far exceed the
number of samples n. Since the number of parameters increases quadratically
in p and the sample covariance matrix becomes singular when p > n a plethora
of shrinkage and regularization estimators have been proposed to combat the
accompanying problems by effectively increasing the degrees of freedom. These
examples include the graphical LASSO and ridge estimation of the precision
matrix [14, 27]. Instead of attempting to derive still more sophisticated estima-
tors we attempt to alleviate the problem from a different angle by using more
available data and thus effectively increasing n. While the high-dimensional

85



Paper III

extension to p > n is important it is out of scope in this paper. We restrict
ourselves to the case where the total number of samples exceed p. Hence, if k
classes or datasets are available with sample sizes n1, . . . , nk, we consider the
case where p <

∑k
i=1 ni while allowing p to exceed ni for each individual class

i.
As with all major groups of cancer, a large number of diffuse large B-cell

lymphoma (DLBCL) genomic datasets are now publicly available online. We
wanted to use these studies in combination with data from our own laboratory
to arrive at a good estimate of the covariance matrix whilst accounting for and
assessing inter-study variation. Although this work was motivated by gene-
gene interaction networks in DLBCL, where the covariance matrix is assumed
to contain all information about the conditional dependencies of the genes, the
methods are general and not limited to such genomic data.

2 A random effects model for the covariance
matrix

The model below was motivated by ordinary meta-analysis. Meta-analysis
comes in various flavors corresponding to the assumption on the nature of the
inter-study treatment effect. Random-effects models (REM) in meta-analysis
model the inter-study effects as random variables [3, 8]. In a vein similar
to the ordinary meta-analysis approach, we think of the different studies as
related but perturbed experiments and propose the following simple random
covariance model (RCM) of the observations. Let p be the number of features
and k the number of classes. We model an observation x from the i’th study as
a p-dimensional zero-mean multivariate gaussian vector with covariance matrix
realized from an inverse Wishart distribution, i.e. x follows the hierarchical
model

Σi ∼ W−1
p

(
(ν − p− 1)Σ, ν

)
,

x|Σi ∼ Np(0p,Σi), i = 1, ..., k,
(1)

where Np(µ,Σi) denotes a p-dimensional multivariate gaussian distribution
with mean µ, positive definite (p.d.) covariance matrix Σi, and probability
density function (pdf)

f(x|µ,Σi) = (2π)−
p
2 |Σi|−

1
2 exp

(
−1

2
(x− µ)>Σ−1

i (x− µ)

)
.

As seen, we use the generic notation f(·|·) and f(·) for the conditional and
unconditional pdf of random variables, respectively, throughout this paper.
Above, W−1

p (Ψ, ν) denotes a p-dimensional inverse Wishart distribution with
ν degrees of freedom, a p.d. p× p scale matrix Ψ, and pdf

f(Σi) =
|Ψ| ν2

2
νp
2 Γp

(
ν
2

) |Σi|−
ν+p+1

2 exp

(
−1

2
tr
(
ΨΣ−1

i

))
, ν > p− 1 (2)
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where Σi is p.d. and Γp is the multivariate generalization of the gamma func-
tion Γ seen in Appendix B.1. While the inverse Wishart distribution is defined
for all ν > p − 1, the first order moment (ν − p − 1)−1Ψ exists only when
ν > p + 1. With the reparameterization Ψ = (ν − p − 1)Σ in the inverse
Wishart distribution of (1) the common expected covariance matrix is

Σ = E[Σi] =
Ψ

ν − p− 1
for ν > p+ 1. (3)

Hence in the RCM given by (1), Σ can be interpreted as a location-like param-
eter as it is the expected covariance matrix in each study. The parameter ν
inversely controls the inter-class variation and can thus be considered an inter-
class homogeneity parameter of the covariance structure. A large ν corresponds
to high study homogeneity and vice versa for small ν. This can be further seen
as Σi concentrates around Σ for ν →∞ which can be interpreted as the inter-
study variation goes towards zero for increasing ν. Thus, the true underlying
covariance matrix Σ and the homogeneity parameter ν are the effects of interest
to be estimated in this paper.

These basic properties of the RCM motivates the construction. We note
that while the reparameterization of (1) has a preferable interpretation, the
likelihood is much more complex and often numerically unstable. The repa-
rameterization is especially problematic for ν near p + 1 and indeed senseless
when the expected covariance cease to exist for p−1 < ν ≤ p+1. Therefore, we
use the usual parameterization by Ψ in the fitting procedure and the remainder
of this paper.

2.1 The likelihood function

Suppose xi1, . . . ,xini are ni i.i.d. observations from i = 1, ..., k independent
studies from the model given in (1). Let Xi = (xi1, . . . ,xini)

> be the ni × p
matrix of observations for the i’th study where rows correspond to samples and
columns to variables. By the independence assumptions, the log-likelihood for
Ψ and ν is given by

`
(
Ψ, ν

∣∣X1, ...,Xk

)
= log f

(
X1, ...,Xk

∣∣Ψ, ν
)

= log

∫
f(X1, ...,Xk|Σ1, ...,Σk,Ψ, ν)f(Σ1, ...,Σk|Ψ, ν)dΣ1 · · · dΣk

= log

k∏
i=1

∫
f(Xi|Σi)f(Σi|Ψ, ν)dΣi.

Since the inverse Wishart distribution is conjugate to the multivariate gaus-
sian distribution the integral, of which the integrand forms a gaussian-inverse-
Wishart distribution, can be evaluated. Hence Σi can be marginalized out,
cf. (13) in Appendix A, and we arrive at the following expression for the log-
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likelihood function,

`
(
Ψ, ν

∣∣X1, ...,Xk

)
= log

k∏
i=1

∣∣Ψ∣∣ ν2 Γp
(
ν+ni

2

)
π
nip
2

∣∣Ψ + X>i Xi

∣∣ ν+ni2 Γp
(
ν
2

)
=

k∑
i=1

[
ν

2
log
∣∣Ψ∣∣− ν + ni

2
log
∣∣Ψ + X>i Xi

∣∣− log
Γp
(
ν+ni

2

)
Γp
(
ν
2

) ], (4)

up to an additive constant. As should be expected, the scatter matrix Si =
X>i Xi and study sample size ni are sufficient statistics for each study. Note that
Si is conditionally Wishart distributed, Si|Σi ∼ W(Σi, ni), by construction.

As stated in the following two propositions the likelihood is not log-concave
in general. However, it is log-concave as a function of ν.

Proposition 1 (Non-concavity in Ψ)
For fixed ν, the log-likelihood function (4) is not concave in Ψ.

All proofs have been deferred to Appendix B.

Proposition 2 (Concavity in ν)
For fixed positive definite Ψ, the log-likelihood function (4) is concave in ν.

While the likelihood is not concave in Ψ we are able to show the existence and
uniqueness of a global maximum in Ψ.

Proposition 3 (Existence and uniqueness)
The log-likelihood (4) has a unique maximum in Ψ for fixed ν and n• =∑k
a=1 na ≥ p.

This result is proven in Appendix B and follows from two lemmas stated therein.
In the following section estimators of the parameters are derived using mo-

ments and the EM algorithm assuming ν fixed.

2.2 Moment estimator

The pooled empirical covariance matrix can be viewed as a moment estimator
of Σ. By the assumptions the first and second moment of the j’th observation
in the i’th study, xij , is given by E[xij ] = 0p and

E[xijx
>
ij ] = E

[
E[xijx

>
ij |Σi]

]
= E[Σi] =

Ψ

ν − p− 1
= Σ.
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2 A random effects model for the covariance matrix

for all j = 1, ..., ni and i = 1, ..., k. This suggests the estimators

Ψ̂pool = (ν − p− 1)

∑k
i=1 Si∑k
i=1 ni

and Σ̂pool =

∑k
i=1 Si∑k
i=1 ni

, ν > p+ 1 (5)

where the latter is obtained by plugging Ψ̂pool into (3). This is the well-known
pooled empirical covariance matrix.

2.3 Maximization using the EM algorithm

Here the updating scheme of the expectation-maximization (EM) algorithm
[7] for fixed ν is derived. We now compute the expectation step of the EM-
algorithm.

From (1) we have that,

Σi ∼ W−1
p

(
Ψ, ν

)
,

Si|Σi ∼ Wp(Σi, ni) for i = 1, ..., k.

Let ∆i = Σ−1
i be the precision matrix and let Θ = Ψ−1, then we equivalently

have that

∆i ∼ Wp

(
Θ, ν

)
,

Si|∆i ∼ Wp(∆
−1
i , ni). (6)

From the conjugacy of the inverse Wishart and the Wishart distribution, the
posterior distribution of the precision matrix is

∆i|Si ∼ Wp

((
Θ−1 + Si

)−1
, ni + ν

)
.

Hence, by the expectation of the Wishart distribution,

E[∆i|Si] = (ni + ν)
(
Θ−1 + Si

)−1
.

The maximization step, in which the log-likelihood `(Θ|∆1, ...,∆k) is maxi-

mized, yields the estimate Θ̂ = 1
kν

∑k
i=1 ∆i, which is the mean of the scaled

precision matrices 1
ν∆i. The derivation of this estimate can be seen in Ap-

pendix C. Let Θ̂(t) be the current estimate of Θ. This yields the updating
scheme

Θ̂(t+1) =
1

kν

k∑
i=1

(ni + ν)
(
Θ̂
−1

(t) + Si

)−1

(7)

for Θ(t). We denote the inverse of the estimate obtained by repeated iteration

of (7) by Ψ̂EM.
An approximate maximum likelihood estimator using a first order approxi-

mation is also possible. This derivation has been deferred to Appendix D.
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Algorithm 1 RCM coordinate ascent estimation procedure

1: Input:
2: Sufficient data: (S1, n1), ..., (Sk, nk)

3: Initial parameters: Ψ̂(0), ν̂(0)

4: Convergence criterion: ε > 0
5: Output:
6: Parameter estimates: Ψ̂, ν̂
7: procedure fitRCM(S1, ...,Sk, n1, ..., nk, Ψ̂(0), ν̂(0), ε)

8: Initialize: l(0) ← `(Ψ̂(0), ν̂(0))
9: for t = 1, 2, 3, ... do

10: Ψ̂(t) ← U
(
Ψ̂(t−1), ν̂(t−1)

)
11: ν̂(t) ← arg maxν `

(
Ψ̂(t), ν

)
12: l(t) ← `

(
Ψ̂(t), ν̂(t)

)
13: if l(t) − l(t−1) < ε then

14: return
(
Ψ̂(t), ν(t)

)
15: end if
16: end for
17: end procedure

2.4 Estimation procedure

We propose a procedure alternating between estimating ν and Ψ while keep-
ing the other fixed. Given parameters ν̂(t) and Ψ̂(t) at iteration t, we esti-

mate Ψ̂(t+1) using fixed ν̂(t). Subsequently, we find ν̂(t+1) by a standard one-

dimensional numerical optimization procedure using the fixed Ψ̂(t+1). This
coordinate ascent approach is repeated until convergence as described in Al-
gorithm 1. The update function U in the algorithm is defined by the derived
estimators. That is, equations (5), (7), or (21) define U to be defined by the
pooled, EM, or approximate MLE estimates, respectively.

The procedure using the EM step utilizes the results about the RCM log-
likelihood and thus provides a guarantee of convergence along with the advan-
tage of a very simple implementation. Both the EM step and the ν update will
always yield an increase in the likelihood. However, the obvious disadvantage
is that the identified maxima might be a saddle-point when considering the
log-likelihood function jointly in (Ψ, ν).

2.5 Interpretation and inference

Test for no class heterogeneity

By the RCM construction ν parameterizes an inter-class variance where the
size of ν corresponds to the homogeneity between the classes. A large ν yields
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2 A random effects model for the covariance matrix

high study homogeneity while small ν yields low homogeneity. Thus it might
be of interest to test if the estimated homogeneity ν̂ is extreme under the null-
hypothesis of no heterogeneity (i.e. infinite homogeneity). I.e. a test for the
hypothesis H0 : ν =∞ which is equivalent to

H0 : Σ1 = ... = Σk = Σ.

The two are equivalent since sampling the covariance matrix from the inverse
Wishart distribution becomes deterministic for ν =∞. Testing this hypothesis
can therefore also be interpreted as testing if the data is adequately explained
when leaving out the hierarchical structure.

The distribution of ν̂ under the null hypothesis is not tractable. However
in practice, under H0 or when ν is extremely large the estimated ν̂obs will be
finite as the intra-study variance dominates the total variance. We note that
the null distribution of ν̂ does not depend on Σ. We propose approximating
the distribution of ν̂ under H0 by resampling. To do this, the model is simply
fitted a large number of times N on datasets re-sampled under H0 mimicked by

permuted class labels to get ν̂
(1)
0 , ..., ν̂

(N)
0 . As small values of ν̂ are critical for

H0 approximate acceptance regions can be constructed from ν̂
(j)
0 , j = 1, ..., N .

Likewise, an approximation of the p value testing H0 can be obtained by

P =
1

N + 1

(
1 +

N∑
j=1

1
[
ν̂

(j)
0 < ν̂obs

]
,

)

where 1[ · ] is the indicator function. The addition of one in the nominator and
denominator adds a positive bias to the approximate p-value minimally needed
according to Phipson and Smyth [24]. This is approximately the fraction of

ν̂
(j)
0 ’s smaller than ν̂obs.

Intra-class correlation coefficient

We now introduce a descriptive statistic analogous to the intra-class correla-
tion coefficient (ICC) [26] well known from ordinary meta-analysis to better
determine what constitute large values of ν. For the RCM, the ICC be given
by

ICC(ν) =
1

ν − p
. (8)

This follows from the definition of the ICC which is the ratio of the between-
study variation (Σij) and the total variation (Sij) of a single pair of any vari-
ables. Consider observations from (1). We temporarily abuse our notation and
let

Σ ∼ W−1
p (Ψ, ν) and S|Σ ∼ Wp(Σ, 1),

91



Paper III

and consider only a single observation (n = 1). Furthermore, let S = (Sij)p×p,
Σ = (Σij)p×p, and Ψ = (Ψij)p×p. To compute the ICC, we are thus interested
in the ratio of the quantities (Σij) and (Sij) corresponding to the between-study
and total variation of the covariance between variables i and j, respectively.
That is, the ICC is the proportion of the total variance between studies,

ICC(ν) =
(Σij)

(Sij)
=

(Σij)

(Σij) + E[(Sij |Σ)]
, (9)

where the second equality is obtained by E[Sij |Σ] = Σij and the law of total
variation. This equality agrees with the usual ICC as E[(Sij |Σij)] can be inter-
preted as the (expected) within-study variation. Using the conditional variance
given by (Sij |Σ) = Σ2

ij + ΣiiΣjj the needed quantities can be found. To com-
pute an expression for (9) we need to consider the fourth-order moments of the
observations. From the model, known results of the inverse Wishart distribu-
tion, cf. [4, 28], leads to

Cov(Σij ,Σkl) =
2ΨijΨkl + (ν−p−1)

(
ΨikΨjl + ΨilΨkj

)
(ν − p)(ν − p− 1)2(ν − p− 3)

, ν > p+ 3, (10)

implying that

(Σij) = Cov(Σij ,Σij) =
(ν − p+ 1)Ψ2

ij + (ν − p− 1)ΨiiΨjj

(ν − p)(ν − p− 1)2(ν − p− 3)
. (11)

We continue with the conditional variance of Sij |Σ in the denominator of (9),

E
[
(Sij |Σij)

]
= (Σij) + E[Σij ]

2 + Cov(Σii,Σjj) + E[Σii]E[Σjj ]

= (Σij) + Cov(Σii,Σjj) + (ν − p− 1)−2(Ψ2
ij + ΨiiΨjj). (12)

An expression of (Sij) in terms of the elements of Ψ can then found by sub-
stituting (10) and (11) into (12) and by extension an expression for the ICC
(9) can be obtained. We omit this tedious calculation which can be verified to
yield ICC(ν) = 1/(ν − p) above. Naturally enough, the ICC depends only on

ν. A straight-forward plug-in estimator ÎCC(ν) of the ICC of some gene-gene
interaction is then ICC(ν̂).

Though v > p + 3 is required for the variances to exist, it is clear that
ICC(ν) → 1 for ν → (p + 1)+ and ICC(ν) → 0 for ν → ∞ as should be
expected.

3 Assessment of the estimation procedures

To assess the precision and stability of the estimation procedure we generated
data from the hierarchical model (1) for p = 10 variables and k = 3 studies
each with an equal number of observations, n = n1 = n2 = n3. We chose the
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4 Applications

Fig. 1: The median SSE of 2500 simulations as a function of the number of samples ni in
each of the 3 studies.

parameters ν = 15 and Ψij = 1 for all i = j and Ψij = 0.5 for all i 6= j. The
number of observations in each study n was varied in the range [5, 11].

We measured the precision of the estimated values against the expected co-
variance matrix given by (3). Let Ψ̂ and ν̂ be the estimates obtained using the
moment, EM, or approximate MLE (defined in Appendix D) approaches as de-
scribed. We benchmark the proposed estimators against the known truth. The
benchmarking measure used is the following weighted sum of squared errors,

SSE(Σ̂) =
∑
i≤j

(Σ̂ij − Σij)
2

(Σij)
where (Ψij) = n(Σ2

ij + ΣiiΣjj).

For each n = 5, . . . , 11, the weighted sum of squared errors for each estima-
tor, SSE(Σ̂), were computed for 2500 datasets and the median of these values
are seen in Figure 1 as function of the number of samples in each dataset ni.

We see that the EM estimation is superior to that of the approximate MLE
and moment estimators.

3.1 Implementation and availability

Algorithm 1 and the different estimators are implemented in the statistical
programming language R [25] with core functions in C++ using packages Rcpp
and RcppArmadillo [11, 12]. They are incorporated in the open-source R-
package correlateR freely available for forking and editing at http://github.
com/AEBilgrau/correlateR. We refer to the information here for further details
and installation instructions. This document was prepared with knitr [29] and
LaTeX. To reproduce this document see 5.

4 Applications
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4.1 DLBCL meta-analysis

Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer subtype ac-
counting for 30% − 58% of all non-Hodgkin’s lymphomas (NHL) which itself
constitutes about 90% of all lymphomas [20].

Data and preprocessing

A large amount of DLBCL gene expression datasets are now available online
at the NCBI (National Center for Biotechnology Information) Gene Expres-
sion Omnibus (GEO) website. Ten large-scale DLBCL gene expression stud-
ies were downloaded and preprocessed using custom brainarray chip defini-
tion files (CDF) [5] and RMA-normalized using the R-package affy [17]. The
corresponding GEO-accession numbers are GSE12195, GSE22895, GSE31312,
GSE10846, GSE34171, GSE22470, GSE4475, and GSE19246 based on various
microarray platforms. The downloaded data together with a dataset from our
own laboratory (GSE56315, [10]) yields a total of 2046 samples with study sizes
in the range 78-469. The summarization using brainarray CDFs to Ensembl
gene identifiers facilitates cross-platform integration.

After RMA normalization and summarization, the data were brought to
a common scale by quantile normalizing all data to the common cumulative
distribution function of all arrays. Lastly, the datasets were reduced to 11573
common genes represented in all studies and array platforms.

Analysis

A coexpression network (or weighted correlation network) analysis integrating
all datasets was carried out. For each dataset the scatter matrix Si of the top
300 most variable genes (as measured by the pooled variance across all studies)
was computed as the sufficient statistics along with the number of samples.
Hence, we investigate 45,150 pairwise interactions.

The parameters of the RCM were estimated using the EM algorithm and
yielded the 300×300 matrix Ψ̂ and ν̂ = 773.16. From these, Σ̂ = (ν̂−p−1)−1Ψ̂
was computed and subsequently scaled to the corresponding correlation matrix
R̂.

The estimated ν̂ yields a surprisingly low estimated ICC of 0.0021. Hence by
the RCM, only 0.21% of the variability of the gene-gene covariances is between-
studies on average. The selection of only the most (within study) varying genes
is an obvious contribution to the low ICC. Hence, by selection we have high
within-study variability. An alternative contribution could indeed also be high
study homogeneity. In any case, the low ICC might suggest high reproducibility
of the covariances between studies of the selected genes.

Next, we outline one of many possible downstream analysis of the estimated
covariance. For simplicity we employed standard correlation network analyses
to the estimated common correlation matrix R̂ across all studies. To identify
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Fig. 2: Top left: dendrograms of the hierarchical clustering, the identified modules, and a
heatmap of the correlation matrix. Top right: the correlation network as laid out by the
Fruchterman-Reingold algorithm [16]. The nodes are colored after the identified modules.
The edge colors follow the color key of the heatmap. If the edge weight is numerically less
than 0.359, corresponding to the 95% largest values, the edge is suppressed. Bottom: A
Hierarchical edge bundling representation of the network [18] where edges loosly follow the
dendrogram. Edge colors follow the color key. Only edges with a weight numerically larger
than 0.359 are plotted.
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clusters with high internal correlation, we used agglomerative hierarchical clus-
tering with Ward-linkage and distance measure defined as 1 minus the absolute
value of the correlation. The tree was arbitrarily pruned at a height which pro-
duces 5 modules named by colors. Figure 2 shows these results. A heat-map,
the hierarchical tree, and the identified modules are seen at the top left. The
top-right shows a graphical representation of the matrix which better illustrates
the clusters and their relations. The bottom plot shows the graph radially laid
out using hierarchical edge bundling [18] where the edges are guided by the
hierarchical tree. Table 1 shows the top genes within each module. As seen
e.g. in the olivegreen module, genes from the same gene family are clustered
together.

To further investigate the low ICC, we refitted the RCM on the subset
of the 50 genes in the orchid module for reasons clear later. This yielded
an ICC(182.4) = 0.008. Subsequently the model was repeatedly fitted on 50
randomly chosen genes 500 times to gauge the size of the ICC without the
selection bias. This resulted in a mean ICC (lower quartile, upper quartile) of
0.019 (0.018, 0.021) suggesting that there is a high study homogeneity under
randomly selected genes.

The test for the null hypothesis of no study heterogeneity, ν =∞, is clearly
rejected with a p value of 0.002. The mean (sd) of the fitted ν̂ on 500 permuted
datasets was 2156.2 (1.39) compared to ν̂ = 182.4 in the observed dataset.

Next, the modules were screened for biological relevance using GO (Gene
Ontology) enrichment analysis. The upper right of Figure 2 shows suggested
functions of the modules primarily based on the GO analysis. 5 shows the
significant GO-terms at significance level 0.01 for each module in which the
most GO-terms appear highly relevant to the pathology of DLBCL.

Lastly, we checked if the identified modules were prognostic for overall sur-
vival (OS) in the CHOP and R-CHOP-treated cohorts of the GSE10846 data-
sets. To do this, the eigengene [19] for each module was computed and a
multiple Cox proportional hazards model for OS was fitted with the module
eigengenes as covariates. The module eigengene is simply the first principal
of the expression matrix of the module which can thus be represented by a
linear combination of the module genes. For the prognostic interesting orchid
module, the Kaplan-Meier estimates were computed for groups arising when
dichotomizing the values of the corresponding eigengene as above or below the
median value. These results are seen in Figure 3.

From the survival analysis, the orchid module appeared particularly inter-
esting since it marked a gene cluster identifying DLBCL patients with sig-
nificantly improved outcome. Therefore a manual screening of the 50 genes
within the orchid module was performed. The genes CHI3L1, CHIT1, and
LYZ are related to chitin degradation and suggests activated immune system
response and inflammation. Enzymes related to chitin degradation can possibly
originate from macrophages as CHIT1 is expressed by activated macrophages.
The inflammation and modulated activity of the immune system are further
suggested by the genes ORM1, PLA2G2D, PLA2G7, and IL18. CHIT3L1
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Table 1: The identified modules, their sizes, and member genes. The genes are sorted
decreasingly by their intra-module connectivity (sum of the incident edge weights). Only the
top 20 genes are shown.

Gray Olivegreen Orchid Skyblue Coral
n = 159 n = 50 n = 50 n = 31 n = 10

RGS13 S100A8 CXCL13 COL3A1 KRT6A
BCL2A1 C1QB CCL19 COL1A2 KRT14
MMP1 CCL8 CHI3L1 COL5A2 KRT13
GMDS VSIG4 CLU MXRA5 SPRR3
FEZ1 CXCL9 CCL21 SULF1 SPRR1B
HLA-DQA1 C1QA PTGDS POSTN SPRR1A
IGHM CXCL10 CD3D THBS2 S100A2
CR2 GBP1 PLAC8 MMP2 KRT5
CD83 CXCL11 CD2 COL6A3 DSP
AICDA GZMB CXCL14 VCAN SFN
HLA-DQB1 IDO1 TRAT1 LUM
UGT2B17 MT1G TRBC2 SPP1
BIK GZMA ADAMDEC1 COL5A1
MS4A1 GZMK CSTA PLOD2
GRHPR ALDH1A1 ITK COL15A1
CYB5R2 S100A9 IL7R DCN
RPS4Y1 FCER1G CHIT1 CTSK
ADA PSTPIP2 GIMAP4 COL11A1
DMD LILRB2 ENPP2 COL1A1
ACTG2 GZMH LGALS2 FAP

Fig. 3: The top row shows 95% and 99% CI for the hazard ratio for each eigengene in the
multiple Cox proportional hazards model containing all eigengenes. The bottom row shows
Kaplan-Meier estimates (and 95% CI) of the overall survival for patients stratified by the
dichotomized orchid eigengene.
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(also known as YKL40) has been linked to the AKT anti-apoptotic signaling
pathway in glioblastoma [13] and thus high YKL40 is associated with poor
outcome, Some of the remaining, MMP9, PTGDS, ADAMDEC1, HSD11B1,
APOC1, and CYP27B1 are involved in metalloproteinase degradation and lipid
metabolism. MMP9 in particular is known to have a central role in prolifer-
ation, migration, differentiation, angiogenesis, apoptosis, and host defenses.
Numerous studies have linked altered MMP expression in different human can-
cers with poor disease prognosis where up-regulation of MMPs are associated
with enhanced cancer cell invasion. ADAMDEC1 is thought to have a cen-
tral role in dendrite cell functions and their interactions with germinal center
T-cells.

The manual screening and GO-analysis results further corroborate that the
identified modules are biologically meaningful and that the RCM provides a
useful estimate of the covariance.

4.2 Supervised classification

Another application of the RCM is discriminant analysis. As seen below, the
estimates obtained can be utilized in supervised learning as a intermediate
case between linear discriminant analysis (LDA) and quadratic discriminant
analysis (QDA).

Suppose Y is a random variable denoting the classes 1 through k and sup-
pose x is a random vector of the explanatory variables. Recall that LDA and
QDA estimate the class y by maximizing

P (Y = y|X = x) =
πyf(x|Y = y)∑k

y′=1 πy′f(x|Y = y′)

over y, where X|Y = y is assumed to be p-dimensional gaussian distributed,
i.e.

X|Y = y ∼ Np(µy,Σy).

LDA differs from QDA by the additional assumption that Σ = Σy for all
classes y. An intermediate classifier of LDA and QDA can thus be constructed
by assuming the Σy’s are inverse Wishart distributed as in (1), i.e. Σy ∼
W−1
p

(
(ν − p − 1)Σ, ν

)
, and using the estimates of a common expected Ψ as

discussed above. The hierarchical discriminant analysis (HDA) is thus straight-
forward to implement as

f(x|Y = y) =

∫
f(x|Σ, Y = y)f(Σ|Y = y)dΣ

=

∣∣Ψ∣∣ ν2 Γp
(
ν+1

2

)
π−

n
2

∣∣Ψ + (x− µy)(x− µy)>
∣∣ ν+1

2 Γp
(
ν
2

) .
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The derivation of which is analogous to Appendix A. The matrix determinant
lemma, |A + uΨ>| = (1 + Ψ>Au)|A|, can then be applied to simplify the
expression and speed up the computations [9]. Note that HDA generalizes
the LDA to have a multivariate t distribution. In fact it becomes a multi-
variate t-distribution when the sample sizes of each class is 1. Multivariate t-
distributions have before been considered for discriminant analysis, cf. Andrews
and McNicholas [1]. Note that while the classifier is multivariate t-distributed,
the estimation procedure assumes correlated observations within each class.

Benchmarking of HDA

We designed four different scenarios to test and identify where HDA can be
expected to perform similarly, better, or worse than LDA and QDA as gauged
by the misclassification risk. The simulation experiment was inspired by the
one seen in Friedman [15].

In all four scenarios, we generated for p = 5, 10, 20, 35 a training dataset of
n = 40 observations belonging to k = 3 classes. First, class labels were gen-
erated from a multinomial distribution with equal probabilities for each class,
π1 = π2 = π3 = 1/3. Hence, in each simulation round 13.33 observations were
expected in each class. Conditional on the class the observations where drawn
i.i.d. from a multivariate gaussian distribution, i.e. xi|K = k ∼ Np(µk,Σk).
The four scenarios consists of different choices of covariance matrices Σk and
mean values µk for each class.

The 3 covariance matrices were chosen to be either (a) equal and spherical,
(b) unequal and spherical, (c) equal and highly elliptical, and (d) unequal and
highly elliptical. In scenario (a), Σ1 = Σ2 = Σ3 = I. In scenario (b), Σk = kI.
In scenario (c), the covariance matrices are equal, Σ1 = Σ2 = Σ3, and chosen
such that the square root of the d eigenvalues are equidistant on the interval
from 10 to 1 and a randomly (uniformly) oriented orthonormal basis is used for
all components [15]. In scenario (d), the eigenvalues are chosen as in scenario
(c) for all Σk but the orientation of the orthonormal basis of eigenvectors differs.

In all scenarios expect (c) the mean values were chosen so µ1 = 0,µ2 = 3e1,
and µ3 = 4e2 where ej denotes the j’th basis-vector. In scenario (c), µ1 = 0
and the remaining mean values are chosen such that the differences project
mainly onto the low-variance subspace.

Using the described parameters a training and validation set each of 40 and
100 observations, respectively, were generated. For each method the classifier
was trained on the training data followed by classification of the validation
data and computation of the misclassification risk. Each simulation setup was
repeated 2500 times and the mean and standard error,

√
p̂(1− p̂)/n, of the mis-

classification risks were computed. Table 2 shows the results of the simulation
experiments.
In order to be able to evaluate P (Y = y|X = x) in cases where the sample
covariance matrix is not invertible, a small constant was added to the diagonal
to allow for stable inversion similar to Friedman [15]. In the given setup, this
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Table 2: The estimated misclassification risk for the different scenarios. The minimum and
maximum misclassification risks are highlighted in green and red, respectively.

Σ1, ...,Σ3 Mean misclassification risk (sd)
p = 5 p = 10 p = 20 p = 35

Equal, spherical
LDA .306 (.009) .337 (.009) .401 (.010) .555 (.010)
QDA .370 (.010) .546 (.010) .666 (.009) .664 (.009)
HDA .305 (.009) .337 (.009) .401 (.010) .545 (.010)

Unequal, spherical
LDA .378 (.010) .403 (.010) .456 (.010) .609 (.010)
QDA .418 (.010) .569 (.010) .667 (.009) .666 (.009)
HDA .376 (.010) .402 (.010) .455 (.010) .569 (.010)

Equal, ellipsoidal
LDA .026 (.003) .008 (.002) .005 (.001) .174 (.008)
QDA .080 (.005) .432 (.010) .667 (.009) .666 (.009)
HDA .026 (.003) .008 (.002) .005 (.001) .096 (.006)

Unequal, ellipsoidal
LDA .563 (.010) .612 (.010) .617 (.010) .655 (.010)
QDA .209 (.008) .444 (.010) .667 (.009) .668 (.009)
HDA .550 (.010) .608 (.010) .616 (.010) .655 (.010)

modification was only necessary for QDA in the low-dimensional cases.
In the equal and spherical case (a), HDA yields almost identical results to

LDA, which both unsurprisingly outperform QDA. Also perhaps expected, the
difference between LDA and QDA is less prominent for low dimensional spaces.
The same holds true for the unequal and spherical case (b) and (c).

Most interestingly, HDA is seen to always perform at least as good as LDA
in all scenarios. HDA is also consistently superior for the large dimensional
tests. The largest gain from HDA to LDA was seen in the high-dimensional
scenario (c). This demonstrates HDA as a potentially useful addition to the
discriminant analysis toolbox.

5 Concluding remarks

This article provides a basic framework for modeling a common covariance
structure across multiple classes or datasets. The straight-forward approaches
of using the mean or pooled covariance matrix are seen as moment estimators
of the model and the estimate using the EM algorithm is shown to be superior
to these simple alternatives. While the improvements are modest, the article
demonstrates a potentially advantageous way of modelling the inter-study vari-
ability by a hierarchical random effects model. However, the virtue of such a
model is not from improvement in accuracy alone. Also desirable is the explicit
and interpretable quantification of the inter-study variance. If ν̂ is estimated
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to be large, the studies exhibit a largely common covariance structure, and
vice-versa when ν̂ is small. We have provided the ICC for the RCM as an
attempt to aid in the interpretation of ν. Also provided is the basic framework
for testing if study heterogeneity is present. However, the proposed testing
is computationally demanding and only feasible when p is sufficiently small.
This could e.g. be overcome by an improved and faster fitting procedures or
by deriving the distribution of ν̂ under the null hypothesis. Yet the latter is
seemingly intractable as ν̂ is a very complex function of the data. The fact that
the null-hypothesis lies on the edge of parameter space also seems to constrain
the feasibility of deriving such a distribution.

Additionally, one might question whether the added utility of the ν pa-
rameter is an obvious relaxation of covariance homogeneity. For example, it
is unclear how large a proportion a single extra parameter can explain of the
inter-study variance. Hence, the present work should be considered a first step
in the direction of explicitly modeling the inter-study variation of covariances.

As demonstrated, combining multiple studies can yield a sufficiently large
total sample size n• that allows for estimation of large covariance matrices
without the use of regularization. The generalization of the model to p� n• is
extremely interesting though out of scope for this article. We believe this work
could be further enriched by combining the method with regularized estimation.

The recent advances in such regularized techniques which allows for analysis
of large covariance matrices has unfortunately diminished the focus on collect-
ing an adequate number of samples. The technically possible estimates for
extreme n/p ratios does not necessarily imply that a good estimate is achieved.
For example, while non-zero entries often can be accurately recalled in graphical
LASSO, actual estimates of the covariances (or precisions) can still be heavily
biased. Large sample-sizes are still needed to achieve unbiased estimates of
the covariance due to the bias-variance trade-off. Therefore, an increased fo-
cus should also be appointed to efficiently aggregating datasets and achieving
sufficiently large sample sizes to allow for stable and unbiased estimation of
covariance matrices.

As an addition to the discriminant analysis toolbox, we recognize that fur-
ther and more sophisticated simulation experiments are needed to explore sce-
narios where HDA should be considered a serious alternative.
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Documents for reproducibility. The documents and other needed files to per-
form the analyses to reproduce this article. See the README file herein. http:
//people.math.aau.dk/~abilgrau/RCM/SuppA/

Supplement B

Identified modules and GO analysis. Tables of gene module memberships,
auxiliary information, and the significant GO-terms for each identified module.
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A Marginalization of the covariance

A Marginalization of the covariance

This section shows the marginalization over Σ in (4). For ease of notation we

drop the subscript i on Σi, Xi, Si = XiX
>
i , and ni. By the model assumptions,

f(X|Ψ, ν) =

∫
f(X|Σ)f(Σ|Ψ, ν)dΣ

=

∫ [ n∏
j=1

(2π)−
p
2 |Σ|−
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ijΣ
−1)
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dΣ.

The integrand can be recognized as a unnormalized inverse Wishart pdf of the
distribution W−1

(
Ψ + S, ν+n

)
, and so the integral evaluates to the reciprocal

value of the normalizing constant in that density. Thus,

f(X|Ψ, ν) =

∣∣Ψ∣∣ ν2
π
np
2 2
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) . (13)

Using the matrix determinant lemma and S = X>X, this can be further sim-
plified to

f(X|Ψ, ν) =
Γp
(
ν+n

2

)
π
np
2

∣∣I + XΨ−1X>
∣∣ ν+n2 ∣∣Ψ∣∣n2 Γp

(
ν
2

) ,
which can help to speed-up computations.

B Proofs

B.1 Non-concavity of the log-likelihood

The likelihood function is not log-concave in general. This section analyses the
(non)-concavity of the log-likelihood function given in (4). More precisely, the
following two propositions are proved.

Proposition 1 (Non-concavity in Ψ)
For fixed ν, the log-likelihood function (4) is not concave in Ψ.
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Proposition 2 (Concavity in ν)
For fixed positive definite Ψ, the log-likelihood function (4) is concave in ν.

Proof of Proposition 1. Assume ν is fixed and consider only the terms in-
volving Ψ in (4). We reduce to the one-dimensional case where

`(ψ) =
kν

2
log
(
ψ
)
−

k∑
i=1

ν + ni
2

log
(
ψ + x2

i

)
,

which implies

`′(ψ) =
kν

2

1

ψ
−

k∑
i=1

ν + ni
2

1

ψ + x2i
and `′′(ψ) = −kν

2

1

ψ2
+

k∑
i=1

ν + ni
2

1(
ψ + x2i

)2 .
It is straightforward to show there exists a value for ψ, ni and ν for which
`′′(ψ) > 0. Since the second derivative is not always negative the log-likelihood
` is not log-concave.

Proof of Proposition 2. Consider the terms involving ν. Clearly, the mixed
terms involving both ν and Ψ are log-linear in ν and hence log-concave. We
thus restrict our attention to the remaining terms not dependent on Ψ. The
sum of these terms are concave in ν, since

log Γp

(
ν + ni

2

)
− log Γp

(ν
2

)
= log

Γp
(
ν+ni

2

)
Γp
(
ν
2

) =

p∑
j=1

log
Γ
(
ν+1−j

2 + ni
2

)
Γ
(
ν+1−j

2

) .

which can be seen to be concave since ni ≥ 1 for all i and h(x) = log
(Γ(x+a)

Γ(x)

)
is concave for all x > 0 and a > 0. The concavity of h is easily seen by the fact
that h′′(x) = ψ(x+ a)− ψ(x) < 0, where ψ(·) is the tri-gamma function. The
tri-gamma function is a well-known monotonically decreasing function. Hence,
the log-likelihood is log-concave in ν.

log-convexity of the multivariate gamma function

The multivariate gamma function Γp is log-convex as can be seen using the
following characterization,

Γp(t) = π
1
2 (p2)

p∏
j=1

Γ

(
t+

1− j
2

)
where Γ(t) =

∫ ∞
0

xt−1e−xdx. (14)

From this

log Γp(t) =
1

2

(
p

2

)
log π +

p∑
j=1

Γ

(
t+

1− j
2

)
, (15)

which is convex since Γ is log-convex and a sum of convex functions is convex.
Hence Γp is also log-convex.
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B.2 Existence and uniqueness of likelihood maxima

This section proves Lemmas 1 and 2 which imply Proposition 3.
Before we state the lemmas, the proposition, and their proofs, we see that

the reparameterisation of the RCM is irrelevant. Consider the log-likelihood in
(4) assuming ν fixed. The log-likelihood obey

2`(Ψ) = c+ kν log
∣∣Ψ∣∣− k∑

a=1

(na + ν) log
∣∣Ψ + Sa

∣∣. (16)

Notice, that this equation also holds in the reparameterization. Here we have

2`(Σ) = c+ kν log
∣∣(ν − p− 1)Σ

∣∣− k∑
a=1

(na + ν) log
∣∣(ν − p− 1)Σ + Sa

∣∣
= c′ + kν log

∣∣Σ∣∣− k∑
a=1

(na + ν) log
∣∣Σ + (ν − p− 1)−1Sa

∣∣.
Since (ν − p − 1)−1Sa is only dependent on data (when ν is fixed) we can set
(ν − p − 1)−1Sa := Sa. Without loss of generality we can therefore consider
(16) in the following.

Proposition 3 (Existence and uniqueness)
The log-likelihood (4) has a unique maximum in Ψ for fixed ν and n• =∑k
a=1 na ≥ p.

Proof of Proposition 3. We first prove the existence of the maximum. By
Lemma 1 and the continuity of `, the set

{
Ψ
∣∣`(Ψ) ≥ `(Ψ∗)

}
is bounded and

closed and thus compact for any Ψ∗ � 0. The existence of a maximum follows
from the extreme value theorem by the continuity of `. A stationary point
exists due to Rolle’s theorem and the differentiability of `.

Next, we show the uniqueness of the maximum. Suppose there exists count-
ably many stationary points Ψ1,Ψ2, .... By Lemma 1, `(Ψ) has a finite upper
bound given by the value of the log-likelihood in those points. All gradient
curves (that is, solution curves to Ψ̇(t) = ∇`(Ψ(t))) must then converge to-
ward exactly one of the stationary points where ` monotonically increases along
each curve. Define the basin of attraction

Ai =
{
Ψ0 ∈ S+

∣∣Ψ(0) = Ψ0, lim
t→∞

Ψ(t) = Ψi

}
,

associated to each stationary point Ψi. The basin of attraction is open if Ψi

is a maximum [21, Lemma 4.1]. By Lemma 2, Ψi is a always a maximum and
hence all Ai are open sets in the set of all positive semi-definite matrices S+.
This partitions the space S+ into N disjoint, non-empty, open sets. However,
this is only possible if Ai = Aj = S+ for all i and j and thus there is only a
single basin of attraction and maximum of `.
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Lemma 1
If there exists an eigenvalue λt of Ψt such that λt → 0 or λt → ∞, then

`(Ψt)→ −∞ for ν fixed and n• =
∑k
a=1 na ≥ p.

Proof of Lemma 1. Assume the hypothesis of the lemma and consider the
expression given in (16). If λt →∞ then

`(Ψt) =
kν

2
log
∣∣Ψt

∣∣− k∑
i=1

ν + ni
2

log |Ψt + Si|

≤ kν

2
log |Ψt| −

k∑
i=1

ν + ni
2

log |Ψt| = −
n•
2

log |Ψt| → −∞.

This proves the first case where the largest eigenvalue diverge to infinity. Sup-
pose λt → 0 and let C =

∑k
i=1

ν+ni
2 = kν

2 + n•
2 , then (16) can be expressed

as

`(Ψt) =
kν

2
log |Ψt| − C

k∑
i=1

ν + ni
2C

log |Ψt + Si|.

Since log | · | is concave and the above sum is a convex combination, we have

`(Ψt) ≤
kν

2
log |Ψt| − C log

∣∣∣∣∣Ψt +

k∑
i=1

ν + ni
2C

Si

∣∣∣∣∣ .
Clearly, the first term goes to −∞ whenever an eigenvalue λt → 0. The matrix
in the second term is almost surely positive definite when n• =

∑k
a=1 xa ≥ p

and the log determinant will converge to some constant. Hence, if λt → 0 then

`(Ψt) ≤
kν

2
log |Ψt|+ C2 → −∞,

which completes the proof.

Lemma 2
If n• ≥ p and ν is fixed then the Hessian of the log-likelihood (4) is negative
definite in all stationary points.

Proof of Lemma 2. We show the conclusion of the Lemma directly by dif-
ferentiation of ` w.r.t. Ψ. To do so, the matrix cookbook by Petersen and
Pedersen [23] is a useful reference. In particular, see equations (41, p. 8) and
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(59, p. 9) and pages 14 and 52-53. We first compute expressions for the first
and second order derivatives.

First order derivatives. From the log-likelihood expression, we compute
the first order derivative ∇Ψ2`(Ψ) which is the matrix-valued function where
each entry is given by

∂2`

∂Ψij
= kν tr

(
EijΨ−1

)
−

k∑
a=1

(ν + na) tr
(
Eij (Ψ + Sa)

−1
)
. (17)

and Eij is a matrix with ones at entries (i, j) and (j, i) and zeros elsewhere.
This Eij is introduced as the derivative is not straight-forward because of the
symmetric structure of Ψ. Had Ψ been unstructured, then ∂

∂Ψ log |Ψ| = Ψ−1.

However, when Ψ is symmetric we have that ∂
∂Ψij

log |Ψ| = tr(EijΨ−1) which

is the same as ∂
∂Ψ log |Ψ| = 2Ψ−1 −Ψ−1 ◦ I where ◦ denotes the Hadamard

product [23, eq. (43) and (141)].
The first order derivative lives in a

(
p+1

2

)
-dimensional vector space with

basis vectors Eij indexed by (i, j), i ≤ j.
Second order derivatives. We proceed with the second order derivative

∇2
Ψ2`(Ψ) with entries given by

∂22`

∂Ψkl∂Ψij
= −kν tr

(
EijΨ−1EklΨ−1

)
+

k∑
a=1

(ν + na) tr
(
Eij (Ψ + Sa)

−1
Ekl (Ψ + Sa)

−1
)
,

obtained by differentiation of (17) using ∂
∂Ψij

Ψ−1 = −Ψ−1EijΨ−1 [23, eq.

(40)] and the linearity of the trace operator.
The second order derivative is a

(
p+1

2

)
×
(
p+1

2

)
-dimensional matrix indexed

by (i, j) and (k, l), i ≤ j, k ≤ l.
Negative definiteness of stationary points. With the above expres-

sions we now show that the Hessian matrix is negative definite in all stationary
points. Let Y =

∑
(i,j) yijE

ij be an arbitrary symmetric matrix in the vector
space where Y 6= 0. In our vector space we need to show that∑

i≤j,k≤j

Yij
(
∇2

Ψ2`(Ψ)
)

(i,j),(k,l)
Ykl < 0

holds in every stationary point analogous to z>Az =
∑
ij Aijzizj < 0. From

the second derivative, this amounts to showing that in every stationary point,

−kν tr
(
YΨ−1YΨ−1)+

k∑
a=1

(ν + na) tr
(
Y (Ψ + Sa)−1 Y (Ψ + Sa)−1) < 0. (18)
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Now, by the positive-definiteness of Ψ, let

Y := Ψ−
1
2 YΨ−

1
2 and

Sa := Ψ−
1
2 SaΨ

− 1
2 ,

and thus without loss of generality we can assume that Ψ = I. Hence, the
derivative of the likelihood (17) equated to zero, becomes

kνI =
∑
a

(na + ν)(I + Sa)−1

which implies (by multiplication by Y on each side) that every stationary point
obey

kν tr(Y2) =
∑
a

(na + ν) tr
(
Y(I + Sa)−1Y

)
. (19)

We substitute (19) into (18) to get∑
a

(na + ν) tr
(
Y(I + Sa)−1Y(I + Sa)−1 −Y(I + Sa)−1Y

)
=
∑
a

(na + ν) tr
(
Y(I + Sa)−1Y

[
(I + Sa)−1 − I

])
< 0.

We note that Sa = XaX
>
a and

(I + Sa)−1 − I = −Xa

(
I + X>a Xa

)−1
X>a ,

by the matrix inversion lemma whereby we need to show that∑
a

(na + ν) tr
(
Y(I + XaX

>
a )−1YXa

(
I + X>a Xa

)−1
X>a

)
> 0.

Since (I + XaX
>
a )−1 � 0 we obtain that

YXa(I + XaX
>
a )−1X>a Y = 0 for a = 1, ...., k.

Again by (I + XaX
>
a )−1 � 0 we conclude that YXa = 0 for all a = 1, ..., k,

i.e. Y(X1, ...,Xk) = 0. If n• ≥ p then almost surely (X1, ...,Xk) has rank p
whereby Y = 0.

C Likelihood of the precision matrix

Suppose we have k i.i.d. realizations, ∆1, ...,∆k, from the Wishart distribution
given in model (6). The corresponding log-likelihood can be computed straight-
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forwardly:

`(Θ|∆1, ...,∆k) =

k∑
i=1

log

∣∣Θ∣∣− ν2
2−

vp
2 Γp

(
ν
2

) |∆i|
ν−p−1

2 e−
1
2 tr
(
Θ−1∆i

)

= c+

k∑
i=1

(
−ν

2
log
∣∣Θ∣∣− 1

2
tr
(
Θ−1∆i

))

= c− νk

2

(
log |Θ|+ tr

(
Θ−1 1

νk

k∑
i=1

∆i

))
.

The last expression is to be maximized with respect to Θ and can be recognized
as the MLE problem in a multivariate Gaussian distribution. Hence, Θ =
1
kν

∑k
i=1 ∆i, is the MLE in this model.

D Approximate MLE

To find the maximizing parameters we differentiate (4) w.r.t. Ψ and equate to
zero while assuming ν known and constant. The first order derivative can be
seen in equation (17). Equating to zero yields

0 =
kν

2
Ψ−1 −

k∑
i=1

ν + ni
2

(Ψ + S′i)
−1 (20)

=
kν

2
Ψ−1 −

k∑
i=1

ν + ni
2

(
I + Ψ−1Si

)−1
Ψ−1.

This implies kνI−
∑k
i=1(ν+ni)

(
I− (−Ψ−1Si)

)−1
= 0 which can be rewritten

as

kνI−
k∑
i=1

(ν + ni)

∞∑
l=0

(
−Ψ−1Si

)l
= 0,

by the Neumann series
(

(I + A)−1 =
∑∞
l=0 Al

)
provided that liml→∞(I −

Ψ−1Si)
l = 0 for all i. This holds if the eigenvalues of Ψ−1Si are less than

1. We approximate by the first order expansion (l = 1), and

0 = kνI−
k∑
i=1

(ν + ni)(I−Ψ−1Si) = −n•I + Ψ−1
k∑
i=1

(ν + ni)Si

where n• =
∑k
i=1 ni is the total number of observations. This implies

Ψ−1
k∑
i=1

(ν + ni)Si = n•I
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which suggests the estimators

Ψ̂MLE =

∑k
i=1(ν + ni)Si

n•
and Σ̂MLE =

∑k
i=1(ν + ni)Si

(ν − p− 1)n•
. (21)

These estimates are seen to correspond to a weighted sum of the scatter ma-
trices.
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Preface: This work attacks the general problem of Paper III from a more
contemporary point of view and allows for high-dimensional data. It too seeks
to estimate the (inverse) covariance matrices of multiple groups, however with
a regularized approach. The method borrows information across groups by
incorporating a fusion term in the penalty which shrinks the group-estimates
toward each other—a method dubbed fusion as the estimates are fused into
one for large penalties. The paper thus explore the usage of a fused version of
the ridge (`2) penalty which enjoys some alternative desirable properties than
the highly popular graphical lasso (`1) penalty and its fused version.

The work was prompted by Carel F.W. Peeters and Wessel N. van Wieringen
as a targeted version of Price et al. [33] in relation to their previous work [41].
However, the fused ridge penalty was quickly generalized into its novel and very
flexible present form.

A large part of the effort went into improving the robustness and speed of
the estimation procedure of the non-fused ridge estimator of van Wieringen
and Peeters [41]. This was necessary as fast estimators are needed for the fused
counterpart and indeed even more so when the optimal penalty parameters
need to be determined. This included rewriting much of the code base for
rags2ridges in C++ for which I earned coauthership of the package from v2.0
and forward. The rags2ridges is available at

http://cran.r-project.org/package=rags2ridges
https://github.com/CFWP/rags2ridges

This paper also makes use of the DLBCLdata-package (Package II).
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Targeted Fused Ridge Estimation of Inverse Covariance
Matrices from Multiple High-Dimensional Data Classes

Abstract

We consider the problem of jointly estimating multiple inverse covariance
matrices from high-dimensional data consisting of distinct classes. An
`2-penalized maximum likelihood approach is employed. The suggested
approach is flexible and generic, incorporating several other `2-penalized
estimators as special cases. In addition, the approach allows specification
of target matrices through which prior knowledge may be incorporated
and which can stabilize the estimation procedure in high-dimensional
settings. The result is a targeted fused ridge estimator that is of use
when the precision matrices of the constituent classes are believed to
chiefly share the same structure while potentially differing in a number
of locations of interest. It has many applications in (multi)factorial study
designs. We focus on the graphical interpretation of precision matrices
with the proposed estimator then serving as a basis for integrative or
meta-analytic Gaussian graphical modeling. Situations are considered
in which the classes are defined by datasets and subtypes of diseases.
The performance of the proposed estimator in the graphical modeling
setting is assessed through extensive simulation experiments. Its practical
usability is illustrated by the differential network modeling of 12 large-
scale gene expression datasets of diffuse large B-cell lymphoma subtypes.
The estimator and its related procedures are incorporated into the R-
package rags2ridges.

1 Introduction

High-dimensional data are ubiquitous in modern statistics. Consequently, the
fundamental problem of estimating the covariance matrix or its inverse (the
precision matrix) has received renewed attention. Suppose we have n i.i.d.
observations of a p-dimensional variate distributed as Np(µ,Σ). The Gaussian
log-likelihood parameterized in terms of the precision matrix Ω = Σ−1 is then
given by:

L(Ω; S) ∝ ln|Ω| − tr(SΩ), (1)

where S is the sample covariance matrix. When n > p the maximum of (1) is

attained at the maximum likelihood estimate (MLE) Ω̂ML = S−1. However, in
the high-dimensional case, i.e., when p > n, the sample covariance matrix S is
singular and its inverse ceases to exist. Furthermore, when p ≈ n, the sample
covariance matrix may be ill-conditioned and the inversion becomes numerically
unstable. Hence, these situations necessitate usage of regularization techniques.

Here, we study the simultaneous estimation of numerous precision matrices
when multiple classes of high-dimensional data are present. Suppose yig is a re-
alization of a p-dimensional Gaussian random vector for i = 1, . . . , ng indepen-
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dent observations nested within g = 1, . . . , G classes, each with class-dependent
covariance Σg, i.e., yig ∼ Np(µg,Σg) for each designated class g. Hence, for

each class a dataset consisting of the ng × p matrix Yg = [y1g, . . . ,yngg]
> is

observed. Without loss of generality µg = 0 can be assumed as each dataset Yg

can be centered around its column means. The class-specific sample covariance
matrix given by

Sg =
1

ng

ng∑
i=1

yigy
>
ig =

1

ng
Y>g Yg,

then constitutes the well-known MLE of Σg as discussed above. The closely
related pooled sample covariance matrix

S• =
1

n•

G∑
g=1

ng∑
i=1

yigy
>
ig =

1

n•

G∑
g=1

ngSg, (2)

where n• =
∑G
g=1 ng, is an oft-used estimate of the common covariance matrix

across classes. In the high-dimensional case p > n• (implying p > ng) the Sg
and S• are singular and their inverses do not exist. Our primary interest thus
lies in estimating the precision matrices Ω1 = Σ−1

1 , . . . ,ΩG = Σ−1
G , as well as

their commonalities and differences, when p > n•. We will develop a general
`2-penalized ML framework to this end which we designate targeted fused ridge
estimation.

The estimation of multiple precision matrices from high-dimensional data
classes is of interest in many applications. The field of oncogenomics, for exam-
ple, often deals with high-dimensional data from high-throughput experiments.
Class membership may have different connotations in such settings. It may re-
fer to certain sub-classes within a single dataset such as cancer subtypes (cancer
is a very heterogeneous disease, even when present in a single organ). It may
also designate different datasets or studies. Likewise, the class indicator may
also refer to a conjunction of both subclass and study membership to form a
two-way design of factors of interest (e.g., breast cancer subtypes present in
a batch of study-specific datasets), as is often the case in oncogenomics. Our
approach is thus motivated by the meta-analytic setting, where we aim for
an integrative analysis in terms of simultaneously considering multiple data
(sub-)classes, datasets, or both. Its desire is to borrow statistical power across
classes by effectively increasing the sample size in order to improve sensitivity
and specificity of discoveries.

1.1 Relation to literature and overview

There have been many proposals for estimating a single precision matrix in
high-dimensional data settings. A popular approach is to amend (1) with an
`1-penalty [2, 18, 47, 48]. The solution to this penalized problem is generally
referred to as the graphical lasso and it is popular as it performs automatic
model selection, i.e., the resulting estimate is sparse. It is heavily used in
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Gaussian graphical modeling (GGM) as the support of a Gaussian precision
matrix represents a Markov random field [24].

The `1-approach has been extended to deal with more than a single sample-
group. Guo et al. [20] have proposed a parametrization of class-specific pre-
cision matrices that expresses the individual elements as a product of shared
and class-specific factors. They include `1-penalties on both the shared and
class-specific factors in order to jointly estimate the sparse precision matrices
(representing graphical models). The penalty on the shared factors promotes
a shared sparsity structure while the penalty on the class-specific factors pro-
motes class-specific deviations from the shared sparsity structure. Danaher
et al. [13] have generalized these efforts by proposing the joint graphical lasso
which allows for various penalty structures. They study two particular choices:
the group graphical lasso that encourages a shared sparsity structure across
the class-specific precision matrices, and the fused graphical lasso that pro-
motes a shared sparsity structure as well as shared precision element-values. A
Bayesian approach to inferring multiple sparse precision matrices can be found
in Peterson et al. [32].

While simultaneous estimation and model selection can be deemed elegant,
automatic sparsity is not always an asset. It may be that one is intrinsically
interested in more accurate representations of class-specific precision matrices
for usage in, say, covariance-regularized regression [45] or discriminant analysis
[33]. In such a situation one is not after sparse representations and one may
prefer usage of a regularization method that shrinks the estimated elements of
the precision matrices proportionally. In addition—when indeed considering
network representations of data—the true class-specific graphical models need
not be (extremely) sparse in terms of containing many zero elements. The
`1-penalty is unable to retrieve the sparsity pattern when the number of truly
non-null elements exceeds the available sample size [41]. In such a situation one
may wish to couple a non-sparsity-inducing penalty with a post-hoc selection
step allowing for probabilistic control over element selection. We therefore
consider `2 or ridge-type penalization.

In Section 2 the targeted fused ridge estimation framework will be presented.
The proposed fused `2-penalty allows for the simultaneous estimation of mul-
tiple precision matrices from high-dimensional data classes that chiefly share
the same structure but that may differentiate in locations of interest. The
approach is targeted in the sense that it allows for the specification of target
matrices that may encode prior information. The framework is flexible and
general, containing the recent work of Price et al. [33] and van Wieringen and
Peeters [41] as special cases. It may be viewed as a `2-alternative to the work
of Danaher et al. [13]. The method is contingent upon the selection of penalty
values and target matrices, topics that are treated in Section 3. Section 4 then
focuses on the graphical interpretation of precision matrices. It shows how the
fused ridge precision estimates may be coupled with post-hoc support deter-
mination in order to arrive at multiple graphical models. We will refer to this
coupling as the fused graphical ridge. This then serves as a basis for integrative
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or meta-analytic network modeling. Section 5 then assesses the performance
of the proposed estimator through extensive simulation experiments. Section
6 illustrates the techniques by applying it in a large scale integrative study
of gene expression data of diffuse large B-cell lymphoma. The focus is then
on finding common motifs and motif differences in network representations of
(deregulated) molecular pathways. Section 7 concludes with a discussion.

1.2 Notation

Some additional notation must be introduced. Throughout the text and supple-
mentary material, we use the following notation for certain matrix properties
and sets: We use A � 0 and B � 0 to denote symmetric positive definite
(p.d.) and positive semi-definite (p.s.d.) matrices A and B, respectively. By
R, R+, and R++ we denote the real numbers, the non-negative real numbers,
and the strictly positive real numbers, respectively. In notational analogue,
Sp, Sp+, and Sp++ are used to denote the space of p × p real symmetric ma-
trices, the real symmetric p.s.d. matrices, and real symmetric p.d. matrices,
respectively. That is, e.g., Sp++ = {X ∈ Rp×p : X = X> ∧X � 0}. Negative
subscripts similarly denote negative reals and negative definiteness. By A ≥ B
and similar we denote element-wise relations, i.e., (A)jq ≥ (B)jq for all (j, q).
Matrix subscripts will usually denote class membership, e.g., Ag denotes (the
realization of) matrix A in class g. For notational brevity we will often use the
shorthand {Ag} to denote the set {Ag}Gg=1.

The following notation is used throughout for operations: We write diag(A)
for the column vector composed of the diagonal of A and vec(A) for the vector-
ization operator which stacks the columns of A on top of each other. Moreover,
◦ will denote the Hadamard product while ⊗ refers to the Kronecker product.

We will also repeatedly make use of several special matrices and functions.
We let Ip denote the (p × p)-dimensional identity matrix. Similarly, Jp will
denote the (p × p)-dimensional all-ones matrix. In addition, 0 will denote the
null-matrix, the dimensions of which should be clear from the context. Lastly,
‖ · ‖2F and 1[ · ] will stand for the squared Frobenius norm and the indicator
function, respectively.

2 Targeted fused ridge estimation

2.1 A general penalized log-likelihood problem

SupposeG classes of (ng×p)-dimensional data exist and that the samples within
each class are i.i.d. normally distributed. The log-likelihood for the data takes
the following form under the additional assumption that all n• observations are
independent:

L ({Ωg}; {Sg}) ∝
∑
g

ng
{

ln|Ωg| − tr(SgΩg)
}
. (3)
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We desire to obtain estimates {Ω̂g} ∈ Sp++ of the precision matrices for each
class. Though not a requirement, we primarily consider situations in which
p > ng for all g, necessitating the need for regularization. To this end, amend
(3) with the fused ridge penalty given by

fFR ({Ωg}; {λg1g2}, {Tg})

=
∑
g

λgg
2

∥∥Ωg−Tg

∥∥2

F
+
∑
g1,g2

λg1g2
4

∥∥(Ωg1−Tg1)− (Ωg2−Tg2)
∥∥2

F
, (4)

where the Tg ∈ Sp+ indicate known class-specific target matrices (see also Sec-
tion 3.3), the λgg ∈ R++ denote class-specific ridge penalty parameters, and the
λg1g2 ∈ R+ are pair-specific fusion penalty parameters subject to the require-
ment that λg1g2 = λg2g1 . All penalties can then be conveniently summarized
into a non-negative symmetric matrix Λ = [λg1g2 ] which we call the penalty ma-
trix. The diagonal of Λ corresponds to the class-specific ridge penalties whereas
off-diagonal entries are the pair-specific fusion penalties. The rationale and use
of the penalty matrix is motivated further in Section 3.1. Combining (3) and
(4) yields a general targeted fused ridge estimation problem:

arg max
{Ωg}∈Sp++

{
L ({Ωg}; {Sg})− fFR ({Ωg}; {λg1g2}, {Tg})

}
. (5)

The problem of (5) is strictly concave. Furthermore, it is worth noting that
non-zero fusion penalties, λg1g2 > 0 for all g1 6= g2, alone will not guarantee
uniqueness when p > n•: In high dimensions, all ridge penalties λgg should
be strictly positive to ensure identifiability. These and other properties of the
estimation problem are reviewed in Section 2.2.

The problem stated in (5) is very general. We shall sometimes consider a
single common ridge penalty λgg = λ for all g, as well as a common fusion
penalty λg1g2 = λf for all class pairs g1 6= g2 (cf., however, Section 3.1) such
that Λ = λIp + λf (Jp − Ip). This simplification leads to the first special case:

arg max
{Ωg}∈Sp++

L ({Ωg}; {Sg})−
λ

2

∑
g

∥∥Ωg−Tg
∥∥2
F
−
λf

4

∑
g1,g2

∥∥(Ωg1−Tg1 )−(Ωg2−Tg2 )
∥∥2
F

 .

Here and analogous to (5), λ controls the rate of shrinkage of each precision Ωg

towards the corresponding target Tg [41], while λf determines the retainment
of entry-wise similarities between (Ωg1−Tg1) and (Ωg2−Tg2) for all class pairs
g1 6= g2.

When Tg = T for all g, the problem further simplifies to

arg max
{Ωg}∈Sp++

{
L ({Ωg}; {Sg})−

λ

2

∑
g

∥∥Ωg−T
∥∥2

F
− λf

4

∑
g1,g2

∥∥Ωg1−Ωg2

∥∥2

F

}
, (6)

where the targets are seen to disappear from the fusion term. Lastly, when
T = 0 the problem (6) reduces to its simplest form recently considered by
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Price et al. [33]. Appendix A studies, in order to support an intuitive feel for
the fused ridge estimation problem, its geometric interpretation in this latter
context.

2.2 Estimator and properties

There is no explicit solution to (5) except for certain special cases and thus
an iterative optimization procedure is needed for its general solution. As de-
scribed in Section 2.3, we employ a coordinate ascent procedure which relies
on the concavity of the penalized likelihood (see Lemma 5 in Appendix B.1)
and repeated use of the following result, whose proof (as indeed all proofs) has
been deferred to Appendix B.2:

Proposition 4
Let {Tg} ∈ Sp+ and let Λ ∈ SG be a fixed penalty matrix such that Λ ≥ 0
and diag(Λ) > 0. Furthermore, assume that Ωg is p.d. and fixed for all
g 6= g0. The maximizing argument for class g0 of the optimization problem
(5) is then given by

Ω̂g0

(
Λ, {Ωg}g 6=g0

)
=

{[
λ̄g0Ip +

1

4

(
S̄g0−λ̄g0T̄g0

)2]1/2
+

1

2

(
S̄g0−λ̄g0T̄g0

)}−1

(7)

where

S̄g0 = Sg0 −
∑
g 6=g0

λgg0
ng0

(Ωg−Tg), T̄g0 = Tg0 , and λ̄g0 =
λg0•
ng0

, (8)

with λg0• =
∑
g λgg0 denoting the sum of the g0th column (or row) of Λ.

Remark 2.1
Defining T̄g0 = Tg0 in Proposition 4 may be deemed redundant. However, it
allows us to state equivalent alternatives to (8) without confusing notation.
See Section 2.3 as well as Appendix B.2 and Section 1 of the Supplementary
Material.

Remark 2.2
The target matrices from Proposition 4 may be chosen nonnegative definite.
However, choosing n.d. targets may lead to ill-conditioned estimates in the
limit. From a shrinkage perspective we thus prefer to choose {Tg} ∈ Sp++.
See Section 3.3.
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2 Targeted fused ridge estimation

Proposition 4 provides a function for updating the estimate of the g0th class
while fixing the remaining parameters. As a special case, consider the following.
If all off-diagonal elements of Λ are zero no ‘class fusion’ of the estimates takes
place and the maximization problem decouples into G individual, disjoint ridge
estimations: See Corollary 1 in Appendix B.2. The next result summarizes
some properties of (7):

Proposition 5
Consider the estimator of Proposition 4 and its accompanying assumptions.

Let Ω̂g ≡ Ω̂g

(
Λ, {Ωg′}g′ 6=g

)
be the precision matrix estimate of the gth class.

For this estimator, the following properties hold:

i. Ω̂g � 0 for all λgg ∈ R++;

ii. lim
λgg→0+

Ω̂g = S−1
g if

∑
g′ 6=g λgg′ = 0 and p ≤ ng;

iii. lim
λgg→∞−

Ω̂g = Tg if λgg′ <∞ for all g′ 6= g;

iv. lim
λg1g2→∞−

(Ω̂g1 − Tg1) = lim
λg1g2→∞−

(Ω̂g2 − Tg2) if λg′1g′2 < ∞ for all

{g′1, g′2} 6= {g1, g2}.

The first item of Proposition 5 implies that strictly positive λgg are sufficient
to guarantee p.d. estimates from the ridge estimator. The second item then
implies that if ‘class fusion’ is absent one obtains as the right-hand limit for
group g the standard MLE S−1

g , whose existence is only guaranteed when p ≤
ng. The third item shows that the fused ridge precision estimator for class
g is shrunken exactly to its target matrix when the ridge penalty tends to
infinity while the fusion penalties do not. The last item shows that the precision
estimators of any two classes tend to a common estimate when the fusion
penalty between them tends to infinity while all remaining penalty parameters
remain finite.

The attractiveness of the general estimator hinges upon the efficiency by
which it can be obtained. We state a result useful in this respect before turning
to our computational approach in Section 2.3:

Proposition 6
Let Ω̂g ≡ Ω̂g

(
Λ, {Ωg′}g′ 6=g

)
be the precision matrix estimate (7) for the

gth class and define [Ω̂g]
−1 ≡ Σ̂g. The estimate Ω̂g can then be obtained

without inversion through:

Ω̂g =
1

λ̄g

[
Σ̂g − (S̄g − λ̄gT̄g)

]
=

1

λ̄g

{[
λ̄gIp +

1

4

(
S̄g − λ̄gT̄g0

)2]1/2

− 1

2

(
S̄g − λ̄gT̄g

)}
.
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2.3 Algorithm

Equation (7) allows for updating the precision estimate Ω̂g of class g by plug-

ging in the remaining Ω̂′g, g
′ 6= g, and assuming them fixed. Hence, from initial

estimates, all precision estimates may be iteratively updated until some con-
vergence criterion is reached. We propose a block coordinate ascent procedure
to solve (5) by repeated use of the results in Proposition 4. This procedure is
outlined in Algorithm 2. By the strict concavity of the problem in (5), the pro-
cedure guarantees that, contingent upon convergence, the unique maximizer is
attained when considering all Ω̂g jointly. Moreover, we can state the following
result:

Proposition 7
The gradient ascent procedure given in Algorithm 2 will always stay within
the realm of positive definite matrices Sp++.

Algorithm 2 Pseudocode for the fused ridge block coordinate ascent proce-
dure.

1: Input:
2: Sufficient data: (S1, n1), . . . , (SG, nG)
3: Penalty matrix: Λ
4: Convergence criterion: ε > 0
5: Output:
6: Estimates: Ω̂1, . . . , Ω̂G

7: procedure ridgeP.fused(S1, . . . ,SG, n1, . . . , nG,Λ, ε)

8: Initialize: Ω̂
(0)
g for all g.

9: for c = 1, 2, 3, . . . do
10: for g = 1, 2, . . . , G do

11: Update Ω̂
(c)
g := Ω̂g

(
Λ, Ω̂

(c)
1 , . . . , Ω̂

(c)
g−1, Ω̂

(c−1)
g+1 , . . . , Ω̂

(c−1)
G

)
by

(7).
12: end for

13: if maxg

{
‖Ω̂(c)

g −Ω̂(c−1)
g ‖2F

‖Ω̂(c)
g ‖2F

}
< ε then

14: return
(
Ω̂

(c)
1 , . . . , Ω̂

(c)
G

)
15: end if
16: end for
17: end procedure

The procedure is implemented in the rags2ridges package within the R sta-
tistical language [34]. This implementation focuses on stability and efficiency.
With regard to the former: Equivalent (in terms of the obtained estimator)
alternatives to (8) can be derived that are numerically more stable for extreme
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3 Penalty and target selection

values of Λ. The most apparent such alternative is:

S̄g0 = Sg0 , T̄g0 = Tg0 +
∑
g 6=g0

λgg0
λg0•

(Ωg−Tg), and λ̄g0 =
λg0•
ng0

. (9)

It ‘updates’ the target T̄g instead of the covariance S̄g and has the intuitive
interpretation that the target matrix for a given class in the fused case is a
combination of the actual class target matrix and the ‘target corrected’ esti-
mates of remaining classes. The implementation makes use of this alternative
where appropriate. See Section 1 of the Supplementary Material for details on
alternative updating schemes.

Efficiency is secured through various roads. First, in certain special cases
closed-form solutions to (5) exist. When appropriate, these explicit solutions
are used. Moreover, these solutions may provide warm-starts for the general
problem. See Section 2 of the Supplementary Material for details on estimation
in these special cases. Second, the result from Proposition 6 is used, meaning
that the relatively expensive operation of matrix inversion is avoided. Third,
additional computational speed was achieved by implementing core operations
in C++ via the R-packages Rcpp and RcppArmadillo [14, 15, 17, 38]. These
efforts make analyzes with large p feasible. Throughout, we will initialize the

algorithm with Ω̂
(0)
g = p/ tr(S•) · Ip for all g.

3 Penalty and target selection

3.1 The penalty graph and analysis of factorial designs

Equality of all class-specific ridge penalties λgg is deemed restrictive, as is
equality of all pair-specific fusion penalties λg1g2 . In many settings, such as
the analysis of factorial designs, finer control over the individual values of λgg
and λg1g2 befits the analysis. This will be motivated by several examples of
increasing complexity. In order to do so, some additional notation is developed:
The penalties of Λ can be summarized by a node- and edge-weighted graph
P = (W,H) where the vertex set W corresponds to the possible classes and the
edge set H corresponds to the similarities to be retained. The weight of node
g ∈ W is given by λgg and the weight of edge (g1, g2) ∈ H is then given by
λg1g2 . We refer to P as the penalty graph associated with the penalty matrix
Λ. The penalty graph P is simple and undirected as the penalty matrix is
symmetric.

Example 3.1
Consider G = 2 classes or subtypes (ST) of diffuse large B-cell lymphoma
(DLBCL) patients with tumors resembling either so-called activated B-cells
(ABC) or germinal centre B-cells (GCB). Patients with the latter subtype
have superior overall survival [1]. As the GCB phenotype is more common
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than ABC, one might imagine a scenario where the two class sample sizes are
sufficiently different such that nGCB � nABC. Numeric procedures to obtain
a common ridge penalty (see, e.g., Section 3.2) would then be dominated by
the smaller group. Hence, choosing non-equal class ridge penalties for each
group will allow for a better analysis. In such a case, the following penalty
graph and matrix would be suitable:

P = λ11

ABC

λ22

GCB
λf

Λ =

[
λ11 λf
λf λ22

]
. (10)

�

Example 3.2
Consider data from a one-way factorial design where the factor is ordinal
with classes A, B, and C. For simplicity, we choose the same ridge penalty
λ for each class. Say we have prior information that A is closer to B and
B is closer to C than A is to C. The fusion penalty on the pairs containing
the intermediate level B might then be allowed to be stronger. The following
penalty graph and matrix are thus sensible:

P = λ

A

λ

C

λ

B
λB λB

λAC

Λ =

 λ λB λAC

λB λ λB

λAC λB λ

 . (11)

Depending on the application, one might even omit the direct shrinkage
between A and C by fixing λAC = 0. A similar penalty scheme might also be
relevant if one class of the factor is an unknown mix of the remaining classes
and one wishes to borrow statistical power from such a class. �

Example 3.3
In two-way or n-way factorial designs one might wish to retain similarities in
the ‘direction’ of each factor along with a factor-specific penalty. Consider,
say, 3 oncogenic datasets (DS1, DS2, DS3) regarding ABC and GCB DLBCL
cancer patients. This yields a total of G = 6 classes of data. One choice of
penalization of this 2 by 3 design is represented by the penalty graph and
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3 Penalty and target selection

matrix below:

P =

λ λ λ

λ λ λ

λDS λDS

λDS λDS

λST λST λST

λDS

λDS

DS1 DS2 DS3

GCB

ABC

Λ =


λ λDS λDS λST 0 0
λDS λ λDS 0 λST 0
λDS λDS λ 0 0 λST
λST 0 0 λ λDS λDS
0 λST 0 λDS λ λDS
0 0 λST λDS λDS λ

. (12)

This example would favor similarities (with the same force) only between
pairs sharing a common level in each factor. This finer control allows users,
or the employed algorithm, to penalize differences between datasets more (or
less) strongly than differences between the ABC and GCB sub-classes. This
corresponds to not applying direct shrinkage of interaction effects which is
of interest in some situations. �

While the penalty graph primarily serves as an intuitive overview, it does
provide some aid in the construction of the penalty matrix for multifactorial de-
signs. For example, the construction of the penalty matrix (12) in Example 3.3
corresponds to a Cartesian graph product of two complete graphs similar to
those given in (10) and (11). We state that P and Λ should be chosen care-
fully in conjunction with the choice of target matrices. Ideally, only strictly
necessary penalization parameters (from the perspective of the desired analy-
sis) should be introduced. Each additional penalty introduced will increase the
difficulty of finding the optimal penalty values by increasing the dimension of
the search-space.

3.2 Selection of penalty parameters

As the `2-penalty does not automatically induce sparsity in the estimate, it is
natural to seek loss efficiency. We then use cross-validation (CV) for penalty
parameter selection due to its relation to the minimization of the Kullback-
Leibler divergence and its predictive accuracy stemming from its data-driven
nature. Randomly divide the data of each class into k = 1, . . . ,K disjoint
subsets of approximately the same size. Previously, we have defined Ω̂g ≡
Ω̂g

(
Λ, {Ωg′}g′ 6=g

)
to be the precision matrix estimate of the gth class. Let

Ω̂¬kg be the analogous estimate (with similar notational dependencies) for class

g based on all samples not in k. Also, let Skg denote the sample covariance

matrix for class g based on the data in subset k and let nkg denote the size of
subset k in class g. The K-fold CV score for our fused regularized precision
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estimate based on the fixed penalty Λ can then be given as:

KCV(Λ) =
1

KG

G∑
g=1

K∑
k=1

nkg

[
− ln |Ω̂¬kg |+ tr(Ω̂¬kg Skg)

]

= − 1

KG

G∑
g=1

K∑
k=1

Lkg
(
Ω̂¬kg ; Skg

)
.

One would then choose Λ∗ such that

Λ∗ = arg min
Λ

KCV(Λ), subject to: Λ ≥ 0 ∧ diag(Λ) > 0. (13)

The least biased predictive accuracy can be obtained by choosing K = ng
such that nkg = 1. This would give the fused version of leave-one-out CV
(LOOCV). Unfortunately, LOOCV is computationally demanding for large p
and/or large ng. We propose to select the penalties by the computationally
expensive LOOCV only if adequate computational power is available. In cases
where it is not, we propose two alternatives.

Our first alternative is a special version of the LOOCV scheme that sig-
nificantly reduces the computational cost. The special LOOCV (SLOOCV) is
computed much like the LOOCV. However, only the class estimate in the class
of the omitted datum is updated. More specifically, the SLOOCV problem is
given by:

Λ� = arg min
Λ

SLOOCV(Λ), subject to: Λ ≥ 0 ∧ diag(Λ) > 0, (14)

with

SLOOCV(Λ) = − 1

n•

G∑
g=1

ng∑
i=1

Lig
(
Ω̃¬ig ; Sig

)
.

The estimate Ω̃¬ig in (14) is obtained by updating only Ω̂g using Proposition 4.

For all other g′ 6= g, Ω̃¬ig′ = Ω̂g. The motivation for the SLOOCV is that a
single observation in a given class g does not exert heavy direct influence on the
estimates in the other classes. This way the number of fused ridge estimations
for each given Λ and each given leave-one-out sample is reduced from n• to G
estimations. Our second and fastest alternative is an approximation of the fused
LOOCV score. This approximation can be used as an alternative to (S)LOOCV
when the class sample sizes are relatively large (precisely the scenario where
LOOCV is unfeasible). See Section 3 of the Supplementary Material for detailed
information on this approximation.

3.3 Choice of target matrices

The target matrices {Tg} can be used to encode prior information and their
choice is highly dependent on the application at hand. As they influence the
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4 Fused graphical modeling

efficacy as well as the amount of bias of the estimate, it is of some importance
to make a well-informed choice. Here, we describe several options of increasing
level of informativeness.

In the non-fused setting, the consideration of a scalar target matrix T =
αIp for some α ∈ [0,∞) leads to a computational benefit stemming from the
property of rotation equivariance [41]: Under such targets the ridge estimator
only operates on the eigenvalues of the sample covariance matrix. This benefit
transfers to the fused setting for the estimator described in Proposition 4.
Hence, one may consider Tg = αgIp with αg ∈ [0,∞) for each g. The limited
fused ridge problem in Price et al. [33] corresponds to choosing αg = 0 for all g,
such that a common target Tg = T = 0 is employed. This can be considered
the least informative target possible. We generally argue against the use of
the non p.d. target T = 0, as it implies shrinking the class precision matrices
towards the null matrix and thus towards infinite variance.

Choosing αg to be strictly positive implies a (slightly) more informative
choice. The rotation equivariance property dictates that it is sensible to choose
αg based on empirical information regarding the eigenvalues of Sg. One such
choice could be the average of the reciprocals of the non-zero eigenvalues of
Sg. A straightforward alternative would be to choose αg = [tr(Sg)/p]

−1. In
the special case of (6) where all αg = α the analogous choice would be α =
[tr(S•)/p]

−1.
More informative targets would move beyond the scalar matrix. An example

would be the consideration of factor-specific targets for factorial designs. Re-
calling Example 3.3, one might deem the dataset factor to be a ‘nuisance factor’.
Hence, one might choose different targets TGCB and TABC based on training
data or the pooled estimates of the GCB and ABC samples, respectively. In
general, the usage of pilot training data or (pathway) database information (or
both) allows for the construction of target matrices with higher specificity. We
illustrate how to construct targets from database information in the DLBCL
application of Section 6.

4 Fused graphical modeling

4.1 To fuse or not to fuse

As a preliminary step to downstream modeling one might consider testing the
hypothesis of no class heterogeneity—and therefore the necessity of fusing—
amongst the class-specific precision matrices. Effectively, one then wishes to
test the null-hypothesis H0 : Ω1 = . . . = ΩG. Under H0 an explicit estimator is
available in which the fused penalty parameters play no role, cf. Section S2.2 of
the Supplementary Material. Here we suggest a score test [6] for the evaluation
of H0 in conjunction with a way to generate its null distribution in order to
assess its observational extremity.

A score test is convenient as it only requires estimation under the null
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hypothesis, allowing us to exploit the availability of an explicit estimator. The
score statistic equals:

U = −
G∑
g=1

(
∂L({Ωg}; {Sg})

∂Ωg

)>(
∂2L({Ωg}; {Sg})

∂Ωg∂Ω>g

)−1
∂L({Ωg}; {Sg})

∂Ωg

∣∣∣∣∣
Ωg=Ω̂H0

,

where Ω̂H0 denotes the precision estimate under H0 given in (S4), which holds
for all classes g. The gradient can be considered in vectorized form and is readily
available from (26). The Hessian of the log-likelihood equals ∂2L/(∂Ωg∂Ω>g ) =

−Ω−1
g ⊗Ω−1

g . For practical purposes of evaluating the score statistic, we employ

the identity (A> ⊗B) vec(C) = vec(BCA) which avoids the manipulation of
(p2 × p2)-dimensional matrices. Hence, the test statistic U is computed by

Û =

G∑
g=1

vec(X̂g)
> vec(Ω̂H0X̂gΩ̂

H0) =

G∑
g=1

tr
[
X̂g(Ω̂

H0X̂gΩ̂
H0)
]
,

where X̂g = ng{2[(Ω̂H0)−1 − Sg]− [(Ω̂H0)−1 − Sg] ◦ Ip}.
The null distribution of U can be generated by permutation of the class

labels: one permutes the class labels, followed by re-estimation of Ω under
H0 and the re-calculation of the test statistic. The observed test statistic
(under H0) Û is obtained from the non-permuted class labels and the regular
fused estimator. The p-value is readily obtained by comparing the observed
test statistic Û to the null distribution obtained from the test statistic under
permuted class labels. We note that the test is conditional on the choice of λgg.

4.2 Graphical modeling

A contemporary use for precision matrices is found in the reconstruction and
analysis of networks through graphical modeling. Graphical models merge
probability distributions of random vectors with graphs that express the con-
ditional (in)dependencies between the constituent random variables. In the
fusion setting one might think that the class precisions share a (partly) com-
mon origin (conditional independence graph) to which fusion appeals. We focus
on class-specific graphs Gg = (V,Eg) with a finite set of vertices (or nodes) V
and set of edges Eg. The vertices correspond to a collection of random variables
and we consider the same set V = {Y1, . . . , Yp} of cardinality p for all classes
g. That is, we consider the same p variables in all G classes. The edge set
Eg is a collection of pairs of distinct vertices (Yj , Yj′) that are connected by
an undirected edge and this collection may differ between classes. In case we
assume {Y1, . . . , Yp} ∼ Np(0,Σg) for all classes g we are considering multiple
Gaussian graphical models.

Conditional independence between a pair of variables in the Gaussian graph-
ical model corresponds to zero entries in the (class-specific) precision matrix.

Let Ω̂g denote a generic estimate of the precision matrix in class g. Then the
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4 Fused graphical modeling

following relations hold for all pairs {Yj , Yj′} ∈ V with j 6= j′:

(Ω̂g)jj′ = ω
(g)

jj′ = 0 ⇐⇒ Yj ⊥⊥ Yj′
∣∣ V \ {Yj , Yj′} in class g ⇐⇒ (Yj , Yj′) 6∈ Eg.

Hence, determining the (in)dependence structure of the variables for class g—
or equivalently the edge set Eg of Gg—amounts to determining the support of

Ω̂g.

4.3 Edge selection

We stress that support determination may be skipped entirely as the estimated
precision matrices can be interpreted as complete (weighted) graphs. For more
sparse graphical representations we resort to support determination by a local
false discovery rate (lFDR) procedure [16] proposed by Schäfer and Strimmer
[39]. This procedure assumes that the nonredundant off-diagonal entries of the
partial correlation matrix

(P̂g)jj′ = −ω̂(g)
jj′

(
ω̂

(g)
jj ω̂

(g)
j′j′

)− 1
2

follow a mixture distribution representing null and present edges. The null-
distribution is known to be a scaled beta-distribution which allows for estimat-
ing the lFDR:

l̂FDR
(g)
jj′ = P

(
(Yj , Yj′) 6∈ Eg

∣∣∣ (P̂g)jj′
)
,

which gives the empirical posterior probability that the edge between Yj and
Yj′ is null in class g conditional on the observed corresponding partial cor-
relation. The analogous probability that an edge is present can be obtained

by considering 1 − l̂FDR
(g)
jj′ . See [16, 39, 41] for further details on the lFDR

procedure. Our strategy will be to select for each class only those edges for

which 1− l̂FDR
(g)
jj′ surpasses a certain threshold (see Section 6). This two-step

procedure of regularization followed by subsequent support determination has
the advantage that it enables probabilistic statements about the inclusion (or
exclusion) of edges.

4.4 Common and differential (sub-)networks

After estimation and sparsification of the class precision matrices the identifi-
cation of commonalities and differences between the graphical estimates are of
natural interest. Here we consider some (summary) measures to aid such iden-
tifications. Assume in the following that multiple graphical models have been
identified by the sparsified estimates Ω̂0

1, . . . , Ω̂
0
G and that the corresponding

graphs are denoted by G1, . . . ,GG.
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An obvious method of comparison is by pairwise graph differences or in-
tersections. We utilize the differential network Gg1\g2 = (V,Eg1 \ Eg2) be-
tween class g1 and g2 to provide an overview of edges present in one class
but not the other. The common network G1∩2 = (V,E1 ∩ E2) is composed
of the edges present in both graphs. We also define the edge-weighted to-
tal network of m ≤ G graphs G1, . . . ,Gm as the graph formed by the union
G1∪···∪m = (V,E1 ∪ · · · ∪Em) where the weight wjj′ of the edge ejj′ is given by
the cardinality of the set {g ∈ {1, . . . ,m} : ejj′ ∈ Eg}. More simply, G1∪···∪m is
determined by summing the adjacency matrices of G1 to Gm. Analogously, the
signed edge-weighted total network takes into account the stability of the sign
of an edge over the classes by summing signed adjacency matrices. Naturally,
the classes can also be compared by one or more summary statistics at node-,
edge-, and network-level per class, cf. [29].

We also propose the idea of ‘network rewiring’. Suppose an investigator
is interested in the specific interaction between genes A and B for classes g1

and g2. The desire is to characterize the dependency between genes A and
B and determine the differences between the two classes. To do so, we sug-
gest using the decomposition of the covariance of A and B into the individual
contributions of all paths between A and B. A path z between A and B of
length tz in a graph for class g is, following Lauritzen [24], defined to be a
sequence A = v0, . . . , vtz = B of distinct vertices such that (vd−1, vd) ∈ Eg for
all d = 1, . . . , tz. The possibility of the mentioned decomposition was shown
by Jones and West [22] and, in terms of Ω̂0

g = [ωjj′ ], can be stated as:

Cov(A,B) =
∑

z∈ZAB

(−1)tz+1ωAv1ωv1v2ωv2v3 · · ·ωvtz−2vtz−1ωvtz−1B
|(Ω̂0

g)¬P |
|Ω̂0

g|
, (16)

where ZAB is the set of all paths between A and B and (Ω̂0
g)¬P denotes the

matrix Ω̂0
g with rows and columns corresponding to the vertices of the path

z removed. Each term of the covariance decomposition in (16) can be inter-
preted as the flow of information through a given path z between A and B
in Gg. Imagine performing this decomposition for A and B in both Ω̂0

g1 and

Ω̂0
g2 . For each path, we can then identify whether it runs through the common

network Gg1∩g2 , or utilizes the differential networks Gg2\g1 ,Gg1\g2 unique to the
classes. The paths that pass through the differential networks can be thought
of as a ‘rewiring’ between the groups (in particular compared to the common
network). In summary, the covariance between a node pair can be separated
into a component that is common and a component that is differential (or
rewired).
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Example 4.1
Suppose we have the following two graphs for classes g1 = 1 and g2 = 2:

G1 = A

B 3

45

G2 = A

B 3

45

and consider the covariance between node A and B. In G1 the covariance
Cov(YA, YB) is decomposed into contributions by the paths (A,B), (A, 5, B),
and (A, 5, 4, B). Similarly for G2, the contributions are from paths (A, 5, B)
and (A, 5, 4, 3, B). Thus (A, 5, B) is the only shared path. Depending on the
size of the contributions we might conclude that network 1 has some ‘rewired
pathways’ compared to the other. This method gives a concise overview of
the estimated interactions between two given genes, which genes mediate or
moderate these interactions, as well as how the interaction patterns differ
across the classes. In turn this might suggest candidate genes for perturba-
tion or knock-down experiments. �

5 Simulation study

In this section we explore and measure the performance of the fused estimator
and its behavior in four different scenarios. Performance is measured primarily
by the squared Frobenius loss,

L
(g)
F

(
Ω̂g(Λ),Ωg

)
=
∥∥Ω̂g(Λ)−Ωg

∥∥2

F
,

between the class precision estimate and the true population class precision
matrix. However, the performance is also assessed in terms of the quadratic
loss,

L
(g)
Q

(
Ω̂g(Λ),Ωg

)
=
∥∥Ω̂g(Λ)Ω−1

g − Ip
∥∥2

F
.

The risk defined as the expected loss associated with an estimator, say,

RF
{
Ω̂g(Λ)

}
= E

[
L

(g)
F

(
Ω̂g(Λ),Ωg

)]
,

is robustly approximated by the median loss over a repeated number of simu-
lations and corresponding estimations.

We designed four simulation scenarios to explore the properties and perfor-
mance of the fused ridge estimator and alternatives. Scenario (1) evaluates the
fused ridge estimator under two choices of the penalty matrix, the non-fused
ridge estimate applied individually to the classes, and the non-fused ridge esti-
mate using the pooled covariance matrix when (1a) Ω1 = Ω2 and (1b) Ω1 6= Ω2.
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Scenario (2) evaluates the fused ridge estimator under different choices of tar-
gets: (2a) T1 = T2 = 0, (2b) T1 = T2 = αIp, and (2c) T1 = T2 = Ω.
Scenario (3) evaluates the fused ridge estimator for varying network topologies
and degrees of class homogeneity. Specifically, for (3a) scale-free topology and
(3b) small-world topology, each with (3i) low class homogeneity and (3ii) high
class homogeneity. Scenario (4) investigates the fused estimator under non-
equal class sample sizes. Except for scenario 4, we make no distinction between
the loss in different classes. Except for scenario 1, we use penalty matrices of
the form Λ = λIp + λf (Jp − Ip).

5.1 Scenario 1: Fusion versus no fusion

Scenario 1 explores the loss-efficiency of the fused estimate versus non-fused
estimates as a function of the class sample size ng for fixed p and hence for
different p/n• ratios. Banded population precision matrices are simulated from
G = 2 classes. We set p = 30 and

(Ωg)jj′ =
k + 1

|j − j′|+ 1
1
[
|j − j′| ≤ k

]
(17)

with k non-zero off-diagonal bands. The sub-scenario (1a) Ω1 = Ω2 uses k = 15
bands whereas (1b) Ω1 6= Ω2 uses k = 15 bands for Ω1 and k = 2 bands for Ω2.
Hence, identical and very different population precision matrices are considered,
respectively.

For ng = 10, 25, 70 the loss over 20 repeated runs was computed. In each
run, the optimal unrestricted penalty matrix Λ was determined by LOOCV.
The losses were computed for (1i) the fused ridge estimator with an unrestricted
penalty matrix, (1ii) the fused ridge estimator with a restricted penalty ma-
trix such that λ11 = λ22, (1iii) the regular non-fused ridge estimator applied
separately to each class, and (1iv) the regular non-fused ridge estimator using
the pooled estimate S•. In all cases the targets T1 = T2 = α•Ip were used
with α• = p/ tr(S•). The risk and quartile losses for scenario 1 are seen in the
boxplots of Figure 1A.

Generally, the unrestricted fused estimates are found to perform at least as
well as the (superior of the) non-fused estimates. This can be expected as the
fused ridge estimate might be regarded as an interpolation between using the
non-fused ridge estimator on the pooled data and within each class separately.
Hence, the LOOCV procedure is thus able to capture and select the appropri-
ate penalties both when the underlying population matrices are very similar
and when they are very dissimilar. In the case of differing class population pre-
cision matrices, the restricted fused ridge estimator (that uses the single ridge
penalty λ11 = λ22) performs somewhat intermediately, indicating again the
added value of the flexible penalty setup. It is unsurprising that the non-fused
estimate using the pooled covariance matrix is superior in scenario 1b, where
Ω1 = Ω2, as it is the explicit estimator in this scenario, cf. Section S2.2 of the
Supplementary Material.
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Fig. 1: A: Results for Scenario 1. The losses against the class samples size for different
ridge estimators under unequal and equal class population matrices. B: Results for Scenario
2. The losses against the class sample size with different target matrices.

5.2 Scenario 2: Target versus no target

Scenario 2 investigates the added value of the targeted approach to fused preci-
sion matrix estimation compared to that of setting Tg = 0 which reduces to the
special-case considered by Price et al. [33]. We simulated datasets with G = 2
classes from banded precision matrices (as given in (17)) with p = 50 variables
and k = 25 bands for varying class sample sizes ng and target matrices T1 and
T2. The performance was evaluated using (2a) T1 = T2 = 0, (2b) Tg = α•Ip,
as above, and (2c) the spot-on target T1 = T2 = Ω for each of ng = 25, 50, 125
class sample sizes.

As above, risks were estimated by the losses for each class over 20 simulation
repetitions. The optimal penalties where determined by LOOCV with penalty
matrices of the form Λ = λIp + λf (Jp − Ip). The results are shown in the
boxplots in Panel B of Figure 1. As expected, the spot-on target shows superior
performance in terms of loss in all cases. This suggests that well-informed
choices of the target can greatly improve the estimation and that the algorithm
will put emphasis on the target if it reflects the truth. Such behavior is also
seen analytically in the ridge estimator of Schäfer and Strimmer [39] inferred
from their closed expression of the optimal penalty. We see that using the
scalar target α•Ip resuts in an as-good or lower risk in terms of the quadratic
but not the Frobenius loss compared to the no-target situation.

As this scenario corresponds to the case of Price et al. [33] we performed
a secondary timing benchmark of their accompanying RidgeFusion package
compared to rags2ridges. We evaluated estimation time of each package on a
single simulated dataset with p = 50, G = 2, and n1 = n2 = 10 using a banded
matrix as before. The average estimation times over 100 model fits where 17.2
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and 46.6 milliseconds for packages rags2ridges and RidgeFusion, respectively.
This approximates a factor 2.71 speed-up for a single model fit. The timing
was done using the package microbenchmark [28] and the estimates from each
package were in agreement within expected numerical precision.

5.3 Scenario 3: Varying topology and class (dis)similarity

Scenario 3 investigates the fused estimator with G = 3 classes for (3i) high and
(3ii) low class homogeneity and two different latent random graph topologies
on p = 50 variables. The topologies are the (3a) ‘small-world’ and the (3b)
‘scale-free’ topology generated by Watts-Strogatz and Barabási graph games,
respectively. The former generates topologies where all node degrees are similar
while the latter game generates networks with (few) highly connected hubs.
From the generated topology, we construct a latent precision matrix Ψ with
diagonal elements set to 1 and the non-zero off-diagonal entries dictated by the
network topology set to 0.1.

The two topologies are motivated as they imitate many real phenomena and
processes. Small-world topologies approximate systems such as power grids, the
neural network of the worm C. elegans, and the social networks of film actors
[27, 43]. Conversely, scale-free topologies approximate many social networks,
protein-protein interaction networks, airline networks, the world wide web, and
the internet [3, 4].

We control the inter-class homogeneity using a latent inverse Wishart dis-
tribution for each class covariance matrix as considered by Bilgrau et al. [9].
That is, we let

Σg = Ω−1
g ∼ W−1

p

(
(ν − p− 1)Φ−1, ν

)
, ν > p+ 1 (18)

where W−1
p (Θ, ν) denotes an inverse Wishart distribution with scale matrix

Θ and ν degrees of freedom. The parametrization implies the expected value
E[Σg] = E[Ω−1

g ] = Φ−1 and thus Φ defines the latent expected topology.
We simulate from a multivariate normal distribution as before conditional on
the realized covariance Σg. In (18), the parameter ν controls the inter-class
homogeneity. Large ν imply that Ω1 ≈ Ω2 ≈ Ω3 and thus a large class
homogeneity. Small values of ν → (p+ 1)+ imply large heterogeneity.

For the simulations, we chose (i) ν = 100 and (ii) ν = 1000. Again we
fitted the model using both the zero target as well as the scalar matrix target
described above using the reciprocal value of the mean eigenvalue, i.e., T1 =
T2 = T3 = αIp for both α = 0 and α = p/ tr(S•). The estimation was repeated
20 times for each combination of high/low class similarity, network topology,
choice of target, and class sample-size n1 = n2 = n3 = 25, 50, 125. Panels A
and B of Figure 2 show box-plots of the results.

First, the loss is seen to be dependent on the network topology, irrespective
of the loss function. Second, as expected, the loss is strongly influenced by the
degree of class (dis)similarity where a higher homogeneity yields a lower loss.
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Fig. 2: A: Scenario 3. The Frobenius loss as a function of sample size under different
topologies and degree of similarity. B: Scenario 3. The quadratic loss as a function of sample
size under different topologies and degree of similarity. C: Scenario 4. The loss as a function
of sample size of class 1 with fixed sample size for class 2.

Intuitively, this makes sense as the estimator can borrow strength across the
classes and effectively increase the degrees of freedom in each class. Third, the
targeted approach has a superior loss in all cases with a high class homogeneity
and thus the gain in loss-efficiency is greater for the targeted approach. For low
class homogeneity, the targeted approach performs comparatively to the zero
target with respect to the Frobenius loss while it is seemingly better in terms
of quadratic loss. Measured by quadratic loss, the targeted approach nearly
always outperforms the zero target.

5.4 Scenario 4: Unequal class sizes

Scenario 4 explores the fused estimator under unequal class sample sizes. We
simulated data with k = 8 non-zero off-diagonal bands, G = 2, and p = 50.
The number of samples in class 2 was fixed at n2 = 30 while the number of
samples in class 1 were varied: n1 = 5, 25, 50, 75. The results of the simulation
are shown in Panel C of Figure 2. Note that we consider the Frobenius and
quadratic loss within each class separately here.

Not surprisingly, the fused estimator performs better (for both classes) when
n• increases. Perhaps more surprising, there seems to be no substantial differ-
ence in quadratic loss for group n1 and n2 suggesting that the fusion indeed
borrows strength from the larger class. A loss difference is only visible in the
most extreme case where n1 = 5 and n2 = 30. The relative difference however
is not considered large.
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6 Applications

Lymphoma refers to a group of cancers that originate in specific cells of the
immune system such as white blood T- or B-cells. Approximately 90% of
all lymphoma cases are non-Hodgkin’s lymphomas—a diverse group of blood
cancers excluding Hodgkin’s disease—of which the aggressive diffuse large B-
cell lymphomas (DLBCL) constitutes the largest subgroup [21]. We showcase
the usage of the fused ridge estimator through two analyzes of DLBCL data.

In DLBCL, there exists at least two major genetic subtypes of tumors named
after their similarities in genetic expression with activated B-cells (ABC) and
germinal centre B-cells (GCB). A third umbrella class, usually designated as
Type III, contains tumors that cannot be classified as being either of the ABC
or GCB subtype. Patients with tumors of GCB class show a favorable clinical
prognosis compared to that of ABC. Even though the genetic subtypes have
been known for more than a decade [1] and despite the appearance of refine-
ments to the DLBCL classification system [? ], DLBCL is still treated as a
singular disease in daily clinical practice and the first differentiated treatment
regimens have only recently started to appear in clinical trials [30, 36]. Many
known phenotypic differences between ABC and GCB are associative, which
might underline the translational inertia.fba Hence, the biological underpin-
nings and functional differences between ABC and GCB are of central interest
and the motivation for the analyzes below.

Incorrect regulation of the NF-κB signaling pathway, responsible for i.a.
control of cell survival, has been linked to cancer. This pathway has certain
known drivers of deregulation. Aberrant interferon β production due to recur-
rent oncogenic mutations in the central MYD88 gene interferes with cell cycle
arrest and apoptosis [46]. It also well-known that BCL2, another member of
the NF-κB pathway, is deregulated in DLBCL [40]. Moreover, a deregulated
NF-κB pathway is a key hallmark distinguishing the poor prognostic ABC sub-
class from the good prognostic GCB subclass of DLBCL [35]. Our illustrative
analyzes thus focus on the functional differences between ABC and GCB in
relation to the NF-κB pathway. Section 6.1 investigates the DLBCL classes in
the context of a single dataset on the NF-κB signalling pathway. Section 6.2
analyzes multiple DLBCL NF-κB datasets with a focus on finding common mo-
tifs and motif differences in network representations of pathway-deregulation.
These analyzes show the value of a fusion approach to integration. In all an-
alyzes we take the NF-κB pathway and its constituent genes to be defined by
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [23].

6.1 Nonintegrative analysis of DLBCL subclasses

We first analyze the data from ? ], consisting of 89 DLBCL tumor samples.
These samples were RMA-normalized using custom brainarray chip definition
files (CDF) [12] and the R-package affy [19]. This preprocessing used Entrez
gene identifiers (EID) by the National Center for Biotechnology Information
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(NCBI), which are also used by KEGG. The usage of custom CDFs avoids the
mapping problems between Affymetrix probeset IDs and KEGG. Moreover,
the custom CDFs can increase the robustness and precision of the expression
estimates [26, 37]. The RMA-preprocessing yielded 19,764 EIDs. Subsequently,
the features were reduced to the available 82 out of the 91 EIDs present in the
KEGG NF-κB pathway. The samples were then partitioned, using the DLBCL
automatic classifier (DAC) by Care et al. [11], into the three classes ABC
(n1 = 31), III (n2 = 13), and GCB (n3 = 45), and gene-wise centered to have
zero mean within each class.

The analysis was performed with the following settings. Target matrices for
the groups were chosen to be scalar matrices with the scalar determined by the
inverse of the average eigenvalue of the corresponding sample class covariance
matrix, i.e.:

TABC = α1Ip, TIII = α2Ip, TGCB = α3Ip, where αg =
p

tr(Sg)
.

These targets translate to a class-scaled ‘prior’ of conditional independence
for all genes in NF-κB. The optimal penalties were determined by LOOCV
using the penalty matrix and graph given in (19). Note that the penalty setup
bears resemblance to Example 3.2. Differing class-specific ridge penalties were
allowed because of considerable differences in class sample size. Direct shrinkage
between ABC and GCB was disabled by fixing the corresponding pair-fusion
penalty to zero. The remaining fusion penalties were free to be estimated.
Usage of the Nelder-Mead optimization procedure then resulted in the optimal
values Λ∗ given on the right-hand side of (19) below:

λ11

ABC

λ22

Type III

λ33

GCB

λ12 λ23

[
λ11 λ12 0
λ12 λ22 λ23

0 λ23 λ33

]
=

[
2 1.5·10−3 0

1.5·10−3 2.7 2·10−3

0 2·10−3 2.3

]
(19)

The ridge penalties of classes ABC and GCB are seen to be comparable in
size. The small size of the Type III class leads to a relatively larger penalty to
ensure a well-conditioned and stable estimate. The estimated fusion penalties
are all relatively small, implying that heavy fusion is undesirable due to class-
differences. The three class-specific precision matrices were estimated under
Λ∗ and subsequently scaled to partial correlation matrices. Panels A–C of
Figure 3 visualize these partial correlation matrices. In general, the ABC and
GCB classes seem to carry more signal in both the negative and positive range
vis-à-vis the Type III class.

Post-hoc support determination was carried out on the partial correlation
matrices using the class-wise lFDR approach of Section 4.3. The lFDR thresh-
old was chosen conservatively to 0.99, selecting 39, 85, 34 edges for classes
ABC, III, GCB, respectively. The relatively high number of edges selected for
the Type III class is (at least partly) due to the difficulty of determining the
mixture distribution mentioned in Section 4.3 when the overall partial correla-
tion signal is relatively flat. Panels D–E of Figure 3 then show the conditional
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Fig. 3: Top: Heat maps and color key of the partial correlation matrices for the ABC (panel
A), III (panel B), and GCB (panel C) classes in the NF-κB signaling pathway on the ? ] data.
Bottom: Graphs corresponding to the sparsified precision matrices for the classes above.
Red and blue edges correspond to positive and negative partial correlations, respectively.
Far right-panel : EID key and corresponding Human Genome Organization (HUGO) Gene
Nomenclature Committee (HGNC) curated gene names of the NF-κB signaling pathway
genes. Genes that are connected in panels D–F are shown bold.
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Table 1: The most central genes, their EID, and their plot index (I). For each class and
node, the degree (with the number of positive and negative edges connected to that node in
parentheses) and the betweenness centrality is shown. Only the 15 genes with the highest
degrees summed over each class are shown.

ABC III GCB
EID I Degree Bet. Degree Bet. Degree Bet.

CCL21 6366 77 9 (5+, 4−) 202 17 (9+, 8−) 297 4 (3+, 1−) 106

CXCL8 3576 38 5 (2+, 3−) 126 12 (4+, 8−) 234 4 (1+, 3−) 56

CCL19 6363 78 4 (4+, 0−) 120 10 (6+, 4−) 92 6 (6+, 0−) 230

LTA 4049 80 5 (3+, 2−) 143 10 (6+, 4−) 195 3 (3+, 0−) 56

CXCL12 6387 40 3 (2+, 1−) 84 12 (5+, 7−) 187 2 (2+, 0−) 27

CXCL2 2920 76 3 (3+, 0−) 61 11 (5+, 6−) 196 3 (2+, 1−) 53

LTB 4050 81 4 (3+, 1−) 86 5 (3+, 2−) 4 6 (3+, 3−) 98

CD14 929 51 3 (2+, 1−) 20 6 (3+, 3−) 26 3 (2+, 1−) 32

CCL4 6351 74 2 (1+, 1−) 5 8 (5+, 3−) 118 2 (1+, 1−) 4

ZAP70 7535 48 3 (2+, 1−) 60 5 (4+, 1−) 51 3 (2+, 1−) 75

CCL13 6357 39 4 (3+, 1−) 119 5 (3+, 2−) 20 1 (1+, 0−) 0

TNFSF11 8600 42 5 (4+, 1−) 160 2 (1+, 1−) 0 3 (2+, 1−) 55

TNF 7124 16 1 (1+, 0−) 0 4 (2+, 2−) 2 3 (3+, 0−) 24

LAT 27040 49 2 (2+, 0−) 0 4 (4+, 0−) 16 2 (2+, 0−) 0

LCK 3932 62 2 (0+, 2−) 31 3 (3+, 0−) 10 3 (2+, 1−) 64

independence graphs corresponding to the sparsified partial correlation matri-
ces. We note that a single connected component is identified in each class,
suggesting, at least for the ABC and GCB classes, a genuine biological signal.
A secondary supporting overview is provided in Table 1.

Table 1 gives the most central genes in the graphs of Panels D–E by two
measures of node centrality: degree and betweenness. The node degree indi-
cates the number of edges incident upon a particular node. The betweenness
centrality indicates in how many shortest paths between vertex pairs a par-
ticular node acts as an intermediate vertex. Both measures are proxies for
the importance of a feature. See, e.g., [29] for an overview of these and other
centrality measures. It is seen that the CCL, CXCL, and TNF gene families
are well-represented as central and connected nodes across all classes. The
gene CCL21 is very central in classes ABC and III, but less so in the GCB
class. From Panels D–E of Figure 3 it is seen that BCL2 and BCL2A1 are
only connected in the non-ABC classes. Contrary to expectation, MYD88 is
disconnected in all graphs. The genes ZAP70, LAT, and LCK found in Fig-
ure 3 and Table 1 are well-known T-cell specific genes involved in the initial
T-cell receptor-mediated activation of NF-κB in T-cells [7]. From the differ-
ences in connectivity of these genes, different abundances of activated T-cells
or different NF-κB activation programs for ABC/GCB might be hypothesized.

6.2 Integrative DLBCL analysis

We now expand the analysis of the previous section to show the advantages of
integration by fusion. A large number of DLBCL gene expression profile (GEP)
datasets is freely available at the NCBI Gene Expression Omnibus (GEO) web-
site [5]. We obtained 11 large-scale DLBCL datasets whose GEO-accession
numbers (based on various Affymetrix microarray platforms) can be found in
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the first column of Table 2. One of the sets, with GEO-accession number
GSE11318, is treated as a pilot/training dataset for the construction of target
matrices (see below). The GSE10846 set is composed of two distinct datasets
corresponding to two treatment regimens (R-CHOP and CHOP) as well as dif-
ferent time-periods of study. Likewise, GSE34171 is composed of three datasets
corresponding to the respective microarray platforms used: HG-U133A, HG-
U133B, and HG-U133 plus 2.0. As the samples on HG-U133A and HG-U133B
were paired and run on both platforms, the (overlapping) features were aver-
aged to form a single virtual microarray comparable to that of HG-U133 plus
2.0. Note that the ? ] data used in Section 6.1 is part of the total batch under
GEO-accession number GSE56315. The sample sizes for the individual data-
sets vary in the range 78–495 and can also be found in Table 2. The data yield
a total of 2,276 samples making this, to our knowledge, the hitherto largest
integrative DLBCL study.

Similar to above, all datasets were RMA-normalized using custom brainar-
ray CDFs and the R-package affy. Again, NCBI EIDs were used to avoid
non-bijective gene-ID translations between the array-platforms and the KEGG
database. The freely available R-package DLBCLdata was created to automate
the download and preprocessing of the datasets in a reproducible and conve-
nient manner. See the DLBCLdata documentation [8] for more information. Sub-
sequently, the datasets were reduced to the intersecting 11,908 EIDs present on
all platforms. All samples in all datasets, except for the pilot study GSE11318,
were classified as either ABC, GCB, or Type III using the DAC mentioned
above. The same classifier was used in all datasets to obtain a uniform clas-
sification scheme and thus maximize the comparability of the classes across
datasets. Subsequently, the features were reduced to the EIDs present in the
NF-κB pathway and gene-wise centered to have zero mean within each com-
bination of DLBCL subtype and dataset. We thus have a a two-way study
design—DLBCL subtypes and multiple datasets—analogous to Example 3.3.
A concise overview of each of the 11× 3 = 33 classes for the non-pilot data is
provided in Table 2.

The target matrices were constructed from the pilot data in an attempt
to use information in the directed representation Gpw of the NF-κB pathway
obtained from KEGG. The directed graph represents direct and indirect causal
interactions between the constituent genes. It was obtained from the KEGG
database via the R-package KEGGgraph [49]. A target matrix was constructed
for each DLCBL subtype using the pilot data and the information from the
directed topology by computing node contributions using multiple linear re-
gression models. That is, from an initial T = 0, we update T for each node
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Table 2: Overview of datasets, the defined classes, and the number of samples. In GSE31312,
28 samples were not classified with the DAC due to technical issues and hence do not appear
in this table. In the pilot study GSE11318, 31 samples were primary mediastinal B-cell
lymphoma and left out. Note also that the pilot dataset GSE11318 was not classified by the
DAC.

ABC Type III GBC
g ng g ng g ng

∑
ng

Pilot data
GSE11318 74 71 27 172

Dataset
GSE56315 1 31 2 13 3 45 89
GSE19246 4 51 5 30 6 96 177
GSE12195 7 40 8 18 9 78 136
GSE22895 10 31 11 21 12 49 101
GSE31312 13 146 14 97 15 224 467
GSE10846.CHOP 16 64 17 28 18 89 181
GSE10846.RCHOP 19 75 20 42 21 116 233
GSE34171.hgu133plus2 22 23 23 15 24 52 90
GSE34171.hgu133AplusB 25 18 26 17 27 43 78
GSE22470 28 86 29 43 30 142 271
GSE4475 31 73 32 20 33 128 221∑
ng 638 344 1062 2044

α ∈ V (Gpw) through the following sequence:

Tα,α := Tα,α + 1
σ2

Tpa(α),α := Tpa(α),α + 1
σ2βpa(α)

Tα,pa(α) := Tα,pa(α) + 1
σ2βpa(α)

Tpa(α),pa(α) := Tpa(α),pa(α) + 1
σ2βpa(α)β

>
pa(α),

where pa(α) denotes the parents of node α in Gpw, and where σ and β are
the residual standard error and regression coefficients obtained from the linear
regression of α on pa(α). By this scheme the target matrix represents the con-
ditional independence structure that would result from moralizing the directed
graph. If Gpw is acyclic then T � 0 is guaranteed.

The penalty setup bears resemblance to Example 3.3. The Type III class is
considered closer to the ABC and GCB subtypes than ABC is to GCB. Thus,
the direct shrinkage between the ABC and GCB subtypes was fixed to zero.
Likewise, direct shrinkage between subtype and dataset combinations was also
disabled. Hence, a common ridge penalty λ, a dataset–dataset shrinkage pa-
rameter λDS and a subtype–subtype shrinkage parameter λST were estimated.
The optimal penalties were determined by SLOOCV using the penalty matrix

141



Paper IV

Ω̂ABCA
Ω̂TypeIIIB

Ω̂GCBC

TABC

xx

D
Ω̂GCB − Ω̂ABC

xx

yy

E
TGCB

xx
yy

F

0 10 20 30

Fig. 4: Summary of the estimated precision matrices for the NF-κB pathway. Top row : Heat
maps of the estimated precision matrices pooled across datasets for each genetic subtype.
Middle row from left to right: The pooled target matrix for ABC, the difference between the
pooled ABC and GCB estimates, and the pooled target matrix for GCB. Bottom: The color
key for the heat maps.

and graph given in (20) below:

λ λ λ

λ λ λ

...
...

...

λ λ λ

λST λST

λST λST

λST λST

λDS λDS λDS

λDS λDS λDS

λDS λDS λDS

λDS

λDS

λDS

λDS

λDS

λDS

λDS

λDS

λDS

ABC Type III GCB

DS1

DS2

DS11



λ λST 0 λDS 0 0 ··· λDS 0 0
λST λ λST 0 λDS 0 ··· 0 λDS 0
0 λST λ 0 0 λDS ··· 0 0 λDS

λDS 0 0 λ λST 0 ··· λDS 0 0
0 λDS 0 λST λ λST ··· 0 λDS 0
0 0 λDS 0 λST λ ··· 0 0 λDS

...
...

...
...

...
...

. . .
...

...
...

λDS 0 0 λDS 0 0 ··· λ λST 0
0 λDS 0 0 λDS 0 ··· λST λ λST
0 0 λDS 0 0 λDS ··· 0 λST λ



(20)

The optimal penalties were found to be λ� = 2.2 for the ridge penalty, λ�DS =
0.0022 for the dataset fusion penalty, and λ�ST = 6.8 × 10−4 for the subtype
fusion penalty, respectively.

To summarize and visualize the 33 class precision estimates they were pooled
within DLBCL subtype. Panels A–C of Figure 4 visualizes the 3 pooled esti-
mates as heat maps. Panels D and F visualize the constructed target matrices
for the ABC and GCB subtypes, respectively. Panel E then gives the difference
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between the pooled ABC and GCB estimates, indicating that they harbor dif-
ferential signals to some degree. We would like to capture the commonalities
and differences with a differential network representation.

The estimated class-specific precision matrices were subsequently scaled to
partial correlation matrices. Each precision matrix was then sparsified using the
lFDR procedure of Section 4.3. Given the class an edge was selected whenever

1− l̂FDR ≥ 0.999. To compactly visualize the the multiple GGMs we obtained
signed edge-weighted total networks mentioned in Section 4.4. Clearly, for in-
consistent connections the weight would vary around zero, while edges that are
consistently selected as positive (negative) will have a large positive (negative)
weight. These meta-graphs are plotted in Figure 5. Panels A–C give the signed
edge-weighted total networks for each subtype across the datasets. They show
that (within DLBCL subtypes) there are a number of edges that are highly con-
cordant across all datasets. To evaluate the greatest differences between the
ABC and GCB subtypes, the signed edge-weighted total network of the latter
was subtracted from the former. The resulting graph GABC−GCB can be found
in Panel D. Edges that are more stably present in the ABC subtype are rep-
resented in orange and the edges more stably present in the GCB subtype are
represented in blue. Panel F represents the graph from panel D with only those
edges retained whose absolute weight exceeds 2. In a sense, the graph of panel
F then represents the stable differential network. The strongest connections
here should suggest places of regulatory deregulation gained or lost across the
two subtypes. Interestingly, this differential network summary shows relatively
large connected subgraphs suggesting differing regulatory mechanisms.

The graph in panel F of Figure 5 then conveys the added value of the inte-
grative fusion approach. Certain members of the CCL, CXCL, and TNF gene
families who were highly central in the analysis of Section 6.1 are still consid-
ered to be central here. However, it is also seen that certain genes that garnered
high centrality measures in the single dataset analyzed in Section 6.1 do not
behave stably across datasets, such as CXCL2. In addition, the integrative
analysis appoints the BCL2 gene family a central role, especially in relation to
the ABC subtype. This contrasts with Section 6.1, where the BCL2 gene family
was not considered central and appeared to be connected mostly in the non-
ABC classes. Moreover, whereas the analysis of the single dataset could not
identify a signal for MYD88, the integrative analysis identifies MYD88 to be
stably connected across datasets. Especially the latter two observations are in
line with current knowledge on deregulation in the NF-κB pathway in DLBCL
patients. Also in accordance with litterature is the known interaction of LTA
with LTB seen in panel F of Figure 5 [10, 44] which here appear to be differen-
tial between ABC/GCB. Thus, borrowing information across classes enables a
meta-analytic approach that can uncover information otherwise unobtainable
through the analysis of single datasets.
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Fig. 5: Summary of estimated GGMs for the NF-κB pathway. Panels A–C : Graphs obtained
by adding the signed adjacency matrices for each subtype across the datasets. The edge
widths are drawn proportional to the absolute edge weight. Panel D : Graph obtained by
subtracting the summarized signed adjacency matrix of GCB (panel A) from that of ABC
(panel C). Edge widths are drawn proportional to the absolute weight and colored according
to the sign. Orange implies edges more present in ABC and blue implies edges more present
in GCB. Panel E : As the graph in panel D, however only edges with absolute weight > 2 are
drawn. Panel F : As the graph in panel E, but with an alternative layout. Far right-panel:
EID key and corresponding HGNC curated gene names of the NF-κB pathway genes. Genes
that are connected in panel F are shown bold.
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7 Discussion and conclusion

We considered the problem of jointly estimating multiple inverse covariance ma-
trices from high-dimensional data consisting of distinct classes. A fused ridge
estimator was proposed that generalizes previous contributions in two princi-
pal directions. First, we introduced the use of targets in fused ridge precision
estimation. The targeted approach helps to stabilize the estimation procedure
and allows for the incorporation of prior knowledge. It also juxtaposes itself
with various alternative penalized precision matrix estimators that pull the es-
timates towards the edge of the parameter space, i.e., who shrink towards the
non-interpretable null matrix. Second, instead of using a single ridge penalty
and a single fusion penalty parameter for all classes, the approach grants the
use of class-specific ridge penalties and class-pair-specific fusion penalties. This
results in a flexible shrinkage framework that (i) allows for class-specific tun-
ing, that (ii) supports analyzes when a factorial design underlies the available
classes, and that (iii) supports the appropriate handling of situations where
some classes are high-dimensional whilst others are low-dimensional. Targeted
shrinkage and usage of a flexible penalty matrix might also benefit other pro-
cedures for precision matrix estimation such as the fused graphical lasso [13].

The targeted fused ridge estimator was combined with post-hoc support
determination, which serves as a basis for integrative or meta-analytic Gaus-
sian graphical modeling. This combination thus has applications in meta-,
integrative-, and differential network analysis of multiple datasets or classes of
data. This meta-approach to network analysis has multiple motivations. First,
by combining data it can effectively increase the sample size in settings where
samples are relatively scarce or expensive to produce. In a sense it refocuses
the otherwise declining attention to obtaining a sufficient amount of data—a
tendency we perceive to be untenable. Second, aggregation across multiple
datasets decreases the likelihood of capturing idiosyncratic features (of individ-
ual datasets), thereby preventing over-fitting of the data.

Insightful summarization of the results is important for the feasibility of our
approach to fused graphical modeling. To this end we have proposed various
basic tools to summarize commonalities and differences over multiple graphs.
These tools were subsequently used in a differential network analysis of the
NF-κB signaling pathway in DLBCL subtypes over multiple GEP datasets.
This application is not without critique, as it experiences a problem present
in many GEP studies: The classification of the DLBCL subtypes (ABC and
GBC) is performed on the basis of the same GEP data on which the network
analysis is executed. This may be deemed methodologically undesirable. How-
ever, we justify this double use of data as (a) the pathway of interest involves a
selection of genes whereas the classification uses all genes, and (b) the analysis
investigates partial correlations and differential networks whereas the classifi-
cation, in a sense, considers only differential expression. Furthermore, as in all
large-scale genetic screenings, the analyzes should be considered ‘tentative’ and
findings need to be validated in independent experiments. Notwithstanding,
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the analyzes show that the fusion approach to network integration has merit
in uncovering class-specific information on pathway deregulation. Moreover,
they exemplify the exploratory hypothesis generating thrust of the framework
we offer.

We see various inroad for further research. With regard to estimation one
could think of extending the framework to incorporate a fused version of the
elastic net. Mixed fusion, in the sense that one could do graphical lasso esti-
mation with ridge fusion or ridge estimation with lasso fusion, might also be of
interest. From an applied perspective the desire is to expand the toolbox for
insightful (visual) summarization of commonalities and differences over multi-
ple graphs. Moreover, it is of interest to explore improved ways for support
determination. The lFDR procedure, for example, could be expanded by con-
sidering all classes jointly. Instead of applying the lFDR procedure to each
class-specific precision matrix, one would then be interested in determining the
proper mixture of a grand common null-distribution and multiple class-specific
non-null distributions. These inroads were out of the scope of current work,
but we hope to explore them elsewhere.

7.1 Software implementation

The fused ridge estimator and its accompanying estimation procedure is im-
plemented in the rags2ridges-package [31] for the statistical language R. This
package has many supporting functions for penalty parameter selection, graphi-
cal modeling, as well as network analysis. We will report on its full functionality
elsewhere. The package is freely available from the Comprehensive R Archive
Network: http://cran.r-project.org/.
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A Geometric interpretation of the fused ridge
penalty

Some intuition behind the fused ridge is provided by pointing to the equivalence
of penalized and constrained optimization. To build this intuition we study the
geometric interpretation of the fused ridge penalty in the special case of (6)
with T = 0. In this case λgg = λ for all g, and λg1g2 = λf for all g1 6= g2.
Clearly, the penalty matrix then amounts to Λ = λIp + λf (Jp − Ip). Matters
are simplified further by considering G = 2 classes and by focusing on a specific

entry in the precision matrix, say (Ωg)jj′ = ω
(g)
jj′ , for g = 1, 2. By doing so we

ignore the contribution of other precision elements to the penalty. Now, the
fused ridge penalty may be rewritten as:

λ

2

(∥∥Ω1

∥∥2

F
+
∥∥Ω2

∥∥2

F

)
+
λf
4

2∑
g1=1

2∑
g2=1

∥∥Ωg1 −Ωg2

∥∥2

F

=
λ

2

(∥∥Ω1

∥∥2

F
+
∥∥Ω2

∥∥2

F

)
+
λf
2

∥∥Ω1 −Ω2

∥∥2

F
.

Subsequently considering only the contribution of the ω
(g)
jj′ entries implies this

expression can be further reduced to:

λ

2

[(
ω

(1)
jj′

)2
+
(
ω

(2)
jj′

)2]
+
λf
2

(
ω

(1)
jj′ − ω

(2)
jj′

)2
=
λ+ λf

2

[(
ω

(1)
jj′

)2
+
(
ω

(2)
jj′

)2]− λfω(1)
jj′ω

(2)
jj′ .
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Fig. 6: Visualization of the effects of the fused ridge penalty in terms of constraints. The
left panel shows the effect of λf for fixed λ. Here, λf = 0 is the regular ridge penalty. The
right panel shows the effect of λ while keeping λf fixed.

It follows immediately that this penalty imposes constraints on the parameters

ω
(1)
jj′ and ω

(2)
jj′ , amounting to the set:{(

ω
(1)
jj′ , ω

(2)
jj′

)
∈ R2 :

λ+ λf
2

[(
ω

(1)
jj′

)2
+
(
ω

(2)
jj′

)2]− λfω(1)
jj′ω

(2)
jj′ ≤ c

}
, (21)

for some c ∈ R+. It implies that the fused ridge penalty can be understood by
the implied constraints on the parameters. Figure 6 shows the boundary of the
set for selected values.

Panel 6A reveals the effect of the fused, inter-class penalty parameter λf
(while keeping λ fixed). At λf = 0, the constraint coincides with the regular
ridge penalty. As λf increases, the ellipsoid shrinks along the minor principal
axis x = −y with no shrinkage along x = y. In the limit λf → ∞ the ellip-

soid collapses onto the identity line. Hence, the parameters ω
(1)
jj′ and ω

(2)
jj′ are

shrunken towards each other and while their differences vanish, their sum is
not affected. Hence, the fused penalty parameter primarily shrinks the ‘sum of
the parameters’, but also fuses them as a bound on their sizes implies a bound
on their difference.

Panel 6B shows the effect of the intra-class λ penalty (while keeping λf
fixed). When the penalty vanishes for λ→ 0 the domain becomes a degenerated

ellipse (i.e. cylindrical for more than 2 classes) and parameters ω
(1)
jj′ and ω

(2)
jj′

may assume any value as long as their difference is less than
√

2c/λf . For
any λ > 0, the parameter-constraint is ellipsoidal. As λ increases the ellipsoid
is primarily shrunken along the principal axis formed by the identity line and
along the orthogonal principal axis (y = −x). In the limit λ→∞ the ellipsoid
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collapses onto the point (0, 0). It is clear that the shape of the domain in (21)
is only determined by the ratio of λ and λf .

The effect of the penalties on the domain of the obtainable estimates can be
further understood by noting that the fused ridge penalty (4) can be rewritten
as

λ̃
∑
g1,g2

∥∥(Ωg1−Tg1)+(Ωg2−Tg2)
∥∥2

F
+λ̃f

∑
g1,g2

∥∥(Ωg1−Tg1)−(Ωg2−Tg2)
∥∥2

F
, (22)

for some penalties λ̃ and λ̃f . The details of this derivation can be found in
Section A.1 below. The first and second summand of the rewritten penalty (22)
respectively shrink the sum and difference of the parameters of the precision
matrices. Their contributions thus coincide with the principal axes along which
two penalty parameters shrink the domain of the parameters.

A.1 Alternative form for the fused ridge penalty

This section shows that the alternative form (22) for the ridge penalty can be
written in the form (4). We again assume a common ridge penalty λgg = λ
and a common fusion penalty λg1g2 = λf for all classes and pairs thereof. To
simplify the notation, let Ag = Ωg−Tg. Now,

fFR′({Ωg}; λ̃, λ̃f , {Tg}
)

= λ̃
∑
g1,g2

∥∥(Ωg1−Tg1) + (Ωg2−Tg2)
∥∥2
F
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∥∥2
F
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∥∥2
F
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∑
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∥∥2
F
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∥∥2
F

+
∥∥Ag2

∥∥2
F

+ 2〈Ag1 ,Ag2〉
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∥∥2
F
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(
2
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∥∥2
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+ 2
∥∥Ag2

∥∥2
F
−
∥∥Ag1 −Ag2

∥∥2
F

)
+ λ̃f

∑
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∥∥Ag1−Ag2

∥∥2
F

= 4λ̃G
∑
g
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∥∥2
F
− λ̃

∑
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+ λ̃f
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= 4λ̃G
∑
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∥∥Ag

∥∥2
F

+ (λ̃f − λ̃)
∑
g1,g2

∥∥Ag1 −Ag2

∥∥2
F

= 4λ̃G
∑
g

∥∥(Ωg−Tg)
∥∥2
F

+ (λ̃f − λ̃)
∑
g1,g2

∥∥(Ωg1−Tg1)− (Ωg2−Tg2)
∥∥2
F
.

Hence, the alternative penalty (22) is also of the form (4) and thus the fused
ridge of (22) is equivalent to (4) for appropriate choices of the penalties.

B Results and proofs

Section B.1 contains supporting results from other sources and results in sup-
port of Algorithm 2. Section B.2 contains proofs of the results stated in the
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main text as well as additional results conducive in those proofs.

B.1 Supporting results

Lemma 3 (van Wieringen and Peeters [41])
Amend the log-likelihood (1) with the `2-penalty

λ

2

∥∥Ω−T
∥∥2

F
,

with T ∈ Sp+ denoting a fixed symmetric p.s.d. target matrix, and where
λ ∈ (0,∞) denotes a penalty parameter. The zero gradient equation w.r.t.
the precision matrix then amounts to

Ω̂
−1
− (S− λT)− λΩ̂ = 0, (23)

whose solution gives a penalized ML ridge estimator of the precision matrix:

Ω̂(λ) =

{[
λIp +

1

4
(S− λT)2

]1/2

+
1

2
(S− λT)

}−1

.

Lemma 4 (van Wieringen and Peeters [41])
Consider Ω̂(λ) from Lemma 3 and define [Ω̂(λ)]−1 ≡ Σ̂(λ). The following
identity then holds:

S− λT = Σ̂(λ)− λΩ̂(λ).

Lemma 5
Let Λ ∈ SG be a matrix of fixed penalty parameters such that Λ ≥ 0.
Moreover, let {Tg} ∈ Sp+. Then if diag(Λ) > 0, the problem of (5) is strictly
concave.

Proof of Lemma 5. By diag(Λ) > 0, it is clear that the fused ridge penalty (4)
is strictly convex as it is a conical combination of strictly convex and convex
functions. Hence, the negative fused ridge penalty is strictly concave. The
log-likelihood of (3) is a conical combination of concave functions and is thus
also concave. Therefore, the penalized log-likelihood is strictly concave.
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B.2 Proofs and additional results

Proof of Proposition 4. To find the maximizing argument for a specific class
of the general fused ridge penalized log-likelihood problem (5) we must obtain
its first-order derivative w.r.t. that class and solve the resulting zero gradient
equation. To this end we first rewrite the ridge penalty (4) into a second

alternative form. Using that Λ = Λ>, and keeping in mind the cyclic property
of the trace as well as properties of Ωg and Tg stemming from their symmetry,
we may find:

fFR′′({Ωg}; Λ, {Tg}
)

=
∑
g

λgg
2

∥∥Ωg−Tg

∥∥2
F

+
∑
g1,g2

λg1g2
4

∥∥(Ωg1−Tg1)− (Ωg2−Tg2)
∥∥2
F

=
∑
g

λg•
2

tr
[
(Ωg−Tg)

>(Ωg−Tg)
]
−
∑
g1,g2
g1 6=g2

λg1g2
2

tr
[
(Ωg1−Tg1)>(Ωg2−Tg2)

]
,

(24)

where λg• =
∑
g′ λgg′ denotes the sum over the gth row (or column) of Λ.

Taking the first-order partial derivative of (24) w.r.t. Ωg0 yields:

∂

∂Ωg0

fFR′′({Ωg}; Λ, {Tg}
)

= λg0• [2(Ωg0−Tg0 )− (Ωg0−Tg0 ) ◦ Ip]−
∑
g 6=g0

λgg0 [2(Ωg−Tg)− (Ωg−Tg) ◦ Ip] .

(25)

The first-order partial derivative of (3) w.r.t. Ωg0 results in:

∂

∂Ωg0

L({Ωg}; {Sg}) =
∂

∂Ωg0

∑
g

ng
{

ln |Ωg| − tr(SgΩg)
}
,

= ng0
[
2(Ω−1

g0 − Sg0)− (Ω−1
g0 − Sg0) ◦ Ip

]
. (26)

Subtracting (25) from (26) yieldsng0(Ω−1
g0 − Sg0)− λg0•(Ωg0−Tg0) +

∑
g 6=g0

λgg0(Ωg−Tg)

 ◦ (2Jp − Ip), (27)

which, clearly, is 0 only when the former factor is zero. From (27) we may then
find our (conveniently scaled) zero gradient equation to be:

Ω̂
−1

g0 − Sg0 −
λg0•
ng0

(Ω̂g0−Tg0) +
∑
g 6=g0

λgg0
ng0

(Ωg−Tg) = 0. (28)

Now, rewrite (28) to

Ω̂
−1

g0 − S̄g0 − λ̄g0(Ω̂g0− T̄g0) = 0, (29)
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where S̄g0 = Sg0 −
∑
g 6=g0

λgg0
ng0

(Ωg− Tg), T̄g0 = Tg0 , and λ̄g0 = λg0•/ng0 . It

can be seen that (29) is of the form (23). Lemma 3 may then be applied to
obtain the solution (7).

Corollary 1
Consider the estimator (7). Let Ω̂g

(
Λ, {Ωg′}g′ 6=g

)
be the precision matrix

estimate of the gth class. Also, let diag(Λ) > 0 and assume that all off-

diagonal elements of Λ are zero. Then Ω̂g

(
Λ, {Ωg′}g′ 6=g

)
reduces to the

non-fused ridge estimate of class g:

Ω̂g

(
Λ, {Ωg′}g′ 6=g

)
= Ω̂g(λgg)

=


[
λgg
ng

Ip +
1

4

(
Sg−

λgg
ng

Tg

)2
]1/2

+
1

2

(
Sg−

λgg
ng

Tg

)
−1

. (30)

Proof of Corollary 1. The result follows directly from equations (7) and (8) by
using that

∑
g′ 6=g λgg′ =

∑
g′ 6=g λg′g = 0 for all g.

Lemma 6
Let {Tg} ∈ Sp+ and assume λgg ∈ R++ in addition to 0 ≤ λgg′ < ∞ for all
g′ 6= g. Then

lim
λgg→∞−

∥∥∥Ω̂g

(
Λ, {Ωg′}g′ 6=g

)∥∥∥
F
<∞.

Proof of Lemma 6. The result is shown through proof by contradiction. Hence,
suppose

lim
λgg→∞−

‖Ω̂g

(
Λ, {Ωg′}g′ 6=g

)
‖F

is unbounded. Let d[·]jj denote the jth largest eigenvalue. Then, as

∥∥∥Ω̂g

(
Λ, {Ωg′}g′ 6=g

)∥∥∥
F

=


p∑
j=1

d
[
Ω̂g

(
Λ, {Ωg′}g′ 6=g

)]2
jj


1/2

,

at least one eigenvalue must tend to infinity along with λgg. Assume without
loss of generality that this is only the first (and largest) eigenvalue:

lim
λgg→∞−

d
[
Ω̂g

(
Λ, {Ωg′}g′ 6=g

)]
11

= O(λγgg), (33)
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for some γ > 0. Now, for any λgg, the precision can be written as an eigende-
composition:

Ω̂g

(
Λ, {Ωg′}g′ 6=g

)
= d11v1v

>
1 +

p∑
j=2

djjvjv
>
j , (34)

where the dependency of the eigenvalues and eigenvectors on the target ma-
trices and penalty parameters has been suppressed (for notational brevity and
clarity). It is the first summand on the right-hand side that dominates the
precision for large λgg. Furthermore, this ridge ML precision estimate of the
gth group satisfies, by (27), the following gradient equation:

ng(Ω̂
−1
g − Sg)− λgg(Ω̂g−Tg)−

∑
g′ 6=g

λg′g(Ω̂g−Tg) +
∑
g′ 6=g

λg′g(Ωg′−Tg′) = 0.

We now make three observations: (i) From item (i) of Proposition 5 it fol-

lows that Ω̂g

(
Λ, {Ωg′}g′ 6=g

)
is always p.d. for λgg ∈ R++. Consequently,

limλgg→∞− ‖Ω̂g

(
Λ, {Ωg′}g′ 6=g

)−1‖F < ∞; (ii) The target matrices do not de-
pend on λgg; and (iii) The finite λgg′ ensure that the norms of Ωg′ can only

exceed the norm of Ω̂g by a function (independent of λgg) of the constant λgg′ .

Hence, in the limit, the norms of the Ωg′ cannot exceed the norm of Ω̂g. These

observations give that, as λgg tends towards infinity, the term λgg(Ω̂g−Tg)

will dominate the gradient equation. In fact, the term λggΩ̂g will dominate as,
using (33) and (34):

0 ≈ −λgg(Ω̂g −Tg)

≈ −λggd11v1v
>
1 + λggT

≈ −λ1+γ
gg v1v

>
1 + λggT

≈ −λ1+γ
gg (v1v

>
1 + λ−γgg T)

≈ −λ1+γ
gg v1v

>
1 .

This latter statement is contradictory as it can only be true if the first eigenvalue
tends to zero. This, in turn, contradicts the assumption of unboundedness (in
the Frobenius norm) of the precision estimate. Hence, the fused ridge ML
precision estimate must be bounded.

Proof of Proposition 5.
(i) Note that (28) for class g may be rewritten to

Ω̂
−1

g − Sg −
λg•
ng

Ω̂g −

Tg +
∑
g′ 6=g

λgg′

λg•
(Ωg′−Tg′)

 = 0,
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implying that (7) can be obtained under the following alternative updating
scheme to (8):

S̄g = Sg, T̄g = Tg +
∑
g′ 6=g

λgg′

λg•
(Ωg′−Tg′), and λ̄g =

λg•
ng

.

Now, let d[ · ]jj denote the jth largest eigenvalue. Then

d
{

[Ω̂g]
−1
}
jj

= d

[
1

2
(Sg − λ̄gT̄g)

]
jj

+

√√√√{d [1

2
(Sg − λ̄gT̄g)

]
jj

}2

+ λ̄g > 0,

when λ̄g > 0. As λ̄g =
∑
g′(λg′g/ng) and as λg′g may be 0 for all g′ 6= g, Ω̂g is

guaranteed to be p.d. whenever λgg ∈ R++.

(ii) Note that
∑
g′ 6=g λgg′ =

∑
g′ 6=g λg′g = 0 implies that Ω̂g reduces to the

non-fused class estimate (30) by way of Corollary 1. The stated right-hand
limit is then immediate by using λgg = 0 in (30). Under the distributional
assumptions this limit exists with probability 1 when p ≤ ng.

(iii) Consider the zero gradient equation (28) for the gth class. Multiply it
by ng/λg• to factor out the dominant term:

ng
λg•

Ω̂
−1

g −
ng
λg•

Sg − (Ω̂g−Tg) +
∑
g′ 6=g

λg′g
λg•

(Ωg′−Tg′) = 0. (38)

When λgg → ∞−, λg• =
∑
g′ λgg′ → ∞−, implying that the first two terms

of (38) vanish. Under the assumption that λgg′ < ∞ for all g′ 6= g we have
that λg′g/λg• → 0 when λgg → ∞− for all g′ 6= g. Thus, all terms of the sum
also vanish as Lemma 6 implies that the Ωg′ are all bounded. Hence, when
λgg → ∞− and λgg′ < ∞ for all g′ 6= g, the zero gradient equation reduces to

Ω̂g−Tg = 0, implying the stated left-hand limit.
(iv) The proof strategy follows the proof of item iii. Multiply the zero

gradient equation (28) for the g1th class with ng1/λg1g2 to obtain:

ng1
λg1g2

Ω̂
−1

g1 −
ng1
λg1g2

Sg1 −
λg1•
λg1g2

(Ω̂g1−Tg1) +
∑
g′ 6=g1

λg′g1
λg1g2

(Ωg′−Tg′) = 0. (39)

The first two terms are immediately seen to vanish when λg1g2 → ∞−. Un-
der the assumption that all penalties except λg1g2 are finite, we have that
λg1•/λg1g2 → 1 for λg1g2 → ∞−. Similarly, all elements of the sum term in
(39) vanish except the element where g′ = g2. Hence, when λg1g2 → ∞− and
when λg′1g′2 <∞ for all {g′1, g′2} 6= {g1, g2}, the zero gradient equation for class
g1 reduces to:

−(Ω̂g1−Tg1) + (Ωg2−Tg2) = 0. (40)

Conversely, by multiplying the zero gradient equation (28) for the g2th class
with ng2/λg1g2 one obtains, through the same development as above, that the

zero gradient equation for class g2 reduces to the Ω̂g2 -analogy of equation (40).
The result (40) then immediately implies the stated limiting result.
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B Results and proofs

Corollary 2
Consider item iv of Proposition 5. When, in addition, Tg1 = Tg2 , we have
that

lim
λg1g2→∞−

(Ω̂g1 −Tg1) = lim
λg1g2→∞−

(Ω̂g2 −Tg2) =⇒ Ω̂g1 = Ω̂g2 .

Proof of Corollary 2. The implication follows directly by using Tg1 = Tg2 in
(40).

Proof of Proposition 6. The result follows from Proposition 4 and Lemma 4.

Proof of Proposition 7. Note that line 8 of Algorithm 2 implies that the initial-
izing estimates are p.d. Moreover, regardless of the value of the fused penalties
(in the feasible domain), the estimate in line 11 of Algorithm 2 is p.d. as a
consequence of Proposition 5.
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Supplementary Materials

This is the supplementary material for the paper ‘Targeted Fused Ridge Esti-
mation of Inverse Covariance Matrices from Multiple High-Dimensional Data
Classes.’

S1 Alternative fused ridge solutions

This section derives two equivalent, in terms of (7), but alternative updating
schemes to (8). The motivation for the exploration of these alternative recur-
sive estimators is twofold. First, alternative recursions can exhibit differing
numerical (in)stability for extreme values of the penalty matrix Λ = [λg1g2 ].
Second, they provide additional intuition and understanding of the targeted
fused ridge estimator.

The general strategy to finding the alternatives is to rewrite the gradient
equation (28) into the non-fused form (29), which we will repeat here:

Ω̂
−1

g0 − S̄g0 − λ̄g0(Ω̂g0− T̄g0) = 0, (S1)

where λ̄g0 , T̄g0 , and S̄g0 do not depend on Ω̂g0 . Note that an explicit closed-
form solution to (S1) exists in the form of (7).

S1.1 First alternative

The first alternative scheme is straightforward. Rewrite (28) to:

0 = ng0Ω̂
−1
g0 − ng0Sg0 − λg0•(Ω̂g0−Tg0) +

∑
g 6=g0

λgg0(Ωg−Tg) (S2)

= ng0Ω̂
−1
g0 − ng0Sg0 − λg0•

Ω̂g0−
[
Tg0 +

∑
g 6=g0

λgg0
λg0•

(Ωg−Tg)

] ,

where λg0• =
∑
g λgg0 . In terms of (S1), we thus have the updating scheme

given in equation (9). As stated in the main text, it has the intuitive interpreta-
tion that a fused class target is used which is a combination of the class-specific
target and the ‘target corrected’ estimates of remaining classes.
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S1 Alternative fused ridge solutions

S1.2 Second alternative

We now derive a second alternative recursion scheme. Add and subtract
λg0•

∑
g 6=g0 λgg0Ωg, to (S2) and rewrite such that:

0 = ng0Ω̂−1
g0
− ng0Sg0 − λg0•(Ω̂g0−Tg0 ) + λg0•

∑
g 6=g0

λgg0Ωg

+
∑
g 6=g0

λgg0 (Ωg−Tg)− λg0•
∑
g 6=g0

λgg0Ωg

= ng0Ω̂−1
g0
− ng0Sg0 − λg0•

Ω̂g0−
(

Tg0 +
∑
g 6=g0

λgg0Ωg

)
+
∑
g 6=g0

λgg0Ωg −
∑
g 6=g0

λgg0Tg − λg0•
∑
g 6=g0

λgg0Ωg

= ng0Ω̂−1
g0
− ng0Sg0 − λg0•

Ω̂g0−
(

Tg0 +
∑
g 6=g0

λgg0Ωg

)
−
∑
g 6=g0

λgg0Tg − (λg0•−1)
∑
g 6=g0

λgg0Ωg

= ng0Ω̂−1
g0
− ng0

Sg0 +
λg0•−1

ng0

∑
g 6=g0

λgg0Ωg +
∑
g 6=g0

λgg0
ng0

Tg


− λg0•

Ω̂g0−
(

Tg0 +
∑
g 6=g0

λgg0Ωg

) .
Dividing by ng0 gives

0 = Ω̂−1
g0 −

Sg0 +
λg0•−1

ng0

∑
g 6=g0

λgg0Ωg +
∑
g 6=g0

λgg0
ng0

Tg


− λg0•

ng0

Ω̂g0−
(

Tg0 +
∑
g 6=g0

λgg0Ωg

) ,
which brings the expression to the desired form (S1) with the updating scheme

S̄g0 = Sg0 +
λg0•−1

ng0

∑
g 6=g0

λgg0Ωg +
∑
g 6=g0

λgg0
ng0

Tg,

T̄g0 = Tg0 +
∑
g 6=g0

λgg0Ωg, and λ̄g0 =
λg0•
ng0

.

Again, a solution for Ω̂g0 with fixed Ωg for all g 6= g0, is available through
Lemma 3 [41] and is given in (7).

S1.3 Motivation

Though seemingly more complicated, these alternative updating schemes can
be numerically more stable for extreme penalties. In both alternatives, we see
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that S̄g0 is p.s.d. for (nearly) all very large and very small penalties. Likewise,
T̄g0 is always positive definite. Compare the alternative expressions to the
updating scheme given by (8) which can be seen to be numerically unstable for
very large penalties: For very large λgg or λg1g2 the S̄g0 in (8) may be a matrix
with numerically extreme values. This implies ill-conditioning and numerical
instability under finite computer precision. On the other hand, ‘updating’ the
target matrix will generally lead to updates for which the resulting estimator is
not rotationally equivariant. This implies a reduction in computational speed.

S2 Estimation in special cases

Here we explore scenarios for which we arrive at explicit targeted fused ridge
estimators. These explicit solutions further insight into the behavior of the
general estimator and they can provide computational speed-ups in certain
situations. Three special cases are covered:

I. λgg′ = 0 for all g 6= g′ or equivalently
∑
g′ λgg′ = λg• = λgg for all g;

II. Ω1 = · · · = ΩG and Tg = T for all g;

III. Tg = T for all g, λgg = λ for all g, λg1g2 = λf for all g1 6= g2, and
λf →∞−.

S2.1 Special case I

When
∑
g′ λgg′ = λg• = λgg for all g, we have that

∑
g′ 6=g λgg′ =

∑
g′ 6=g λg′g =

0 for all g. Hence, all fusion penalties are zero. The zero gradient equation (28)
for class g then no longer hinges upon information from the remaining classes
g′. The targeted fused precision estimate for class g then reduces to (30) of
Corollary 1. This case thus coincides, as expected, with obtaining G decoupled
non-fused ridge precision estimates. A special case that results in the same
estimates occurs when considering λg1g2 = λf for all g1 6= g2 and λf is taken
to be 0.

S2.2 Special case II

Suppose Ωg = Ω and Tg = T for all g. Consequently, the fusion penalty term
vanishes irrespective of the values of the λg1g2 , g1 6= g2. The zero gradient
equation (28) then reduces to

0 = ngΩ̂
−1 − ngSg − λgg(Ω̂−T),
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for each class g. Adding all G equations implies:

0 =

G∑
g=1

ngΩ̂
−1 −

G∑
g=1

ngSg −

(
G∑
g=1

λgg

)
(Ω̂−T)

= n•Ω̂
−1 − n•S• − tr(Λ)(Ω̂−T)

= Ω̂−1 −
[
S• −

tr(Λ)

n•
T

]
− tr(Λ)

n•
Ω̂. (S3)

We recognize that (S3) is of the form (23). Lemma 3 may then be directly
applied to obtain the solution:

Ω̂(Λ) =

{[
λ∗Ip +

1

4
(S• − λ∗T)2

]1/2

+
1

2
(S• − λ∗T)

}−1

, (S4)

where λ∗ = tr(Λ)/n•. Hence, this second special case gives a non-fused penal-
ized estimate that uses the pooled covariance matrix. It can be interpreted as
an averaged penalized estimator. It is of importance in testing equality of the
class precision matrices (see Section 4.1 of the main text).

S2.3 Special case III

Suppose that Tg = T for all g, that λgg = λ for all g, and that λg1g2 = λf for
all g1 6= g2. The main optimization problem then reduces to (6). Clearly, for
λf →∞− the fused penalty

fFR({Ωg};λ, λf ,T) =
λ

2

∑
g

∥∥Ωg−T
∥∥2

F
+
λf
4

∑
g1,g2

∥∥(Ωg1−Ωg2)
∥∥2

F

is minimized when Ω1 = Ω2 = · · · = ΩG. This is also implied, more rigorously,
by Corollary 2. Hence, the problem reduces to the special case of section S2.2
considered above. The solution to the penalized ML problem when λf =∞ is
then given by (S4) where tr(Λ) now implies Gλ.

S3 Fused Kullback-Leibler approximate cross-
validation

S3.1 Motivation

In `1-penalized estimation of the precision matrix, penalty selection implies
(graphical) model selection: Regularization results in automatic selection of
conditional dependencies. One then seeks to select an optimal value for the
penalty parameter in terms of model selection consistency. To this end, the
Bayesian information criterion (BIC), the extended BIC (EBIC), and the sta-
bility approach to regularization selection (StARS) are appropriate [25]. The
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(fused) `2-penalty will not directly induce sparsity in precision matrix esti-
mates. Hence, in `2-penalized problems it is natural to choose the penalty
parameters on the basis of efficiency loss. Of interest are then estimators of the
Kullback-Leibler (KL) divergence, such as LOOCV, generalized approximate
cross-validation (GACV), and Akaike’s information criterion (AIC). While su-
perior in terms of predictive accuracy due to its data-driven nature, the LOOCV
is computationally very expensive. Vujačić et al. [42] proposed a KL-based CV
loss with superior performance to both AIC and GACV. The proposed method
has closed-form solutions and thus provides a fast approximation to LOOCV.
Here, we extend this method to provide a computationally friendly approxima-
tion of the fused LOOCV score.

S3.2 Formulation

Following Vujačić et al. [42], we now restate the KL approximation to LOOCV
in the fused ridge setting. Let the true precision matrix for class g be denoted
by Ωg. Its estimate, shorthanded by Ω̂g can be obtained through Algorithm 2.
The KL divergence between the multivariate normal distributions Np(0,Ω−1

g )

and Np(0, Ω̂−1
g ) can be shown to be:

KL(Ωg, Ω̂g) =
1

2

{
tr(Ω−1

g Ω̂g)− ln|Ω−1
g Ω̂g| − p

}
.

For each g we wish to minimize this divergence. In the fused case we therefore
consider the fused Kullback-Leibler (FKL) divergence which, motivated by the
LOOCV score, is taken to be a weighted average of KL divergences:

FKL({Ωg}, {Ω̂g})

=
1

n•

G∑
g=1

ng KL(Ωg, Ω̂g) =
1

n•

G∑
g=1

ng
2

{
tr(Ω−1

g Ω̂g)− ln|Ω−1
g Ω̂g| − p

}
.

(S5)

The FKL divergence (S5) can, using the likelihood (3), be rewritten as

FKL = − 1

n•
L
(
{Ω̂g}; {Sg}

)
+ bias, where

bias =
1

2n•

G∑
g=1

ng tr
[
Ω̂g(Ω

−1
g − Sg)

]
,

and where the equality holds up to the addition of a constant. It is clear that
the bias term depends on the unknown true precision matrices and thus needs
to be estimated. The fused analogue to the proposal of Vujačić et al. [42],
called the fused Kullback-Leibler approximate cross-validation score or simply
approximate fused LOOCV score, then is

F̂KL
(
Λ
)

= − 1

n•
L
(
{Ω̂g}; {Sg}

)
+ b̂ias, (S6)

164



S3 Fused Kullback-Leibler approximate cross-validation

with

b̂ias =
1

2n•

G∑
g=1

ng∑
i=1

{
y>ig(Ω̂

2
g − Ω̂g)yig + λ̄gy

>
ig(Ω̂

4
g − Ω̂3

g)yig

}
, (S7)

and where λ̄g =
λg•
ng

. The derivation of this estimate is given in Section S3.3

below. One would then choose Λ? such that the FKL approximate cross-
validation score is minimized:

Λ? = arg min
Λ

F̂KL
(
Λ
)
, subject to: Λ ≥ 0 ∧ diag(Λ) > 0. (S8)

The closed form expression in (S6) implies that Λ? is more rapidly determined
than Λ∗. As seen in the derivation, Λ∗ ≈ Λ? for large sample sizes.

S3.3 Derivation

Here we give, borrowing some ideas from Vujačić et al. [42], the derivation of
the estimate (S6). Let observation i in class g be denoted by yig and let S =

Sig = yigy
>
ig be the sample covariance or scatter matrix of that observation.

As before, the singularly indexed Sg = 1
ng

∑ng
i=1 Sig is the class-specific sample

covariance matrix. Throughout this section we will conveniently drop (some
of) the explicit notation.

The FKL divergence reframes the LOOCV score in terms of a likelihood
evaluation and a bias term when S is not left out of class g. We thus study
the change in the estimate as function of the single scatter matrix S. Let
Ω̂g(S) = Ω̂¬igg be the estimate in class g when S is omitted. That is, Ω̂g(S) is
part of the solution to the system

Ω−1
a + µaaΩa + 1[a=g]S +

∑
b 6=a

µabΩb + Aa = 0, for all a = 1, . . . , G, (S9)

where µaa = −λa•na , µab = λab
na

, and where Aa is a matrix determined by the
remaining data, penalty parameters and targets. Note that the penalized MLE
can be denoted Ω̂g = Ω̂g(0), which corresponds to the ‘full’ estimate resulting
from the full gradient equation (28).

We wish to approximate Ω̂g(S) by a Taylor expansion around Ω̂g(0), i.e.:

Ω̂a(S) ≈ Ω̂a(0) +
∑
j,j′

∂Ω̂a

∂Sjj′
Sjj′ .

Differentiating (S9) w.r.t. Sjj′ , the (j, j′)th entry in S, and equating to zero
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yields

0 = −Ω̂−1
a

∂Ω̂a

∂Sjj′
Ω̂−1
a + µaa

∂Ω̂a

∂Sjj′
+ 1[a=g]Ejj′ +

∑
b6=a

µab
∂Ω̂b

∂Sjj′

= −Ω̂−1
a

∂Ω̂a

∂Sjj′
Ω̂−1
a +

∑
b

µab
∂Ω̂b

∂Sjj′
+ 1[a=g]Ejj′ , for all j, j′, (S10)

where Ejj′ is the null matrix except for unity in entries (j, j′) and (j′, j). The
third term is obtained as ∂S/∂Sjj′ = Ejj′ by the symmetric structure of S.
This is also seen from the fact that S =

∑
jj′ Sjj′Ejj′ . Let

V(S)a =
∑
j,j′

∂Ω̂a

∂Sjj′
Sjj′ ,

and multiply (S10) by Sjj′ and sum over all j, j′ to obtain

Ω̂−1
a V(S)aΩ̂

−1
a −

∑
b

µabV(S)b = 1[a=g]S, for all a = 1, . . . , G. (S11)

We seek the solution vector V =
{
V(S)a

}
G
a=1 of square matrices for the system

of equations in (S11) which can be rewritten in the following way. Introduce
and consider the linear operator (or block matrix):

N =
{
Nab

}
G
a,b=1 where Nab =

{
Ω̂−1
a ⊗ Ω̂−1

a − µaaIp ⊗ Ip if a = b

−µabIp ⊗ Ip if a 6= b
.

Then V can be verified to be the solution to the system (S10) as

N(V)a =
∑
b

NabV(S)b = 0 for a 6= g, and

N(V)g =
∑
b

NgbV(S)b = S for a = g.

Hence we need to invert N to solve for V. The structure of N is relatively
simple, but there seems to be no (if any) simple inverse. Note that N = D−M
is the difference of a (block) diagonal matrix D and a matrix M depending on
the µ’s:

Daa = Ω̂−1
a ⊗ Ω̂−1

a ,

Mab = µabIp ⊗ Ip.

In terms of the µ’s we obtain to first order that

N−1 = (D−M)−1 ≈ D−1 + D−1MD−1,
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yielding the approximation

Ω̂g(S) ≈ Ω̂g + (Ω̂g ⊗ Ω̂g + µggΩ̂
2
g ⊗ Ω̂2

g)(S)

= Ω̂g + Ω̂gSΩ̂g + µggΩ̂
2
gSΩ̂2

g, (S12)

where Ω̂g = Ω̂(0). To a first order in µgg this is the same as the approximation

Ω̂g(S) ≈ Ω̂g + (Ω̂−1
g ⊗ Ω̂−1

g − µggIp ⊗ Ip)
−1(S).

We also need an approximation for ln|Ω̂g(S)|. By first-order Taylor expan-
sion around S = 0 we have

ln|Ω̂g(S)| ≈ ln|Ω̂g(0)|+
∑
j,j′

tr
[
Ω̂−1
g (0)

∂Ω̂g

∂Sjj′

]
Sjj′

(S12)
≈ ln|Ω̂g(0)|+ tr

[
Ω̂−1
g (Ω̂g ⊗ Ω̂g + µggΩ̂

2
g ⊗ Ω̂2

g)(S)
]

= ln|Ω̂g(0)|+ tr
(
SΩ̂g + µggΩ̂SΩ̂2

g

)
, (S13)

where we have used that d
dt ln|A(t)| = tr

[
A(t)−1 dA

dt

]
and

∂Ωg

∂Sjj′
≈ (Ω̂g ⊗ Ω̂g +

µggΩ̂
2
g ⊗ Ω̂2

g)(Ejj′). We now have the necessary equations to derive the FKL
approximate cross-validation score.

Define

f(A,B) = ln |B| − tr(BA) (S14)

by which the identity

ng∑
i=1

f(Sig,Ωg) = ngf(Sg,Ωg) (S15)

holds for all g. The full likelihood (3) in terms of f is given by

L({Ωg}; {Sg}) ∝
G∑
g=1

ng
2

{
ln |Ωg| − tr(ΩgSg)

}
=

G∑
g=1

ng
2
f(Sg,Ωg), (S16)

while the likelihood of a single Sig is

Lig(Ωg; Sig) ∝
1

2

{
ln |Ωg| − tr(ΩgSig)

}
=

1

2
f(Sig,Ωg). (S17)

167



References

In our setting, the fused LOOCV score is given by:

LOOCV

= −
1

n•

G∑
g=1

ng∑
i=1

Lig
(
Ω̂¬igg ; Sig

)
(S17)

= −
1

n•

G∑
g=1

ng∑
i=1

1

2
f(Sig , Ω̂

¬ig
g )

= −
1

n•

G∑
g=1

1

2

ng∑
i=1

[
f
(
Sig , Ω̂g

)
+ f

(
Sig , Ω̂

¬ig
g

)
− f

(
Sig , Ω̂g

)]
(S15)

= −
1

n•

G∑
g=1

ng

2
f
(
Sg , Ω̂g

)
−

1

n•

G∑
g=1

1

2

ng∑
i=1

[
f
(
Sig , Ω̂

¬ig
g

)
− f

(
Sig , Ω̂g

)]
(S16)

= −
1

n•
L({Ω̂g}; {Sg})−

1

2n•

G∑
g=1

ng∑
i=1

[
f
(
Sig , Ω̂

¬ig
g

)
− f

(
Sig , Ω̂g

)]
(S14)

= −
1

n•
L({Ω̂g}; {Sg})−

1

2n•

G∑
g=1

ng∑
i=1

[
ln|Ω̂¬igg | − tr(Ω̂¬igg Sig)− ln|Ω̂g |+ tr(Ω̂gSig)

]
.

Now, substitution of (S12) and (S13) into the latter gives the FKL approximate
cross-validation score as an approximation to the fused LOOCV score:

LOOCV ≈ F̂KL = − 1

n•
L({Ω̂g}; {Sg}) +

1

2n•

G∑
g=1

ng∑
i=1

ζig,

where

ζig = tr
(
Ω̂SΩ̂ + µggΩ̂

2SΩ̂2
)
− tr

(
SΩ̂ + µggΩ̂SΩ̂2

)
= tr

(
Ω̂SΩ̂

)
+ µgg tr

(
Ω̂2SΩ̂2

)
− tr

(
SΩ̂
)
− µgg tr

(
Ω̂SΩ̂2

)
= tr

(
SΩ̂2

)
+ µgg tr

(
SΩ̂4

)
− tr

(
SΩ̂
)
− µgg tr

(
SΩ̂3

)
= tr

[
S(Ω̂2 − Ω̂)

]
+ µgg tr

[
S(Ω̂4 − Ω̂3)

]
= y>ig(Ω̂

2 − Ω̂)yig + µggy
>
ig(Ω̂

4 − Ω̂3)yig. (S18)

To arrive at (S18) we have used the linear and cyclic properties of the trace
operator. As S = yigy

>
ig, the cyclic property implies the final equality since

tr(SA) = tr(yigy
>
igA) = tr(y>igAyig) = y>igAyig. Equation (S18) is equivalent

to the summand in (S7).
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Preface: This paper discusses unfortunate statistical methodology widely
used to analyze so-called quantitative polymerase chain-reaction (qPCR) ex-
periments.

The qPCR technology is used to quantify the abundance of particular nu-
cleic acid of interest. In short, it works by repeatedly splitting and copying
the DNA in the biological sample. This causes a chain reaction doubling the
number of copies for each such so-called cycle. As florescent molecules are at-
tached to the molecules of interest, this allows for quantifying the abundance
in each cycle. The number of doublings (cycles) it takes to reach a certain
florescence level is called the Cq-value which reflects the number of molecules
in the original sample.

However, each cycle does not perfectly double the number of molecules.
This biases the estimation of the Cq-value and derived quantities. To account
for this imperfection, the amplification efficiency is estimated and used in the
computations. The prevailing current statistical methods, however, do not
account for the uncertainty of this amplification estimate and so the standard
errors, p-values, and confidence intervals are potentially overly optimistic. This
is particularly unfortunate since qPCR is an oft-used tool for validation. This
paper serves to illustrate, discuss, and attempt to resolve this problem.

The manuscript, data, and R-scripts are available at
https://github.com/AEBilgrau/effadj

for easy reproduction of the formatted paper and its results.
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Unaccounted Uncertainty from qPCR Efficiency
Estimates Imply Uncontrolled False Positive Rates

Abstract

Background Accurate adjustment for amplification efficiency (AE) is
an important part of real-time quantitative polymerase chain reaction
(qPCR) experiments. The most commonly used correction strategy is
to estimate the AE by dilution experiments and use this as a plug-in
when efficiency correcting the ∆∆Cq. Currently, it is recommended to
determine the AE with high precision as this plug-in approach does not
account for the AE uncertainty, implicitly assuming an infinitely precise
AE estimate. Determining the AE with such precision, however, requires
tedious laboratory work and vast amounts of biological material. Viola-
tion of the assumption leads to overly optimistic standard errors of the
∆∆Cq, confidence intervals, and p-values which ultimately increase the
type I error rate beyond the expected significance level. As qPCR is
often used for validation it should be a high priority to account for the
uncertainty of the AE estimate and thereby properly bounding the type
I error rate and achieve the desired significance level.
Results We suggest and benchmark different methods to obtain the
standard error of the efficiency adjusted ∆∆Cq using the statistical delta
method, Monte Carlo integration, or bootstrapping. Our suggested meth-
ods are founded in a linear mixed effects model (LMM) framework, but
the problem and ideas apply in all qPCR experiments. The methods
and impact of the AE uncertainty are illustrated in three qPCR applica-
tions and a simulation study. In addition, we validate findings suggesting
that MGST1 is differentially expressed between high and low abundance
culture initiating cells in multiple myeloma and that microRNA-127 is
differentially expressed between testicular and nodal lymphomas.
Conclusions We conclude, that the commonly used efficiency cor-
rected quantities disregard the uncertainty of the AE, which can drasti-
cally impact the standard error and lead to increased false positive rates.
Our suggestions show that it is possible to easily perform statistical in-
ference of ∆∆Cq, whilst properly accounting for the AE uncertainty and
better controlling the false positive rate.

1 Introduction

Despite being an aging technique, real-time quantitative polymerase chain re-
action (qPCR)—arguably one of the most significant biotech discoveries of all
time—is still heavily used in molecular biology [21]. qPCR is an extremely
sensitive and cost-effective technique to amplify and quantitate the abundance
of DNA and even mRNA by using so-called reverse transcriptase. In life sci-
ences, qPCR is typically applied to quantify candidate gene transcripts that
are biomarkers of diagnostic, prognostic, and even predictive value in e.g. in-
fectious diseases and cancer. In the slip stream of high-volume omics-data,
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another very important application of qPCR has arisen. Here qPCR is the
gold standard validation tool for the most promising gene transcripts gener-
ated by high-throughput screening studies such as microarrays or sequencing.
For validation experiments in particular the ability to control the type I error
rate is very important. Unfortunately, important statistical details are often
omitted resulting in a failure to obtain the desired type I error probability.
Validation without such an ability cannot be considered very meaningful and
therefore conservative approaches should be taken.

Like all experiments in molecular biology and chemistry, qPCR is sensitive
not only to genes and gene transcripts of interest, but also laboratory set-
tings and experimental conditions. There is an incredible amount of sources
of systematic and non-systematic variation including temperature variations,
concentration differences by pipetting errors, and primer affinity, in addition
to the genuine biological variations of interest across case and control samples.
Laboratory guidelines and increasingly sophisticated statistical modelling have
been established to combat many of these systematic errors [5, 6, 28].

The so-called ∆∆Cq quantity is the normalized relative expression of a
target gene of interest between treated (case) and untreated samples (control)
accounting for undesired variations using one or more endogenous reference
genes (also called housekeeping gene) assumed to be approximately unchanged
due to the treatment. The ∆∆Cq-value is usually based on the assumption of
perfect AEs for both the target and reference gene. However, the target and
reference genes might be subject to different AE which yield biased ∆∆Cq-
values. In turn, the ∆∆Cq has been modified to AE corrected versions [19, 22,
23].

Despite the tremendous success of qPCR, ‘statistical inference considera-
tions are still not accorded high enough priority’ [5, 6]. We find this particular
true for the estimation of the AE. Although efficiency calibration has been ex-
tensively treated by [19] or in the more generalized model by [34], there seems
to be a lack of systematic studies of the unavoidable influence of the uncertainty
of the AE estimate on the conclusions of qPCR experiments based on formal
statistical inference. The current AE adjusted ∆∆Cq methods do not account
for the uncertainty of the estimated AE and thus effectively assumes the AE
to be estimated with infinite precision. This assumption implies a systematic
underestimation of the standard error of ∆∆Cq leading to too narrow confi-
dence intervals, decreased p-values, and thereby increased type I error rates. If
the AE is poorly determined this underestimation can drastically increase the
standard error of ∆∆Cq and similar quantities.

Nordg̊ard et al. [18] studied error propagation including the effect of the AE
uncertainty on the Cq-values. This study was, however, statistically informal
and made no attempt to quantify the effect on the ∆∆Cq and inference hereof.
Furthermore, Nordg̊ard et al. [18] considered AE estimation from the amplifica-
tion curve (thus for each sample) and not from separate dilution experiments.
In this paper, we discuss only the AE from dilution curves explicitly. However,
similar problems exist as the AE estimates from the amplification curves also
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have an associated standard error which affect the ‘down-steam’ quantities and
inference.

Svec et al. [31] recently assessed the impact of the AE uncertainty as a
function of the number of technical replications at each concentration and the
qPCR instrument. They conclude that a minimum of 3–4 replicates at each
concentration are needed and that a significant inter qPCR instrument effect is
present. However, they do not gauge the effect of the number of concentrations
used—an important variable as additional technical replicates rarely contribute
with much information to determine the AE. Nonetheless, Svec et al. [31] do
not address the impact of the AE uncertainty on formal statistical inference on
the ∆∆Cq, as this paper intends.

1.1 Aims

Primarily, we aim to highlight the common problem of disregarding the uncer-
tainty of the AE estimate in statistical inference of the ∆∆Cq-value in qPCR
experiments. And we propose and benchmark different off-the-shelf and novel
solutions to this problem.

To this end, we employ a statistical model which allows such formal infer-
ence. This covers statistical model formulation, confidence intervals, hypothesis
testing, and power calculation, with special emphasis on false positive rates.
Simultaneous estimation of the uncertainty of the AE estimate and mean Cq-
values by linear mixed effects models (LMM), which allows a more appropriate
handling of the technical and sample errors, is described. We investigate the
use of the statistical delta method, Monte Carlo integration, or bootstrapping
to correctly perform inference on the value of ∆∆Cq.

Note two important observations: First, the problem exists for all statistical
models and methods which incorrectly disregard the uncertainty of the AE
estimate and is not limited to LMMs. Second, the problem exists not only
for ∆∆Cq-values, but also all similar quantities, e.g. ∆Cq and Cq, and the
statistical inferences based on these.

The idea of using LMMs for qPCR experiments is not new [1, 2, 9, 16, 29].
[2] and [1] have used mixed effects modeling to identify candidate normalizing
genes. Fu et al. [9] applied the related generalized estimation equations to
handle intra and inter group variation. However, the usage of LMMs combined
with the statistical delta method, Monte Carlo integration, or bootstrapping to
handle uncertainty stemming from the efficiency estimation seems to be novel
and provides a general statistical framework for qPCR experiments and may
be considered an extension of the strategy by Yuan et al. [34]. Steibel et al. [29]
and Matz et al. [16] use the mixed models primarily for the Cq-value estimation.

We demonstrate that considering the uncertainty of the AE is, unsurpris-
ingly, highly important when the AE is determined with inadequate precision
and vice versa. We do so by three application examples and a simulation exper-
iment. In the first two applications, the consideration of the AE uncertainty is
largely unimportant for ∆∆Cq inference due to a large number of dilution steps
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and well-determined AE. In the last application, we see that the AE uncertain-
ties have a drastically different impact on ∆∆Cq inference. In a simulation
study, we show that the methods proposed indeed control the false positive
rate better than the conventional approach and provide further insight into the
problem.

In the first application, we also verify that multiple myeloma cancer cell lines
differentially express the MGST1 gene depending on the abundance of culture
initiating cells. In the second application, the approaches are also used to
design and analyze a study which results turned out to support the hypothesis
of [25] that miRNA-127 is differentially expressed between testicular and nodal
DLBCL.

2 Methods

2.1 Observational model

In order to approximate the standard error of the AE adjusted ∆∆Cq we model
the amplification process in the following way

FCq = κσN0(2α)Cq , (1)

where FCq is the fluorescence measurement at the Cq’th cycle, κ is a pro-
portionality constant, N0 is the number of transcripts of interest in the ini-
tial sample before amplification, σ is the sample specific handling error and α
is the percentage of the log2-AE. In practice, the transcript abundance level
is determined by the cycle Cq for which a given fluorescence measurement
FCq is reached. We rearrange (1) and notice that Cq can be expressed as
αCq = log2 FCq − log2 κσN0. In order to estimate the relative amount of target
(tgt) gene transcripts between case and control (ctrl) samples, we assume the
amount of the reference (ref) gene template is the same in both the case and
the control, N0,ref,case = N0,ref,ctrl, and that the AE only vary between the
target and reference gene. We then arrive at the following expression for the
log2-fold change of the target gene template between case and controls:

log2

(N0,tgt,case

N0,tgt,ctrl

)
= log2 κσcaseN0,tgt,case − log2 κσcaseN0,ref,case

− log2 κσctrlN0,tgt,ctrl + log2 κσctrlN0,ref,ctrl

= −
{

(αtgtCq,tgt,case − αrefCq,ref,case)

− (αtgtCq,tgt,ctrl − αrefCq,ref,ctrl)
}
,

assuming that the Cq-values have been determined by a common florescence
level FCq . This method of estimating the log relative abundance between case
and controls is often referred to as the ∆∆Cq-method [15], after the double
difference appearing in the expression:

∆∆Cq := (αtgtCq,tgt,case−αrefCq,ref,case)− (αtgtCq,tgt,ctrl−αrefCq,ref,ctrl). (2)
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Thus we have 2−∆∆Cq as the relative abundance of the original target transcript
corrected for the AE.

2.2 Statistical model

We study the problematic aspects of ignoring the uncertainty of the AE es-
timate. Note, however, that this problem persists for all statistical models
and methods which näıvely ‘plug-in’ the AE estimate from dilution curves into
formulae concerning the ∆∆Cq.

For ease of notation we use the abbreviations i ∈ {tgt, ref} for gene types
target and reference; j ∈ {case, ctrl, std} for sample types case, control, and
standard curve; s ∈ {1, . . . , nij} for samples in the ij’th group; and k ∈
{0, . . . ,Kijs} for dilution steps for each sample. To estimate ∆∆Cq of (2),
estimates of αi are needed. A popular way of estimating the AE is by ordinary
linear regression. I.e. by regressing Cq,ij against a series of increasing values
0 = x1 < · · · < xK , defined by N0,ijk = N0,ij2

−xk , and näıvely plugging α̂i
into (2) and thus disregarding its uncertainty. Here, k denotes the dilution step
and xk the number of 2-fold dilutions (e.g. x1 = 1 means the first dilution step
halves the original concentration). The estimation of the expected Cq,ij-values
and αi can then be estimated simultaneously when formulated as a LMM [20];

Cq,ijsk = µij +Ajs + γixk + εijsk, (3)

where Ajs is a random effect from sample s under the j’th sample type,
γi = α−1

i , and µij is the group means. The random effects Ajs are N (0, σ2
S)-

distributed and the error terms εijsk are independent and N (0, σ2
j )-distributed

with a sample type specific variance σ2
j . The random effects account for the

paired samples across tgt/ref for each j. LMMs provide a more correct quan-
tification of the sources of variation and thereby a more correct estimate of the
uncertainty of µij and their derived quantities.

In one application we shall relax the assumption that the AE is independent
of j and consider group-specific AEs αij = γ−1

ij .
Although, variation due to technical replicates should be modeled in (3)

as an additional random effect term, we average out technical replicates for
simplicity. For further simplicity of this paper, we refrained from using multi-
ple reference genes simultaneously in the ∆∆Cq estimation although our the
framework and methods easily extends to this case.

2.3 Inference for ∆∆Cq by the delta method and Monte
Carlo integration

We first consider hypothesis testing and confidence intervals for ∆∆Cq by the
statistical delta method. Let the maximum likelihood estimates of the fixed
effects

θ = (µtgt,case, µtgt,ctrl, γtgt, µref,case, µref,ctrl, γref)
>
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be denoted by θ̂ = (µ̂tgt,case, µ̂tgt,ctrl, γ̂tgt, µ̂ref,case, µ̂ref,ctrl, γ̂ref)
>. We wish to

test the hypothesis H0 : c(θ) = 0, where c is the continuously differentiable
function of the fixed effects given by

c(θ) =
{

(µtgt,caseγ
−1
tgt − µref,caseγ

−1
ref )− (µtgt,ctrlγ

−1
tgt − µref,ctrlγ

−1
ref )
}
. (4)

The main task of this paper is to approximate the standard error of c(θ̂) and
thereby account for the uncertainty of ∆∆Cq. That is, the standard error,

se(θ̂) =

√
Var
[
c(θ̂)

]
, (5)

is of central interest. The standard error is used in the statistic for testing H0

given by t = c(θ̂)/se(θ̂), which according to a first order Taylor series expansion
of c can be approximated by

t =
c(θ̂)√

∇c(θ̂)>Var[θ̂]∇c(θ̂)
. (6)

According to Pinheiro and Bates [20, Section 2.4.2], t is approximately t-
distributed with η degrees of freedom. The degrees of freedom of multilevel
mixed effects models are non-trivial to obtain in general. We do not pursue
this further and restrict ourselves to the case of balanced experimental designs
where η is obtained relatively straight-forwardly.

On the basis of (6), an approximate (1−α)100% confidence interval of c(θ)
can then be given by

c(θ̂)± tα/2,η
√
∇c(θ̂)>Var[θ̂]∇c(θ̂).

Likewise, p-values can be obtained by computing P (|t| > T ) where T is t-
distributed with η degrees of freedom.

Alternatively to (6), the variance Var
[
c(θ̂)

]
can be evaluated by Monte

Carlo integration. One way is to simulate a large number N of parameters
θ1, . . . ,θN from a multivariate normal distribution using the estimated param-
eters N6(θ̂,Var[θ̂]) and compute the sample variance of c(θ1), . . . , c(θN ).

Both maximum likelihood (ML) and restricted maximum likelihood estima-
tion (REML) of LMMs is implemented in the R-packages lme4 and nlme [3, 20].

The packages readily provides the estimate θ̂ and Var[θ̂] and we use these in
the construction of test and confidence intervals for the ∆∆Cq as described
above. The needed gradient in (6) is computed straight-forwardly from (4).

We note that the division by γj in (4) is problematic as γ̂j is normally
distributed and values near zero can increase the variance dramatic. In practice,
this is only problematic if the standard error of γ̂j is sufficiently large. One way
to solve this problem is to use the log2 concentration as the response and the Cq-
values as the explanatory variables in a regression model of the standard curve
to estimate αj directly. This approach is not without conceptual problems
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as this puts the errors on the explanatory variables. To this end, note that
the hypothesis H0 : γtgtγrefc(θ̂) = 0, can be equivalently tested for which the
standard error of the test-statistic can be worked out exactly.

If γ−1
tgt and γ−1

ref are assumed to be one (or otherwise known) then (4) becomes
a simple linear hypothesis for which the standard error is easily calculated.
This corresponds to leaving out the terms in (3) involving these parameters
and thus ignoring dilution data. If γ−1

tgt = γ−1
ref = 1 is assumed, we shall refer to

the obtained estimate as the näıve LMM. If γ−1
tgt and γ−1

ref are assumed known
(i.e. disregarding the standard error hereof) we refer to the obtained estimate as
the efficiency corrected (EC) estimate. The estimate where the uncertainty of
the AE is considered is referred to as efficiency corrected and variance adjusted
by either the delta method (EC&VA1) or Monte Carlo integration (EC&VA2).

2.4 Inference for ∆∆Cq by the bootstrap method

We now consider hypothesis testing and confidence intervals for ∆∆Cq by boot-
strapping as an alternative approach. The bootstrap, which avoids calculating
gradients, is often cited to perform better in small sample situations [8].

The basic idea of the bootstrap is that inference on ∆∆Cq can be conducted
by re-sampling the sample data and performing inference on the re-sampled
data. In the usual qPCR setup with paired samples and dilution data, straight-
forward bootstrapping will quickly fail. We propose non-parametric block boot-
strap samples for the case-control data generated by sampling matched pairs
of tgt/ref genes with replacement for cases and controls, respectively. How-
ever, as we have only got a single observation for each dilution step we chose
to re-sample residuals from a simple linear regression model and subsequently
adding the residuals to the fitted values from the linear regression. Hence the B
bootstrapped datasets consists of the re-sampled matched pairs and the resid-

ual bootstrapped standard curve. For each dataset, δ̂1 = ∆∆C
(1)
q , . . . , δ̂B =

∆∆C
(B)
q are computed to obtain the bootstrap distribution from which con-

fidence intervals and p-values can be obtained. The standard error of ∆∆Cq
is estimated by the sample standard deviation of the bootstrap distribution.
A (1−α)100% confidence interval can be computed as (δ̂(α/2), δ̂(1−α/2)) where

e.g. δ̂(α/2) denotes the α/2-percentile of δ̂1, . . . , δ̂B . The p-value for the null
hypothesis of δ = 0 is computed by

2 min(π, 1− π) where π =
1 +

∑B
i=1 1[δ̂i ≤ 0]

B + 1
.

While the bootstrap is an intuitive and excellent method for estimating the
standard error, it quickly becomes computationally heavy. The rather com-
plicated designs of qPCR experiments with paired samples, dilution data, and
other random effects also makes the bootstrap less attractive as good bootstrap
sampling schemes are hard to produce.

Alternatively, parametric bootstrap can be used by simulating datasets from
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the fitted model. Here, both new random effects and noise terms are realized
and added to the fitted values to generate new datasets.

3 Applications

We applied the described approaches to two qPCR validation experiments re-
garding culture initiating cells (CICs) in multiple myeloma (MM) and non-
coding microRNAs in diffuse large B-cell lymphoma (DLBCL). In both exper-
iments, the Cq-values were extracted for both the reference and target tran-
scripts with automatic baseline and threshold selection [17]. We also illustrate
the method on a public available qPCR dataset concerning the differential gene
expression in arabidopsis thaliana grown under different conditions. In order to
gauge the performance of the methods we subsequently performed a simulation
study.

3.1 CIC study

Introduction

A cell is culture initiating if it can initiate a sustained production of cells when
cultured in vitro. The viability potential of a cell population can be assessed
by measuring the number of culture initiating cells (CICs). This number can
be estimated by a dilution experiment where cells are seeded in decreasing
numbers. The ratio of CICs can then be estimated by e.g. Poisson regression
[13]. CICs are of particular interest in cancer research as cancers with high
culture initiating potential seemingly have stem cell like properties making
them resistant towards chemotherapy [7].

In search for genes associated with a high culture initiating potential in MM
we made limiting dilution experiments of 14 MM cell lines and divided them
into 7 cell lines with low and 7 cell lines with high culture initiating potential.
Gene expression profiling by microarrays identified genes MGST1 and MMSET
to be differentially expressed between cell lines with high and low abundance of
CICs. As gene expression detection by microarrays can be hampered by high
false positive rates, the purpose of this experiment was to validate the findings
of the association of MGST1 and MMSET with culture initiating potential by
qPCR.

Sample and data preparation

For this, 8 MM cell lines (AMO-1, KMM-1, KMS-11, KMS-12-PE, KMS-12-
BM, MOLP-8, L-363, RPMI-8226) with > 10% CICs, and 8 MM cell lines
(ANBL-1, KAS-6-1, LP-1, MOLP-2, NCI-H929, OPM-2, SK-MM-2, U-266)
with < 1% CICs were used. The fraction of CICs was determined by the
limiting dilution method, see [13]. Total RNA was isolated from frozen cell
culture pellets, using a combined method of Trizol (Invitrogen) and Mirvana
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spin columns (Ambion). Isolated RNA was reversed transcribed into comple-
mentary DNA (cDNA) synthesis using SuperScript III First-Strand Synthe-
sis Supermix (Invitrogen). As input into the total cDNA synthesis of 250ng
total RNA was used. Equal amounts of random hexamers and oligo(dT)
were used as primers. Quantitative real-time reverse transcriptase polymerase
chain reaction was performed on a Mx3000p qPCR system (Agilent Technolo-
gies/Stratgene) using the TaqMan UniversalPCR Master Mix, No AmpErase
UNG, and TaqMan gene expression Assays (Applied Biosystems). The follow-
ing TaqMan Gene Expression Assays were used (Assay ID numbers in parenthe-
ses): MGST1 (Hs00220393 m1), MMSET (Hs00983716 m1). The two refer-
ence genes beta-actin (ACTB) and GAPDH were used as endogenous controls,
assay IDs 4333762-0912030 and 4333764-1111036, respectively. For each target
and reference transcripts a standard curve based on seven 2-fold dilutions was
constructed on a reference sample consisting of material from the AMO-1 cell
line.

3.2 DLBCL study

Introduction

The association between oncogenesis and micro RNAs (miRNAs), short non-
coding RNA transcripts with regulatory capabilities, has recently prompted
an immense research activity. The possibility to change treatment strategies
by transfecting antisense oligonucleotide to control abnormally up-regulated
miRNAs in malignant tissue is of particular interest [10]. In that respect up-
regulated miR-127 and miR-143 in testicular DLBCL have shown treatment
changing potential [25]. However, as the number of screened miRNAs was high
and the sample size was low in Robertus et al.’s work invoking high risk of
false discoveries we set out to validate the differential expression of miR-127
and miR-143 in tissues from our own laboratory using our improved qPCR
analysis workflow.

Sample and data preparation

For this study, DLBCL samples were collected from 8 testicular (case) and
8 nodal (control) paraffin embedded lymphomas at Aalborg University Hos-
pital. The samples were collected in accordance with a research protocol ac-
cepted by the Health Research Ethics Committee for North Denmark Region
(No. N-20100059). Total RNA was isolated using a combined method of Trizol
(Invitrogen) and Mirvana spin columns (Ambion). An amount of 10ng total
RNA was synthesized into first strand cDNA in a 15µL reaction using Taq-
Man MicroRNA Reverse Transcription Kit (Applied Biosystems) according to
the manufactures instruction. In total 1.33µL cDNA was used as template in
the real time PCR amplification performed by Mx3000p QPCR system (Agi-
lent Technologies/Stratgene) with sequence specific TaqMan primers (Applied
Biosystems). As reference transcripts we chose RNU-6B and RNU-24, which
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were less variable and equally expressed across nodal and extra-nodal samples
among a larger list of candidate reference genes. For each target and reference
transcripts a standard curve based on seven 2-fold dilutions was constructed
on a reference sample consisting of pooled material from all 16 lymphomas.

3.3 Arabidopsis thaliana study

Introduction

In order to illustrate the effect of applying variance approximations in a data-
set with a limited number of dilution steps and samples we considered the
arabidopsis thaliana dataset published by Yuan et al. [34]. The dataset con-
tains one gene of interest, MT7, potentially differentially expressed under two
growth conditions of the plant arabidopsis thaliana and two reference genes
ubiquitin (UBQ) and tublin.

Sample and data preparation

The arabidopsis thaliana plant growth, RNA extraction, and qPCR experi-
ments were carried out as described in Yang et al. [33]. The cDNA was diluted
into 1-to-4 and 1-to-16 serial dilutions. Real-time PCR experiments was per-
formed in duplicates for each concentration [34].

Due to the the study design, we naturally fitted estimation efficiencies γij =
α−1
ij for each group. Because of the few samples we omitted the, in this case,

meaningless random sample effect of the LMM.

3.4 Simulation study

In order to properly benchmark statistical test procedures one needs to have
an idea of the false positive rate (FPR), or type I error rate, as well as the true
positive rate (TPR), or sensitivity. As ground truth is usually not available in
non-synthetic data, we use simulation experiments to determine the error rates
of the discussed statistical procedures.

In our setting, the FPR of a statistical test is the probability that the
test incorrectly will declare a result statistically significant given a vanishing
effect size or difference of c(θ) = 0 between case and controls; i.e. FPR =
P
(
|t| > t1−α/2,η

∣∣ c(θ) = 0
)
. On the other hand the TPR of the statistical

test is the probability that the test will correctly declare a result statistically
significant given an non-zero effect size δ = c(θ) between case and controls; i.e.
TPR = P

(
|t| > t1−α/2,η

∣∣ c(θ) = δ
)
.

A straightforward way to obtain an estimate of the TPR is to simulate a
large number n of datasets under the alternative hypothesis of c(θ) = δ, fit the
model for each dataset, and compute t-values t1, . . . , tn. From these t-scores
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the TPR can estimated by

T̂PR =
1

n

n∑
i=1

1
[
|ti| > t1−α/2,η

]
,

where 1[ · ] is the indicator function. Hence, the estimated TPR is the fraction
of tests correctly declared significant.

Likewise, an estimate of the FPR is obtained by simulating n datasets under
the null hypothesis of c(θ) = 0 and obtaining t-values t1, . . . , tn from which FPR
is estimated by

F̂PR =
1

n

n∑
i=1

1
[
|ti| > t1−α/2,η

]
,

i.e. the fraction of tests incorrectly declared significant.
Based on the above statistical model, we estimate the FPR and the TPR

for each discussed method under different choices of sample sizes and number
of dilutions whilst fixing the size of the sample and experimental variations.

4 Results

4.1 CIC study

The Cq-values and dilution curves for the CIC study are depicted in Fig. 1
panels A–B, respectively. The simple linear regressions show well-determined
standard curves with small standard errors on the estimate of the slopes.

The values of the considered estimators for ∆∆Cq are seen in Table 1. The
table also shows results of tests for difference in gene expression assessed by
the ∆∆Cq for both target genes MGST1 and MMSET normalized to each of
the reference genes GAPDH and ACTB. We used four different methods to
estimate and perform inference: (1) EC: Efficiency corrected LMM estimate
ignoring the uncertainty of the efficiency estimates. (2) EC&VA1: EC and
variance adjusted LMM estimate using 1. order approximation. (3) EC&VA2:
EC and variance adjusted LMM estimate using Monte Carlo integration. (4)
Bootstrap: Estimate by the bootstrap described in Section 2.4 fitting the LMM
and using the EC estimate.

Consider the first section of Table 1 where tgt MGST1 is normalized against
the reference GAPDH. The tests for a vanishing ∆∆Cq are all highly significant
with comparable 95% CIs. As expected, the efficiency corrected estimates are
unchanged due to the variance adjustment, and only the standard deviation
of the estimate is increased. The increase of the standard error is very small
resulting in small but unimportant increases of the absolute t- and p-values.
The results remain significant for the MGST1 gene. Very similar results are
obtained if ACTB is used as reference. In conclusion, there is good evidence
that MGST1 is differentially expressed between cell lines with high and low
abundance of CICs.
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Fig. 1: Overview of CIC experiment data. A: Raw Cq-values for different cell lines (samples)
for each gene type and sample type. The point type and colour differentiates the different
gene types. B: Dilution data for reference genes (ACTB, GAPDH ) and target genes (MGST1,
MMSET ).

For the target gene MMSET normalized with respect to both reference
genes, all estimates are not significantly different from zero. Again, the various
methods all agree and no substantial inter-method differences are seen and we
find no evidence for differential expression of MMSET between cell lines with
high and low abundance of CICs.

In all instances, our bootstrap scheme provides a standard deviation larger
than what is obtained using the delta or Monte Carlo methods. The mean of
the bootstrap distribution seems consistently larger that the other methods.

We see that the large number of dilution steps, as recommended and ex-
pected, ensures a low impact of the AE on the standard error and thus on the
inference of the ∆∆Cq.

4.2 DLBCL study

The Cq-values and dilution curves for the DLBCL study are depicted in Fig. 2,
panels A–B, respectively. Analogous to the previous section, the differences
in gene expressions assessed by the ∆∆Cq for the target genes miR-127 and
miR-143 with respect to each reference gene rnu6b and rnu24 were estimated
using the four different methods. Again 2000 bootstrapped samples were used.
The results are seen in Table 2.

We notice the efficiency corrected estimates are exactly equal with and
without variance adjustment, while the standard deviation of the estimate and
the p-values are higher for the adjusted values as expected. The size of the
increase is again undramatic hinting at well determined AE using the dilution
curves.

For all combinations of reference genes the estimates for miR-127 are sig-
nificantly different from zero at the usual 5 % significant level, but not at the 1
% significance level. The miR-143 estimates are not significantly different from
zero. Despite the very small increase in standard error, the p-values increase
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Table 1: CIC data: Method comparison for estimating the ∆∆Cq-value (Est.) and the
standard error (SE). EC denotes use of the plugin-estimator. VA denotes that the efficiency
correction was variance adjusted using the delta method (1) or Monte Carlo integration (2).
Bootstrap shows the mean and standard deviation of 2000 bootstrap samples using the EC
estimate. The last two columns show the 95% lower and upper confidence interval limits.

Est. SE t-value df p-value LCL UCL
MGST1 vs GAPDH

EC -8.622 1.625 -5.307 21 2.915 · 10−5 -12 -5.243

EC&VA1 -8.622 1.663 -5.184 21 3.886 · 10−5 -12.08 -5.163

EC&VA2 -8.622 1.669 -5.168 21 4.040 · 10−5 -12.09 -5.152

Bootstrap -8.659 2.059 9.995 · 10−4 -12.49 -4.405
MGST1 vs ACTB

EC -8.984 1.612 -5.572 21 1.574 · 10−5 -12.34 -5.631

EC&VA1 -8.984 1.648 -5.452 21 2.077 · 10−5 -12.41 -5.557

EC&VA2 -8.984 1.649 -5.447 21 2.104 · 10−5 -12.41 -5.554

Bootstrap -8.98 2.093 9.995 · 10−4 -12.75 -4.478
MMSET vs GAPDH

EC 0.6793 0.5852 1.161 21 2.588 · 10−1 -0.5378 1.896

EC&VA1 0.6793 0.587 1.157 21 2.601 · 10−1 -0.5413 1.9

EC&VA2 0.6793 0.5888 1.154 21 2.616 · 10−1 -0.5452 1.904

Bootstrap 0.6878 0.6778 3.118 · 10−1 -0.6563 1.999
MMSET vs ACTB

EC 0.318 0.9616 0.3308 21 7.441 · 10−1 -1.682 2.318

EC&VA1 0.318 0.9621 0.3306 21 7.442 · 10−1 -1.683 2.319

EC&VA2 0.318 0.9645 0.3298 21 7.448 · 10−1 -1.688 2.324

Bootstrap 0.3423 0.9872 7.046 · 10−1 -1.676 2.135

at the second digit.
The bootstrap method provides a standard deviation similar to the delta

method and Monte Carlo integration for both miR-127 and miR-143.
Regarding the biological interest, we conclude there is evidence for a dif-

ference in miR-127 expression between testicular and nodal DLBCL whilst
the data is not compatible with difference in miR-143 expression. While the
AE estimate had no influence in these cases a change in significance is easily
imagined in other cases.

4.3 Arabidopsis thaliana data

The Cq-values and dilution data for the arabidopsis thaliana data are shown in
Fig. 3.

The estimated difference in gene expression between case and control of the
target gene MT7 normalized to either reference (Tublin or UBQ) is seen in
Table 3. The table shows the efficiency corrected method with and without
variance adjustment by the delta method. In both cases, we see a dramatic
increase in the standard error, p-values, and size of the confidence intervals.
When using variance adjustment there is no longer a highly statistical signifi-
cant difference in MT7 expression between case and ctrl growth conditions.

The results may be surprising at first sight when considering the relatively
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Fig. 2: Overview of DLBCL testis experiment data. A: Raw Cq-values for different patient
samples for each gene type and sample type. The point type and colour differentiates the
different gene types. B: Dilution data for reference genes (RNU-24, RNU-6B) and target
genes (miR-127, miR-143 ).

Table 2: Testis data: Method comparison for estimating the ∆∆Cq-value (Est.) and the
standard error (SE). EC denotes use of the plugin-estimator. VA denotes that the efficiency
correction was variance adjusted using the delta method (1) or Monte Carlo integration (2).
Bootstrap shows the mean and standard deviation of 4 bootstrap samples using EC estimate.
The last two columns show the 95% lower and upper confidence interval limits.

Est. SE t-value df p-value LCL UCL
mir127 vs rnu6b

EC 2.671 1.126 2.372 22 2.684 · 10−2 0.3361 5.005

EC&VA1 2.671 1.128 2.368 22 2.711 · 10−2 0.3315 5.01

EC&VA2 2.671 1.131 2.362 22 2.747 · 10−2 0.3253 5.016

Bootstrap 2.681 1.047 9.995 · 10−4 0.8756 4.817
mir127 vs rnu24

EC 2.384 1.084 2.199 22 3.868 · 10−2 0.1357 4.631

EC&VA1 2.384 1.087 2.193 22 3.915 · 10−2 0.1298 4.637

EC&VA2 2.384 1.088 2.19 22 3.941 · 10−2 0.1265 4.641

Bootstrap 2.423 1.177 9.995 · 10−3 0.4164 5.022
mir143 vs rnu6b

EC 1.165 0.846 1.377 22 1.823 · 10−1 -0.5893 2.92

EC&VA1 1.165 0.8463 1.377 22 1.824 · 10−1 -0.5899 2.92

EC&VA2 1.165 0.8475 1.375 22 1.830 · 10−1 -0.5923 2.923

Bootstrap 1.151 0.7943 1.439 · 10−1 -0.3409 2.7
mir143 vs rnu24

EC 0.8781 0.8099 1.084 22 2.900 · 10−1 -0.8015 2.558

EC&VA1 0.8781 0.8101 1.084 22 2.901 · 10−1 -0.8019 2.558

EC&VA2 0.8781 0.8107 1.083 22 2.905 · 10−1 -0.8032 2.559

Bootstrap 0.8966 0.8216 2.669 · 10−1 -0.603 2.58
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Fig. 3: Overview of Yuan et al. [34] experiment data. Cq-values against the dilution step for
case and control samples. Dilution data are present for both the target (MT7 ) and reference
genes (Tublin, UBQ).

Table 3: Yuan et al. [34] data: Method comparison for estimating the ∆∆Cq-value (Est.)
and the standard error (SE). EC denotes use of the plugin-estimator. VA denotes that the
efficiency correction was variance adjusted using the delta method (1).

Est. SE t-value df p-value LCL UCL
MT7 vs Tublin

EC -4.374 0.748 -5.847 4 4.268 · 10−3 -6.45 -2.297

EC&VA1 -4.374 6.561 -0.6666 4 5.415 · 10−1 -22.59 13.84
MT7 vs UBQ

EC -3.381 0.1682 -20.1 4 3.616 · 10−5 -3.848 -2.914

EC&VA1 -3.381 1.658 -2.039 4 1.111 · 10−1 -7.985 1.224

small standard errors of the slopes in the simple linear regressions shown in
Fig. 3. One might imagine that the uncertainty of the AE is negligible and thus
perform the usual analysis. However, we see the contrary for several reasons.
First, using only 3 dilutions steps leaves very few degrees of freedom left in each
group as we are left with few samples and a high number of parameters to be
estimated. Secondly, as dilution curves are used for each group the four group-
specific AE estimates will all contribute to increasing the standard error of the
∆∆Cq. While this example was selected as a worst-case scenario, it should
illustrate that although the standard curves are seemingly well determined, it
is hard to intuitively predetermine the combined effect on the standard error
of ∆∆Cq.

We note here, that no pre-averaging of the technical replicates for each
concentration was done. Instead, the technical replicates where modeled as a
random effect.

4.4 Simulation study

First, we present results of a simulation study for a two-sided test for the null
hypothesis of a vanishing ∆∆Cq at a 5% significance level. We simulated 2000
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datasets under both the null and alternative hypothesis with 6 samples in each
case and control group and standard curves with 6 dilution steps. The effect
size under the alternative was set to δ = 10/9. The sample and experimental
standard deviations were set to σS = 1 and σ = 1, respectively. The AE for
the target and reference genes were set to 0.80 and 0.95, respectively.

The four discussed methods were applied to the 2× 2000 datasets and the
p-value testing the null hypothesis were computed. The results of these tests
are summarized in Table 4 from which the FPR and TPR can be computed at
the 5% cutoff. From Table 4, we see the estimated FPRs are 0.073, 0.053, and
0.083 for the efficiency corrected LMM (EC), the efficiency corrected LMM with
variance adjustment using the delta method (EC&VA1), and the bootstrap,
respectively. We omitted EC&VA by Monte Carlo integration here due to the
computational cost and the similar results with EC&VA1 in the previous. As
expected, the EC method does not control the FPR at the 5%-level. The
variance adjusted estimator is consistent with controlling the FPR at the 5%
level. By construction, the variance adjusted will always perform at least as
good as the EC in terms of FPR. Surprisingly, the bootstrap has the worst
performance in terms of FPR.

Secondly, the TPR are estimated to be 0.3825, 0.3175, 0.366 for three meth-
ods EC, EC&VA1, Bootstr., respectively. As expected, we notice that an
improved FPR comes a the cost of a decreased TPR for a given statistical
procedure.

The above simulations were repeated for sample sizes 4 or 8 in both case
and control groups in combination with 4 or 8 dilution steps with the same
simulation parameters. Fig. 4 shows the performance of the methods in terms
of FPR and TPR. Each panel corresponds to a given number of samples and
dilutions. In each panel the p-value cut-off is varied between 0.01, 0.05, and
0.1. Overall, we see that the EC&VA estimate is the only procedure consistent
with controlling the FPR at the nominal chosen significance level. Likewise,
for many dilutions, the difference between the EC and EC&VA procedures
diminish as the uncertainty of the AE is relatively low. As expected a decrease
in FPR corresponds to a decrease in TPR.

To gauge when the standard error of (5) is determined with adequate pre-
cision, we simulated 2× 2000 datasets and computed the mean standard error
of the ∆∆Cq for the EC and EC&VA procedures as a function of the number
of dilutions and samples. We varied the number of dilutions in the range 4–9
for a number of samples in the range 4–10 with the same settings as above.
Fig. 5 shows these results. As expected, increasing the number of samples or
the number of dilutions yield a smaller standard error. Also unsurprising and
as already seen in the applications, the differences in the standard error for
the EC and EC&VA methods are very substantial for a small number of di-
lutions and vanish as the number of dilutions steps increase. The differences
in the standard error seems to be larger under the alternative than the null
hypothesis. Similar figures might also aid in designing qPCR experiments and
help determine if investing in additional dilutions or samples is preferable—
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Table 4: Contingency tables for the different estimators for at 5 % p-value threshold. The
used estimators are the LMM with efficiency correction (EC), the LMM with EC and variance
adjustment (EC&VA), and the bootstrapped LMM approach.

EC EC&VA1 Bootstr.
H0 HA H0 HA H0 HA

p-values
p ≥ 0.05 1854 1235 1894 1365 1834 1268
p < 0.05 146 765 106 635 166 732

obviously with properly chosen simulation parameters in the given context.

5 Discussion and conclusion

The commonly used efficiency corrected ∆∆Cq approach to analysis of qPCR
data disregards the uncertainty of the estimated AE leading to increased false
positive rates. As qPCR experiments are often used for validation this is highly
undesirable. Our primary approach based on the statistical delta-method to
approximate the variance of the efficiency adjusted ∆∆Cq, shows that it is
possible to perform statistical inference about qPCR experiments whilst more
properly accounting for the AE uncertainty. We also note that the problem is
not limited to the ∆∆Cq statistic.

The approach was used to validate that: (1) MGST1 is differentially ex-
pressed between MM cell lines of high and low abundance of CICs and (2)
analyze and study the hypothesis that miRNA-127 is differentially expressed
between testicular and nodal DLBCL, and (3) illustrate the effect of a small
number of dilution steps.

In the latter application, we saw a dramatic increase in the standard error
of the estimate when the variance approximation was introduced, potentially
leading to a change of significance for the presented dataset depending on the
desired significance level. This illustrates that it is important to consider all
aspects of uncertainty when conducting AE correction of qPCR experiments.
Problems with uncertainty in efficiency estimates should be handled by estab-
lishing well-estimated dilution curves as argued elsewhere [5], however even in
this case the presented method also allows for design guidelines for power cal-
culations and assessing the influence of the estimated dilution curves. It is also
noteworthy that model based estimation of the ∆∆Cq also allows for model
checking by e.g. residual plots.

Lastly, we note that the algorithm [17] we used for threshold selection and
Cq-value extraction in the CIC and DLBCL studies may not be optimal, cf. Rui-
jter et al. [26] and improvements by Spiess et al. [28], as it can be affected by
the AE. Nonetheless, this has no bearing on the stated problem of this paper.
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Fig. 4: Plot of the false positive rates (FPR, black) and true positive rates (TPR, grey) and
their 95 % confidence intervals achieved simulation experiments for each method at various
p-value cut-offs (0.05, 0.01, 0.1) shown by solid red horizontal lines. The FPR and TPR are
computed completely analogous to Table 4. The rates are plotted for each combination of 4
or 8 samples with 4 or 8 fold dilution curves.
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Fig. 5: The mean standard error of the ∆∆Cq for two methods (EC and EC&VA1) over
2000 repeated simulations under the null (panel A) and alternative hypothesis (panel B) as
a function of the number of dilution steps for a different number of samples in each group.

The estimated standard error of ∆∆Cq is still affected in a similar manner by
the uncertainty of the AE and thus too optimistic.

Despite the extensive use of qPCR, more statistical research is needed to
establish qPCR more firmly as a gold standard to reliably quantify abundances
of nucleic acids. Researchers analyzing qPCR experiments need to model their
experiments in detail, e.g. via linear or non-linear (mixed) models, as the prop-
agation of uncertainty needs to be carefully assessed and accounted for. This
is necessary for making valid inferences and upholding the common statistical
guarantees often erroneously assumed to be automatically fulfilled. We rec-
ommend the conservative and proper approach of always accounting for the
uncertainty of the AE.

Supplementary Material and Software

The statistical analysis were done using the programming language R v3.1.3
[24] using lme4. All data, R code, LaTeX, and instructions to reproduce the
present paper and results are freely available at

http://github.org/AEBilgrau/effadj/
using knitr, an extension of Sweave [14, 32]. Functionality from the packages
Hmisc [11], lattice (and latticeExtra) [27], epiR [30], snowfall [12], and
GMCM [4], were used for tables, figures, FDR/TPR confidence intervals, parallel
execution of simulations, and multivariate normal simulations, respectively.
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Package I

GMCM: Fast Estimation of Gaussian Mixture Copula
Models

Anders Ellern Bilgrau, Poul Svante Eriksen, and Martin Bøgsted

Release: http://cran.r-project.org/package=GMCM
Development: https://github.com/AEBilgrau/GMCM

Preface: The GMCM package is the accompanying open-source software for
R described in Paper I. It greatly extends the idr package by Li et al. (2011)
to an arbitrary number of dimensions, provides multiple algorithms for fitting
the model, and implements the generalized model by Tewari et al. (2011) for
unsupervised clustering. Considerable effort has gone into improving the es-
timation speed partly by implementing core functions in C++ via Rcpp and
RcppArmadillo.

The package is extensively documented using roxygen2 and thoroughly
tested through unit tests using testthat. Functions not exported to the user
interface also have help pages although these do not appear in the manual.
They are however available in R via help(dgmcm.loglik) or ?dgmcm.loglik,
for example.

The manual and package vignette is available via the former link. Installa-
tion instructions and further usage examples are found by following the latter
link.

Licence: GPL-2 | GPL-3

http://cran.r-project.org/package=GMCM
https://github.com/AEBilgrau/GMCM
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Package II

DLBCLdata: Automated and reproducible download
and preprocessing of DLBCL data

Anders Ellern Bilgrau and Steffen Falgreen

Development & Release: https://github.com/AEBilgrau/DLBCLdata

Preface: The DLBCLdata package for R performs automated and repro-
ducible download and RMA preprocessing of diffuse large B-cell lymphoma gene
expression datasets, freely available on the Gene Expression Omnibus (GEO)
website from the National Center for Biotechnology Information (NCBI). It is
partly a convenient wrapper for the GEOquery and affy packages. However, a
good amount of effort went into automatically downloading and installing the
custom Brainarray annotations if such non-standard preprocessing is wanted.

DLBCLdata features a number of studies that have been manually curated
and checked. An overview of these studies are seen via data(DLBCL_overview)
and used in Papers III and IV. The cleaning of the ‘meta-’ and clinical data is
carried out by study-specific cleaning functions. The package has been written
such that new studies can easily be included in the list of featured studies.
An significant amount of ‘manual’ labour also went into ABC/GCB classify-
ing each dataset using the Windows application by Care et al. (2013) which
unfortunately did not provide a programmatic interface.

The package grew out of R code written from Paper III which uses custom
brainarray ensembl-identifies. It proved itself very useful for Paper IV when
we decided to use Entrez gene identifiers (as KEGG does) instead of ensembl
gene ids for all studies.

While the package is oriented toward DLBCL, it should work with nearly
all GEO accession numbers containing gene expression profiles on Affymetrix
arrays.

Instructions for installing and using the package can be found by following
the link above.

Licence: GPL-3

https://github.com/AEBilgrau/DLBCLdata
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Package III

rags2ridges: Ridge estimation of precision matrices
from high-dimensional data

Carel F.W. Peeters, Anders Ellern Bilgrau, and Wessel N. van Wieringen

Release: http://cran.r-project.org/package=rags2ridges
Development: https://github.com/CFWP/rags2ridges

Preface: The R-package rags2ridges performs regularized ridge estimation of
(inverse) covariance matrices as discussed in van Wieringen and Peeters (2015).
rags2ridges was expanded with a fused -module which encompasses the imple-
mentation of the fused ridge estimator(s) of Paper IV and many supporting
functions.

To feasibly do large problems and cross-validation in the fused setting, much
of the code base has been optimized and reimplemented in C++ via RcppAr-
madillo. This included new additional non-fused estimators which are not only
faster but also more robust for extreme penalty values. This provided a speed-
up in the order of a factor 100. Currently, no vignettes or usage examples exist
beside the ones found in the examples of the documented functions. Extensive
testing of the package functionality and interface via unit tests using testthat
was also introduced.

Licence: GPL-2 | GPL-3

http://cran.r-project.org/package=rags2ridges
https://github.com/CFWP/rags2ridges
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