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Abstract

This thesis treats stochastic systems with switching dynamics. Models with these
characteristics are studied from several perspectives. Initially, in a simple framework
given in the form of stochastic differential equations (SDEs) and, later, in an extended
form which fits into the framework of sliding mode control. It is investigated how to
understand and interpret solutions to models of switched systems, which are exposed
to discontinuous dynamics and uncertainties (primarily) in the form of white noise.
The goal is to gain knowledge about the performance of the system by interpreting the
solution and/or its probabilistic properties.

One of the contributions is a convergence result for the Euler-Maruyama method
(a numerical scheme which produces realizations of stochastic processes) which indi-
cates that this method is suitable for construction of numerical solutions to stochastic
systems with discontinuous dynamics.

The other contributions are of more probabilistic character. Stationary density
functions are determined for different models of switched systems and a statistical
expression for the stationary variance of the control error for a (mechanical) system
designed with sliding mode control is developed.
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Synopsis

Denne afhandling behandler stokastiske systemer med skifte dynamik. Modeller med
denne karakteristika studeres fra flere perspektiver. I første omgang i en simpel kon-
struktion i form af stokastiske differentialligninger (SDE’er) og senere i en udvidet
version, der kan opstå ved sliding mode regulering. Det undersøges, hvordan man
forstår og fortolker løsninger til disse modeller af skifte systemer, når systemer har en
diskontinuerlig dynamik samt usikkerhed (primært) i form af hvid støj. Målet er at
opnå viden om systemets ydeevne ved at fortolke løsninger og/eller deres sandsynlig-
hedsteoretiske egenskaber.

Et af bidragene er et konvergensresultat for Euler-Maruyama-metoden (en nu-
merisk ordning, der frembringer realiseringer af stokastiske processer), hvilket tyder
på, at denne metode er velegnet til konstruktion af numeriske løsninger til stokastiske
systemer med diskontinuerlig dynamik.

De øvrige bidrag er mere sandsynlighedsteoretiske. Stationære tæthedsfunktioner
er bestemt for forskellige modeller af skifte systemer, og der udvikles et statistisk
udtryk for den stationære varians af reguleringsfejlen for et (mekanisk) system de-
signet med sliding mode regulering.
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Preface

This thesis is submitted as a collection of papers in partial fulfilments for the degree
of Doctor of Philosophy at the Section of Automation and Control, Department of
Electronic Systems, Aalborg University, Denmark. The work has been conducted
in the period from September 2012 to May 2017 under the supervision of Associate
Professor Henrik Schiøler and Associate Professor John-Josef Leth.

The thesis contains three parts. Part I is an extended summary of the contribu-
tions which contains an introduction including motivation and objectives for the PhD
project, a methodology, a summary of the contributions together with conclusion and
perspectives. Part II contains the contributions which consist of four papers in the area
of stochastic systems with switching dynamics. Part III contains the appendix.

For readers interested in obtaining an overview of the content and contributions
of the thesis, it is recommended to read section 5 -“Summary on Motivation and Ob-
jective”, the chapter “Summary of Contributions” and the chapter “Conclusion and
Perspectives”.
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Presentations and State of the
Art

This chapter presents the motivation and background for studying stochastic switching
dynamics and gives a general introduction to related literature. The chapter ends with
a summary of the objective of the PhD project.

1 To Model Real-World Phenomena
Dynamic models of real-world phenomena are used to express the behaviour of phy-
sical objects evolving in time. A dynamic model consists of a set of parameters or
variables together with a set of rules describing the evolution of the physical object.
Examples of dynamical systems are found in thermodynamics, mechanics, chemistry,
economics and electronics. More specific examples are the behaviour of a moving
pendulum, an electric circuit with relay or a mass-spring mechanical system, [1].

The main purpose of modelling is to reduce a physical system to a set of mathema-
tical equations. Having obtained a model of the system, validation is needed to prove
that the mathematical model does indeed describe the real-world situation. However,
even a properly developed (deterministic) model is always an approximation of reality,
so it is necessary to consider the fact that models might be exposed to imprecisions like
errors, deviations and, in general, uncertainties. One method to manage this challenge
is to include uncertainties as a part of the modelling.

1.1 Uncertainty in Modelling
In the modelling of real-world phenomena it is often necessary to consider and/or to
capture different kind of uncertainties generated by randomness in the behaviour of the
system. The phrase “randomness” is a property which can be assigned to parameters
or variables of the system which is modelled. Roughly speaking, uncertainty can be
modelled in a non-deterministic or in a probabilistic framework.

A non-deterministic framework is often expressed by ordinary differential equa-
tions, where the value or position of parameters/variables are unknown but with some
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Presentations and State of the Art

predefined constraints. For example, the disturbance in a non-deterministic model
might be upper bounded by a constant without being assigned any specific value or an
input can be binary without further information available.

A model in a probabilistic framework is a model where (some of) the variables are
assigned a probability measure. In the probabilistic framework it is possible to talk
about stochastic or statistic methods (and fuzzy models which will not be discussed in
this thesis). The term stochastic is used for to systems which behaviour are generated
by a probabilistic model and, therefore, cannot be predicted precisely. The term statis-
tic is used when the target is to assign a qualitative measure based on available data or
its probability distribution. Sometimes statistic is referred to as applied probability.

In the sequel, more about noise and disturbance is presented.

Noise and disturbance

Most models of electrical systems are prone to noise in one way or another. It can be
noise from the electrical circuit, processor noise, measurement noise from sensors or
external disturbance due to impact from uncontrolled factors.

Noise is often classified as small changes from the expected observation which can
be parameter dependent or completely independent of the current state of the system.

Disturbance of systems can cause a major change in the evolution of the state
position or parameters. This kind of changes can be modelled as jumps, which can
be done with the Poisson process in a stochastic frame work [2]. A power cut in an
electrically driven system is an example of an unexpected significant change which
can be modelled with the Poisson process.

In most cases, the noise and disturbance are modelled by introduction of a random
variable or a stochastic process in the model of the system. Observations with error
contributions caused by many different factors are likely to be considered as, what is
called, white noise. Modelling of white noise is done mathematically with the Wiener
process, which, roughly speaking, is defined as the integral-process of white noise [3].
(Further information on the Wiener process follows in section 4.)

Modelling error

Besides noise, another challenge in modelling of systems is inaccuracies of the model
itself, also called modelling error. This might be due to imprecise estimates or ap-
proximation of the system behaviour. Roughly speaking, inaccuracies of models can
be classified into two groups,

(1) structured uncertainties and

(2) unstructured uncertainties.

Group (1) corresponds to inaccuracies of the terms actually included in the model, for
example the designed parameters are estimates of parameters which have slow time
variation. Group (2) corresponds to inaccuracies of the system order, that is, when

4



1. To Model Real-World Phenomena

a system might be modelled better with another dimension, but the actual design is
chosen due to other factors e.g. because of ease of implementation [4].

Regardless of the reasons for undesirable system performance, the way to control
the system behaviour is to introduce a controller into the model.

1.2 A Control System
The control of a physical system can be done electrically, for example, by changing
the input voltage or current, or mechanically, for example, with a bimetal thermostat
or with regulation of a valve. The combination of a plant (a system) and a controller
which influences the plant is called a control system, which is defined as following.

Definition 1 (A control system). A control system is an object that is driven by a
number of inputs (external signals) and as a response produces a number of outputs
[5].

The necessary performance of the incorporated controller can be determined by ana-
lysing the mathematical representation of the control system and, depending on the
system, different control methods can be applied. The process of developing, analy-
sing and validating the control method is called control design. In the design process
a controller is incorporated into the model and it is designed to act according to ob-
servations, usually based on state space dynamics and/or time constraints. Since the
real world is inherently nonlinear, corresponding models and applied controllers often
become nonlinear as well. With this follows the need of advanced control techniques
such as linear parameter-varying control, sliding mode control, rule-based control,
predictive control, etc.

In summary, control theory deals with the challenges of controlling or guiding a
system to behave in a desired way. Therefore, control theory operates on a control
system which consists of interconnected components designed to achieve a desired
purpose. To be controllable, the system needs to have at least one measurable output
and at least one measurable input which influences the measured outputs in a de-
sired way. The control structure of using the output to change or modify the input is
called feedback control. The purpose of classical feedback control is to suppress dis-
turbances, compensate for model deviation and to stabilize the system performance.
That is, to keep the system outputs close to a desired trajectory or an equilibrium such
that the model of the system remains valid.

A common control technique is linear control. In the sequel, this technique is
presented together with a discussion of the advantages and disadvantages.

1.3 Linear Control Theory
The class of linear systems is mathematically tractable and can be used to model a
large variety of systems. A system is linear if it satisfies the principle of superposi-
tion and, in this case, the state space description of the system can be done with the
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Presentations and State of the Art

mathematical discipline of linear algebra. That is, the description of a linear (control)
system is often given by

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

where x(t) is the state, u(t) is the control function, y(t) is the output of the system
and A, B and C are matrices which define the operation of the system. As this for-
mulation indicates, it seems natural to apply linear control theory when the system is
modelled with linear differential equations (i.e. the system without the control part is
ẋ = Ax(t) and y(t) = Cx(t)). This has many advantages. Linear control theory
is a well developed area with relatively simple methods to investigate controllability,
observability and stability of the control system [6].

The advantages of linear control methods imply that in some modelling of non-
linear systems a linear approximation is adopted to simplify the control procedure.
Alternatively, nonlinear systems may be studied only locally, usually in a neighbour-
hood of an equilibrium point by linearising the system around such a point. However,
linear approximation methods rely on the assumption that the operation range is small
enough to ensure validation of the linear model. For large operation range, the linear
controller is likely to make poor performances or there will be regions of the state
space with unstable behaviour [4].

The work in this thesis does not apply linear control methods due to various rea-
sons. In general, all real-world control systems are nonlinear, and there are systems
with nonlinearities which are not linearisable. For systems where both linear and non-
linear control methods are applicable, an individual analysis must be carried out to
obtain the most reliable method. For example, a linear control method might bring
the best performance to a system with specific parameters, but the nonlinear control
method might be more robust to parameter-variations and unmodelled disturbance.
Additionally, in some cases nonlinear control might be simpler and more intuitive
than linear control, and provide a more robust performance. Other reasons to use
nonlinear control methods could be cost and performance optimality.

Sometimes it is preferable that the system can be affected by different control
dynamics. In this case the model is designed to change between several subsystems
or controllers to improve the execution. These systems fall under the category of
switched systems [7]. The next section presents switched systems and introduces the
relation to the framework of hybrid systems.

2 Switched Systems
Switched systems arise in many systems for automatic control. They can be found
in relatively simple systems such as a compressor in a refrigerator, which keeps the
temperature stable, in a more advanced system as an automatic gearbox, or in complex
systems such as the total control over a flying aircraft. The advantages of switching
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2. Switched Systems

control as compared to continuous/linear controllers are found in robustness to distur-
bances, simplicity of actuator design and, in some cases, savings in actuator’s energy
consumption.

The class of switched systems includes systems which consist of a combination
of both continuous and discrete dynamics. In many models the discrete dynamics is
governed by a supervisor, sometimes called a master, which generates a switching
signal based on the switching events. A switching event can be state-dependent or
time-dependent.

The continuous dynamics is driven by a set of subsystems influenced by different
controllers. The discrete switching signal indicates the current active subsystem and,
thus, the active controller. A schematic of a switched system is presented in Figure 1,
which is adapted from [8]. In this schematic the discrete dynamics consists of n sub-
systems, here denoted as controllers. Based on the output function y(t), the supervisor
decides whether to keep the current controller or to switch to another controller. The
selected controller defines the control u(t), which is included as a part of the input
signals. In this model, the switching can be both state-dependent and time-dependent.

A general (deterministic) description of a switched system is

ẋ(t) = fσ(t,x(t))(t, x(t))

where, for t ∈ T ⊂ R+, x : T → Rn is the continuous state and fσ : T ×Rn → Rn

represents the vector field. The function σ is the switching signal, and it is a piecewise
constant function σ : T ×Rn → E, where E is a finite index set. The switching signal
has a discontinuous jump at every switching time, which is defined by every switching
event. Thus, the switching signal is constant in between two switching events.

In some cases it is preferred that the system undergoes slow switching, which can
be conducted by introducing a dwell time. In this case the switching event is restricted
to the situation when the switching time between two switching events is greater
than or equal to the dwell time. Often dwell time is introduced to ensure stability of
switched systems, which is demonstrated by the related work [9, 10]. However, there
are systems where fast switching is unavoidable. One fast switching phenomenon is
called Zeno behaviour, which is explained in the sequel.

Zeno behaviour

The dynamics of a (control) system generates switching pattern which, in some cases,
can result in undesired behaviour of its model. The following is an example of a
real-world phenomenon which generates Zeno behaviour.

Example 2.1 (Bouncing Ball)
The (normalized) equation of motion of a bouncing ball is given by

ḣ = v, v̇ = −1, (h(t0), v(t0)) = (h0, v0) (1)

7
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Figure 1: Schematic of a switched system.

where h(t) is the height of a ball above a surface, v(t) is its velocity and (h0, v0)
are initial conditions. When the ball hits the surface at the switching time ts, the
velocity changes according to the dynamics

v(ts) = −r lim
s→ts

v(s) (2)

where r ∈ (0, 1) is the restitution coefficient. That is, for every switching event the
velocity changes sign and decreases in absolute value. As a result, the maximum
height above the surface decreases for every subsequent switching event.

Under the initial conditions that for t = 0 is (h(0), v(0)) = (0, 1), the solution
to the equations in (1) is

(h(t), v(t)) = (t− 1
2

t2,−t + 1) ,

for t ∈ (0, ts1) where ts1 = 2 is the first switching time. At this time instant
the velocity changes according to (2), such that v(ts1) = r. Thus, for t = ts1

is (h(ts1), v(ts1) = (0, r). The next switching time ts2 and the corresponding
velocity, can also be determined from (1) by resetting the initial conditions. By
repeating this procedure at every switching time, the velocity at the n’th switching
time tsn is obtained to be

v(tsn) = rn

and the time between two subsequent switching times is

tsn+1 − tsn = 2rn

which implies that the n’th switching time is

tsn =
n−1

∑
i=0

2ri . (3)

8
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Figure 2: The evolution of the height of a bouncing ball with restitution coefficient r = 0.8. The finite
accumulation point is a time t = 10.

For n→ ∞ the sum in (3) is the geometric series which converges and the bouncing
ball has a finite accumulation point at time

ts∞ =
∞

∑
i=0

2ri =
2

1− r
.

The evolution of the height with respect to time is presented in Figure 2, which also
illustrates that the time between two switches decreases as time passes and that the
height above the surface decreases. Both situations result in an increasing number
of switches in finite time.

As the example illustrates, Zeno behaviour refers to the cases where the switching
events happen very fast and very close to each other in terms of state space position,
such that the behaviour of the system conducts infinitely many switches in finite time.
Eventually, some of these cases will have a finite accumulation point (at least the phy-
sical system which is modelled). However, to analyse Zeno executions and to detect
potential accumulation points can be complicated and challenging [7]. Therefore, this
phenomenon is often excluded from general models available in the literature. This
general tendency of ignoring the Zeno behaviour in the design of control systems is
one of the motivations behind this study in stochastic switching dynamics.

A Bang-Bang controller

A simple switched system appears in, what is called, Bang-Bang control, on-off con-
trol or hysteresis control, which all switch discontinuously between input-values. This
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type of controllers can produce fast response, but they are inherently nonlinear. The
switching signal is limited to two switching conditions, that is, the system consists
of only two continuous subsystems and, correspondingly, two discrete modes. Bang-
bang controllers can be found in (closed loop) systems based on an optimization pro-
cedure where cost and dynamics depend linearly on the control signal. Other places
are in thermostats where the controller regulates the temperature by turning on and
off the heater/cooler or in electromechanical relays where an inductor controls a con-
tact mechanism to turn on/off the flow of current [1]. The following is an example of
temperature regulation.

Example 2.2 (On-off control)
The evolution of the temperature of a given object (with uniformly distributed tem-
perature) is given by the differential equation

Ṫ(t) = −1
c
(T(t)− Tamb) = −1

c
∆T(t)

where c is a positive time constant characteristic of the system and Tamb is the
ambient temperature. To keep the temperature within the temperature interval (Tc−
ε, Tc + ε), a state space dependent controller uσ is introduced to the system,

Ṫ(t) = −1
c
(uσ(T(t))(t) + ∆T(t)) = fσ(T(t))(T(t))

where the switching signal is

σ(T(t)) =


0 if T(t) ≤ Tc − ε
1 if T(t) ≥ Tc + ε

lims↗t σ(T(s)) if T(t) ∈ (Tc − ε, Tc + ε)
, (4)

with the control defined as u0(t) = 0 and u1(t) = ĉT(t) where ĉ > 0 denotes the
cooling factor. The evolution of the relation between the discrete and continuous
dynamics is presented in Figure 3.

The example above illustrates what is called hysteresis switching. If the tempera-
ture was supposed to keep the reference temperature Tc at all times, that is, the case
where ε = 0, then the switching mechanism is forced to be infinitely fast to com-
pensate for small fluctuations in the temperature. This behaviour is called chattering.
Chattering requires high control activity and, therefore, it is undesired in some models
of real-world systems because the fast switching in practice might cause problems
with the implemented equipment. The fast switching can be avoided with hystere-
sis switching. The concept is to implement an offset (in example 2.2 denoted ε) with
respect to the switching time or position (depending on state or time dependent switch-
ing) such that the switching events are delayed and the control of the system becomes

10
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Figure 3: The continuous signal T(t) is controlled by the discrete signal σ(T(t)) to stay inside the tempe-
rature interval (Tc − ε, Tc + ε) with ε = 1.

smoother.
A switched system is a special subclass in the class of systems called hybrid sys-

tems.

2.1 Hybrid Systems
The class of hybrid systems was introduced in 1966 by H. S. Witsenhausen [11]. Wit-
senhausen defined hybrid systems as part continuous, part discrete, being described
by differential equations combined with multi-stable elements. The paper provides
conditions for solutions to hybrid systems to be well-behaved, which means that the
solution consists of a finite number of well-behaved arcs and that it can be obtained
by admissible control. Furthermore, the paper also states necessary conditions for a
class of optimal control problems.

Since the first formal definition, the community has observed that many systems
encountered in practice are forms of hybrid systems and that systems with high com-
plexity are suitably modelled within this framework.

There are different models/languages used to describe a hybrid system, which are
developed by individuals or research groups based on their individual problems and
application aspects. Thus, the literature on hybrid systems is vast, so only a limited
amount of contributions are presented here. The common feature of hybrid models is
that they present systems which have a discrete and continuous part of the state vari-
able with their own dynamics, but the main challenges in the modelling is to capture
the interaction between the discrete and continuous parts.

A common model applied in control engineering is called a hybrid automata. The
hybrid automata is a model which combines discrete automata with parameters which
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On
Ṫ = f1(T(t))

T > Tc − ε

Off
Ṫ = f0(T(t))

T < Tc + ε

T ≤ Tc − ε

T ≥ Tc + ε

Figure 4: Hybrid automata which regulates the temperature T(t).

evolve continuously. The continuous flow is driven by differential equations and the
discrete transitions are determined by an automaton. The hybrid automata captures
two kinds of state transitions, discrete jumps which happen instantaneously and con-
tinuous flows. A common way to represent a hybrid automata is by a directed con-
nected graph where each node represents a state and each connection between nodes
represents a possible transition. A complete description of a hybrid automata can be
found in [12].

Example 2.3 (Hybrid Automata)
The example of regulation of temperature presented in example 2.2 can appro-
priately be modelled as a hybrid automata. The graph representation of the sys-
tem is given in Figure 4. The graph illustrates that the system switches between
state “on” and state “off” when the temperature T leaves the temperature interval
(Tc − ε, Tc + ε). Given an initial condition, a solution to the system is characteri-
zed by the triple (T , σ(T(t)), T(t)), where T is the index set of discrete switching
times, σ is the switching signal given in (4) and T(t) is the trajectory generated
according to the continuous dynamics and the switching signal.

In [13, 14] another general hybrid model is presented. This model is based on the
mathematical concept of differential inclusion. Both the continuous and the discrete
dynamics are defined by differential inclusions called a flow map and a jump map,
and belong to a flow set and a jump set, respectively. In [13] several different hybrid
models are presented and, in particular, it is illustrated how the hybrid Automata can
be reformulated to fit into this hybrid system framework.

In the original formulation of a hybrid system there is no place for uncertainty
in the sense of unpredictable and/or probabilistic behaviour. Different authors have
made attempts to extend the deterministic hybrid model by introduction of uncer-
tainty into hybrid systems from their own perspectives and application points of view,
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i.e. the uncertainty is introduced in different ways. One stochastic hybrid-state model
is considered in [15]. In this model, the continuous states are evolving according
to stochastic differential equations (SDEs) and the switching dynamics of the indivi-
dual devices are modelled from the evolution of their corresponding density functions
through application of Fokker-Planck equations. In [16], a deterministic hybrid sys-
tem is governed by a Markov decision process, which makes the system probabilistic.
The stochastic contribution is founded in the introduction of policies (sequences of
probability measures), which drives the underlying discrete event system. The con-
sidered policies are stationary and/or have the Markov property. A similar model is
applied in [17], which deals with the class of hybrid piecewise deterministic control
systems. Here the discrete state variable is changing with longer idle periods accor-
ding to a continuous time stochastic jump process, which could be a Markov chain.
The model includes also a disturbance parameter which, by assumption, tends to zero.
The hybrid model presented in [13] can be reformulated to capture disturbances when
they are bounded by a finite norm such that the model becomes non-deterministic. A
thorough presentation of hybrid models with different kind of uncertainties included
can be found in [12, Chapter 3]. In the following, a general presentation of stochas-
tic hybrid systems is given, which captures a broad representation of uncertainties in
real-world applications.

Stochastic hybrid systems

One of the first to introduce uncertainties in hybrid systems by modelling with SDEs
was [18]. In this paper the authors replace the deterministic dynamics in the discrete
states with SDEs, such that the activation of the different discrete dynamics can occur
randomly due to the realization of the stochastic process. A generalization of this
model is presented in [19], which claims to include almost all classes of stochastic
hybrid processes proposed in the literature at the time of publication.

Definition 2 (A general stochastic hybrid system). A general stochastic hybrid sys-
tem is given by H, which is the collection

H = ((Q, d,H), b, σ, Init, λ, R)

where

• Q is a countable/finite set of discrete states.

• d is a map given the dimension of the continuous operation modes.

• H maps each q ∈ Q into an open subset.

• b is a vector field (for the continuous dynamics).

• σ is a matrix (which defines the impact of the (white) noise).

• Init is an initial probability measure.

13
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• λ is a transition rate function (which defines the rate of discrete spontaneous
jumps).

• R is a probabilistic reset kernel.

[12, Definition 4.1]

A solution to the general stochastic hybrid system is understood as a stochastic process
Xt = (qt, Zt), where qt ∈ Q is the discrete process and Zt ∈ Rn is the continuous
process driven by an SDE.

The general stochastic hybrid model is valid under the assumption that the under-
lying discrete jump process does not admit Zeno behaviour, which implies that the
process trajectories do not have chattering or Zeno executions.

Example 2.4 (Stochastic hybrid model of regulation of temperature)
The evolution of temperature in example 2.2 can be exposed to uncertain behaviour.
The measured temperature can be influenced by white noise and the control system
might experience a power cut.

In the stochastic hybrid model the white noise is modelled by presenting the
evolution of temperature by an SDE, while the power cut is modelled as a discrete
process with transition rate λ. To model the risk of a power cut, an additional
discrete variable p ∈ {0, 1} is introduced, which takes the value p = 0 in case of
power cut and p = 1 when power is available. The stochastic hybrid automata of
the system is presented in Figure 5.

The solution to this model is a stochastic process Xt = (qt, Tt), qt ∈ Q = {On,
Off, Power off} which exhibits forced and spontaneous discrete transitions.

Recent literature on alternative models of stochastic hybrid systems are [20, 21].
The authors to [20] consider a class of stochastic hybrid systems where uncertainty is
implemented in an assumption on state-dependent switching. The switching is gover-
ned by an intensity function defined in an “ε-area” around boundaries between local
systems such that the switching between subsystems occurs within this small area of
the switching surface. The closer the state trajectory approaches the boundary, the
greater is the probability that the state trajectory switches to a new local system. The
work [21] considers hybrid systems, which are exposed to time-delays in the switch-
ing process. The time-delay can be due to small measurement noise or general delays
in the system performance. Therefore, switching events can happen at the boundary or
at a time-delayed moment. The study focuses on formulating the generalized concept
of solutions into hybrid systems with delay.

One control method where the switching mechanism is a major part of the perfor-
mance of the controller is in sliding mode control. Following, this control method is
presented.
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On

dT = f1dt + dWt

T > Tc − ε

p = 1

Off

dT = f0dt + dWt

T < Tc + ε

p = 1
T ≤ Tc − ε

T ≥ Tc + ε

Power off

dT = f0dt + dWt

T ∈ R

p = 0

p = 0 p = 0

T ≥ Tc + ε

p = 1,
T < Tc + ε,

p = 1

Figure 5: Stochastic hybrid automata for the regulation of temperature presented in example 2.4.

3 Sliding Mode Control
Some nonlinear systems are appropriately controlled with a sliding mode controller.
Generally, a sliding mode controller applies a discontinuous control signal to enforce
the system state first to approach, and afterwards to slide along a prescribed sub-
manifold of the state space. When the system has reached the desired set of operation
points, the purpose of the controller is to respond appropriately to any fluctuation such
that this position is maintained. Books about application and analysis of sliding mode
control are [22, 23].

The design of a sliding mode controller is done on two steps:

(1) Definition of the sliding surface, which is a stable sub-manifold of the state
space. The sliding surface is supposed to guide the system towards the desired
operation points.

(2) Design of the controller that drives the object/state to the sliding surface.

A well designed sliding mode controller ensures that the sliding mode is reached in
finite time and that the controller is sufficiently robust to disturbance.

In the design of a sliding mode controller, the robustness is ensured by knowledge
of the disturbance. This “knowledge” could be an upper bound on the maximum
disturbance or a measure on the expected disturbance. In most guides on design of
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sliding mode controllers the upper bound approach is applied. This means that the
sliding mode controller is designed such that robustness is guaranteed under the as-
sumption that the disturbance is finite or bounded by known constraints (i.e. functions,
norms or constants) [24].

For systems which are exposed to white noise, only the probabilistic behaviour of
the disturbance is known. In these cases it is possible to make a stability analysis of the
system with stochastic Lyapunov theory [25]. As special cases, [26] presents stability
of stochastic systems with Markovian switching and [27] presents stability results for
a linear stochastic system with a sliding mode approach. Even though the stability of
stochastic systems can be proven by construction of a stochastic Lyapunov function,
this method neither guarantees/ensures the existence of a solution to the stochastic
system, nor validates the process of generating numerical solutions.

One of the challenges in the practical implementation of the sliding mode con-
troller is that the switching control signal causes the system to chatter in the neigh-
bourhood of the sliding surface. There are developed methods to reduce this problem.
One solution is to replace the hard discontinuous dynamics of the controller with a
smooth approximation within a thin boundary layer of the sliding surface [4]. Often
this is done by replacing the sgn-function with the saturation-function. Another so-
lution is to implement a hysteresis around the sliding surface such that the switching
time gets delayed and the system is prevented from fast switching.

The practical implementation of a smooth control function near the sliding surface
is suitable for some systems. However, for some cases this smooth function, often
modelled as the saturation function, is inefficient and exposed to loses such as unde-
sirable heat dissipation. In this case a more efficient solution is direct implementation
of the switching procedure as fast as possible. Of course this method requires that fast
state changing is achievable. This method has successfully been implemented, among
other examples, in DC motors and loudspeakers [28].

A smooth solution, which can capture the characteristic system behaviour genera-
ted by the state moving along a sliding surface, is denoted a Filippov solution. This
concept is defined in the sequel and compared with the Caratheodory solution and the
Krasovskii solution.

3.1 Solutions to Systems with Discontinuous Dynamics
Solutions to vector fields with discontinuous dynamics do not exist in the classic un-
derstanding, as a continuous differentiable solution to the vector field. Instead, an al-
ternative concept, denoted the Filippov solution, is developed by A. F. Filippov [29].
For continuity points of the vector field, the Filippov solution is identical with a clas-
sic solution and in discontinuous points it is constructed to be continuous as well. The
idea behind the Filippov solution is to introduce a set of directions which are deter-
mined by the vector fields in the neighbourhood of points. The Filippov solution is
then chosen among the possible options given by the set of directions.

Let x ∈ Rn be a vector and let f (t, x), f : T × Rn → Rn be a piecewise
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continuous vector function. Consider the system driven by the differential equation

ẋ = f (t, x), x(t0) = x0 . (5)

A classic solution to (5), also called a Caratheodory solution, is an absolute continuous
curve that satisfies the integral version of (5), that is,

x(t) = x(t0) +
∫ t

t0

f (s, x)ds, t > t0 .

The Caratheodory solution follows the direction of the vector field at all times but the
differential equation (5) does not need to be satisfied on a set of measure zero [30].

If the vector field f (t, x) has discontinuous dynamics such that no Caratheodory
solution exists, a solution to a redefined model of the system can be considered by
constructing a differential inclusion from f (t, x) which can generate a Krasovskii so-
lution or a Filippov solution.

The differential inclusion F̃ (t, x) is constructed for each point (t, x) in the domain
of f (t, x). For continuity points of the vector field, the differential inclusion F̃ (t, x) is
equal to f (t, x). For discontinuity points of the vector field, the differential inclusion
is defined as the (closed) convex hull of all possible vector fields in the neighbourhood
of the discontinuous point. That is, a function x is a Krasovskii solution to (5) if

ẋ ∈ F̃ (t, x)

for almost all t ∈ T , where for each ξ ∈ Rn is

F̃ (t, ξ) =
⋂
ε>0

c̄o { f (t, ξ + B̄ε(0))}

where c̄o means closed convex hull and B̄ε(0) is a closed ball centered at x = 0 of
radius ε [14].

A Filippov solution to (5) for t ∈ T is a solution of the differential inclusion

ẋ ∈ F (t, x) ,

where

F (t, x) = lim
ε→0

co

 ⋂
µ(A)=0

{ f (t, y) : y ∈ Bε(x)\A}


where co means convex hull, µ(A) is the measure of the set A and Bε(x) is an open
ball centered at x of radius ε. That is, a Filippov solution is an absolutely continuous
vector-valued function that satisfies the differential inclusion for almost all t ∈ T .

Both a Caratheodory solution and a Filippov solution are also a Krasovskii solution
but the converse is not true.
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f1(x)

f2(x)

Figure 6: A system with discontinuous dynamics.

As the definition of the differential inclusions indicates, the Filippov solution has
similarities with the Krasovskii solution, but they distinguish from each other at the
sets of measure zero. Where the Filippov solution excludes sets of measure zero, the
Krasovskii solution does not. Therefore, a Krasovskii solution can be significantly
different than the Filippov solution. To enlighten the difference further, consider the
following example.

Example 3.1 (Different solutions)
Let S be a two-dimensional state space partitioned in three subspaces S1, S2 and S3,
where S3 defines a sliding surface. Let x be driven by the dynamics

ẋ = fi(x) for x ∈ Si, i ∈ {1, 2, 3}, x(t0) = x0 (6)

where f1(x), f2(x) = f3(x) 6= 0 are constant vector fields. Figure 6 illustrates such
a system. Given an initial condition x0, a Caratheodory solution to the system exists
until the time instant where the trajectory hits the sliding surface. At the sliding
surface there is no existence of Caratheodory solution due to the discontinuous
dynamics. However, both a Filippov solution and a Krasovskii solution exist for all
t ∈ T . A Filippov or Krasovskii solution will follow the vector field and, at the
surface S3, the solution will slide along the surface in the direction generated by the
convex hull of the vector fields f1 and f2.

Now consider a variation of the system where the constant vector field f3(x)
is redefined to be parallel with the surface S3. A Filippov solution with initial
condition in x0 is presented in Figure 7. This solution is also a Krasovskii solution.
However, this system admits one more Krasovskii solution, which is presented in
Figure 8. Notice that this particular Krasovskii solution is also a Caratheodory
solution.

Actually, the combination of the two solutions presented in Figure 7 and 8 is
also a Krasovskii solution. This means that the Krasovskii solution can slide along
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f2(x)f3(x)
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Figure 7: A Filippov and a Krasovskii solution to
a system with discontinuous dynamics.

S3

f1(x)

f2(x)

f3(x)

x0

Figure 8: A Caratheodory and a Krasovskii solu-
tion to a system with discontinuous dynamics.

the sliding surface and change the sliding direction without violating the dynamics
defined by the differential inclusion F̃ (t, x).

The Filippov solution is often more applicable than the Krasovskii solution, since
it is not exposed to odd or unclear behaviour. The solution in the following example
is defined as the Filippov solution.

Example 3.2 (A Filippov solution to a version of temperature regulation)
Consider a system driven by the dynamics given in example 2.2, but with ε = 0,
that is,

Ṫ = fσ(T(t))(T(t)) =

{
f0 if T(t) < Tc
f1 if T(t) > Tc

. (7)

A phase plane plot for the system is presented in Figure 9. The point of discontinuity
is T(t) = Tc. Let the state space be partitioned in subspaces S0 = {T : T < Tc},
S1 = {T : T > Tc} and S = {Tc}. Then a Filippov solution to the switched
system (7) is a solution T which satisfies the differential inclusion

Ṫ ∈ F (T)

where F is defined as follows

F (T) =

{
fi(T) if T ∈ Si

{α f0(T) + (1− α) f1(T) : α ∈ [0, 1]} if T ∈ S
.

A Filippov solution with initial temperature T(0) = 4.5 is presented in Figure 9.
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Figure 9: Phase plane plot of the vector fields in system (7) together with a Filippov solution to the system.

In the situation where the Filippov solution slides along the sliding surface, the
sliding velocity can be determined. This is done in [31] based on two regularization
methods. One of these methods implements a small fixed delay into the determinis-
tic system and deduces the sliding velocity under this restriction. The other method
determines the sliding velocity by implementing weak noise such that the considered
model is an SDE.

Stochastic differential equations (SDEs) are differential equations with one or
more additional terms describing some kind of stochastic influence on the system
behaviour. In the next section, modelling with SDEs is discussed.

4 Modelling with SDEs
SDEs are useful frameworks to represent real-world phenomena with uncertainty thro-
ugh mathematical models. This section gives a further introduction to the stochastic
behaviour and challenges behind modelling with SDEs.

One of the first to observe and document stochastic behaviour was the Scottish
botanist Robert Brown, who noticed the erratic motion of pollen grains suspended in
liquid [3]. This random behaviour was named Brownian Motion. The physical be-
haviour of Brownian Motion can be illustrated with a glass of liquid and a drop of ink.
Initially, when a drop of ink is immersed into the liquid, the ink is concentrated on
a small area, but over time the motion of the ink-particles resulting from their colli-
sion implies that the ink is scattered over the complete area. The concept is illustrated
in Figure 10. The mathematical description of Brownian motion is called a Wiener
process after Norbert Wiener, who formalized the properties of Brownian motion. A
distinctive property of the Wiener process is that almost all realizations are continuous

20



4. Modelling with SDEs

Figure 10: The scattering of a drop of ink in liquid over time illustrates the physical behaviour of Brownian
Motion.

but nowhere differentiable. When Brownian motion is described by a Wiener process,
the nondifferentiability of the Wiener process indicates that the particles under obser-
vation do not possess a velocity at any time [32].

The combination of the stochastic Wiener process and an ordinary differential
equation was merged together into stochastic differential equations (SDEs) and the
formal mathematical foundation was developed by Itô and Stratonovich [33, 34]. Both
Itô and Stratonovich define a stochastic integral over the Wiener process and the cor-
responding stochastic calculus. There is a difference in the definitions of the two
integrals but it is possible to transform one of the representations into the other (see
section 6.2). If nothing else mentioned, the stochastic integral applied in this thesis is
the Itô integral.

4.1 The Concept of Solutions
One of the motivations to model real-world phenomena with mathematical models
is to be able to predict or gain knowledge of the system behaviour without actually
observing the physical system in action. A natural interest is, therefore, to understand
and to interpret the solutions to the mathematical formulation of the system, that is, to
observe the system behaviour based on the stochastic formulation of the system.

An SDE is a combination of a drift coefficient and a diffusion coefficient. Depend-
ing on properties of the drift and diffusion coefficient, different results on existence
and uniqueness of solutions to the SDE are proven. Generally, if standard regularity
conditions as measurability, Lipschitz continuity and boundary conditions are valid
for the drift and diffusion coefficient, then a solution to the SDE exists.

The solution to an SDE is a stochastic process, which is defined with respect to
a probability space consisting of a set of events, a sigma-algebra and a probability
measure (a probability distribution). A solution can be classified as weak or strong.
Roughly speaking, a weak solution is a solution in probability while a strong solution
makes the SDE hold almost surely with a given initial condition. When a weak so-
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Weak Existence Pathwise Existence
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Figure 11: Relation between classifications of solutions. In the discussion of solutions the term pathwise
is used interchangeable with strong.

lution exists, it is said that the SDE has weak existence and when the strong solution
exists, it is said that the SDE has pathwise existence. A strong solution is also denoted
a pathwise solution. It is clear that if an SDE admits a strong solution, then the weak
solution exists as well.

In addition to the existence of solutions, uniqueness of solutions is also a question
of interest. A solution can be unique both in a weak sense and in a strong sense.
A weak solution is often represented as a pair (Xt, Wt), which is assigned a certain
probability measure. Then the SDE is said to have weak uniqueness if the joint laws
of every two weak solutions, (Xt, Wt) and (X̃t, W̃t), to the SDE under their respective
probability measures are equal [35]. This means that the probability distributions of
the solutions are equal. The SDE is said to have strong uniqueness if the probability
that any two strong solutions of the SDE are different is zero.

Figure 11 gives an overview of the relation between the different classifications of
solutions. The arrows should be understood as “implies”, such that whenever the SDE
has pathwise uniqueness, it also has weak uniqueness and so forth.

In [36], Yamada and Watanabe state the famous result that the existence of a solu-
tion (on some probability space with some Wiener process) and the pathwise unique-
ness imply the existence of a strong solution. This is illustrated by the “And” in Figure
11.

A clear and comprehensive exposition of solutions and classifications can be found
in [37], which also includes several examples to illustrate the different concept of
solutions.

4.2 The Discontinuous Drift Challenges
The representation of a switched system in a stochastic framework often provides
discontinuous expressions in the drift coefficient. The existence of solutions to SDEs
with discontinuous dynamics is a field which has gained much of attention over the
past. Some of the results developed in this area are presented in the following.
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In 1974 A. K. Zvonkin presented a paper which transforms an SDE with a drift co-
efficient to an SDE without a drift coefficient [38]. This can be an advantage, since in
certain cases processes which only depend on the diffusion coefficient can be solved
easier. Furthermore, it made it possible to construct strong solutions of SDEs with
some kind of “bad” drift coefficient. A. J. Veretennikov extended the result from [38]
and showed that sufficient conditions for a strong solution are: the diffusion coeffi-
cient is equal to the identity matrix and the drift coefficient is a bounded measurable
function [39].

To the best of our knowledge, strong existence and uniqueness are established for
SDEs with discontinuous bounded drift, but it is not proven yet for SDEs with un-
bounded discontinuous drift coefficients. However, in implementation of mechanical
systems, the main force, which affects the motion of a plant, depends on the actual
position of the plant. Thus, the drift coefficient is linear (at least part it) and un-
bounded. Therefore, there is still need for additional research in the area of SDEs
with (unbounded) discontinuous drift coefficients.

In cases where a given SDE does not provide a closed form solution explicitly, it
is possible to construct approximated realizations of solutions to the SDE. This may
be done with numerical methods.

4.3 Numerical Methods
A numerical method is a mathematical tool designed to solve problems numerically.
A good numerical method is inexpensive in terms of computation cost and provides
high accuracy. Furthermore, the method has to provide a reliable bound on the error
between the numerical solution and the exact solution. Presentation of different nu-
merical methods together with their algorithmic implementation can be found in [40]
and [41].

The Euler-Maruyama method is a numerical method which applies to SDEs [42].
It is widely used because of its easy implementation and low computation time to-
gether with reasonably good rate of convergence. Another numerical method is the
Milstein Scheme [40]. This method is developed under the same principle as the
Euler-Maruyama method (Taylor approximation), but it is extended by iterative appli-
cations of the Itô formula. This implies that the approximation error decreases and the
rate of convergence improves. The payback is longer computation time. Strong Tay-
lor approximations are also used to produce even better numerical methods in terms
of accuracy and convergence properties when precision is required.

In general, the Euler-Maruyama method guarantees weak and strong convergence
to the stochastic process, if the drift and diffusion coefficient satisfy appropriate re-
gularity conditions. There are many sub-classes of SDEs. Hence, there exists a vast
amount of work investigating convergence properties of the Euler-Maruyama method
for different sub-classes. Among others, [43] and [44] prove convergence for the class
of SDEs with Markovian switching and for SDEs with respect to semimartingales,
respectively. The recent years, different results have proved that the Euler-Maruyama
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method is also suitable for classes where the SDEs have irregular drift and diffusion
coefficient.

I. Gyöngy and N. Krylov have proved that it is possible to construct Euler-Maruya-
ma approximations which converge uniformly on bounded intervals, in probability,
to a stochastic process. This process is the strong solution of a specific SDE with
discontinuous drift and with a diffusion coefficient which does not satisfy the linear
growth condition [45].

Weak convergence of approximated solutions produced with the Euler-Maruyama
method is presented in [46]. Here it is assumed that the drift and diffusion coefficient
are locally bounded measurable functions and that they are locally continuous over
each set of pairwise disjoint sets. That is, the drift and diffusion coefficient are allowed
to have discontinuous points.

In [47] a weak rate of convergence of the Euler-Maruyama method is presented
when the coefficients are Hölder continuous. In particular, the rate of convergence is
determined without assuming the Lipschitz condition. Furthermore, the linear growth
condition is assumed for the diffusion coefficient and it is allowed to be discontinuous
in a set of points which have Lebesgue measure zero.

A couple of novel results are [48] and [49]. In [48] a transformation technique
is presented which is applied to construct a numerical scheme based on the Euler-
Maruyama method to prove existence and uniqueness for SDEs with discontinuous
drift coefficient. The discontinuity of the drift coefficient is limited to a finite number
of jumps and everywhere else it is assumed Lipschitz. In [49] is proven strong con-
vergence of the Euler-Maruyama method when both the drift and diffusion coefficient
are allowed to be discontinuous.

5 Summary on Motivation and Objective
One of the challenges which occur in the process of formulating a model of a physical
real-world system into a theoretical framework is with respect to the accuracy of the
model. It can be challenging to interpret and evaluate the mathematical models such
that the physical behaviour is interpreted and understood in the best way possible and
that proper statements on the system performance can be given.

In modelling of switched systems there is a general tendency of ignoring the Zeno
behaviour because of its complications in the system analysis. Furthermore, the gene-
ral stochastic hybrid model proposed in [19] and [12] is developed under the assump-
tion that the stochastic process is not subject to Zeno executions. This assumption
contradicts with the general behaviour of some switched systems modelled from real-
world phenomena.

Another challenge in modelling of switched systems is that the behaviour of the
switching mechanism (or control) induces discontinuity into the model. This lack of
continuity imposes a significant difficulty as the problem is rendered outside the scope
of the classical initial value setting. This introduces the necessity to study irregular
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SDEs.
To evaluate a control system designed in the framework of SDEs, stochastic stabil-

ity analysis is carried out by applying a stochastic Lyapunov function. However, even
though a system is proven to be stable in a stochastic sense, this analysis does not
guarantee or ensure that any valid solution to the system exists or whether the solution
can be constructed numerically.

Based on the discussion above, the objective of this thesis is to study the behaviour
of control systems which can be modelled with discontinuous dynamics in a stochastic
framework. The initial focus of the study is the simple SDE with discontinuous drift
given by

dxt = −k sgn(xt)dt + dWt, x0 = 0 (8)

where xt is the state, k > 0 is a (control) system parameter and Wt is the Wiener
process. The notion of solution and probabilistic results, numerical results, auto- and
covariance results are investigated for systems modelled with this dynamics to im-
prove knowledge on system performance.

A local behaviour of the standard Wiener process Wt is that in every time inter-
val of the form [0, ε), with ε > 0, Wt has infinitely many zeros [32]. That is, the
process dxt = dWt crosses zero infinitely many times and since the drift coefficient
−k sgn(xt) also drives the process xt towards zero, it seems natural/reasonable to
expect that the solution xt to the SDE in (8) would have characteristics similar to
the Wiener process, i.e. xt might also cross zero infinitely many times in finite time.
Therefore, the Zeno phenomenon can not be a property excluded from the framework
of the modelling.

Due to [39], it is known that the solution to the SDE in (8) exists. However, even
though existence and uniqueness are established for the bounded discontinuous drift
coefficient case, the specific characteristics of the obtained solutions, such as transient
and stationary distributions as well as auto- and cross-covariance characteristics, seem
less studied.

The existence of solutions to SDEs with unbounded discontinuous drift coefficient
is still not established in the existing literature even though such models do appear in
modelling of (mechanical) systems. Therefore, it is also of interest to investigate
solutions and performance properties of such models.
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This chapter presents theoretical tools which are suitable to investigate, analyse and
interpret modelling of dynamical systems. Readers familiar with SDEs and related
theories can skip this chapter.

6 Stochastic Evolution
The random evolution of a system can be described by a stochastic process. In the
following, let (Ω,F , P) be a probability space and let (E,G) be a measurable space,
where

• Ω is the sample space

• F is a σ-algebra of subsets of Ω

• P is a probability measure on (Ω,F )

• E is the state space

• G is a σ-algebra of subsets of E

Then a stochastic process is defined as follows.

Definition 3 (Stochastic process). A stochastic process is a map X : T ×Ω → E
consisting of a collection of random variables.

The random variables take values in the state space E of the stochastic process. The
index set T often represents time. If T consists of discrete time instants, X is a
discrete time stochastic process and if T = [0, ∞), X is a continuous time stochastic
processes. Thus, a stochastic process X = X(t, ω) is a function of two variables.
The process X(t) = X(t, ·) : Ω → E is a random variable which is measurable with
respect to F for each t ∈ T . For each ω ∈ Ω, the process X(·, ω) : T → E is
called a realization, a trajectory or a sample path of the stochastic process. Often the
dependency on Ω is suppressed and the stochastic process is written as X(t) instead
of X(t, ·).
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Let Ft be the σ-algebra which represents what is known up to time t ∈ T . A
collection of σ-algebras {Ft} such that Ft ⊂ F for each t and Fs ⊂ Ft if s < t is
called a filtration, which can be understood as a model for the evolution of available
information over time. A filtration is right continuous if Ft+ = ∩ε>0Ft+ε = Ft for
all t > 0 and it is complete if each Ft contains every null set. A filtration is said to
satisfy the usual conditions if it is right continuous and complete.

A stochastic process is said to be adapted to a filtration {Ft} if it is Ft measurable
for each t. That is, if Xt is adapted to {Ft}, then the value of Xt is known at time t
whenever the information represented by {Ft} is known.

The probabilistic behaviour of a stochastic process is driven by the assumptions on
the random variables and the dependence between them. The dependence is defined
by a probabilistic nature inherited on the random variables, for example in the form of
probability distribution or described by the Markov property.

In the following, the definition of SDEs which generate stochastic processes is
given.

6.1 SDEs
An SDE can be modelled with different kind of stochastic behaviour, which refers to
the stochastic process which drives the SDE. Well-known processes influencing SDEs
are the Wiener process, the Poisson point process and the Poisson random measure [2].
In the following, the presentation is limited to cover the case when the Wiener process
drives the SDEs. The Wiener process is characterized by the Gaussian distribution
and defined as follows.

Definition 4 (The standard Wiener process). Let W(t) = Wt be a one-dimensional
R-valued stochastic process with respect to the filtration {Ft} with the following pro-
perties:

(1) W(t) is Ft measurable for each t ≥ 0.

(2) W(0) = 0.

(3) The process has independent increment, that is, W(t)−W(s) is independent
of Fs whenever s < t.

(4) The process W(t)−W(s) is Gaussian distributed with expected value zero and
variance t− s whenever s < t.

(5) W(t) has continuous sample path.

Then W(t) is called a standard Wiener process [35].

The initial value of a standard Wiener process is defined to be zero. However, the
process W̃t = Wt + c, c ∈ R, is also a Wiener process, which has properties (1),(3)-
(5) from definition 4 but with W̃0 = c.
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The Wiener process models white noise behaviour and, therefore, it is particularly
useful in modelling of real-world phenomena since observations of error contributions
caused by many different factors are likely to be normal distributed. One of the main
characteristic of the Wiener process is the fact that sample path of the process is eve-
rywhere continuous and nowhere differentiable with probability one. A proof of this
important property can be found in [35].

The Wiener process is the stochastic term which drives the SDEs. Following, a
multi-dimensional SDE is defined.

Definition 5 (A multi-dimensional SDE). Let X ∈ Rn be a stochastic process de-
fined on the probability space (Ω,F ,P). A general multidimensional SDE is given
by

dXt = b(t, Xt)dt + σ(t, Xt)dWt, X0 = c (9)

where

• Xt = X(t) : T → Rn is an Rn-valued stochastic process,

• b : T ×Rn → Rn is the drift coefficient,

• σ : T ×Rn → Rn×d is the diffusion coefficient,

• Wt = (W1(t), W2(t), . . . , Wd(t))> is a d-dimensional Wiener process,

• c is a random variable independent of Wt −W0 for t ≥ 0 and with E[|c|2] <
∞.

The expression of the SDE given in (9) has to be understood as notation (a shorthand
form of the integral equation), since the Wiener process is nowhere differentiable. The
integral version of the SDE is

Xt = c +
∫ t

0
b(s, Xs)ds +

∫ t

0
σ(s, Xs)dWs (10)

where the last term is the stochastic Itô integral, which is defined in section 6.2. A
stochastic process generated by (10) is also called an Itô process [3].

Solutions to SDEs

The solution to an SDE is a stochastic process. The following theorem presents the
general statement about existence and uniqueness of solutions to SDEs. The theorem
is adapted from [3, Theorem 5.2.1].

Theorem 6 (Existence and uniqueness of solutions to SDEs). For t ∈ T let the drift
and diffusion be measurable functions satisfying the growth bound

|b(t, X)|+ |σ(t, X)| ≤ C(1 + |X|), X ∈ Rn, t ∈ T
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and the Lipschitz condition

|b(t, X)− b(t, Y)|+ |σ(t, X)− σ(t, Y)| ≤ D|X− Y|, X, Y ∈ Rn, t ∈ T

for some constants C, D. Then the SDE in (9) has a unique continuous solution Xt(ω)
for t ∈ T which is adapted to the filtration {Ft} generated by c and Ws for s ≤ t.
Furthermore,

E

[∫
T
|Xt|2dt

]
< ∞ .

A solution to (9) is sometimes referred to as the pair of processes (Xt, Wt). Depending
on the information available to the process, the solution can be classified as weak or
strong. The solution defined in Theorem 6 is a strong solution.

Definition 7 (Weak and Strong solutions). Consider the SDE presented in defini-
tion 5 and let {Ft} be the filtration generated by F which satisfies the usual con-
ditions.

• A weak solution (X, W) to (9) exists if Xt is a continuous {Ft} adapted process
with values in Rn such that (9) holds [35].

• Furthermore, a solution (X, W) is said to be a strong solution to (9) if for all
t > 0 the process Xt is adapted to the filtration {FW

t } generated by Ws for
s ≤ t [39].

When the solution exists, one of the core challenges in modelling with SDEs is to find
an explicit expression of the solution which solves the SDE. An explicit solution is
defined in the following way.

Definition 8 (An Explicit Solution). A solution of an SDE is called an explicit solu-
tion, if it has a representation where the terms on its right hand side do not use the
solution itself [2].

Given an explicit solution, it is relatively easy to obtain realizations or sample paths
of the stochastic process by generating the process from its initial condition. In other
cases, realizations can be simulated by applying numerical methods, which is dis-
cussed in section 7.

The stochastic integral included in (10) has to be understood as the Itô integral,
which is presented in the following together with a general presentation of Itô calculus.

6.2 Itô Calculus
Itô calculus is a method which extends ordinary calculus methods to calculus with
stochastic processes. Following, the Itô integral is defined.

Definition 9 (The Itô integral). Suppose that W is a one-dimensional standard Wiener
process and that σ(t, ω) is
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(p1) measurable in t,

(p2) Ft-adapted

(p3) and that E[
∫ t

0 σ(t, ω)2dt] < ∞.

Let the time interval T = [0, T] be partitioned into n sub-intervals by the time instants
0 = t0, t1, . . . , tn = T. Then the Itô integral is defined by∫ T

0
σ(t, ω)dWt = lim

n→∞

n

∑
i=1

σ(ti−1, ω)(Wti −Wti−1) . (11)

The Itô integral has a number of interesting properties. If σ(t, ω) has properties
(p1) − (p3) from definition 9, then the expected value of the Itô integral is zero,
i.e.

E

[∫ T

0
σ(t, ω)dWt

]
= 0 . (12)

This result follows directly by the definition of the Itô integral and property (4) from
definition 4.

Another useful property is the Itô isometry which says the following.

Proposition 10 (The Itô isometry). If σ(t, ω) has properties (p1)− (p3) definition
9, then

E

[(∫ T

s
σ(t, ω)dWt(ω)

)2
]

= E

[∫ T

s
σ(t, ω)2dt

]
.

[3, Corollary 3.1.7]

In cases where an explicit expression of the solution to an SDE exists, it can be
isolated by applying Itô’s formula, which corresponds the the chain rule for ordinary
calculus.

Theorem 11 (Itô’s formula). Let X(t) = (X1, . . . , Xn) be a stochastic process given
by the SDE in (9). Let g(t, x) = (g1(t, x), . . . , gp(t, x)) be a C2 map from [0, ∞)×
Rn to Rp. Then the process

Y(t, X) = g(t, X(t))

is an Itô process, whose component number k, Yk is given by

dYk =
∂gk
∂t

(t, X)dt + ∑
i

∂gk
∂xi

(t, X)dXi +
1
2 ∑

i,j

∂2gk
∂xi∂xj

(t, X)dXidXj

where the multiplications are computed according to the rules

dt · dt = dt · dWt = dWt · dt = 0, and dWs · dWt =

{
dt if s = t
0 if s 6= t

where W is a one-dimensional Wiener process [3, Theorem 4.2.1].
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The following example is an SDE which solution can be expressed explicitly by
applying Itô’s formula.

Example 6.1 (The one-dimensional Ornstein-Uhlenbeck (OU) Process)
Consider the SDE given by

dXt = θ (µ− Xt) dt + σdWt, X(0) = x0 .

The solution to this SDE is called the Ornstein-Uhlenbeck (OU) Process after G. E.
Uhlenbeck and L. S. Ornstein who introduced the SDE as a model for the velocity
of Brownian particles [50].

Following, let θ = 1
2 , µ = 0 and σ = 1 such that the SDE becomes

dXt = −
1
2

Xtdt + dWt, X(0) = x0 . (13)

Let Y(t, x) = xe
t
2 . Then Itô’s formula gives

dY =
1
2

Xe
t
2 dt + e

t
2

(
−1

2
Xdt + dWt

)
= e

t
2 dWt

and it follows that

Xe
t
2 = x0 +

∫ t

0
e

s
2 dWs

which means that the explicit solution to (13) is

Xt = x0e−
t
2 + e−

t
2

∫ t

0
e

s
2 dWs . (14)

The Itô isometry and the fact that the expectation of the Itô integral is zero can
be applied to calculate the expectation, the variance and the covariance of the OU
process.

Example 6.2 (The OU Process)
Consider the OU process Xt which is given in (14). The expected value of the OU
process is

E[Xt] = E[x0e−
t
2 + e−

t
2

∫ t

0
e

s
2 dWs] = x0e−

t
2
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due to (12). Furthermore, the variance of the OU-process is

Var[Xt] = E[(x0e−
t
2 + e−

t
2

∫ t

0
e

s
2 dWs − x0e−

t
2 )2]

= E[(e−
t
2

∫ t

0
e

s
2 dWs)

2] = e−tE[(
∫ t

0
e

s
2 dWs)

2]

= e−tE[
∫ t

0
(e

s
2 )2ds] = e−tE[

∫ t

0
esds]

= e−t
∫ t

0
esds = 1− e−t

where the Itô isometry is applied. The covariance of Xt and Xs is

Cov[Xt, Xs] = E[(Xt − x0e−
t
2 )(Xs − x0e−

s
2 )]

= E[(e−
t
2

∫ t

0
e

r
2 dWr)(e−

s
2

∫ s

0
e

r
2 dWr)]

= e−
t
2 e−

s
2 E[

∫ t

0
e

r
2 dWr

∫ s

0
e

r
2 dWr] = e−

s+t
2 E[

∫ s∧t

0
erdr]

= e−
s+t

2
(
es∧t − 1

)
where s ∧ t = min(s, t).

Relation to the Stratonovich integral

The Itô integral is one definition of the stochastic integral. Another definition is made
by Stratonovich and there is a direct relation between the two definitions.

The Stratonovich integral is defined as the limit in mean square by

∫ t

0
σ(s, ω) ◦ dWs = lim

n→∞

n−1

∑
i=0

σ(ti+1, ω) + σ(ti, ω)

2
(Wti+1 −Wti ) .

The transformation between the Stratonovich integral and the Itô integral defined in
(11) is ∫ t

0
σ(s, Xs) ◦ dWs =

1
2

∫ t

0
σ′(s, Xs)σ(s, Xs)ds +

∫ t

0
σ(s, Xs)dWs

where ′ denotes the derivative of σ(s, X) with respect to X [3]. Notice that this trans-
formation only holds true for SDEs with differentiable diffusion coefficient.

The stochastic evolution in time can be described by the Kolmogorov forward
and backward equations, which characterize the evolution of the stochastic process in
probability. That is, the equations describe the probability that the stochastic process
is in a certain state at a certain time and how it changes over time [40]. The forward
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Kolmogorov equation is also known as the Fokker-Planck equation, which is presented
in the following.

6.3 The Fokker-Planck Equation
The dynamics of a system can be described probabilistically with the Fokker-Planck
equation. This method was used by Fokker and Planck to describe the Brownian mo-
tion of particles and, therefore, the Fokker-Planck equation is also suitable to describe
systems driven by SDEs [51].

The Fokker-Planck equation describes the probabilistic evolution of a stochastic
process over time. That is, the solution to a Fokker-Planck equation has the properties
of a (probability) density function.

Definition 12 (The Fokker-Planck equation). Let p(X, t) be the (probability) den-
sity function for a stochastic process driven by an SDE defined as in (9). The Fokker-
Planck equation gives the following relation

∂

∂t
p(t, X) = −

n

∑
i=1

∂

∂xi
[bi(t, X)p(t, X)] +

1
2

n

∑
i=1

n

∑
j=1

∂2

∂xi∂xj

[
Di,j(t, X)p(t, X)

]
where

Di,j(t, X) =
d

∑
k=1

σik(t, X)σjk(t, X) . (15)

In general, it is very difficult to obtain a solution to the Fokker-Planck equation so there
are developed many numerical methods to generate approximated solutions. In some
cases, the exact solution can be found by transformation methods. An example of this
is presented in section 7.2 where the method of Fourier transformation is applied to
determine the solution to a Fokker-Planck equation.

The solutions to the Fokker-Planck equation can be time-dependent, but in many
cases a time-invariant solution also exists, which is called a stationary solution. Let
p(X) be the stationary solution to the Fokker-Planck equation. Then the Fokker-
Planck equation becomes

0 = −
n

∑
i=1

∂

∂xi
[bi(t, X)p(X)] +

1
2

n

∑
i=1

n

∑
j=1

∂2

∂xi∂xj

[
Di,j(t, X)p(X)

]
where Di,j(t, X) is given in (15).

In the following example the stationary solution to the Fokker-Planck equation for
the OU process is determined.
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Example 6.3 (The stationary Fokker-Planck equation for the OU process)
The stationary Fokker-Planck equation for OU process defined in (13) is

0 =
1
2

∂

∂x
x f (x) +

1
2

∂2

∂x2 f (x) =
1
2

f (x) +
1
2

x
∂

∂x
f (x) +

1
2

∂2

∂x2 f (x) . (16)

A solution to this equation takes the form ce−ax2
, where a and c are constants. By

substituting this expression into (16) and differentiating accordingly, the stationary
solution is obtained to be

f (x) =
1√
2π

e−
1
2 x2

where the constant c is determined under the assumption that
∫

R
f (x)dx = 1.

7 Numerical Methods
The solution to SDEs can be hard or impossible to express explicitly. Instead, reali-
zations of solutions can be estimated by application of numerical methods. The same
counts for the Fokker-Planck equation. With numerical methods it is also possible
to approximate the probability solution to this equation. In the following, first a nu-
merical method which applies to SDEs is presented and afterwards numerical- and
transformation techniques applicable to the Fokker-Planck equation are discussed.

7.1 The Euler-Maruyama Method
The Euler-Maruyama method is a stochastic extension of the well-known Euler method
for differential equations [42]. The drift and diffusion coefficient from a given SDE
are implemented into a stochastic recursion to generate numerical realizations of the
stochastic process driven by the original SDE. In the following, the presentation is
limited to the one-dimensional case, but the method is also valid for multidimensional
SDEs.

Consider the autonomous one-dimensional SDE given in integral form

X(t) = X(t0) +
∫ t

t0

b(X(s))ds +
∫ t

t0

σ(X(s))dWs

where b, σ : R→ R are drift and diffusion coefficient and Wt is the one-dimensional
standard Wiener process.

A numerical solution {Yn} is generated over fixed time interval T = [t0, T] with
the initial position Y0 = X(t0). Thus, the time interval is partitioned into N subinter-
vals by equispaced points such that t0 < t1 < . . . < tN with the length of each time
interval given by ∆t = ti+1 − ti =

T−t0
N for i ∈ {0, . . . , N − 1}.
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For each recursive step, that is, for t ∈ [ti, ti+1] for i ∈ {0, . . . , N − 1}, the influ-
ence of the Wiener process has to be observed. Therefore, the stochastic increment of
the Wiener process given by

∆Wi = Wti+1 −Wti

for i ∈ {0, . . . , N − 1} is included. Recall that the Wiener process has the property
that the increments ∆Wi are independent and identically distributed normal variables
with expected value zero and variance ∆t (see definition 4). Therefore, for each recur-
sive step ∆Wi can be generated from the Gaussian distribution.

Then the approximated solution {Yn} in the time interval T = [t0, T] can be
generated for n ∈ {0, . . . , N − 1} by the recursion

Yn+1 = Yn + b(Yn)∆t + σ(Yn)∆Wn, Y0 = X(t0)

where b(·) and σ(·) are drift and diffusion coefficient of the original SDE, respec-
tively.

Example 7.1 (The OU process)
A realization {Yn} of the OU process given in (13) is simulated with the Euler-
Maruyama method with ∆t = 2−9. The result is compared with the explicit solu-
tion given by (14) in Figure 12.

Rate of convergence

The quality of a numerical method can be validated by considering the rate of conver-
gence, which is categorised in weak and strong convergence.

Definition 13 (Strong and weak rate of convergence). Let X be a stochastic pro-
cess and let Y be an approximated solution to X generated with an approximation
method where the discrete time step has length ∆t. The approximation method is said
to converge strongly with order γ > 0 at time t ∈ T if there exists a positive constant
C which does not depend on ∆t such that

E[|X(t)−Y(t)|] ≤ C∆tγ .

Furthermore, the discrete approximation Y is said to converge weakly with order β >
0 to X at time t ∈ T if there exists a positive constant C which does not depend on ∆t
such that

|E[X(t)]−E[Y(t)]| ≤ C∆tβ .

[40]
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Figure 12: The explicit solution X(t) to the OU process together with a realization Yn(t) simulated with
the Euler-Maruyama method for t ∈ [0, 1].

The rate of convergence is highly dependent on the drift and diffusion coefficient of
the SDE which solution is approximated. The Euler-Maruyama method converges
strongly with order γ = 1

2 and weakly with order β = 1 when both the drift and
diffusion coefficient are constants. These are the best strong and weak orders which
can be obtained for the Euler-Maruyama method.

In paper B the Euler-Maruyama method is applied to an SDE with discontinuous
drift coefficient and it is proved that the constructed realizations converge to the strong
solution of the original SDE. In this case, the strong rate of convergence is obtained to
be γ = 1

4 .

7.2 Solution Methods to the Fokker-Planck Equation
The time-dependent solution to the Fokker-Planck equation can be hard to solve ana-
lytically, but alternative methods are developed. Following, the discrete Fourier series
is presented and the application to the Fokker-Planck equation is outlined.

The discrete Fourier series

Fourier analysis is the process of representing or approximating functions with si-
nusoidal waveforms [52]. This method can often simplify the study of the original
function. In this section, the discrete Fourier transform is applied when it is developed
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over the basis {
1, cos

(πnx
L

)
, sin

(πnx
L

)
: n ∈ {1, 2, 3, . . .}

}
for x ∈ [−L, L], L ∈ N. A real-valued function f (x) can be expressed by the given
basis for x ∈ [−L, L] by

f (x) =
a
2
+

∞

∑
n=1

bn cos
(πnx

L

)
+

∞

∑
n=1

cn sin
(πnx

L

)
(17)

where

a =
1
L

∫ L

−L
f (x)dx ,

bn =
1
L

∫ L

−L
f (x) cos

(πnx
L

)
dx ,

cn =
1
L

∫ L

−L
f (x) sin

(πnx
L

)
dx .

In practice, the expression in (17) requires considerable effort to evaluate and, there-
fore, only an approximation of f (x) can be determined. Thus, for sufficiently big M
the discrete Fourier series can be applied to approximate a function defined over a
limited interval by truncating the sum expressions. That is,

f (x) ≈ a
2
+

M

∑
n=1

bn cos
(πnx

L

)
+

M

∑
n=1

cn sin
(πnx

L

)
,

for sufficiently big M. This approximation method can be used to obtain an approxi-
mated solution to the Fokker-Planck equation. Therefore, consider the Fokker-Planck
equation for a one-dimensional SDE,

∂

∂t
p(t, x) = − ∂

∂x
[b(t, x)p(t, x)] +

1
2

∂2

∂x2

[
σ2(t, x)p(t, x)

]
.

Let p̃(t, x) be an approximation for x ∈ [−L, L] of the solution p(t, x) to the Fokker-
Planck equation given by

p̃(t, x) =
a(t)

2
+

M

∑
n=1

bn(t) cos
(πnx

L

)
+

M

∑
n=1

cn(t) sin
(πnx

L

)
,

for sufficiently big M and with

a(t) =
1
L

∫ L

−L
p̃(t, x)dx ,

bn(t) =
1
L

∫ L

−L
p̃(t, x) cos

(πnx
L

)
dx ,

cn(t) =
1
L

∫ L

−L
p̃(t, x) sin

(πnx
L

)
dx .

38



7. Numerical Methods

Substitution of p̃(t, x) into the Fokker-Planck equation gives the expression

∂

∂t
a(t)

2
+

M

∑
n=1

∂

∂t
bn(t) cos

(πnx
L

)
+

M

∑
n=1

∂

∂t
cn(t) sin

(πnx
L

)
(18a)

=− ∂

∂x

[
b(t, x)

a(t)
2

+ b(t, x)
M

∑
n=1

bn(t) cos
(πnx

L

)
(18b)

+ b(t, x)
M

∑
n=1

cn(t) sin
(πnx

L

) ]
+

1
2

∂2

∂x2

[
σ2(t, x)

a(t)
2

(18c)

+ σ2(t, x)
M

∑
n=1

bn(t) cos
(πnx

L

)
+ σ2(t, x)

M

∑
n=1

cn(t) sin
(πnx

L

) ]
. (18d)

To obtain the approximation p̃(t, x), it is necessary to determine the coefficients

a(t), b1(t), . . . , bM(t), c1(t), . . . , cM(t) ,

which can be done by solving the system of ordinary differential equations appearing
in (18).

This method of using discrete Fourier series to estimate functions is applied in
paper D to approximate conditional density functions.

Laplace and Fourier transform

The Laplace and Fourier transform are both integral transformation methods which
take real-valued functions to complex valued functions. The Laplace transform L( f )(s)
of a function f is a complex function of a complex variable s, while the Fourier trans-
form f̂ (k) of a function f is complex function of a real variable k. Following, the
methods are defined.

Definition 14 (Laplace and Fourier transform). The Laplace transform of an arbi-
trary function f (x) is defined as

L( f )(s) =
∫ ∞

0
f (x)e−sxdx

where s is a complex number.
The Fourier transform of an arbitrary function f (x) is defined as

f̂ (k) =
∫ ∞

−∞
e−ikx f (x)dx

where i2 = −1.

The methods of Laplace and Fourier transform are applied in paper A to investigate
the evolution of recursively defined density functions.
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The Fourier transformation can also be applied to determine the time-dependent
solution to the Fokker-Planck equation exactly. In this process, the inverse Fourier
transform is needed, which is defined by

f (x) =
1

2π

∫ ∞

−∞
eikx f̂ (k)dk .

As an example, the time-dependent solution to the Fokker-Planck equation for the OU
process is presented.

Example 7.2 (The OU process)
The Fokker-Planck equation for the OU process presented in example 6.1 is

∂

∂t
f (t, x) =

1
2

∂

∂x
x f (t, x) +

1
2

∂2

∂x2 f (t, x) .

Let f̂ (k, t) be the Fourier transform of f (t, x). Then the Fourier transform of the
terms in the Fokker-Planck equation becomes∫ ∞

−∞
eikx ∂

∂t
f (t, x)dx =

∂

∂t
f̂ (k, t)∫ ∞

−∞
eikx 1

2
∂

∂x
x f (t, x)dx = −1

2
k
∫ ∞

−∞
eikxix f (t, x)dx = −1

2
k

∂

∂k
f̂ (k, t)∫ ∞

−∞
eikx 1

2
∂2

∂x2 f (t, x)dx = −1
2

k2 f̂ (k, t) .

Therefore, the Fokker-Planck equation gives the relation in the Fourier domain

∂

∂t
f̂ (k, t) = −1

2
k

∂

∂k
f̂ (k, t)− 1

2
k2 f̂ (k, t) . (19)

Let the initial condition at time t = 0 be a constant x0 such that f (x, 0) = δ(x−
x0). The Fourier transform of the initial condition becomes

f̂ (k, 0) = e−ikx0 .

Then the solution to (19) can be determined by using the first order method of
characteristics for PDEs [53]. This gives the result

f̂ (k, t) = exp
(
−ikx0e−

1
2 t − 1

2
k2 (1− e−t)) .

Applying the inverse Fourier transformation gives the solution to the original
Fokker-Planck equation,

f (t, x) =
1√

2π (1− e−t)
exp

(
− (x− x0e−

1
2 t)2

2(1− e−t)

)
.

Note that as t → ∞, the function approaches the stationary solution presented in
example 6.3.
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This chapter summarizes the main contributions of the PhD project.

8 A Simple SDE with Discontinuous Drift
This PhD project was initiated by studying of a simple SDE with discontinuous drift.
This was motivated by a step-by-step approach. By understanding the behaviour of
the solution to a simple one-dimensional SDE with discontinuous drift, it might be
possible to extend this insight to other classes of SDEs in later approaches.

The results in paper A are founded by a numerical and heuristics approach to study
the solutions to a simple SDE with discontinuous drift. Two approaches are applied:
The Euler-Maruyama method and the Fokker-Planck equation.

The Euler-Maruyama method is basis for a density function approach, which re-
sults in recursively defined density functions for the position of the stochastic process
at certain time instants. The density functions and their probabilistic properties are
shown to approach stationary behaviour as the step-length of the Euler-Maruyama
method decreases.

The Fokker-Planck equation is applied to produce a stationary density function for
the solution to the simple SDE with discontinuous drift. A key observation in the paper
is that the density functions produced by the Euler-Maruyama method approximate the
stationary density function generated by the Fokker-Planck equation.

In order to compensate for the discontinuous challenges and/or to compare with
standard results, paper A also introduces a smooth function which approximates the
discontinuous function in the area of the discontinuous point. The Euler-Maruyama
method and the Fokker-Planck procedure are repeated with this smooth function. The
numerical results do not seem to distinguish significantly from the results obtained
with the discontinuous function, and the stationary solution to the Fokker-Planck
equation does clearly approach the result obtained with discontinuous dynamics as
the smooth function approaches the discontinuous function.

The correctness of applying the Euler-Maruyama method to SDEs with disconti-
nuous drift is validated in paper B.

Paper B investigates convergence properties of the Euler-Maruyama method when
it is applied to the same simple SDE with discontinuous drift as the one investigated
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in paper A. It is proven that numerical solutions produced with the Euler-Maruyama
method converge to the strong solution of the SDE (which exists due to [39]). Further-
more, the strong rate of convergence of the Euler-Maruyama method is obtained to be
at least equal to 1

4 . This result indicates that the Euler-Maruyama method has the po-
tential to be applied as a method to produce numerical solutions to general versions of
SDEs with discontinuous drift coefficient.

The discontinuous drift introduced in paper A and B has its characteristic from
the sgn-function. Many practical applications of sliding mode control apply the same
discontinuous function in the control design. Therefore, it seems natural to continue
the direction of the research by investigating the switching dynamics in sliding mode
control.

9 The Switching Dynamics in Sliding Mode Control
In sliding mode control the designed controller produces a switching mechanism based
on discontinuous dynamics. This switching mechanism is investigated in paper C
while a complete description of the system with a sliding mode controller is analysed
in paper D.

Paper C investigates the switching dynamics in sliding mode control under the
assumption that the switching is driven by a Poisson point process. The analysis of
the original sliding mode approach is simplified by a transformation of the state space,
such that only a small region of the state space is considered. A probabilistic model
is developed which results in an explicit description of the marginal density functions
for the stochastic process which is generated by the switching mechanism.

In paper D a sliding mode controller is applied to a mechanical system which is
exposed to additive white noise. A linear coordinate transformation of the system is
introduced which implies that known results on SDEs with discontinuous drift can be
applied to the system. The transformed system is analysed with Itô calculus which
includes a mean valued analysis of the stochastic Itô integral.

The main contribution of paper D is a statistical characterization of system perfor-
mance in terms of the stationary variance of the control error. In order to determine
this result, the auto-correlation function for one part of the stochastic process is ap-
proximated with discrete Fourier series.

The practical relevance of the results in both papers C and D is situated in the po-
tential to describe or estimate the collected behaviour of a family of physical systems
connected via certain switching laws governed by some degree of randomness or by
some version of sliding mode control. The results in paper C can be used for local
analysis of such systems and the results in paper D provide information on the system
behaviour near the system’s operating point.
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This chapter concludes the research project and introduces possible directions for
future investigations

10 Models of Stochastic Systems with Switching Dyna-
mics

During the studies of this PhD project, stochastic switching dynamics was investi-
gated from different perspectives by different models and methods. The underlying
goals was the same all the way; to increase knowledge and insight in how to interpret
and understand the behaviour generated by models of real-world phenomena/systems
which are exposed to discontinuous dynamics.

The results in paper B indicate that the Euler-Maruyama method has the potential
to be applied as a method to produce numerical solutions to SDEs with discontinuous
drift coefficient. However, the method needs also to be approved for more general
classes of SDEs with discontinuous drift coefficient. This is, partly, done in the novel
work [49], which proves strong convergence of the Euler-Maruyama method for the
case where both the drift and diffusion coefficient are discontinuous. However, also in
this work, the drift and diffusion coefficient are restricted to be bounded. Therefore,
it is still of interest to investigate whether the Euler-Maruyama method is suitable for
constructing numerical solutions to SDEs with unbounded discontinuous drift coeffi-
cient.

Paper D makes the initial attempt to study SDEs with unbounded discontinuous
drift and provides reliable estimates on the system behaviour for the class of (me-
chanical) systems where sliding mode control is applied. The perspective of this work
is to extend the method to more general classes such that other systems can also be
modelled with SDEs even though they are subject to discontinuous dynamics.

The analysis of SDEs with unbounded discontinuous drift is a key issue that is still
poorly understood after completion of this thesis.

Most of the results obtained in paper A, C and D have stationary characteristics. A
next step is to investigate the time-dependent evolution of the system’s performance.
As an initial attempt, the following model and procedure is suggested.
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A stochastic model with Markovian switching

One of the methods investigated in paper A applies the Fourier transform to recur-
sively generated density functions. The idea is to introduce the transformation before
the convolution of density functions such that the convolution procedure can be substi-
tuted with multiplication. Even though this method did not bring any significant result
in paper A, this transformation method might be useful for other models. Hence, a
new model is formulated below and the method of Fourier transformation is applied.

First, recall the model presented in paper C. This model defines two constant vec-
tor fields, which drives the trajectory towards an equilibrium point. The switching
dynamics between the two vector fields is modelled with the Poisson point process.
The switching mechanism is active when the trajectory has passed the switching sur-
face which implies that the switching instant is always subject to some (state space)
delay.

Now, let the model in paper C be extended to the framework of SDEs and the
dynamics of the system be considered separated, but interconnected, that is, as a kind
of stochastic hybrid model. Let v1 > 0 and v2 > 0 denote the constant vector fields
and β be the diffusion coefficient of the SDEs. Then, the dynamics of this system can
be expressed by the two dependent Fokker-Planck equations given by

∂φ1

∂t
= −v1

∂φ1

∂x
+

β2

2
∂2φ1

∂x2 + λI(x<0)φ2 − µI(x>0)φ1

∂φ2

∂t
= v2

∂φ2

∂x
+

β2

2
∂2φ2

∂x2 + µI(x>0)φ1 − λI(x<0)φ2

where φ1(t, x) and φ2(t, x) are (probability) density functions for x(t) in each of
the two discrete states, and λ and µ correspond to the intensity of the Poisson point
process (here modelled as Markovian switching).

One way to interpret the Fokker-Planck equations is to think of the stochastic
process as (x(t), q(t)) where x(t) is the continuous state and q(t) ∈ {1, 2} is the
discrete state which defines the current active vector field. When the stochastic process
is in the state (x(t) < 0, q(t) = 1), the drift term drives the process in the direction
towards x = 0 so the probabilistic evolution of x(t), in this case given by φ1(t, x),
is not exposed to any (spontaneous) Markov switches (corresponding to the discrete
transition generated by the Poisson point process in paper C). However, when (x(t) <
0, q(t) = 2) the drift drives the state x(t) away from x = 0 and the probability of a
Markov switch is active. Therefore, in the evolution of the density functions, φ2(t, x)
risks to “lose” probability mass to φ1(t, x) which gains probability mass. The opposite
interpretation appears for (x(t) > 0, q(t)).

The question is whether the application of the Fourier (or Laplace) transform to
the above Fokker-Planck equations will make it possible to obtain expressions for the
time-dependent density functions φ1(t, x) and φ2(t, x).
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So far, it is observed that the expectation of the stochastic process x(t) is given by

E[x(t)] = E[x(0)] +
∫ t

0
v1φ̂1(τ, 0)− v2φ̂2(τ, 0)dτ

where φ̂1 and φ̂2 are the Fourier transformed density functions. More thoughts and
details on this method are presented in the Appendix, section 1.
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1. Introduction

Abstract
In this paper we study solutions to stochastic differential equations (SDEs) with dis-
continuous drift. We apply two approaches: The Euler-Maruyama method and the
Fokker-Planck equation and show that a candidate density function based on the
Euler-Maruyama method approximates a candidate density function based on the sta-
tionary Fokker-Planck equation. Furthermore, we introduce a smooth function which
approximates the discontinuous drift and apply the Euler-Maruyama method and the
Fokker-Planck equation with this input. The point of departure for this work is a
particular SDE with discontinuous drift.

1 Introduction
Since the pioneering work by Einstein on Brownian motion [1], stochastic differential
equations (SDEs) have been intensively studied, with the foundation for SDEs deve-
loped by Itô and Stratonovich, e.g. see [2, 3] and references therein. Well-developed
theories for various sub-disciplines of SDEs have been developed ever since, such as
stability- and control theory [4–6]. Lately SDEs have been used in the generalization
of hybrid dynamical systems [7–9]. Moreover, today a variety of applications and
numerical methods exist for SDEs, see [10, 11] and references therein.

Comment to the above theories is that they are all developed under (weak) regula-
rity conditions on the drift and diffusion coefficients. Such conditions are, of course,
necessary in order to develop an applicable/operational theory. However, it is also of
interest to study special cases (or classes) where the standard regularity conditions fails
but fundamental properties of the SDEs are still valid such as existence and unique-
ness of solutions. As an example, we recall that a necessary condition for existence
of solutions for an (deterministic) ordinary differential equation (ODE), ẋ = f (x), is
that the right-hand side of the ODE, that is the vector field f , should be continuous in
the state variable x. However, the Cauchy problem ẋ = sgn(x), x(0) = x0, with sgn
denoting the sgn-function, has a solution for all initial values x0, despite the fact that
sgn is discontinuous at zero (we remark that sgn(0) = 0 by definition, if this was not
the case, no solution would exist at x0 = 0). As discontinuous functions often appear
in applications, ODEs such as ẋ = sgn(x) should and have been studied, see [12] and
references therein.

In this work in progress we initiate a study of SDEs with discontinuous drift. This
should be seen as a part of a larger scope with focuses on the intersection between
SDEs and switching dynamics, a field only scarcely explored so far, see [13] and re-
ferences therein for related work. Within this larger scope theoretical questions to
be answered are how to define solutions to SDEs with state dependent switching (in
particular with discontinuous drift), when solutions cannot be patched together of seg-
ments of positive time duration and can any applicable results be obtained by applying
the Euler-Maruyama method [14, 15], which is a simple time discrete approximations
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technique, to SDEs with drift which do not meet the regularity conditions? Here, we
exemplify these problems by studying solution candidates to a particular SDE having
discontinuous drift coefficient. More precisely, we consider the SDE

dxt = −k sgn(xt)dt + dBt, (A.1)

with k a control gain, and ask how a solution can be defined.
The systems treated in [7] are assumed to have non-Zeno execution in finite time.

A local behaviour of the Wiener process Bt is that in every time interval of the form
[0, ε), with ε > 0, Bt has infinitely many zeros, that is, the process which fulfils

dxt = dBt

crosses zero infinitely many times, see [16]. In (A.1) the process xt is forced to pro-
ceed against zero, so we conjecture that the solution to (A.1) (if it exists) also crosses
zero infinitely many times in finite time.

We use several methods in the attempt to give a meaningful/operational definition
of solutions to (A.1) based on density functions and their probabilistic properties.
We start by using the Euler-Maruyama method to approximate numerical solutions
to (A.1), which values are presented in histograms for particular time instant. These
histograms can be considered as an approximation to the density function for solutions
to (A.1). We investigate the influence of the step-size and the control gain in the
simulations. Furthermore, from the Euler-Maruyama method we obtain recursively
defined density functions which, under stationary conditions, appear to converge to the
outcome of the second approach which departures from the Fokker-Planck equation.
It is interesting to note that the candidate density function obtained from the Fokker-
Planck equation is derived under the assumption of stationarity while the recursive
approach has no such assumptions. More precisely, we obtain formulas which strongly
indicate that if such a stationary density function exists then it solves the stationary
Fokker-Planck equation.

As a third method, we introduce an approximation to the sgn-function and apply
both the Euler-Maruyama method and the Fokker-Planck equation to this. A compa-
rison with the stationary density function which solves the Fokker-Planck equation is
made.

Finally, we briefly mention one approach which relates to the Euler-Maruyama
method. Even though this intuitively should provide some information, so far we have
not been able to obtain any meaningful results based on this method. It is included
since it is believed that it does in fact carry important information.

It is important to emphasize that the presented material is work in progress and
that the heuristic presented here is an initial attempt to define meaningful candidate
density functions to solutions to a particular SDE with discontinuous drift. It is clear
that for future work the presented material have to be set in a formal mathematical
frame including proofs which validate the various procedure used to obtain candidate
density functions.
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1.1 A Stochastic Differential Equation
A general one dimensional SDE is given by

dxt = b(t, xt)dt + σ(t, xt)dBt, x0 = c (A.2)

where x = xt is an R-valued stochastic process : [0, T]→ R, b, σ : [0, T]×R→ R

are the drift and diffusion coefficient of x, B = Bt is an R-valued Wiener process,
and c is a random variable independent of Bt − B0 for t ≥ 0. On [0, T], existence
and uniqueness of a solution xt, continuous with probability 1, to (A.2) is guaranteed
whenever the drift b and diffusion σ are measurable functions satisfying a Lipschitz
condition together with a growth bound, both uniformly in t [10, Theorem 5.2.1].

This paper focuses on the special case for (A.2), where σ(t, xt) = 1 and b(t, xt) =
−k sgn(xt) with k > 0 a control gain and the sgn-function defined by

sgn(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

.

Thus, we consider the SDE

dxt = −k sgn(xt)dt + dB, x0 = c (A.3)

with c given.
In the next section, the Euler-Maruyama method is applied to approximate so-

lutions to (A.3) and to investigate a theoretical method to obtain candidate density
functions for solutions to (A.3).

2 The Euler-Maruyama Method
The Euler-Maruyama method is a simple time discrete approximation technique which
is used to approximate solutions to SDEs of the type given in (A.2), by discretizing
the time interval [0, T] in steps 0 < t1 < · · · < tn < tn+1 · · · < tN with N =

⌈
T
h

⌉
,

where h = tn+1 − tn is the step-length. Each recursive step is determined via the
following method,

xn+1 = xn + hb(tn, xn) + σ(tn, xn)Wn (A.4)

where xti = xi and Wn = Btn+1 − Btn is i.i.d. normal with mean zero and variance h,
which we denote by Wn ∼ N(0, h).

Given an initial condition x0 = c, it is possible from (A.4) to approximate a solu-
tion to (A.2) by determination of x1, x2, . . . , xN . If the drift and diffusion coefficient
in (A.2) are measurable, satisfy a Lipschitz condition and a growth bound, the Euler-
Maruyama method guarantees strong convergence to the solution of (A.2), [11, The-
orem 9.6.2]. Hence for SDEs with discontinuous drift we can, in general, not expect
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the Euler-Maruyama method to produce meaningful results. Nevertheless, we will in
the sequel apply this method to the special case (A.3) in order to obtain candidate
solutions.

2.1 Analysis of the Deterministic Step
Application of the Euler-Maruyama method to the SDE in (A.3) gives the recursive
step

xn+1 = xn − hk sgn(xn) + Wn . (A.5)

Now, if xn > 0, we have
xn+1 = xn − hk + Wn.

Since Wn ∼ N(0, h), the expectation is that xn+1 ∈ [xn − h(k + 1), xn − h(k− 1)]
in most of the simulations. From this, we expect after a finite time 0 < t < ∞ that
there exists N ∈ N such that xn+N ≤ 0. Similar result is obtained if xm < 0, then
we expect that there exists M ∈ N such that xm+M ≥ 0. The influence from the
control gain k determines how quick the evolution of the sequence {xn}n≥0 switches
around zero. In other words, a big k minimizes the influence of the random variable
Wn.

The Euler-Maruyama method is easy to implement in software, so following we
have applied Matlab to simulate solutions to (A.3).

2.2 Numerical Solutions to an SDE with Discontinuous Drift
We consider the recursive step in (A.5) and simulate the evolution of the stochastic
process. For all simulations the initial condition is chosen to be x0 = 0 and the
considered time interval is [0, T] where T = 1. The step-length is h such that the

number of simulated steps is N =
⌈

T
h

⌉
. All simulations are repeated 500 times and

histograms of the resulting values of xT are presented.
In Figure A.1, one realization of a solution to the SDE in (A.3) is shown together

with the average values of all the 500 simulations in the time interval [0, T]. The
average of xt is close to zero for all 0 ≤ t ≤ T.

Figure A.2 shows the resulting histogram of xT including 500 simulations.
In order to investigate the influence of the step-size, Figure A.3 illustrates four

different histograms of 500 simulations. Here h is 0.01, 0.001, 0.0001 and 0.00001
respectively and k = 1. It can be seen that the result narrows slightly around zero
when h becomes smaller, but changing in the step-size does not immediately give big
effect.

In Figure A.4, the control gain is changing, k = 1, 2, 3, 4 and h = 0.001. Here
it is clear that changing k has an influence on the result of xT . The variance of xT
gets smaller when k increases. This is not surprising since the overall influence of the
random variable Wn is decreased when k increases as mentioned previously.
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Figure A.1: The blue graph shows one realization
out of 500 simulations while the red graph repre-
sents the average of xt for 0 ≤ t ≤ T.
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Figure A.2: Resulting histogram of 500 simula-
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Figure A.3: Histograms of 500 simulations of xT
with different step-size.
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Figure A.4: Histograms of 500 simulations of xT
with different control gains. h = 0.001.
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2.3 Theoretical Distribution of xn

In the following, we investigate the distribution of xn defined by the Euler-Maruyama
method.

Consider the recursive determination of xn+1 in (A.5). Define an intermediate
variable zn = xn + hk sgn(xn) and let fzn and fn denote the density functions of zn
and xn, respectively. Moreover, let N(0, h) denote the density function for Wn. From
probability theory we have

fn+1(x) = fzn ∗ N(0, h) (A.6)

where ∗ denotes convolution.
Hence, we proceed by studying the density function fzn(z). Let the distribution

function of zn be denoted by Fzn such that

Fzn(z) = P(zn ≤ z) = P(xn − hk sgn(xn) ≤ z),

which can be expressed by

P(zn ≤ z) = P(xn − hk ≤ z, xn > 0) + P(xn + hk ≤ z, xn < 0)

+P(xn ≤ z, xn = 0)

= P(xn ≤ z + hk, xn > 0) + P(xn ≤ z− hk, xn < 0) .

For different values of z, the probability P(zn ≤ z) can be expressed differently. If
z < −hk

P(zn ≤ z) = P(xn ≤ z− hk, xn < 0) = P(xn ≤ z− hk) = Fn(z− hk) .

If z > hk

P(zn ≤ z) = P(xn ≤ z + hk, xn > 0) + P(xn ≤ z− hk)

= P(xn ≤ z + hk) = Fn(z + hk) ,

and if −hk ≤ z ≤ hk

P(zn ≤ z) = P(xn ≤ z + hk)− P(xn < 0) + P(xn ≤ z− hk)

= Fn(z + hk)− Fn(0) + Fn(z− hk) .

By introducing the indicator function I, the expression of the distribution function of
zn is

P(zn ≤ z) = Fn(z− hk)I(−∞,−hk)(z) + (Fn(z + hk)− Fn(0)

+Fn(z− hk))I[−hk,hk](z) + Fn(z + hk)I(hk,∞)(z)

= Fn(z− hk)I(−∞,hk](z) + Fn(z + hk)I[−hk,∞)(z)− Fn(0)I[−hk,hk](z) .

60



2. The Euler-Maruyama Method

By differentiating with respect to z, the density function of zn is

∂

∂z
Fzn = fn(z− hk)I(−∞,hk](z)− Fn(z− hk)δ(z− hk) + fn(z + hk)I[−hk,∞)(z)

+Fn(z + hk)δ(z + hk)− Fn(0)(δ(z + hk)− δ(z− hk))

= fn(z− hk)I(−∞,hk](z) + fn(z + hk)I(−hk,∞)(z)

+δ(z + hk)(Fn(z + hk)− Fn(0)) + δ(z− hk)(Fn(0)− Fn(z− hk))

= fn(z− hk)I(−∞,hk](z) + fn(z + hk)I[−hk,∞)(z) .

Therefore

fzn(z) = fn(z− hk)I(−∞,hk](z) + fn(z + hk)I[−hk,∞)(z) . (A.7)

By substituting the above into (A.6), the density function fn+1 is found from the
density function fn. In the following section, the solution to (A.7) is investigated
numerically.

2.4 Recursive Developing of the Density Function in Matlab
The recursive density function is given by

fn+1(x) =
(

fn(x + kh)I(−∞,hk] + fn(x− hk)I[−hk,∞)

)
∗ N(0, h) . (A.8)

Following, we apply Matlab to investigate the evolution of the function fn+1(x) for
increasing n. Assume that the density function for the initial condition x0 = c is
normal distributed with mean zero and variance h. The Euler-Maruyama method is
expected to converge to a stochastic process (or a distribution of a stochastic process)
when h→ 0. (Under certain regularity conditions, so actually we cannot expect it here
but only conjecture.) We hope that the developing of the recursive density functions
in (A.8) will reach stationary condition for n → ∞. For this reason, the number n of
simulations is chosen to depend on the step size, such that n =

⌈
1

h1+α

⌉
, where α > 0.

This ensures that both convergence criteria are fulfilled.
Equation (A.8) is simulated in Matlab for h = 0.01, α = 0.5, k = 1 such that

n = 1000, the result is shown in Figure A.5. At the end of section 3, a comparison
between the convergence of the recursive density function and the result obtained there
is presented.

In the following, we continue the study of (A.7) under stationary assumptions.

2.5 Stationary State
In the sequel, we continue the study of the recursive density function under the as-
sumptions that it is possible to reach stationary state in (A.8) for n→ ∞, such that

fzn(z) = f (z− hk)I(−∞,hk](z) + f (z + hk)I(−hk,∞)(z) ,
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Figure A.5: Recursive density function, f1000.

where f (x) is the stationary density function of the recursive development of fn(x).
In this case we define an operator Hh taking fn to fn+1 by

Hh[ f ](x) =
∫

R

(
f (z− hk)I(−∞,hk](z) + f (z + hk)I(−hk,∞)(z)

)
· 1√

2πh
exp

(
−(x− z)2

2h

)
dz .

By taking the derivative with respect to h and then the limit h→ 0, we obtain (see the
Appendix),

lim
h→0

∂

∂h
Hh[ f ](x) =


−k f ′(x) + 1

2 f ′′(x) for x < 0
ψ(x) for x = 0

k f ′(x) + 1
2 f ′′(x) for x > 0

. (A.9)

The case x = 0 is not important for the sequel development, hence we leave ψ(x)
unspecified. Note that the right hand side of the first and last case in (A.9) have
similarity with the stationary Fokker-Planck equation.

An approximation of the operator Hh is

Hh[ f ](x) ≈ f (x) + h(k sgn(x) f ′(x) +
1
2

f ′′(x))

= f (x) + hG[ f ](x) . (A.10)

For a fixed h define fh to be the stationary density function and assume that limh→0 fh
exists, say f0 and that Hh( fh) = fh. Hence, if we disregard the approximation in
(A.10), we look for a function fh such that G[ fh] = 0, which by (A.9) means that
fh is a stationary solution to the Fokker-Planck equation. We conjecture that this
heuristic will constitute the main ideas in the proof that the stationary distribution
f0 (= limh→0 fh) of the Euler-Maruyama simulation converges to the Fokker-Planck
equation.
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3 The Fokker-Planck Equation
Based on the preceding work, this section introduces the one-dimensional Fokker-
Planck equation and applies this to determine a density function of xt for fixed t.

Let xt be a solution to (A.3). For a fixed t ∈ [0, T] let φ(x, t) be the density
function of xt, such that ∫

R
φ(x, t)dx = 1 (A.11)

with initial condition
lim
t→0

φ(x, t) = δ(x− x0)

where δ denotes the Dirac delta function. If the drift and diffusion coefficient are
moderately smooth functions, then the density function φ(x, t) satisfies the Fokker-
Plank equation [16, 17]. For (A.3) this means

∂

∂t
φ(x, t) =

∂

∂x
k sgn(x)φ(x, t) +

1
2

∂2

∂x2 φ(x, t) . (A.12)

As mentioned previously, the drift coefficient−k sgn(x) is not a smooth function and
for this reason there is no guarantee that (A.12) is valid.

3.1 Solution in Two Domains
In order to avoid the discontinuous challenges by the sgn-function, we consider the
Fokker-Planck equation (A.12) in the domains (−∞, 0) and (0, ∞). This gives

∂

∂t
φ(x, t) =

∂

∂x
kφ(x, t) +

1
2

∂2

∂x2 φ(x, t) for x > 0

∂

∂t
φ(x, t) = − ∂

∂x
kφ(x, t) +

1
2

∂2

∂x2 φ(x, t) for x < 0 .

Assume that the density function can reach stationarity, then

0 =
∂

∂x
kφ(x, t) +

1
2

∂2

∂x2 φ(x, t) for x > 0

0 = − ∂

∂x
kφ(x, t) +

1
2

∂2

∂x2 φ(x, t) for x < 0 ,

which are two ODEs. The characteristic equations are

ks +
1
2

s2 = 0 for x > 0

−ks +
1
2

s2 = 0 for x < 0 ,

which have the roots

s = 0, s = −2k for x > 0

s = 0, s = 2k for x < 0 ,
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Figure A.6: Density function φ(x, t) for xt for
fixed t ∈ [0, T].
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Figure A.7: Logarithmic stationary density func-
tion and logarithmic recursive density function of
f158, f398, f1000.

such that

φ+(x) = c1 exp(0x) + d1 exp(−2kx) for x > 0

φ−(x) = c2 exp(0x) + d2 exp(2kx) for x < 0

are solutions of (A.12) in the respective domain. We discard the constant term and,
due to symmetry around x = 0, it can be expected that d1 = d2 := d. The boundary
constraint in equation (A.11) gives

d =
1

2
∫ ∞

0 exp(−2kx)
= k .

Furthermore, from the above we assume that φ(x, t) = k for x = 0. This gives the
density function

φ(x, t) =


k exp(−2kx) for x > 0
k exp(2kx) for x < 0

k for x = 0
(A.13)

which is illustrated in Figure A.6 for k = 1. The density function φ(x, t) is the
Laplace distribution with location parameter zero and scale parameter 1

2k .
The density function in (A.13) is compared with the recursive density functions

developed in section 2.4 by considering the logarithmic of the density functions. The
recursive cases with n = 158, 398, 1000 are shown in Figure A.7 together with the
logarithmic stationary density function log (φ(x, t)). For increasing n, the logarith-
mic recursive density function gets closer to the logarithmic stationary density func-
tion, as we hope to observe.

Due to the lack of continuity in all the previous investigations, in the following
section we construct a smooth function which approximates the sgn-function and in-
vestigate what results the applied methods provide with this smooth function as input.
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Figure A.8: Approximation of the sgn-function.

4 Approximation of sign-Function
As mentioned, the problem with the sgn-function is that it is not smooth. For this
reason we construct a function fN(x) which has pointwise convergence to the sgn-
function as N → ∞.

fN(x) =


1 for x > 1

N
−N3

2 x3 + 3N
2 x for − 1

N ≤ x ≤ 1
N

−1 for x < − 1
N

. (A.14)

In Figure A.8, the functions f1(x), f2(x), f5(x) and f10(x) are shown. In the follow-
ing, we will apply the Euler-Maruyama method to this function.

4.1 Euler-Maruyama Method Applied to the Approximated sign-
Function

It is proved that the Euler-Maruyama method exhibits convergence to the solution
of the SDE if the drift and diffusion coefficient satisfy certain regularity conditions.
Since fN(x) from (A.14) is a smooth function, we apply the Euler-Maruyama method
with this input instead of the sgn-function. The same procedure as in section 2.2 is
applied, such that

xj+1 = xj − hk fN(xj) + Wj . (A.15)

Since the slope of fN(x) increases significantly with the increase of N, the step-size
is chosen to be dependent on N, such that h = 0.001

N . We hope to avoid inaccurate
simulations due to the step-size with this method. (If xi ∈ [− 1

N , 1
N ] for ti ∈ [0, T]

and N is big, then the value of fN(xi) is dominating in the determination of xi+1 such
that xi << xi+1 or xi >> xi+1.) As before, k = 1. In Figure A.9 3 realizations of xt
are shown, when f4(x) is used to approximate sgn(x). In Figure A.10 histograms of
500 simulations are presented based on different approximations of the sgn-function.
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Figure A.9: Realizations of xt to an SDE with
drift b(t, xt) = −k f4(xt).
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Figure A.10: Histogram of 500 simulations of
xT where different approximations to the sgn-
function are used.

In the following section, the smooth function fN(x) is implemented in the Fokker-
Planck equation.

4.2 Solution to the Fokker-Planck Equation with Approximated
sign-Function

Previously, the Fokker-Planck equation is applied to an SDE where the drift is discon-
tinuous due to the sgn-function. As mentioned, we cannot expect this to be meaning-
ful. Following, the smooth function fN(x) is used as a substitute for the sgn-function,
such that we consider the SDE

dxt = −k fN(xt)dt + dBt . (A.16)

We investigate if it is possible to determine a density function which is a solution to
the Fokker-Planck equation with −k fN(x) as the drift.

With the same technique as previously, we consider the Fokker-Planck equation
in three domains. First, the domain [− 1

N , 1
N ] is considered with fN(x) as an approxi-

mation of sgn(x),

∂

∂t
φN(x, t) =

∂

∂x
k
(
−N3

2
x3 +

3N
2

x
)

φN(x, t) +
1
2

∂2

∂x2 φN(x, t) . (A.17)

Under stationary assumptions, the function φN(x, t) = φ0 exp
(

N3

4 kx4 − 3N
2 kx2

)
fulfils (A.17). By including the domains (−∞,− 1

N ) and ( 1
N , ∞), the density function

for solutions to (A.16) becomes

φN(x, t) =


d exp(2kx) for x < − 1

N
φ0 exp

(
N3

4 kx4 − 3N
2 kx2

)
for − 1

N ≤ x ≤ 1
N

d exp(−2kx) for x > 1
N

,
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Figure A.11: Density functions for solutions to (A.16) together with φ(x, t).

with constraints

1 =
∫ − 1

N

−∞
d exp(2kx)dx +

∫ ∞

1
N

d exp(−2kx)dx

+
∫ 1

N

− 1
N

φ0 exp
(

k
(

N3

4
x4 − 3N

2
x2
))

dx

and
lim

x→± 1
N +

φN(x, t) = lim
x→± 1

N−
φN(x, t) . (A.18)

From (A.18)

d = φ0 exp
(

3k
4N

)
,

so the normalization constant becomes

φ0 =
1

2
∫ 1

N
0 exp

(
− 3kN

2 x2 + kN3

4 x4
)

dx + 1
k exp

(
− 5k

4N

)
and

φN(x, t) =


φ0 exp

(
3k
4N

)
exp(2kx) for x < − 1

N

φ0 exp
(

N3

4 kx4 − 3N
2 kx2

)
for − 1

N ≤ x ≤ 1
N

φ0 exp
(

3k
4N

)
exp(−2kx) for x > 1

N

.

This density function is simulated in Matlab with φ0 numerically calculated. In Figure
A.11 results are shown for N = 1, 10, 100, 1000, 10000 together with the stationary
density function from the Fokker-Planck equation φ(x, t). Note that φ100, φ1000 and
φ10000 are not visible. The simulations show that φN(x, t)→ φ(x, t) as expected.
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5 Fourier Transformation
In section 2.3 we investigate a candidate density function for the intermediate variable
zn in order to determine a density function for the stochastic process produced by
Euler-Maruyama method. Another method is to make a Fourier transformation of the
density function for zn before the convolution of the density functions is done. The
Fourier transformation of (A.7) is given by

F̂(ω) =
∫

R

[
fn(z− hk)I(−∞,hk] + fn(z + hk)I(−hk,∞)

]
exp(−jωz)dz .

By expansion and including of the Laplace transformation, see the Appendix, the
following relation appears:

F̂(ω) = cos(ωhk)Re
(

F̂(ω)
)
− 2 sin(ωhk) Im

(
F̃(ω)

)
where F̃(ω) is the Laplace transformation. For the moment we have no further inter-
pretation of how this can help the developing of the recursive density function.

6 Discussion
This paper presents initial studies of SDEs with discontinuous drift. Theoretical and
numerical approaches are applied to a particular SDE in order to investigate meaning-
ful results in the form of density functions.

The candidate recursive density functions developed from the Euler-Maruyama
method have the tendency to approximate the density function of the stationary Fokker-
Planck equation, which strengthens the conjecture that these density functions actually
exist. Furthermore, the fact that the Laplace distribution is a solution to the stationary
Fokker-Planck equation with discontinuous drift supports the assumption that it is
possible to give a meaningful answering to questions about definition of solutions to
discontinuous SDEs and their probabilistic properties. However, we have not com-
pleted these processes, yet.

All in all, the different approaches indicate a connection between the candidate
density function for the solution to the particular SDE with discontinuous drift and the
Fokker-Planck equation. Though, the stationary assumptions have extensive impact
on this result. Without this condition, the solvability of the Fokker-Planck equation
would decrease significantly.

A potential object for future studies is to formalize the heuristic presentation in
this paper to obtain operational definition and regular results connected to classes of
SDEs with discontinuous drift.

Appendix
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6. Discussion

Approximation of the operator Hh

In section 2.5 the operator Hh was defined by

Hh[ f ](x) =
∫

R

(
f (z− hk)I(−∞,hk](z) + f (z + hk)I(−hk,∞)(z)

)
· 1√

2πh
exp

(
−(x− z)2

2h

)
dz .

Following, the notation Nh(z) = 1√
2πh

exp
(
−z2

2h

)
is used and we consider the gene-

rator ∂
∂h Hh.

∂

∂h
Hh[ f ](x)

=
∫

R

(
−k f ′(z− hk)I(−∞,hk](z) + k f ′(z + hk)I[−hk,∞)(z)

)
· Nh(x− z)dz

+
∫

R
(−k f (z− hk)δ(z− hk) + k f (z + hk)δ(z + hk)) · Nh(x− z)dz

+
∫

R

(
f (z− hk)I(−∞,hk](z) + f (z + hk)I[−hk,∞)(z)

) ∂

∂h
(Nh(x− z))dz .

(A.19)

The second integral term above gives∫
R
(−k f (z− hk)δ(z− hk) + k f (z + hk)δ(z + hk)) · Nh(x− z)dz

= k f (0) (Nh(x + hk)− Nh(x− hk)) .

The derivative of the last integral term in (A.19) gives

∂

∂h
(Nh(x− z)) =

1√
2πh

(
(x− z)2

2h2 − 1
2h

)
exp

(
−(x− z)2

2h

)
.

Consider the derivative with respect to z,

∂

∂z
(Nh(x− z)) =

1√
2πh
−(x− z)

h
exp

(
−(x− z)2

2h

)
,

and the second derivative with respect to z,

∂2

∂z2 (Nh(x− z)) =
1√
2πh

(
(x− z)2

h2 +
1
h

)
exp

(
−(x− z)2

2h

)
.

Thus, for small h

∂

∂h
(Nh(x− z)) ≈ 1

2
∂2

∂z2 (Nh(x− z)) .
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Therefore, the last integral term in ∂
∂h Hh[ f ](x) is approximately

1
2

∫
R

(
f (z− hk)I(−∞,hk](z) + f (z + hk)I[−hk,∞)(z)

) ∂2

∂z2 (Nh(x− z))dz

=
1
2

∫ hk

−∞
f (z− hk)

∂2

∂z2 (Nh(x− z))dz +
1
2

∫ ∞

−hk
f (z + hk)

∂2

∂z2 (Nh(x− z))dz

=
1
2

(
[ f (z− hk)

∂

∂z
(Nh(x− z))]hk

−∞ − [ f ′(z− hk)Nh(x− z)]hk
−∞

+
∫ hk

−∞
f ′′(z− hk)Nh(x− z)dz

)
+

1
2

(
[ f (z + hk)

∂

∂z
(Nh(x− z))]∞−hk

−[ f ′(z + hk)Nh(x− z)]∞−hk +
∫ ∞

−hk
f ′′(z + hk)Nh(x− z)dz

)
.

The limit of ∂
∂h Hh for h→ 0 is then

lim
h→0

∂

∂h
Hh[ f ](x) =


−k f ′(x) + 1

2 f ′′(x) for x < 0
ψ(x) for x = 0
k f ′(x) + 1

2 f ′′(x) for x > 0

where ψ(x) is unknown.

Fourier Transformation Expansion
In section 5 the Fourier transformation of fzn is presented. Below follows the expan-
sion.

F̂(ω) =
∫

R

[
fn(z− hk)I(−∞,hk] + fn(z + hk)I(−hk,∞)

]
exp(−jωz)dz

=
∫ hk

−∞
fn(z− hk) exp(−jωz)dz +

∫ ∞

−hk
fn(z + hk) exp(−jωz)dz .

By changing variable x = z− hk in the first integral and x = z + hk in the second
integral,

F̂(ω) =
∫ 0

−∞
fn(x) exp(−jω(x + hk))dx +

∫ ∞

0
fn(x) exp(−jω(x− hk))dx

= exp(−jωhk))
∫ 0

−∞
fn(x) exp(−jωx)dx

+ exp(jωhk)
∫ ∞

0
fn(x) exp(−jωx)dx

= (cos(ωhk)− j sin(ωhk))
∫ 0

−∞
fn(x) exp(−jωx)dx

+(cos(ωhk) + j sin(ωhk))
∫ ∞

0
fn(x) exp(−jωx)dx . (A.20)
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Based on the uncertainty around zero in the recursive determination of xn+1 in (A.4),
we find it reasonable to assume that fn is an even function. Fourier transformations
of even functions give zero in the imaginary part, so only the real part of (A.20) is
considered.

F̂(ω) = cos(ωhk)Re
(∫ 0

−∞
fn(x) exp(−jωx)dx

)
+ sin(ωhk) Im

(∫ 0

−∞
fn(x) exp(−jωx)dx

)
+ cos(ωhk)Re

(∫ ∞

0
fn(x) exp(−jωx)dx

)
− sin(ωhk) Im

(∫ ∞

0
fn(x) exp(−jωx)dx

)
= cos(ωhk)

∫ 0

−∞
fn(x) cos(ωx)dx− sin(ωhk)

∫ 0

−∞
fn(x) sin(ωx)dx

+ cos(ωhk)
∫ ∞

0
fn(x) cos(ωx)dx + sin(ωhk)

∫ ∞

0
fn(x) sin(ωx)dx

= cos(ωhk)
∫ ∞

−∞
fn(x) cos(ωx)dx + 2 sin(ωhk)

∫ ∞

0
fn(x) sin(ωx)dx

= cos(ωhk)Re
(

F̂(ω)
)
+ 2 sin(ωhk)

∫ ∞

0
fn(x) sin(ωx)dx . (A.21)

Consider the Laplace transformation of fn(x),

F̃(s) = L{ fn(x)} =
∫ ∞

0
fn(x) exp(−sx)dx . (A.22)

The imaginary part of (A.22) is

Im(F̃(s)) = −
∫ ∞

0
fn(x) sin(sx)dx .

From this (A.21) can be expressed by

F̂(ω) = cos(ωhk)Re
(

F̂(ω)
)
− 2 sin(ωhk) Im

(
F̃(ω)

)
where F̃(ω) is the Laplace transformation.
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1. Introduction

Abstract
The Euler-Maruyama method is applied to a simple stochastic differential equation
(SDE) with discontinuous drift. Convergence aspects are investigated in the case
where the Euler-Maruyama method is simulated in dyadic points. A strong rate of
convergence is presented for the numerical simulations and it is shown that the pro-
duced sequences converge almost surely. This is an improvement of the general result
for SDEs with discontinuous drift, i.e. that the Euler-Maruyama approximations con-
verge in probability to a strong solution of the SDE. A numerical example is presented
together with a confidence interval for the numerical solutions.

1 Introduction
Stochastic differential equations (SDEs) are used to represent real-world phenomena
through mathematic models. The theory of SDEs have been intensively studied with
the foundation for SDEs developed by Itô and Stratonovich, e.g. see [1, 2] and refe-
rences therein. This paper focuses on a simple SDE from a class of SDEs, which are
often implemented in models of switched systems. Switched systems arise in many
systems for automatic control. They can be found in relatively simple systems such
as a compressor in a refrigerator, which keeps the temperature stable, in an automatic
gearbox, or in complex systems such as the total control over a flying aircraft.

In modelling, one often is interested in the particular solutions to the model/system
in order to be able to predict the future behaviour of the system and/or to be able
to control parameters which influence it. Solutions to SDEs can be categorized in
two primary groups: strong solutions and weak solutions. Roughly speaking, a weak
solution is a solution in probability while a strong solution makes the SDE hold almost
surely with a given initial condition. We refer to [3] for further information of forms
of solutions to general SDEs.

Solutions to SDEs have been studied for many years. It is not obvious that a so-
lution exists to a given SDE. In 1974 A. K. Zvonkin presented a paper which made
a transformation of an SDE with a drift coefficient to an SDE without a drift coef-
ficient [4]. This was an important result since in certain cases processes which only
depend on the diffusion coefficient can be solved easier. Hence, this approach made
it possible to construct strong solutions to SDEs with irregular drift coefficient. For
this transformation to bring a valid strong solution, it is required that the drift coeffi-
cient is bounded, measurable and fulfils a Dini condition. Later, A. J. Veretennikov
extended this result and showed that sufficient conditions for a strong solution are: the
diffusion coefficient is equal the identity matrix and the drift coefficient is a bounded
measurable function [5]. In this case the solution is strongly unique.

Since many SDEs do not have closed formed solutions, a common way to obtain
information about solutions is by numerical approximation. The Euler-Maruyama
method [6] is a stochastic extension of the well-known Euler method for numerical
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solution of differential equations. In general, this method guarantees weak and strong
convergence to the stochastic process if the drift and diffusion coefficient satisfy ap-
propriate regularity conditions [7]. For certain classes of SDEs, convergence proper-
ties for the Euler-Maruyama method have been proven, among others cf. [8–10].

The SDE studied in this paper is an example from a class of SDEs with disconti-
nuous drift coefficient. In 1996 I. Gyöngy and N. Krylov studied such an example and
proved that the Euler-Maruyama approximation converges uniformly on bounded in-
tervals, in probability, to a stochastic process. This process was shown to be the strong
solution to the studied SDE [11]. They constructed the strong solution by smooth ap-
proximations of the coefficients and the initial condition.

In [12] weak convergence of the Euler-Maruyama method is proven for SDEs
with discontinuous coefficients. There it is required that the drift and diffusion co-
efficient are continuous on each element of a family of pairwise disjoint sets, which
intersection is the whole space. Moreover, it is assumed that a unique solution exists.
In that sense, the outcome of [12] generalizes the weak convergence result for the
Euler-Maruyama method when the coefficients are continuous. Weak convergence
of the Euler-Maruyama method was also provided by L. Yan where the coefficients
are discontinuous on a set with Lebesgue measure zero, and have at most linear
growth [13]. He also presented a strong rate of convergence for Euler-Maruyama
method to a unique weak solution in the one-dimensional case, under the assumption
that the coefficients are Hölder continuous and the drift is Lipschitz. In particular, the
main contribution is that he did not assume the Lipschitz condition for the diffusion
coefficient. The rate of convergence depends on smooth conditions for the coefficients.

Also Kohatsu-Higa, Lejay and Yasuda have given a result for the weak rate of
convergence of the Euler-Maruyama method applied to a multi-dimensional SDE with
discontinuous drift. Instead of considering the original discontinuous drift coefficient,
they implemented an approximation to the drift in the Euler-Maruyama method and
provided a rate of weak convergence to the solution of the original SDE [14]. They
also presented some examples in their paper to give a numerical rate of convergence.
One of these examples is almost identical with the SDE studied in this paper. In this
case the weak convergence rate of the Euler-Maruyama method has order one, which
is identical with the order of weak convergence for the Euler-Maruyama method when
it is applied to SDEs with sufficiently regular coefficients. In this paper we provide a
strong rate of convergence for the Euler-Maruyama method in probability.

We apply the Euler-Maruyama method to a simple SDE with discontinuous drift

dxt = −k sgn(xt)dt + dWt, (B.1)

with k a control gain and prove convergence of the Euler-Maruyama method with pro-
bability one. From [5] we already know that the strong solution to (B.1) exists and
is strongly unique, since the drift coefficient is bounded and Lebesgue measurable
and the diffusion coefficient is one. Hence, by [5], it follows that the numerical solu-
tions constructed from the Euler-Maruyama method converge to the strong solution of
(B.1).
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From the obtained convergence result, a confidence interval can be estimated for
the numerical solution. In practice, this gives an estimate of how accurate the nu-
merical solution is for a given simulation and can, furthermore, be used as a guide to
determine the required size of the discretization of the Euler-Maruyama method.

The discontinuous element in the drift coefficient comes from the sgn-function.
The sgn-function is interesting since it often appears in models of systems with sliding
mode control [15, 16]. In these models, the discontinuity of the coefficients is often
not bounded, which is required in almost all the results provided so far for SDEs with
discontinuous coefficients.

In the following, we present the one-dimensional SDE.

1.1 Stochastic Differential Equation
A general one dimensional SDE is given by

dxt = b(t, xt)dt + σ(t, xt)dWt, x0 = c0 (B.2)

where x = xt : [0, T]→ R is an R-valued stochastic process, b, σ : [0, T]×R→ R

are the drift and diffusion coefficient of x, W = Wt is an R-valued Wiener process,
and c0 a given constant.

This paper focuses on the special case of (B.2), where σ(t, xt) = 1 and b(t, xt) =
−k sgn(xt) with k > 0 a control gain and the sgn-function defined by

sgn(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

. (B.3)

Thus, we consider the SDE

dxt = −k sgn(xt)dt + dWt, x0 = c0 (B.4)

with c0 given.
In the sequel, the Euler-Maruyama method is presented and applied to (B.4).

2 The Euler-Maruyama Method
The Euler-Maruyama method is used to approximate solutions to SDEs of the type
given in (B.2), by discretizing the time interval [0, T] in steps 0 < t1 < · · · < tn <

tn+1 · · · < tN with N =
⌈

T
h

⌉
, where h = tn+1 − tn is a fixed time-step. For

each step tn = nh a recursion gives an approximation to the solution to (B.2) by the
following method,

xn+1 = xn + hb(tn, xn) + σ(tn, xn)∆Wn (B.5)
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where xti = xi and ∆Wn = W(tn+1)−W(tn) is i.i.d. normal with mean zero and
variance h, which we denote by ∆Wn ∼ N(0, h). Thus, given an initial condition
x0 = c0, it is possible from (B.5) to approximate a solution to (B.2) with the sequence
{xn} = {xtn : n ∈ {1, 2, . . . , N}}, which, if the drift and diffusion coefficient are
measurable, satisfy a Lipschitz condition and a growth bound, converges strongly to
the solution of (B.2) as h → 0, [7, Theorem 9.6.2]. Hence, for SDEs with disconti-
nuous drift we cannot expect, in general, that the Euler-Maruyama method produces
meaningful results, but as mentioned previously, under certain relaxed conditions on
the drift and diffusion coefficients weak convergence and convergence in probability
are proven.

In the following section, convergence aspects are investigated when {tn} are dyadic
points.

3 Convergence in Dyadic Points
The Euler-Maruyama method is applied to (B.4) with dyadic points as evolution points.
It is proven that the simulated solutions produced by the Euler-Maruyama method
converge uniformly almost surely in each dyadic point for decreasing length of the
time-step. That is, in the following are considered a sequence of simulations, pro-
duced with decreasing length of the time-step for a realization of the Wiener process.
First, the notation is stated.

The Euler-Maruyama method is applied to (B.4) in the time interval [0, T] with
T = 1 and time-steps hn = 2−n. For a fixed n ∈ N, that is a fixed hn, the method
produces steps xn(tn

j ) = xn
j for times 0 < tn

1 < · · · < tn
j < · · · < tn

2n = 1,
where tn

j = j · hn. Therefore, the sequence {xn
j }j = {xn(tn

j ) : j ∈ {1, 2, . . . , 2n}} is
generated by the recursion

xn
j+1 = xn

j − hnk sgn(xn
j ) + ∆Wn

j , (B.6)

with time-step hn, an initial condition xn
0 = c0 and ∆Wn

j = Wn
j+1 −Wn

j , where
Wn

j = W(tn
j ) is a realization point from the Wiener process. It is assumed that the

initial condition c0 is a fixed constant.
The definition of hn gives that a specific dyadic point tn

j = jhn ∈ [0, T] is rep-
resented in all sequences {tm

j }j = {tm
j : j ∈ {1, 2, . . . , 2m}} for m > n since

tn
j = jhn = 2jhn+1 = 2m−n jhm = tm

2m−n j. Figure B.1 shows an example of ele-

ments from the sequence {xn
j }j and {xn+1

j }j. Note in particular that xn
j+1 is produced

from xn
j , while xn+1

2(j+1) is produced from xn+1
2j+1, so even though the Euler-Maruyama

method uses the same realization of the Wiener process and the same inital condition,
the simulated solutions are different.

To investigate convergence in dyadic points, the sequence

{xn+p
2p j }p = {xn+p(2p jhn+p) : p ∈ {0, 1, . . .}} (B.7)

80



3. Convergence in Dyadic Points

xn
j∗

xn+1
2j•

xn+1
2j+1•

xn
j+1∗

xn+1
2(j+1)•

tn
j tn

j+1tn+1
2j+1

t

Figure B.1: Elements from the sequences {xn}j and {xn+1}j.

is considered with an initially fixed n ∈ N and a fixed dyadic point tn
j = jhn, that

is, realization points xn+p(tn
j ) for p ≥ 0, produced at the same dyadic point tn

j but
from simulations with decreasing length of the time-step. We will show that (B.7) is a
Cauchy sequence with the probability tending to one as n→ ∞.

The first two elements in the sequence {xn+p
2p(j+1)}p are

xn
j+1 = xn

j − hnk sgn(xn
j ) + Wn

j+1 −Wn
j

= xn
j − 2hn+1k sgn(xn

j ) + Wn+1
2(j+1) −Wn+1

2j (B.8)

and

xn+1
2(j+1) = xn+1

2j+1 − hn+1k sgn(xn+1
2j+1) + Wn+1

2(j+1) −Wn+1
2j+1

= xn+1
2j − hn+1k sgn(xn+1

2j ) + Wn+1
2j+1 −Wn+1

2j

−hn+1k sgn(xn+1
2j+1) + Wn+1

2(j+1) −Wn+1
2j+1

= xn+1
2j − hn+1k

(
sgn(xn+1

2j ) + sgn(xn+1
2j+1)

)
+ Wn+1

2(j+1) −Wn+1
2j .

The equality in (B.8) follows since hn = 2phn+p and W(jhn) = Wn
j = Wn+p

2p j .
Hence, the difference between the two successive elements in the sequence

{xn+p
2p(j+1)}p is

xn+1
2(j+1) − xn

j+1 = xn+1
2j − xn

j − hn+1k
(

sgn(xn+1
2j ) + sgn(xn+1

2j+1)− 2 sgn(xn
j )
)

= xn+1
2j − xn

j − hn+1kQn
j (B.9)

where Qn
j = sgn(xn+1

2j ) + sgn(xn+1
2j+1) − 2 sgn(xn

j ). Depending on the values of
the sign-functions, different situations appear. In the sequel, this is investigated. For
abbreviation, sgn(xa

b) is denoted by sa
b.

81



Paper B.

1. If sn+1
2j , sn+1

2j+1, sn
j share the same sign then

xn+1
2(j+1) − xn

j+1 = xn+1
2j − xn

j .

2. If sn+1
2j = sn+1

2j+1 = −sn
j 6= 0 then

xn+1
2(j+1) − xn

j+1 = xn+1
2j − xn

j − 4hn+1k sgn(Qn
j )

where sgn(xn+1
2j − xn

j ) = sgn(Qn
j ). Therefore,

|xn+1
2(j+1) − xn

j+1| ≤ |xn+1
2j − xn

j | . (B.10)

3. If sn+1
2j+1 = sn

j = −sn+1
2j 6= 0 then

xn+1
2(j+1) − xn

j+1 = xn+1
2j − xn

j − 2hn+1k sgn(Qn
j ) ,

and

(xn+1
2j − xn

j ) ≤ 0 for sgn(Qn
j ) = −1 ,

(xn+1
2j − xn

j ) ≥ 0 for sgn(Qn
j ) = 1 .

Both of the above options imply (B.10).

4. If sn+1
2j = sn

j = −sn+1
2j+1 6= 0 then

xn+1
2(j+1) − xn

j+1 = xn+1
2j − xn

j − 2hn+1k sgn(Qn
j ) .

In the following lemma, case 4) is studied in detail.

Lemma 3.1. For case 4): If

|xn+1
2j − xn

j | ≥ c 4
√

hn (B.11)

where c > k is a fixed constant, then either

|xn+1
2(j+1) − xn

j+1| ≤ |xn+1
2j − xn

j | (B.12)

or

|∆Wn+1
2j | >

k
2
( 4
√

hn − hn) . (B.13)
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Proof. If

xn+1
2j − xn

j ≤ 0 for sn
j = 1 or

xn+1
2j − xn

j ≥ 0 for sn
j = −1

then (B.12) is valid. In the following, the converse cases are considered.
If

xn+1
2j − xn

j > 0 where sn+1
2j = sn

j = 1 ,

then by (B.11)

xn+1
2j − xn+1

2j+1 > c 4
√

hn ,

and similar if

xn+1
2j − xn

j < 0 where sn+1
2j = sn

j = −1

then

xn+1
2j+1 − xn+1

2j > c 4
√

hn .

Both situations imply that

|xn+1
2j − xn+1

2j+1| > c 4
√

hn .

From (B.6)

|xn+1
2j − xn+1

2j+1| ≤ |hn+1k|+ |∆Wn+1
2j | ,

so

|∆Wn+1
2j | ≥ |xn+1

2j − xn+1
2j+1| − |hn+1k|

> c 4
√

hn − hn+1k = c 4
√

hn − hn
k
2

>
k
2

(
4
√

hn − hn

)
.

Hence, for case 4), (B.11) imply either (B.12) or (B.13).

In the following lemma, it is proven that the probability that (B.13) is the case for
more than finitely many p, converges to zero as n→ ∞.

Lemma 3.2. The probability

P
(
∃p ≥ 0 : |∆Wn+p

2j | >
k
2
( 4
√

hn+p−1 − hn+p−1)
)
→ 0 as n→ ∞ .
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Proof. The properties of the Wiener process (i.e. ∆Wn
j ∼ N(0, hn)) imply that

P
(
|∆Wn+p

2j | >
k
2
( 4
√

hn+p−1 − hn+p−1)
)
< P

|∆Wn+p
2j | >

k
2

4
√

hn+p−1

2


< A exp

−B
1

4
√

hn+p−1

 (B.14)

where A and B are positive constants and B is proportional to the control gain k, i.e.
B = k√

2
. Due to the independent increments property of the Wiener process

P
(
|∆Wn+p

2j | ≤
k
2
( 4
√

hn+p−1 − hn+p−1) ∀j ∈ {0, 1, . . . , 2n − 1}
)

≥

1− A exp

−B
1

4
√

hn+p−1

2n

=
(

1− A exp
(
−B 4
√

2
n+p−1))2n

.

We use the fact that for large n

log
((

1− A exp
(
−B 4
√

2
n+p−1))2n)

= 2n log
(

1− A exp
(
−B 4
√

2
n+p−1))

≈ −2n A exp
(
−B 4
√

2
n+p−1)

,

so

P
(
|∆Wn+p

2j | ≤
k
2
( 4
√

hn − hn)∀j ∈ {0, 1, . . . , 2n − 1}
)

≥ exp
(
−2n A exp

(
−B 4
√

2
n+p−1))

= exp
(
−A exp

(
−B 4
√

2
n+p−1

+ n log(2)
))

≥ exp
(
−A exp

(
−B

2
4
√

2
n+p−1

))
.

Thus, the probability that there exists a p ≥ 1 such that

|∆Wn+p
2j | >

k
2
( 4
√

hn+p−1 − hn+p−1)
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is bounded from above by

∞

∑
p=1

(
1− exp

(
−A exp

(
−B

2
4
√

2
n+p−1

)))
≈

∞

∑
p=1

A exp
(
−B

2
4
√

2
n+p−1

)

≤
∞

∑
p=0

A exp
(
−B

2
(n + p)

)

= A exp
(
−nB

2

) ∞

∑
p=0

exp
(
−B

2

)p

=
A exp

(
−n B

2

)
1− exp

(
− B

2

) := Pn ,

(B.15)

which converges to zero for increasing n.

Lemma 3.3. For fixed n, if

|∆Wn+1
2j | ≤

k
2
( 4
√

hn − hn) , (B.16)

for all j ∈ {0, 1, . . . , 2n − 1}, then

|xn+1
2j − xn

j | < ĉ 4
√

hn , (B.17)

for all j ∈ {0, 1, . . . , 2n − 1}, where ĉ is a constant.

Proof. The initial condition is the same for all simulations so initially the distance
|xn+1

0 − xn
0 | is equal to zero. Equation (B.9) shows that the increment that happens

from simulation in one dyadic point to simulation in the next dyadic points, is bounded
by 4hn+1k = 2hnk. Hence, it might happen that at some dyadic point j

|xn+1
2j − xn

j | ≥ c 4
√

hn . (B.18)

However, if (B.16) is valid, lemma 3.1 and case 1) - 3) imply that the distance |xn+1
2(j+1)−

xn
j+1| is smaller than or equal to the previous one, i.e.

|xn+1
2(j+1) − xn

j+1| ≤ |xn+1
2j − xn

j | .

That is, there exists a constant ĉ such that for all dyadic points, (B.17) is valid. Figure
B.2 illustrates an example of the evolution in the distance |xn+1

2j − xn
j | as the simula-

tion in dyadic points goes on.
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j

|xn+1
2j − xn

j |

2hnk

c 4
√

hn

c 4
√

hn + 2hnk

0

Figure B.2: Evolution of distance between two successive elements in the sequence {xn+p
2p j }p for increasing

dyadic points.

From lemma 3.2 and 3.3 the following lemma can be proven.

Lemma 3.4. The sequence {xn+p
2p j }p is a Cauchy sequence with probability 1− Pn,

with Pn given in (B.15).

Proof. For fixed n assume without loss of generality that p1 > p2 and consider

|xn+p1
2p1 j − xn+p2

2p2 j | ≤
n+p1

∑
i=n+p2+1

|xi
2i−n j − xi−1

2i−n−1 j|

≤ ĉ
n+p1

∑
i=n+p2+1

4
√

hi−1 . (B.19)

From lemma 3.2 and 3.3 inequality (B.19) holds with probability 1− Pn. Furthermore,

ĉ
n+p1

∑
i=n+p2+1

4
√

hi−1 ≤ ĉ 4
√

2
−(n+p2)

∞

∑
i=0

4
√

2
−i

= ĉ
4
√

2
−(n+p2−1)

4
√

2− 1
. (B.20)

The value in (B.20) obtains its maximum for p2 = 0. Since p2 ≥ 0, the tail sum
converges to zero as n → ∞ no matter the value of p2. Thus, the sequence {xn+p

2p j }p

is Cauchy with probability 1− Pn.

Following theorem proves that lemma 3.4 implies almost surely convergence of the
Euler-Maruyama simulations.

Theorem 3.5. The sequence {xp
2p j}p converges almost surely.
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Proof. The Cauchy property implies that if {xn+p
2p j }p is Cauchy then {xm+p

2p j }p is

Cauchy for all n ≥ m. Therefore, since {xn+p
2p j }p is Cauchy, the sequence {xp

2p j}p is
Cauchy. Thus,

P({xn+p
2p j }p is Cauchy ) ≤ P({xp

2p j}p is Cauchy )

for all n ≥ 0 . However, from lemma 3.2 and lemma 3.4

P({xn+p
2p j }p is Cauchy )→ 1 for n→ ∞

and therefore,

P({xp
2p j}p is Cauchy ) = 1 .

Hence, since {xp
2p j}p is Cauchy with probability one, it follows that {xp

2p j}p con-
verges almost surely.

In the following section, we will discuss the consequences of this.

4 Rate of Convergence
As mentioned in the introduction, [14] proves a weak rate of convergence of the Euler-
Maruyama method for an example similar to (B.4). Following, the strong rate of
convergence for (B.4) is presented. Given a numerical solution and the corresponding
probability Pn, a confidence interval can be deduced. For the numerical solution, the
probability that its distance to the limit solution in each dyadic point is above

ĉ
4
√

2
−(n−1)

4
√

2− 1
, (B.21)

is less than Pn. Thus, this represents a (1− 2Pn) · 100% confidence interval. Further-
more, with {x} denoting the “true” solution

P

|x(T)− xn(T)| ≥ ĉ
4
√

2
−(n−1)

4
√

2− 1

 ≤ Pn ,

and since by construction invariantly |x(T)− xn(T)| ≤ 2k we have

E[|x(T)− xn(T)|] ≤ ĉ
4
√

2
−(n−1)

4
√

2− 1
+ 2kPn .

Altogether, with T equal to a dyadic point,

E[|x(T)− xn(T)|] ≤ ĉ
4
√

2
−(n−1)

4
√

2− 1
+ 2kPn

≤ C
(

h
1
4
n + h

B
2 log(2)
n

)
,
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where C = max{ ĉ 4√2
4√2−1

, 2kA
1−exp(− B

2 )
} > 0. Therefore, it follows that the Euler-

Maruyama method applied to (B.4) converges strongly with order γ = min{ 1
4 , B

2 log(2)}.
Since B

2 log(2) ≈
k
2 , the convergence order is at least 1

4 for values of k > 1
2 .

Corollary 4.1. The sequence {xp
2p j} converges to a strongly unique solution.

Proof. From theorem 3.5, the sequence {xp
2p j} converges in the space of real numbers,

which is complete, so there exists a limit random variable x to which {xp
2p j} converges

as p→ ∞, i.e.

{xp
2p j} → x as p→ ∞ (B.22)

with probability one. It is known from [11] that a limit value y exists, such that

{xp
2p j} → y as p→ ∞ (B.23)

in probability. From [5], the solution to (B.4) is strongly unique and hence, (B.22) and
(B.23) imply that x = y with probability one.

In the following section, a numerical example is presented together with the cor-
responding confidence interval for the simulated solutions.

5 Numerical Example
The Euler-Maruyama method is applied to the SDE given in (B.4) with initial con-
dition c0 = 0 and with the control gain k = 1. The simulations are repeated for
increasing values of n up to n = 22. A selection of simulated values of xn(t) is given
in Table B.1. The results indicate that the simulated solutions tend to a limit solution
in the dyadic points, since the difference between two simulated solutions in general
decrease as n increase. This confirms the theoretical result presented in lemma 3.3,
i.e. the difference in dyadic points between two simulations is bounded from above
by a constant dependent on the time-step.

For A = exp (2), B = k√
2

and ĉ = 1, a 95% confidence interval is obtained for
n = 20, given by

[x20(t)− 0.1964, x20(t) + 0.1964] .

The estimate in (B.14) holds for the given value of A and B. Furthermore, it is rea-
sonable to choose ĉ = 1 for k = 1, since the required difference between ĉ and k
decreases for increasing n.

In Figure B.3, x20(t) is plotted together with the upper- and lower bound for the
confidence interval. Furthermore, the simulation x22(t) is plotted over x20(t). The
zoomed area shows that x22(t) indeed stays inside the confidence interval as is ex-
pected for values n ≥ 20.
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xn(t) \ t 0.25 0.50 0.75 1.00
x4(t) −1.1254 −0.5891 0.5705 0.9031
x5(t) −1.1567 −0.6204 0.4143 0.7469
x6(t) −1.1410 −0.6047 0.4299 0.7625
x7(t) −1.1645 −0.6282 0.4377 0.7703
x8(t) −1.1606 −0.6243 0.4338 0.7664
x9(t) −1.1547 −0.6184 0.4201 0.7527
x10(t) −1.1596 −0.6233 0.4192 0.7518
x11(t) −1.1591 −0.6228 0.4187 0.7513
x12(t) −1.1589 −0.6226 0.4170 0.7496
x13(t) −1.1595 −0.6232 0.4171 0.7497
x14(t) −1.1597 −0.6234 0.4169 0.7495
x17(t) −1.1595 −0.6232 0.4174 0.7500
x20(t) −1.1595 −0.6232 0.4174 0.7501
x22(t) −1.1595 −0.6232 0.4174 0.7501

Table B.1: Simulation results in four dyadic points for increasing values of n.
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Figure B.3: Representation of x20(t) and x22(t) together with the confidence interval for x20(t).
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6 Conclusion
This paper focuses on a simple SDE from a class of SDEs with discontinuous drift
coefficients. We provide a strong rate of convergence in probability of the Euler-
Maruyama method for this particular example and we prove that numerical solutions
produced by the Euler-Maruyama method converge almost surely to a unique strong
solution of the SDE. A numerical example illustrates that the Euler-Maruyama simu-
lated solutions indeed converge as n increase.

Future work is to consider SDEs with discontinuous unbounded drift coefficients.
For example, one could implement the drift b(t, xt) = −xt − sgn(xt) in an SDE
and investigate convergence aspects of the Euler-Maruyama method. Another step is
to generalize the result to multidimensional SDEs with discontinuous drift and prove
convergence for these cases.
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1. Introduction

Abstract
This paper investigates the switching mechanism of a two-dimensional switched sys-
tem when the switching events are generated by a Poisson point process. A model,
in the shape of a stochastic process, for such a system is derived and the distribu-
tion of the trajectory’s position is developed together with marginal density functions
for the coordinate functions. Furthermore, the joint probability distribution is given
explicitly.

1 Introduction
The behaviour of dynamical systems is suitably modelled mathematically with diffe-
rential equations, either ordinary (ODE), partial (PDE) or stochastic (SDE). Examples
are found in thermodynamics, mechanics, chemistry, economics and electronics, [1].
The control of dynamic systems alters the open loop differential equations into closed
loop dynamics, which in some cases, when switching is applied, introduces discon-
tinuities to the mathematical model. When discontinuities are constrained to some
surface, i.e. a subset of the state space of lower dimension, we call this subset a
switching surface. Altogether, the constellation of system and controller falls under
the category of switched system, [2]. The purpose of switching control, in some cases,
is to confine the system state to the switching surface and in turn to obtain so called
sliding mode behaviour/dynamics with desired properties, [3]. Advantages of switch-
ing control as compared to continuous/linear controllers are found in: robustness to
disturbances, simplicity of actuator design and, in some cases, savings in actuator
energy consumption. Recent applications of sliding mode control are found in [4], [5]
and [6] indicating mechanics/robotics to be a distinctively active application area for
this methodology.

Systems with state dependent switching have been modelled with different ap-
proaches in the existing literature, where the lack of continuity imposes a significant
difficulty as the problem is rendered outside the scope of the classical initial value
setting. One early and general approach is suggested in [7], introducing the Filippov
solution as the solution to a convex version of a differential inclusion corresponding to
the vector fields with discontinuous dynamics. The sliding velocity of the Filippov so-
lution on the sliding surface has been determined in [8] based on two regularizations.
One of these regularizations implemented a small fixed delay into the deterministic
system and deduced the sliding velocity under this restriction.

Probabilistic approaches utilize the smoothing effect of randomization, such as
in [9] where the switching between two states is governed by a probability law. In that
framework, the switching can occur spontaneously according to the probability law
before the boundary of the local state space or at the boundary of the local state space
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where the switching is enforced. The reverse framework is presented in [10] where
systems, which might induce a time-delay in the switches are considered. Here the
system flows for some time after crossing a local boundary before the switching takes
place. In between these frameworks the setup in [11] can be found where switching
noise is considered. In this case the switching is governed by an intensity function
and the switching between subsystems occurs in a small area around the switching
surface.

It may be discussed, whether randomization is in fact introduced to model inherent
system randomness or simply to render the model equations mathematically tractable.
It is argued in [11] that control system designers deliberatively introduce randomness
to avoid undesired synchronization behaviour. Another example of inherent random-
ness is when random disturbances affect system behaviour. In this case, disturbance
signals are often modelled in the domain of SDEs, [12], which in the switching case
comprise irregular drift. As opposed to the ODE case, SDEs with irregular (dis-
continuous) drift are shown to comprise classical SDE solutions, i.e. existence and
uniqueness of strong solutions are proven for bounded drift: [13], [14].

This paper presents a model of randomized switching driven by the Poisson point
process, effectively acting as a switching delay. Contrary to the analysis in [8], the
induced delay is stochastic and, accordingly, the solution is a stochastic process. We
provide probabilistic results and compare the results with the Filippov solution pro-
vided for the deterministic ODE case. We narrow our focus and delimit ourselves to
only a small region of the state space, which is explained in Figure C.1. The first
subplot of Figure C.1 shows a classic sliding mode example where every trajectory
is driven to the sliding surface and from there to the origin. The highlighted square
on the left part of the plot illustrates the focus of this paper: the switching behaviour
close to the switching surface away from the origin. For simplification, the sliding
surface is rotated to a horizontal position, which is illustrated in the second subplot in
Figure C.1. Additionally, investigations are done under the approximation that vector
fields are constant above and below the switching surface, which is warranted by the
continuity of vector fields on each side of the surface and the fact, that only a small
portion of the state space is considered.

Even though the presented analysis is carried out in the two-dimensional frame-
work, this setup can be extended to the n-dimensional setting to model systems with
a switching surface of co-dimension one where the switching depends on the posi-
tion according to this switching surface independently of the subsystem in (n− 1)-
dimensions.

For the two-dimensional framework, we deduce marginal density functions for the
two coordinate functions, which are given in Theorem 3.1 and Corollary 3.2. Further-
more, a relation between the two coordinate functions is presented and an expression
for the joint distribution function is given in Corollary 3.3. As indicated above, the
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2. A System with Constant Vector Fields

Figure C.1: The switching mechanism at the switching surface is extracted from a classic sliding mode
example and rotated to the horizontal position.

practical relevance of this (initial) study is rooted in the attempt to describe (or more
precisely to estimate) the collected behaviour of a family of physical systems con-
nected via certain switching laws, which are governed by some degree of randomness.
Furthermore, in a practical application setting the results of the paper can be used in
a local analysis of such systems. In particular, the explicit description of the marginal
density functions can be used to (locally) estimate the system behaviour.

2 A System with Constant Vector Fields
The framework for the switched system is a state space representation consisting of
two constant vector fields. Let the state space R2, be partitioned in

S0 = {(x1, x2) ∈ R2 : x2 = 0} ,

S1 = {(x1, x2) ∈ R2 : x2 < 0} ,

S2 = {(x1, x2) ∈ R2 : x2 > 0} .

For x ∈ R2 define f1(x) = v− = (v−1 , v−2 ) and f2(x) = v+ = (v+1 , v+2 ) where v−,
v+ are constant vectors with the properties that v−2 > 0 and v+2 < 0. Moreover, for
technical convenience we assume that v− 6= −v+. Initially, consider the differential
inclusion

ẋ ∈ f (x) (C.1)

where

f (x) =
{

v ∈ R2 | v = fi(x) if x ∈ S̃i for i = 1, 2
}

(C.2)
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Figure C.2: The vector field given by the differential inclusion (C.1) with v− = (1, 2) and v+ = (1,−1).

with S̃1 = S1 ∪ S0 and S̃2 = S2 ∪ S0. Figure C.2 gives an example of two constant
vector fields with the required properties. Here v− = (1, 2) and v+ = (1,−1). Given
an initial condition, a solution to the differential inclusion (C.1) will evolve according
to the vector field corresponding to the current position of the trajectory. When the
trajectory reaches a position where x2 = 0 it will stop, since no solution exists to
(C.1) for x ∈ S0.

2.1 The Switching Surface and the Filippov Solution
Since (C.1) has no solution at the switching surface S0, a convex version is considered
which has a solution on S0. Thus, consider the convex-hull

co( f (x)) =
{

f (x) if x /∈ S0
{pv− + (1− p)v+ : p ∈ [0, 1]} if x ∈ S0

.

A differential inclusion is then given by

ẋ(t) ∈ co( f (x(t))) . (C.3)

Hence, x(t) is a Filippov solution to (C.1), if (C.3) holds almost everywhere. It follows
that the unique Filippov solution at x(0) ∈ S0 must fulfil d

dt x2(t) = 0. This implies
that

p =
v+2

v+2 − v−2
, (C.4)

and, therefore,

d
dt

x1(t) = pv−1 + (1− p)v+1 =
v+2 v−1 − v−2 v+1

v+2 − v−2
. (C.5)
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The vector field provided by the Filippov solution is called the Filippov velocity.
In the sequel, we are aiming to obtain a relation between the two coordinate func-

tions x1 and x2. We initiate this deterministically by a travelling wave approach.

2.2 The Travelling Wave
The constant vector fields imply that the trajectory moves with a constant velocity on
the sliding surface. The velocity generated by the Filippov solution can be considered
as the average velocity of the system. Let C = (C1, 0) denote the Filippov velocity
where C1 is given by (C.5). We define local coordinates given by

(η1, η2) = η(x, t) = x− Ct .

The derivative of η(x, t) along x(t) is

d
dt

η(x(t), t) =
d
dt

x(t)− C = co( f (x(t)))− C

=


(
κv−2 , v−2

)
for x(t) ∈ S1

(0, 0) for x(t) ∈ S0(
κv+2 , v+2

)
for x(t) ∈ S2

where p is given in (C.4) and κ =
v−1 −v+1
v−2 −v+2

. Recall that d
dt x2 = vj

2 for j ∈ {−,+}.
Therefore,

dx2

dη1
=

d
dt x2
d
dt η1

=
vj

2

κvj
2

=
1
κ

for j ∈ {−,+}. We remark that by taking the limits above, the equation is also valid
for x ∈ S0. Hence, the sign of x2 does not influence dx2

dη1
and the following relation

between η1 = x1 − C1t and x2 is obtained,

x2 =
1
κ

η1 + c

where c is a constant. Under the assumption that the initial condition of the trajectory
is (x1(t0), x2(t0)) = (0, 0) with t0 = 0, it follows that c = 0. Therefore,

x2(t) =
1
κ
(x1(t)− C1t) , (C.6)

and a linear relation between x1(t) and x2(t) is given.
The relation in (C.6) is obtained in a deterministic setting. In the sequel we investi-

gate the relation between the coordinate functions x1(t) and x2(t) when the switching
mechanism is driven by a Poisson point process.
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3 The Randomized Mechanism
In this section a stochastic process is constructed which realizations are concatenations
of trajectories generated by the ordinary differential equations d

dt x = fi(x), for i =
1, 2. The process is constructed such that the times where the trajectory switches
between the two vector fields are defined by a Poisson point process. Thus, let {τn}
denote a Poisson point process with intensity λ and let the stochastic process x(t) be
defined piecewise as follows:

Model 1. Initially, as the solution to

d
dt

x(t) = f1(x(t)), x(t0) = 0, t0 = 0

for t ∈ [0, τm1) with τm1 = min{τn > 0}.
Thereafter, recursively for i ∈ {1, 2, . . .}, as the solution to

d
dt

x(t) = fχ(τmi )
(x(t)), x(τmi ) = lim

t↗τmi

x(t)

for t ∈ [τmi , τmi+1) with τmi+1 = min{τn > ti} where ti = min{t ∈ [τmi , ∞)|x(t) =
0} and

χ(τmi ) =

{
1 if x2(τmi ) < 0
2 if x2(τmi ) > 0

.

We remark that the case x2(·) = 0 in the definition of χ(·) is left unspecified since
this case does not affect the stochastic process.

A trajectory generated by Model 1 has the property that it intersects the switching
surface S0 at ti, that is, x2(ti) = 0 for all i ∈ {0, 1, 2, . . .} and 0 = t0 < t1 < t2 <
· · · . Furthermore, the i’th change in the discrete state occurs at τmi = min{τn >
ti−1}. Therefore, there might exist some t ∈ {τn} where no changing in states occur,
i.e. in the cases where the trajectory has not reached to pass the switching surface,
that is, ti − τmi > τmi+1− τmi for τmi , τmi+1 ∈ {τn}. Figure C.3 illustrates a version
of the time evolution and the corresponding notation together with the discrete state
values.

t0

1χ(t)

t
τm1

2

t1 τm2 τm2+1 t2

2 1 1

Figure C.3: The time evolution and the corresponding discrete state values. The behaviour of a trajectory
resulting in these discrete states can be seen in Figure C.4.
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Figure C.4: The one-cycle behaviour of the trajectory for t ∈ [t0, t2].

The interval [t0, t2] comprises an entire cycle and for t = t2 the process is re-
newed. This is illustrated in Figure C.4 where the one-cycle behaviour of the trajectory
is shown.

The probabilistic behaviour of the trajectory based on its one-cycle behaviour is
investigated in the following.

3.1 Probabilistic Investigations
The construction of the randomized mechanism and the corresponding one-cycle be-
haviour of the trajectory implies that the probabilistic behaviour of the system in the
time intervals [t2, t4], [t4, t6], . . . is the same as in the time interval [t0, t2], since the
switching behaviour regenerates the initial position of the one-cycle, for every time t2i,
for i = 1, 2, . . .. On this basis, probabilistic properties for the switching mechanism
are developed.

Assume existence of a marginal density function for the coordinate function x2
given by φx2(x2, t). Let v(t) = f (x(t)) where f (x) is given by (C.2) and let A ∈ R

be an open set. The positional probability for the coordinate function x2 is given by

P(x2(t) ∈ A, v(t) = vj) =
∫

A
Qj(x2, t)φx2(x2, t)dx2

=
∫

A
Φj(x2, t)dx2 (C.7)

where Qj(x2, t) = P(v(t) = vj|x2(t) = x2) is the conditional probability of v(t)
given x2(t) = x2 and Φj(x2, t) is defined by the above expression.

Let h be a sufficiently small time-step and consider an approximation of the posi-
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tional probability at time t + h,

P(x2(t + h) ∈ A, v(t + h) = vj) = (1− λh)
∫

A−hvj
2

Φj(x2, t)dx2

+ λh ∑
i

∫
A−hvi

2

Pij(x2)Φi(x2, t)dx2 + o(h) (C.8)

where Pij(x2) is the probability of switching from the vector field fi(x) to the vector
field f j(x), λ is the intensity of the Poisson point process, and o(h) includes terms of
h of degree two or higher.

Observe that Φj(x2, t)−Φj(x2 + hvj
2, t) ≈ −hvj

2Dx2 [Φ
j](x2, t). By substituting

this into (C.8), and in (C.9) and (C.10) below ignoring higher order terms of h, (C.8)
can be expressed as

P(x2(t + h) ∈ A, v(t + h) = vj)

≈(1− λh)
∫

A−hvj
2

Φj(x2, t)−Φj(x2 + hvj
2, t) + Φj(x2 + hvj

2, t)dx2

+ λh ∑
i

∫
A−hvi

2

Pij(x2)
[
Φi(x2, t)−Φi(x2 + hvi

2, t) + Φi(x2 + hvi
2, t)

]
dx2

(C.9)

≈(1− λh)
∫

A−hvj
2

−hvj
2Dx2 [Φ

j](x2, t) + Φj(x2 + hvj
2, t)dx2

+ λh ∑
i

∫
A−hvi

2

Pij(x2)
[
− hvi

2Dx2 [Φ
i](x2, t) + Φi(x2 + hvi

2, t)
]
dx2

≈
∫

A−hvj
2

−hvj
2Dx2 [Φ

j](x2 + hvj
2, t) + (1− λh)Φj(x2 + hvj

2, t)dx2

+ λh ∑
i

∫
A−hvi

2

Pij(x2)Φi(x2 + hvi
2, t)dx2 . (C.10)

By changing variables,

P(x2(t + h) ∈ A, v(t + h) = vj)

≈
∫

A
−hvj

2Dx2 [Φ
j](x2, t) + (1− λh)Φj(x2, t)dx2

+ λh ∑
i

∫
A

Pij(x2 − hvi
2)Φ

i(x2, t)dx2 .
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From this ∫
A

Φj(x2, t + h)dx2 = P(x2(t + h) ∈ A, v(t + h) = vj)

≈
∫

A
−hvj

2Dx2 [Φ
j](x2, t) + (1− λh)Φj(x2, t)dx2

+ λh ∑
i

∫
A

Pij(x2 − hvi
2)Φ

i(x2, t)dx2 .

Rearranging of the terms gives∫
A

Φj(x2, t + h)−Φj(x2, t)dx2 ≈
∫

A
−hvj

2Dx2 [Φ
j](x2, t)− λhΦj(x2, t)dx2

+ λh ∑
i

∫
A

Pij(x2 − hvi
2)Φ

i(x2, t)dx2

and, therefore, it follows that

Dt[Φj](x2, t) = lim
h→0

Φj(x2, t + h)−Φj(x2, t)
h

≈ −vj
2Dx2 [Φ

j](x2, t)− λΦj(x2, t) + λ ∑
i

Pij(x2)Φi(x2, t) . (C.11)

3.2 Marginal Density Functions
From the expression in (C.11), a density function can be deduced for the coordinate
function x2 (see Theorem 3.1 below). However, first a set of fixed switching probabi-
lities corresponding to the constant vector fields are given.

Assume that the probability of switching from one state to another is given by

P11(x2) = 1, P21(x2) = 1 for x2 < 0

P12(x2) = 1, P22(x2) = 1 for x2 > 0 (C.12)

where {1, 2} are discrete states given by χ(t).
Consider Dt[Φj](x2, t) from (C.11) in both states with the probabilities given by

(C.12),

Dt[Φ−](x2, t) =− v−2 Dx2 [Φ
−](x2, t)− λΦ−(x2, t)

+ λP11(x2)Φ−(x2, t) + λP21(x2)Φ+(x2, t)

Dt[Φ+](x2, t) =− v+2 Dx2 [Φ
+](x2, t)− λΦ+(x2, t)

+ λP12(x2)Φ−(x2, t) + λP22(x2)Φ+(x2, t) .
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In the following, we search for a stationary solution such that Dt[Φj](x2, t) = 0
and

v−2 Dx2 [Φ
−](x2) =− λΦ−(x2) + λP11(x2)Φ−(x2) + λP21(x2)Φ+(x2) ,

v+2 Dx2 [Φ
+](x2) =− λΦ+(x2) + λP12(x2)Φ−(x2) + λP22(x2)Φ+(x2) .

For x2 < 0 this implies that

v−2 Dx2 [Φ
−](x2) = λΦ+(x2), v+2 Dx2 [Φ

+](x2) = −λΦ+(x2) ,

and for x2 > 0

v−2 Dx2 [Φ
−](x2) = −λΦ−(x2), v+2 Dx2 [Φ

+](x2) = λΦ−(x2) .

The above expressions are ordinary differential equations, which for x2 < 0 have the
solutions

Φ+(x2) = K2 exp

(
−λx2

v+2

)
(C.13)

Φ−(x2) = −K2
v+2
v−2

exp

(
−λx2

v+2

)
, (C.14)

and for x2 > 0

Φ−(x2) = K1 exp

(
−λx2

v−2

)
(C.15)

Φ+(x2) = −K1
v−2
v+2

exp

(
−λx2

v−2

)
(C.16)

where K1 and K2 are appropriate positive constants.

Continuity

Observe that

φx2(x2) = Φ−(x2) + Φ+(x2) . (C.17)

It is preferable that limx2↗0 φx2(x2) = limx2↘0 φx2(x2) which requires that this
property holds for Φ−(x2) and Φ+(x2). The limits of these functions are

lim
x2↗0

Φ− = −K2
v+2
v−2

, lim
x2↘0

Φ− = K1

104



3. The Randomized Mechanism

and

lim
x2↗0

Φ+ = K2, lim
x2↘0

Φ+ = −K1
v−2
v+2

.

Hence, it is required that

K1 = −K2
v+2
v−2

(C.18)

or similar K2 = −K1
v−2
v+2

.

The integral of the marginal density function along the entire x2-axis is one. From
this, the value of the constant K1 can be determined;

1 =
∫ ∞

−∞
Φ−(x2) + Φ+(x2)dx2

=
∫ 0

−∞
K1 exp

(
−λx2

v+2

)
− K1

v−2
v+2

exp

(
−λx2

v+2

)
dx2

+
∫ ∞

0
K1 exp

(
−λx2

v−2

)
− K1

v−2
v+2

exp

(
−λx2

v−2

)
dx2

= K1

(
1−

v−2
v+2

)
v−2 − v+2

λ
.

Therefore,

K1 =
v+2

v+2 − v−2

λ

v−2 − v+2
=

−λv+2(
v+2 − v−2

)2 > 0 . (C.19)

The function Φj(x2, t) = Qj(x2, t)φx2(x2, t) for j ∈ {−,+} is a probabilistic
function, which can be interpreted as a scaled positional density function. In the
case where φx2(x2, t) = φx2(x2) is stationary, the parameters Qj(x2, t) = Qj for
j ∈ {−,+} are stationary state probabilities. Therefore,

φx2(x2) = (Q− + Q+)φx2(x2) .

To determine the constants Q−, Q+ consider

Φ−(x2) = Q−φx2(x2) . (C.20)

By substituting (C.13), (C.14) and (C.18) into (C.20) for x2 < 0

K1 exp

(
−λx2

v+2

)
= Q−K1

(
1−

v−2
v+2

)
exp

(
−λx2

v+2

)
,
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Figure C.5: The stationary marginal density function φx2 (x2) where v− = (1, 2) and v+ = (1,−1).

and Q− =
v+2

v+2 −v−2
. Since Q− + Q+ = 1 it follows that Q+ =

−v−2
v+2 −v−2

. For x2 > 0

the same values of Q− and Q+ are obtained.
The above deductions result in the following theorem.

Theorem 3.1. For Model 1 and the corresponding positional probability given in
(C.7), assume that a stationary density function φx2(x2) exists. Furthermore, assume
that the probabilities of switching between the two vector fields are given by (C.12).
Then, the stationary density function for the x2-coordinate function is given by

φx2(x2) =
λ

v−2 − v+2

(
I(x2<0)e

− λ

v+2
x2
+ I(x2>0)e

− λ

v−2
x2

)
(C.21)

where the indicator function is defined

I(y>a) =

{
1 if y > a
0 else

.

Proof. The expression follows from the above deductions by substituting (C.13), (C.14),
(C.15), (C.16) and (C.19) into (C.17).

We remark that a crucial assumption in the above theorem is the existence of a statio-
nary density function. However, the cyclic behaviour of the system and the fact that
the vector fields are constant support the reliability of this assumption.

In Figure C.5 the stationary marginal density function for x2 is plotted where the
parameters are v− = (1, 2), v+ = (1,−1) and λ = 1. The graph of the stationary
density function illustrates that the effect of |v−2 | = 2 > 1 = |v+2 | implies a skewness
of the probability mass. This follows also theoretically due to the stationary mean and
variance, which are given by

E[x2] =
v−2 + v+2

λ
and Var[x2] =

(v−2 )
2 + (v+2 )

2

λ2 .
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The mean of the stationary density function given in Figure C.5 is E[x2] =
2−1

1 = 1
and, therefore, the graph illustrates that a bigger amount of probability mass is con-
centrated on the positive real line than on the negative real line.

Another observation, which is evident from the stationary distribution, is the con-
vergence towards the Filippov solution as the intensity of the Poisson point process
increases, that is, as λ → ∞. From a model perspective, increasing the intensity
corresponds to increasing the number of observations of the current position of the
trajectory. Furthermore, by definition the Filippov solution corresponds exactly to the
behaviour followed by instantly switching between subsystems around a switching
surface.

In subsection 2.2, the relation between η1 and x2 was deduced to be x2 = 1
κ η1.

Since the marginal density function for x2 is known, this relationship gives the marginal
density function for η1.

Corollary 3.2. Under the assumptions of Theorem 3.1 the marginal density function
for η1 = x1 − C1t is given by

φη1(η1) =
1
κ

φx2

(
1
κ

η1

)
where φx2(·) is given in (C.21).

Another consequence of the linear relation x2 = η2 = 1
κ η1 is that the probabi-

lity of the event (η1, η2) ∈ B for B ⊂ R2 is concentrated on a straight line. The
corresponding joint probability distribution can be expressed explicitly by the density
function for x2 = η2.

Corollary 3.3. Let L = {(η1, η2) | η1 = κη2} and assume that a stationary density
function for η2 exists. The joint probability distribution of (η1, η2) is given by the joint
probabilities

P((η1, η2) ∈ B) =
∫
(B∩L)2

φx2(η2)dη2 for B ⊂ R2 (C.22)

where φx2(·) is given in (C.21) and (B∩ L)2 is the projection of B∩ L on the η2-axis.

Proof. The probability that (η1, η2) ∈ B is

P((η1, η2) ∈ B) = P((η1, η2) ∈ B ∩ L) .

Observe that the projection of B on the η2-axis is

(B ∩ L)2 = {η2|(η1, η2) ∈ B ∩ L}
= {η2|η1 = κη2 ∧ (η1, η2) ∈ B} .

107



References

Therefore,

P((η1, η2) ∈ B ∩ L) = P(η1 = κη2 ∧ (η1, η2) ∈ B)

= P(η2 ∈ (B ∩ L)2)

=
∫
(B∩L)2

φx2(η2)dη2 .

We remark that the expression in (C.22) implies that no joint density function exists
for (η1, η2).

4 Perspectives
In this paper, switching dynamics and sliding mode behaviour are investigated under
the assumption that the randomized switching is driven by the Poisson point process.
This is done in a two-dimensional framework. As mentioned in the introduction, this
can easily be generalized to the n-dimensional setting by choosing x1 ∈ Rn−1 and
x2 ∈ R. However, this extension does not provide additional information and, hence,
it is left to the reader.

Future perspectives of the presented work are to investigate patterns in the switches.
One possible approach is to consider auto- and cross correlation functions as well as
their corresponding Fourier transforms, i.e. power spectra. The relevance of power
spectra from switched control systems is warranted from a noise perspective, i.e. the
physical manifestation of control residuals may come as electrical signals for which
noise mediation highly depends on the power spectrum of the noise.

An additional step to take is to consider non-constant vector fields allowing a sig-
nificantly larger validity domain of the provided results.
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1. Introduction

Abstract
In this paper, a (switching) sliding mode controller, applied to a mechanical system
with additive white process noise, is investigated. The practical relevance of this study
is a statistical characterization of system performance in terms of the stationary vari-
ance of the control error.

The system is modelled with a two-dimensional stochastic differential equation,
whose coordinate functions to an extend are analysed separately. In order to deter-
mine the stationary variance of one of the coordinate functions, the auto-correlation
function for the other coordinate function is approximated with a Fourier series. Fi-
nally, analytical results are compared to results from Euler-Maruyama simulation
over a wide range of model parameter settings.

Keywords: Stochastic differential equation, Sliding mode, Euler-Maruyama sim-
ulation, Switching dynamics, Fokker Planck equation.

1 Introduction
Sliding mode control is a nonlinear control method which typically applies a discon-
tinuous control signal to force a system to behave according to prescribed closed loop
dynamics. Essentially, the control procedure consists of two parts: Firstly, the con-
troller forces the system state to approach a so called sliding surface and, secondly,
to slide along the surface towards the operating point. Near the operating point, the
main purpose of the sliding mode controller is to keep this position and respond ac-
cordingly to any external disturbance (noise) which affects the system. The sliding
surface is found as the sub-manifold of the desired closed loop dynamics. Robust-
ness to external disturbances is achieved by the design of a feedback control, which
is discontinuous across the sliding surface. The discontinuity creates in practice rapid
switching and in theory additional challenges w.r.t. e.g. existence and uniqueness of
solutions to model equations.

The discontinuity induced by the controller brings the main challenges in the ana-
lysis of the system and is a main motivation behind the investigations of the switching
dynamics. A solid amount of literature exists on the application and analysis of sliding
mode control. Among others, see [1, 2]. Recent papers on application of sliding mode
control are [3, 4].

In this paper, the system is modelled with stochastic differential equations (SDEs).
Solutions to the SDE’s are then considered by using appropriate approximations of
practical implementations of switching, where the latter may include various impreci-
sions such as delay, hysteresis and continuous approximation of switching discontinu-
ity. As a result, the system is represented with a two-dimensional SDE with disconti-
nuous drift coefficient and constant diffusion coefficient.
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Solutions to SDEs have over a long period been a subject of great interest, both
in the form of existence, uniqueness, explicit closed form solutions and construction
of numerical approximations, see [5–7]. Whereas existence and uniqueness are es-
tablished for the discontinuous bounded drift case (see [8, 9]), it is not yet proven
for SDEs with unbounded discontinuous drift coefficients. Neither specific charac-
teristics such as transient and stationary distributions, nor auto- and cross-covariance
characteristics have been established for SDEs with discontinuous drift coefficient.

In order to apply some of the known results on SDEs with discontinuous bounded
drift, a coordinate transformation of the system is introduced. This transformation
implies that the discontinuous dynamics is isolated to only one of the coordinate func-
tions of the two-dimensional SDE, which, additionally, has bounded drift coefficient.
By this approach we are able to initiate the study of the two-dimensional SDE through
well-known existence results of one of its coordinate functions. We apply the theory of
Fourier series to the Fokker-Planck equation for the SDE with discontinuous bounded
drift coefficient [10, 11]. This gives, by approximation methods, a time-dependent
conditional density function from which an estimate on the auto-correlation is de-
duced. Finally, by including the auto-correlation function into the analysis of the
variance, an estimate of the stationary variance is determined.

Notation: Let x : Ω ×R+ → S denote a (stochastic) process on a probability
space (Ω, Σ, P) with values in the state space S. Throughout this paper we suppress
the processes dependency on the variable from the measure space (Ω, Σ), that is, we
write x(t) in place of x(·, t).

The outline of the paper is as follows: In section 2 we provide the definition of the
system, which is subject to subsequent analysis. In section 3 we initiate the analysis of
system (D.3) through a coordinate transformation producing new coordinate functions
η1 and η2. In section 4 the η1 coordinate function is analysed in order to give a bound
on its variance. To estimate the variance of η1, an estimate of the autocorrelation
function of η2 is needed, which is presented in section 5 and 6. Finally, the main
result is presented in section 7. Numerical results are presented in sections 8 and
compared with results generated by Euler-Maruyama simulations.

2 System Definition
Consider the idealized model of a mechanical system (with mass 1) given by the (con-
trol) system of first order differential equations

ẋ1 = x2 (D.1a)

ẋ2 = F(x, u) (D.1b)

where x1 : [0, T] → R is the position at time t ∈ [0, T], x = (x1, x2) : [0, T] → R2,
u is the control variable and F : R2 → R comprises control forces, conservative
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forces, friction forces and other deterministic external forces.
However, any realistic model describing the behaviour of a mechanical system

should include the influence of non-deterministic (random) forces. Such forces are
often modelled by means of the Wiener process (appearing as white noise in some
expositions). Therefore, let W : [0, T] → R (with W(t) = Wt) denote a real valued
standard Wiener process with initial value W0 = 0 and consider, instead of (D.1), the
(control) system of SDEs

dx1 = x2dt (D.2a)

dx2 = F(x, u)dt + dWt . (D.2b)

In the sequel, we study the stochastic behaviour of the SDE given in (D.2) when a
sliding mode controller is applied. The analysis is limited to the case where the force
F comprises only friction force modelled as −αx2 where α > 0 is a viscous friction
coefficient as well as feedback control forces. In summary, we consider the system

dx1 = x2dt (D.3a)

dx2 = −αx2dt + udt + dWt . (D.3b)

The control u is designed as a sliding mode controller with switching across a sliding
surface

S = {(x1, x2) : ax1 + x2 = 0}
where the design constant a is chosen to ensure S to be a stable manifold. To ensure
reaching the surface and maintain sliding, the control u is designed as

u = −k sgn(ax1 + x2),

with k being a constant gain. Next, we fix a = α. This brings useful properties to
the dynamics of the system which is advantageous in the following analysis of the
system. However, there is a tradeoff as this implies that the ability to influence the
control variable u is restricted to the constant gain k.

3 Preliminary Analysis of the System
In system D.3, the control function u contributes with discontinuous dynamics driven
by both coordinate functions. In order to simplify this challenge, we introduce a
coordinate transformation of the system.

Let a (linear) coordinate transformation from (x1, x2) coordinates to (η1, η2) co-
ordinates be defined by(

η1
η2

)
=

[
1 −α
α 1

] (
x1
x2

)
. (D.4)
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The coordinates are defined such that the η1-axis is parallel with the sliding surface
and the η2-axis is perpendicular to the sliding surface.

The new coordinate system D.3 then reads

dη1 = dx1 − αdx2

= (−αη1 + η2)dt− αudt− αdWt (D.5a)

dη2 = αdx1 + dx2 = udt + dWt (D.5b)

where u : [0, T]→ R is the control signal given by

u = −k sgn(η2),

with k being a constant gain.

3.1 The η2 Coordinate Function
The SDE given in (D.5b) depends only on η2 and the Wiener process Wt and, there-
fore, it can be treated as an independent one-dimensional SDE. The drift coefficient is
bounded and discontinuous and the diffusion coefficient is equal to the identity. For
such an SDE, it is proven by A. J. Veretennikov that a strongly unique solution ex-
ists [9]. Furthermore, for the particular discontinuous SDE in (D.5b) some additional
information has previously been obtained.

Firstly, the stationary density function is known (see paper A), and is given by

Φη2(η2) = I(η2<0)ke2kη2 + I(η2>0)ke−2kη2 (D.6)

where I(·) denotes the indicator function. From the stationary density function, the
stationary mean and variance are determined to be

E[η2] = 0 and Var[η2] =
1

2k2 . (D.7)

Secondly, it is proven that numerical solutions produced with the Euler-Maruyama
method converge to the strong solution of (D.5b) (see paper B).

However, there are still open questions regarding the auto- and cross-correlation
functions for the η2 coordinate function. The auto-correlation analysis is addressed in
Section 6 of this paper.

3.2 The η1 Coordinate Function
Investigations of the dynamics in the η1 coordinate function is the main contribution
of this paper. More specifically, we will derive an estimate of the system behaviour
near the system’s operating point based on an analysis of the variance.

The following section initiates this analysis by application of Itô calculus to the η1
coordinate function.
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4 Itô Calculus on the η1 Coordination Function
In the following, Itô’s lemma [6, Thm.4.1.2] is applied to the stochastic process

Y(η1, t) = η1eαt

where Y : R2 → R; (z, t) 7→ zeαt and η1 is given as in (D.5a). We remark that
the SDE in (D.5a) can be treated independently of (D.5b) in Itô’s lemma, as long as
the local drift and diffusion coefficient are non-anticipating1. For further information
see [12, p.102].

Application of Itô’s lemma gives

dY = eαt (η2 − αu) dt− αeαtdWt

which, when multiplied with e−αt, yields the following integral expression for the η1
coordinate function

η1(t) = η1(0)e−αt +
∫ t

0
eα(s−t) (η2 − αu) ds−

∫ t

0
αeα(s−t)dWs . (D.8)

By a similar procedure, Itô’s lemma is applied to Z(η1, t) = η2
1 to obtain

dZ =
(
−2αη2

1 + 2η1 (η2 + αk sgn(η2)) + α2
)

dt− 2η1αdWt .

Next, we substitute the expression of η1 given in (D.8) into (D.9) to obtain an
integral form for r ∈ [0, T]. Then, taking the expectation of η1(t) and Z(η1, r) and
thereafter applying Fubini’s theorem gives

E[η1] = η1(0)e−αt +
∫ t

0
eα(s−t)E [η2 − αu] ds−E

[∫ t

0
αeα(s−t)dWs

]
,

and

E[Z(η1, r)] = E[Z(η1, 0)] +
∫ r

0
−2αE[Z(η1, t)]dt

+ 2
∫ r

0

∫ t

0
eα(s−t)E

[
(η2(t) + αk sgn(η2(t))) · (η2(s) + αk sgn(η2(s)))

]
dsdt

− 2
∫ r

0
E

[∫ t

0
αeα(s−t) (η2(t) + αk sgn(η2(t))) dWs

]
dt

+
∫ r

0
E[α2]dt− 2E

[∫ r

0
η1(t)αdWt

]
.

1A function f (s) is non-anticipating if it is independent of the behaviour of the Wiener process in the
future of s, that is, f (s) is statistically independent of Wt −Ws for all s < t
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Recall that the stochastic Itô integral I( f ) =
∫ t

0 f (·, s)dWs is a martingale if
E[
∫ t

0 f 2(·, s)ds] < ∞ and f (·, s) is non-anticipating. Hence, in this case the expec-
tation of I( f ) is zero and the last terms in the expression of E[η1] and E[Z(η1, r)]
vanish. Therefore, the expectation E[η1] is reduced to

E[η1] =η1(0)e−αt +
∫ t

0
eα(s−t) (E[η2] + αkE[sgn(η2)]) ds

=η1(0)e−αt,

under stationary assumption on the η2 coordinate function (see (D.6) and (D.7)).
Furthermore, using the result of the Appendix (see (D.28)) we have

E[Z(η1, r)]

≈ Z(η1, 0) +
∫ r

0
−2αE[Z(η1, t)]dt + 2

∫ r

0

∫ t

0
eα(s−t)

(
E [η2(t)η2(s)]

+ αkE[sgn(η2(t))η2(s)] + αkE[η2(t) sgn(η2(s))]

+ α2k2E[sgn(η2(t)) sgn(η2(s))]
)

dsdt− 2
∫ r

0

α(αk2 + 1)
α + k2 dt +

∫ r

0
α2dt,

By differentiating observe that

d
dt

E[Z(η1, t)] ≈− 2αE[Z(η1, t)] + 2
∫ t

0
eα(s−t)

(
E [η2(t)η2(s)]

+ αkE[sgn(η2(t))η2(s)] + αkE[η2(t) sgn(η2(s))]

+ α2k2E[sgn(η2(t)) sgn(η2(s))]
)

ds− 2
α(αk2 + 1)

α + k2 + α2 ,

(D.9)

and, therefore, an approximated stationary variance of η1 can be determined from
0 = d

dt E[Z(η1, t)] = d
dt E[η2

1 ] whenever the four auto- and cross-covariance terms in
the integrand are known.

Since all auto- and cross-covariances only depend on the η2 coordinate function,
the density of η2 is analysed in the following section. This analysis is based on a
Fourier series expansion of the density obtained via the Fokker-Planck equation.
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5 A Discrete Fourier Series Representation of the Marginal
Density Function for η2

The Fokker-Planck equation related to η2(t) is

∂

∂t
p(η2, t) =

∂

∂η2
[k sgn(η2)p(η2, t)] +

1
2

∂2

∂η2
2

p(η2, t)

=k
[

∂

∂η2
sgn(η2)

]
p(η2, t) + k sgn(η2)

∂

∂η2
p(η2, t) +

1
2

∂2

∂η2
2

p(η2, t)

(D.10)

where p(η2, t) is the marginal density function for the η2 coordinate function. A
truncated version of the density function can be represented as a Fourier series over
the interval [−L, L],

p(η2, t) =
a(t)

2
+

∞

∑
n=1

bn(t) cos
(πnη2

L

)
+

∞

∑
n=1

cn(t) sin
(πnη2

L

)
(D.11)

where

a(t) =
1
L

∫ L

−L
p(η2, t)dη2 , (D.12a)

bn(t) =
1
L

∫ L

−L
p(η2, t) cos

(πnη2

L

)
dη2 , (D.12b)

cn(t) =
1
L

∫ L

−L
p(η2, t) sin

(πnη2

L

)
dη2 . (D.12c)

Furthermore, over the interval [−L, L], the sign-function sgn(η2) and its (distribu-
tional) derivative ∂

∂η2
sgn(η2) = 2δ, with δ denoting the Dirac delta distribution, can

be represented as the Fourier series

sgn(η2) =
∞

∑
n=1

2(1− cos(πn))
πn

sin
(πnη2

L

)
, (D.13)

and

∂

∂η2
sgn(η2) = 2δ(η2) =

1
L
+

2
L

∞

∑
n=1

cos
(πnη2

L

)
. (D.14)

We now outline how the coefficient function

b1(t), c1(t), b2(t), c2(t), . . .
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from (D.12) and, therefore, also the density in (D.11), can be approximated as solu-
tions to a system of linear ordinary differential equations. Details are omitted due to
limited space.

We write p(η2, t) in terms of its Fourier series representation including the series
for sgn(η2) and ∂

∂η2
sgn(η2) = 2δ(η2) in the Fokker-Planck equation (D.10). Then

for the series representation we expand the derivatives of the Fokker Planck equa-
tion and finally collect a truncated (finite) subset of trigonometric terms to obtain the
following linear coefficient dynamics

d
dt

(
z
a

)
=

[
A b
0 0

] (
z
a

)
(D.15)

where A ∈ R2`×2` (with ` representing the number of terms),

z =



b1(t)
b2(t)

...
b`(t)
c1(t)
c2(t)

...
c`(t)


, b =



k
k
...
k
0
0
...
0


, z(t0) =



cos
(

πη2(t0)
L

)
cos

(
2πη2(t0)

L

)
...

cos
(
`πη2(t0)

L

)
sin
(

πη2(t0)
L

)
sin
(

2πη2(t0)
L

)
...

sin
(
`πη2(t0)

L

)


and a(t0) =

1
L . The solution to (D.15) is given explicitly by(

z(t)
a(t)

)
= exp

([
A b
0 0

]
t
)(

z(t0)
a(t0)

)
,

thus determines an approximated conditional density function p̃ given by

p̃(η2(t)|η2(t0)) =
a
2
+

`

∑
n=1

bn(t, η2(t0)) cos
(πnη2

L

)
+

`

∑
n=1

cn(t, η2(t0)) sin
(πnη2

L

)
where {bn(t, η2(t0)), cn(t, η2(t0)) : n ∈ {1, . . . , `}} are the approximated coeffi-
cients.

In the following section, we return to the main problem to determine the auto-
and cross-covariance terms appearing in the expression of d

dt E[Z(η1, t)] = d
dt E[η2

1 ].
More precisely, the approximated conditional density function is applied to determine
approximations of E[η2(t)η2(s)], E[η2(t) sgn(η2(s))] and
E[sgn(η2(t)) sgn(η2(s))] for t, s ∈ [0, T].
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6 The Auto-Correlation Function and Related Expres-
sions

The auto-correlation function is given by

E[η2(t)η2(s)] =
∫ ∞

−∞

∫ ∞

−∞
η2y fη2(t),η2(s)(η2, y)dη2dy

=
∫ ∞

−∞
y fη2(s)(y)

∫ ∞

−∞
η2 fη2(t)|η2(2)(η2|y)dη2dy

=
∫ ∞

−∞
y fη2(s)(y)E[η2(t)|y]dy,

where fη2(s)(y) is the density function for the distribution of η2(s), which by as-
sumption is equal to Φη2 given in (D.6). The density fη2(t)(η2|y) is substituted with
p̃(η2(t)|y), which is the approximated conditional density function given an initial
condition y = η2(s). Therefore, the conditional expectation, E[η2(t)|y] can be ap-
proximated by

E[η2(t)|y] ≈
∫ L

−L
η2 p̃(η2(t)|y)dη2

=
∫ L

−L
η2

a(t)
2

dη2 +
`

∑
m=1

∫ L

−L
η2bm(t, y) cos

(πmη2

L

)
dη2

+
`

∑
m=1

∫ L

−L
η2cm(t, y) sin

(πmη2

L

)
dη2

=
`

∑
m=1

cm(t, y)
−2L2

πm
cos(πm) .

From this

E[η2(t)η2(s)] ≈
∫ ∞

−∞
yΦη2(y)

`

∑
m=1

cm(t, y)
−2L2

πm
cos(πm)dy (D.16)

where Φη2 is the stationary density function for η2 given in (D.6). Since coefficients
cm(t) appear as solutions to (D.15), the integrand appears as a weighted sum of pro-
ducts of linear functions and complex exponentials and in that way gives a closed form
solution.

A similar procedure can be applied to determine

E[sgn(η2(t))η2(s)]
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for s ≤ t. Observe that

E[sgn(η2(t))η2(s)] =
∫ ∞

−∞
yE[sgn(η2(t))|y]Φη2(y)dy .

The expectation E[sgn(η2(t))|y] is given by

E[sgn(η2(t))|y] =
∫ ∞

−∞
sgn(η2) fη2(t)|y(η2)dη2 ,

and can be approximated by

E[sgn(η2(t))|y] ≈
∫ L

−L
sgn(η2) p̃(η2(t)|y)dη2

=
∫ L

−L
sgn(η2)

a
2

dη2 +
`

∑
m=1

∫ L

−L
sgn(η2)bm(t, y) cos

(πmη2

L

)
dη2

+
`

∑
m=1

∫ L

−L
sgn(η2)cm(t, y) sin

(πmη2

L

)
dη2

=
`

∑
m=1

cm(t, y)
2L
πm

(1− cos(πm)) .

Hence

E[sgn(η2(t))η2(s)] ≈
∫ ∞

−∞
yΦη2(y)

`

∑
m=1

cm(t, y)
2L
πm

(1− cos(πm))dy . (D.17)

By the same procedure we obtain

E[η2(t) sgn(η2(s))] ≈
∫ ∞

−∞
sgn(y)Φη2(y)

`

∑
m=1

cm(t, y)
−2L2

πm
cos(πm)dy ,

(D.18)

and

E[sgn(η2(t)) sgn(η2(s))]

≈
∫ ∞

−∞
sgn(y)Φη2(y)

`

∑
m=1

cm(t, y)
2L
πm

(1− cos(πm))dy . (D.19)

In the sequel, the approximations of the expectations are applied to determine an
upper bound on the stationary variance of η1.
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7 The Main Result

For s < t let C(t− s) be the sum of the auto- and cross-covariance terms appearing
in (D.9), that is

C(t− s) = E [η2(t)η2(s)] + αkE[sgn(η2(t))η2(s)] + αkE[η2(t) sgn(η2(s))]

+ α2k2E[sgn(η2(t)) sgn(η2(s))].

Notice that C(t − s) can be approximated by the sum of (D.16)-(D.19) and by this
approximation C(t− s) is bounded.

Substituting C(t− s) into (D.9) yields

d
dt

E[η2
1 ] ≈ −2αE[η2

1 ]− 2
α(αk2 + 1)

α + k2 + α2 + 2
∫ t

0
eα(s−t)C(t− s)ds

≈ −2αE[η2
1 ]− 2

α(αk2 + 1)
α + k2 + α2 + g(t)

where g(t) denotes the integral term. Since boundedness of C implies a well defined
limit, g∞, of g(t) for t → ∞, the approximated stationary variance of η1 can be
determined as

E[η2
1 ] ≈ −

αk2 + 1
α + k2 +

α

2
+

g∞

2α
. (D.20)

7.1 The Original Coordinates
The analysis above also gives approximated stationary variances of the original coor-
dinates. From (D.4) we get

x1 =
1

1 + α2 η1 +
α

1 + α2 η2

x2 = − α

1 + α2 η1 +
1

1 + α2 η2 ,

implying

Var[x1] =
1

(1 + α2)2 Var[η1] +
α2

(1 + α2)2 Var[η2] +
2α

(1 + α2)2 E[η1η2] ,

with a similar expression for Var[x2]. The first two terms are given in (D.20) and
(D.7). The last term can be approximated by identifying the term η1η2 from (D.9),
and then using (D.16) and (D.18). More precisely

E[η1η2] ≈ lim
t→∞

∫ t

0
eα(s−t)C̃(t− s)ds
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k\α 0.1 0.3 0.5 0.7
0.1 (4438, 49.82) (538.43, 50.27) (209.09, 53.31) (99.76, 49.82)
0.3 (322.30, 5.68) (50.14, 5.84) (20.00, 5.72) (10.77, 5.68)
0.5 (68.95, 2.08) (13.02, 2.08) (5.72, 2.03) (3.47, 2.08)
0.7 (20.19, 1.01) (4.90, 1.01) (2.33, 1.04) (1.53, 1.08)

Table D.1: The (Euler-Maruyama) estimated variance of (η1(50), η2(50)) determined for different values
of k and α.

k\α 0.1 0.3 0.5 0.7
0.1 (4482, 50) (531.5, 50) (194.3, 50) (100.0, 50)
0.3 (324.96, 5.56) (49.95, 5.56) (19.73, 5.56) (10.68, 5.56)
0.5 (70.02, 2) (13.20, 2) (7.5, 2) (3.44, 2)
0.7 (23.30, 1.02) (5.18, 1.02) (2.47, 1.02) (1.57, 1.02)

Table D.2: The stationary variance of (η1, η2) calculated for different values of k and α.

with C̃(t− s) approximated by the sum of (D.16) and (D.18), that is

C̃(t− s) = E [η2(t)η2(s)] + αkE[η2(t) sgn(η2(s))] .

In the following section, system (D.5) is simulated with the Euler-Maruyama
method to illustrate the validity of the method.

8 Simulation
This section presents a comparison between the stationary variance (D.20) and an
estimated variance determined from simulations via the Euler-Maruyama method.

The (η1, η2) coordinate functions are simulated with the Euler-Maruyama method
with step size h = 2−10 for t ∈ (0, 50). For fixed value of k and α, the simulations
are repeated 4000 times and the variance of the end-points of the realizations is deter-
mined. The estimated variances are presented in Table D.1. The stationary variances
given by (D.20) and (D.7) are presented in Table D.2 for comparison.

Similar, from section 7.1 and the values in Table D.1 and D.2 we also get Table D.3
and D.4 comprising estimated and stationary variances of the original x1 coordinate.

Finally, Figures D.1 and D.2 show simulated trajectories for η1, η2 and x1, x2
respectively and a variation of values of k and α. Initial values are in all cases

k\α 0.1 0.3 0.5 0.7
0.1 4439 538.74 209.06 100.00
0.3 322.20 50.17 19.78 10.45
0.5 68.97 13.00 5.59 3.22
0.7 20.20 4.84 2.21 1.36

Table D.3: The (Euler-Maruyama) estimated variance of x1(50) determined for different values of k and α.
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k\α 0.1 0.3 0.5 0.7
0.1 4483 531.9 194.7 100.3
0.3 325.03 50.21 20.04 10.89
0.5 70.02 13.69 6.13 3.63
0.7 23.32 5.30 2.65 1.72

Table D.4: The stationary variance of x1 calculated for different values of k and α.
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Figure D.1: Simulated η1, η2. Initial values shown by red circle and final values shown by green circle.

(x1(0), x2(0)) = (10, 10). Notice that for k = 0.1 and α = 0.1 the reaching and
sliding behaviour are hidden in large fluctuations, whereas for the remaining cases
reaching and sliding phases are observable.

9 Perspectives
In this paper, we give an estimate of the control error which is induced by the appli-
cation of a sliding mode controller to a mechanical system. The significance of this
result is rooted in the attempt to describe (or estimate) the collected behaviour of a
family of physical systems connected via certain switching laws, which are governed
by some kind of sliding mode control.

The presented results are for a two-dimensional system with the control input iso-
lated to one coordinate function. Thereby, it is possible to introduce a coordinate
transformation which reduces the complexity of the discontinuous dynamics provided
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Figure D.2: Simulated x1, x2. Initial values shown by red circle and final values shown by green circle.

by the sliding mode controller. For systems of higher dimension with the same struc-
ture, i.e. system that can be formulated in the Phase Variable Form, a corresponding
coordinate transformation will result in a similar simplification of the discontinuous
challenges. Thus, by the same procedure presented in this paper, an estimate of the
system behaviour can be evaluated.

Appendix

Consider the integral term appearing in the expression of E[Z(η1, r)]∫ t

0
αeα(s−t) (η2(t) + αk sgn(η2(t))) dWs (D.21)

= αk sgn(η2(t))x(t) + η2(t)x(t)

where the process x is defined by

x(t) =
∫ t

0
αeα(s−t)dWs .

It is easily recognized that x is the solution of the following SDE

dx = −αxdt + αdWt, x(0) = 0 . (D.22)

Let the functions F, Q : R2 → R be defined by

F(z) = z1z2 and Q(z) = z1 sgn(z2) .
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The gradients and Hessians are

Fz(z) =
[

z2
z1

]
and Qz(z) =

[
sgn(z2)
z1δ(z2)

]
,

Fzz(z) =
[

0 1
1 0

]
and Qzz(z) =

[
0 δ(z2)

δ(z2) z1δ′(z2)

]
,

with δ′ denoting the distributional derivative of the Dirac delta distribution.

Using (D.5b) and (D.22) we see that the process z defined by z =

[
x
η2

]
, satisfies

the SDE

dz = µdt + GdWt =

[
−αx

−k sgn(η2)

]
dt +

[
α
1

]
dWt .

Hence, by Itô’s lemma

dF = (Fz(x, η2)
Tµ +

1
2

tr(GT Fzz(x, η2)G))dt + Fz(x, η2)
TGdWt

= (−αF− kQ + α)dt + Fz(x, η2)
TGdWt ,

and

dQ = (Qz(x, η2)
Tµ +

1
2

tr(GTQzz(x, η2)G))dt + Qz(x, η2)
TGdWt

= (−(α + kδ(η2))Q +
1
2
(2αδ(η2) + xδ′(η2)))dt + Qz(x, η2)

TGdWt .

Taking expectations, differentiating and solving for stationarity yields

E[F] =
α− kE[Q]

α
, (D.23)

and
E[(α + kδ(η2))Q] =

1
2

E[(2αδ(η2) + xδ′(η2))] . (D.24)

Let Px|η2
and Pη2 denote the conditional distribution of x given η2 and the marginal

distribution of η2 respectively. We then get

E[δ(η2)Q] =
∫ ∫

x sgn(η2)dPx|η2
δ(η2)dPη2

=
∫

E[x|η2] sgn(η2)δ(η2)dPη2 = 0 . (D.25)
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Moreover

E[xδ′(η2))] =
∫ ∫

x dPx|η2
δ′(η2) dPη2

=
∫

E[x|η2] δ′(η2) Φη2 dη2

= −E′[x|η2 = 0] Φη2(0)−E[x|η2 = 0] Φ′η2
(0)

= −E′[x|η2 = 0] Φη2(0) (D.26)

where Φη2 is the (stationary) marginal density of η2 and ′ indicates the derivative with
respect to η2. Using (D.25) and (D.26) in (D.24) we obtain

αE[Q] = αE[δ(η2)] +
1
2

E[xδ′(η2)]

= αΦη2(0)−
1
2

E′[x|η2 = 0] Φη2(0)

= k(α− 1
2

E′[x|η2 = 0]) .

And with the following approximation2

E′[x|η2 = 0] ≈ E[xη2]

Var[η2]
=

E[F]
Var[η2]

,

we obtain
αE[Q] ≈ k(α− k2E[F]). (D.27)

Solving (D.23) and (D.27) yields

E[F] ≈ α

α + k2 , and E[Q] ≈ kE[F] .

The expectation of the integral appearing in the expression of E[Z(η1, r)] is therefore

E
( ∫ t

0
αeα(s−t) (η2(t) + αk sgn(η2(t))) dWs

)
≈ αkE[Q] + E[F]

≈ (αk2 + 1)E[F]

≈ α(αk2 + 1)
α + k2 . (D.28)
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Details

This chapter presents further details and perspectives on parts of the thesis already
discussed.

1 A Stochastic Model with Markovian Switching
Inspired by the model presented in paper C, the following is an extension of this model.

Let the stochastic process x(t) be driven by the SDE

dxt = fq(xt)dt + βdWt, q(t) ∈ Q = {1, 2} (1)

where β is a constant and

fq(xt) =

{
v1 if q = 1
−v2 if q = 2

with the constraints that v1, v2 > 0. The discrete process q(t) is driven by a state-
dependent Markov process where the transition probabilities are given according to

lim
h→0

P(q(t + h) = 1|q(t) = 2∧ x(t) < 0)− λh = O(h2) and

lim
h→0

P(q(t + h) = 2|q(t) = 1∧ x(t) > 0)− µh = O(h2)

where λ and µ are the intensities of the Markov process. The state dependent switch-
ing activity is further outlined in Table 1. A solution to (1) can be observed as the two
interconnected processes (x(t), q(t)).

The dynamics of the system causes two Fokker Planck equations defined on R, one
for each discrete dynamics. Let the corresponding “densities” be defined as φ1(t, x)
and φ2(t, x). Then the Fokker Planck equation gives the relation

∂φ1

∂t
= −v1

∂φ1

∂x
+

β2

2
∂2φ1

∂x2 + λI(x<0)φ2 − µI(x>0)φ1 (2a)

∂φ2

∂t
= v2

∂φ2

∂x
+

β2

2
∂2φ2

∂x2 + µI(x>0)φ1 − λI(x<0)φ2 (2b)



Details

q(t) switching intensity
x(t) < 0 1 inactive -
x(t) > 0 1 active µ
x(t) < 0 2 active λ
x(t) > 0 2 inactive -

Table 1: An outline of the switching activity.

The indicator functions are included to ensure that φi, for i ∈ {1, 2}, only affects the
time-derivative in the corresponding domain. Furthermore, it is assumed that∫

R
φ1(t, x) + φ2(t, x)dx = 1 . (3)

with the restriction that φ1(t, x), φ2(t, x) ≥ 0 for all t ≥ 0, x ∈ R, such that the
total probability mass assigned to the two functions is maintained even though the two
functions lose or gain probability mass from each other. Furthermore, the dynamics
of the Fokker-Planck equations is interconnected so their solutions share boundary
conditions.

1.1 Application of Fourier Transformation
Application of the Fourier transformation to the terms in the Fokker-Planck equation
in (2) gives for i ∈ {1, 2}∫ ∞

−∞
eikx ∂

∂t
φi(t, x)dx =

∂

∂t
φ̂i(t, k)∫ ∞

−∞
eikx ∂

∂x
φi(t, x)dx = −ikφ̂i(t, k)∫ ∞

−∞
eikx ∂2

∂x2 φi(t, x)dx = −k2φ̂i(t, k) .

Furthermore, an expression for the expectation E[x(t)] can be obtained by differen-
tiating the Fourier transformed functions φ̂1(t, k) + φ̂2(t, k) with respect to k and
afterwards to set k = 0, that is,

E[x(t)] = −i
∂

∂k
(
φ̂1(t, k) + φ̂2(t, k)

)
|k=0 .

By applying the same procedure to the sum of the Fourier transformed Fokker-
Planck equations

∂

∂t
φ̂1(t, k) +

∂

∂t
φ̂2(t, k) = ik

(
v1φ̂1(t, k)− v2φ̂2(t, k)

)
− k2 β2

2
(
φ̂1(t, k) + φ̂2(t, k)

)
,
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observe that

∂

∂k

(
∂

∂t
φ̂1(t, k) +

∂

∂t
φ̂2(t, k)

)
|k=0 = i

(
v1φ̂1(t, 0)− v2φ̂2(t, 0)

)
.

Hence, by interchanging the differential order, and multiplying with the imaginary
unit i gives the relation

∂

∂t
E[x(t)] = v1φ̂1(t, 0)− v2φ̂2(t, 0) (4)

which has the solution

E[x(t)] = E[x(0)] +
∫ t

0
v1φ̂1(τ, 0)− v2φ̂2(τ, 0)dτ (5)

Due to (3) it follows that,

1 =
∫ ∞

−∞
φ1(t, x) + φ2(t, x)dx

=
∫ ∞

−∞
ei·0·x (φ1(t, x) + φ2(t, x)) dx = φ̂1(t, 0) + φ̂2(t, 0)

so φ̂2(t, 0) = 1− φ̂1(t, 0). By substituting this into (5) gives the expression

E[x(t)] = E[x(0)] +
∫ t

0

(
−v2 + (v1 + v2)φ̂1(t, 0)

)
dτ

= E[x(0)]− v2t + (v1 + v2)
∫ t

0
φ̂1(t, 0)dτ

This result indicates that the expectation of the process x(t) diverges as t→ ∞.
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SUMMARY
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This thesis treats stochastic systems with switching dynamics. Models with 
these characteristics are studied from several perspectives. Initially in a sim-
ple framework given in the form of stochastic differential equations and, 
later, in an extended form which fits into the framework of sliding mode 
control. It is investigated how to understand and interpret solutions to mod-
els of switched systems, which are exposed to discontinuous dynamics and 
uncertainties (primarily) in the form of white noise. The goal is to gain 
knowledge about the performance of the system by interpreting the solution 
and/or its probabilistic properties. 
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